Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising. (2024)
Presentation / Conference Contribution
LI, Y., REN, J., GAO, Z. and SUN, G. 2024. Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising. In Proceedings of the 2024 IEEE International geoscience and remote sensing symposium (IGARSS 2024), Athens, Greece, 7-12 July 2024. Piscataway: IEEE [online], pages 9210-9213. Available from: https://doi.org/10.1109/igarss53475.2024.10641314

As an effective tool for monitoring surface irregularities in remote sensing, hyperspectral anomaly detection (HAD) has garnered increasing attention. However, how to improve the detection accuracy remains a formidable challenge, due mainly to the no... Read More about Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising..

Underwater object detection for smooth and autonomous operations of naval missions: a pilot Dataset. (2024)
Presentation / Conference Contribution
YAN, Y., LI, Y., LIN, H., SARKER, M.M.K., REN, J. and MCCALL, J. 2024. Underwater object detection for smooth and autonomous operations of naval missions: a pilot dataset. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 113-122. Available from: https://doi.org/10.1007/978-981-97-1417-9_11

Underwater object detection is essential for ensuring autonomous naval operations. However, this task is challenging due to the complexities of underwater environments that often degrade image quality, thereby hampering the performance of detection a... Read More about Underwater object detection for smooth and autonomous operations of naval missions: a pilot Dataset..

MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection. (2024)
Presentation / Conference Contribution
LI, Y., YAN, Y. and REN, C., LIU, Q. and SUN, H. 2024. MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 51-61. Available from: https://doi.org/10.1007/978-981-97-1417-9_5.

Hyperspectral change detection plays a critical role in remote sensing by leveraging spectral and spatial information for accurate land cover variation identification. Long short-term memory (LSTM) has demonstrated its effectiveness in capturing depe... Read More about MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection..