Skip to main content

Research Repository

Advanced Search

All Outputs (30)

Gas diffusion transport characteristics and mathematical description of membrane systems with application for biogas upgrading. (2023)
Thesis
OGUNLUDE, P. 2023. Gas diffusion transport characteristics and mathematical description of membrane systems with application for biogas upgrading. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-2071771

Greenhouse gas emissions (GHGs) and their effects have been a matter of global concern over the past decade. With growing energy demands to support developing economies, there has been a challenge of harnessing and utilizing renewable energy to meet... Read More about Gas diffusion transport characteristics and mathematical description of membrane systems with application for biogas upgrading..

Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture. (2022)
Presentation / Conference Contribution
GIWA, A., SHEHU, H., RAMALAN, M., ORAKWE, I., ABUNOMAH, O., OGUNLUDE, P., WILLIAMWEST, T., IGBAGARA, W., OGOUN, E., HASHIM, I., AISUENI, F. and GOBINA, E. 2022. Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture. In Khan, A.A., Ciddi, M.L. and Unal, M. (eds.) Proceedings of the 2022 International conference on studies in engineering, science and technology (ICSEST 2022), 10-13 November 2022, Antalya, Turkey. Ames, IA: International Society for Technology, Education and Science (ISTES) [online], pages 182-210. Available from: https://www.istes.org/seeder/books/files/54c86815762a9dac0440e35d04a1e05c.pdf

This research involves technical approaches to capture carbon dioxide (CO2) from ambient air, involving a filter with a transport mechanism described based on experimental results. A silica inorganic composite membrane was prepared by using a silicon... Read More about Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture..

Gas diffusion, transport characteristics and modelling in porous membrane systems with application for polymer electrolyte membrane fuel cells. (2022)
Presentation / Conference Contribution
AISUENI, F., RAMALAN, M., ABUNUMAH, O., OGUNLUDE, P., ORAKWE, I., OGOUN, E., GIWA, A., SHEHU, H. and GOBINA, E. 2022. Gas diffusion, transport characteristics and modelling in porous membrane systems with application for polymer electrolyte membrane fuel cells. In Proceedings of the 2nd International congress on scientific advances 2022 (ICONSAD'22), 21-24 December 2022, [virtual conference]. Turkey: ICONSAD [online], pages 144-157. Available from: https://en.iconsad.org/_files/ugd/1dd905_c45aeddf416d497e93113f00f465739b.pdf

Fuel cells convert chemical energy in electrical energy and heat by consuming typically hydrogen and oxygen and producing water as the main by-product. This is achieved by reducing hydrogen at the anode (left hand side) and oxidising oxygen at the ca... Read More about Gas diffusion, transport characteristics and modelling in porous membrane systems with application for polymer electrolyte membrane fuel cells..

Knudsen number sensitivity to pressure drop in a nanoscale membrane. (2022)
Presentation / Conference Contribution
RAMALAN, M.M., PRABHU, R., HASHM, I., OGUNLUDE, P., AISUENI, F., ABUNOMAH, O. and GOBINA, E. 2022. Knudsen number sensitivity to pressure drop in a nanoscale membrane. In Proceedings of the 2nd International congress on scientific advances 2022 (ICONSAD'22), 21-24 December 2022, [virtual conference]. Turkey: ICONSAD [online], pages 276-281. Available from: https://en.iconsad.org/_files/ugd/1dd905_c45aeddf416d497e93113f00f465739b.pdf

According to the kinetic theory of gases, gas molecules are in constant random motion and frequently collide with one another and with the walls of their container. They continuously experience changes in velocity and direction. Between collisions, m... Read More about Knudsen number sensitivity to pressure drop in a nanoscale membrane..

Characteristics of gas transport through inorganic ceramic membranes as porous media using air and nitrogen. (2022)
Presentation / Conference Contribution
IGBAGARA, W., HASHM, I.A., AISUENI, F., OGUNLUDE, P., RAMALAN, M., OGOUN, E., ASIM, T. and GOBINA, E. 2022. Characteristics of gas transport through inorganic ceramic membranes as porous media using air and nitrogen. In Proceedings of the 2nd International congress on scientific advances 2022 (ICONSAD'22), 21-24 December 2022, [virtual conference]. Turkey: ICONSAD [online], pages 417-425. Available from: https://en.iconsad.org/_files/ugd/1dd905_c45aeddf416d497e93113f00f465739b.pdf

Permeation experiments have been conducted using porous ceramic membranes having different pore sizes of 200nm and 6000nm respectively. Air and N2 gases were used as the characterizing fluids and experiments were carried out at temperatures of 20 C,... Read More about Characteristics of gas transport through inorganic ceramic membranes as porous media using air and nitrogen..

A study of gas diffusion characteristics on nano-structured ceramic membranes. (2022)
Journal Article
OGUNLUDE, P., ABUNUMAH, O. and GOBINA, E. 2022. A study of gas diffusion characteristics on nano-structured ceramic membranes. European journal of formal sciences and engineering [online], 5(2), pages 97-101. Available from: https://doi.org/10.26417/ejef.v4i1.p21-23

The use of membranes for gas upgrading has increasingly become of interest as it has shown great potential for efficient and affective gas purification and a pathway to green energy. The emission of greenhouse gases to the atmosphere has detrimental... Read More about A study of gas diffusion characteristics on nano-structured ceramic membranes..

Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation. (2022)
Presentation / Conference Contribution
SHEHU, H., ORAKWE, I., ABUNOMAH, O., OGUNLUDE, P., OGOUN, E., RAMALAN, M., AISUENI, F., OKO, E., IBHADON, A., GAD-BRIGGS, A., GIANNOPOULOS, I., GIWA, A. and GOBINA, E. 2022. Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation. Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 134-137. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/310.pdf

Aviation is a major greenhouse gas contributor responsible for around 3.2% of global CO2 emissions to the atmosphere. That corresponds to over than 1 billion metric tons of carbon (A metric ton is slightly smaller than the American imperial ton—but t... Read More about Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation..

Using contact angle measurements for determination of the surface free energy of the ceramic membranes. (2022)
Presentation / Conference Contribution
HASHIM, I.A., AISUENI, F., OGUNLUDE, P., RAMALAN, M., OGOUN, E., HUSSAINI, M. and GOBINA, E. 2022. Using contact angle measurements for determination of the surface free energy of the ceramic membranes. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 5-8. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/177.pdf

The surface free energy is one of the factors that characterises the surfaces of materials. The sessile drop method is the most popular method for determining its value. A contact angle between the surface and the edge of liquid droplets is measured... Read More about Using contact angle measurements for determination of the surface free energy of the ceramic membranes..

Reservoir structural strategies on the integrity of gas mobility ratio. (2022)
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P., GOBINA, E. and GIWA, A. 2022. Reservoir structural strategies on the integrity of gas mobility ratio. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 39-42. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/187.pdf

In this study, four commonly injected EOR gases, CH4, N2, Air, and CO2, have been simultaneously investigated through an experimental method to determine the effect and correlational relevance of 28 structural and 22 fluid quantities to mobility rati... Read More about Reservoir structural strategies on the integrity of gas mobility ratio..

An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism. (2022)
Presentation / Conference Contribution
OGUNLUDE, P., HASHIM, I., RAMALAN, M., OGOUN, E., MUHAMMAD-SUKKI, F., GIWA, A. and GOBINA, E. 2022. An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 43-46. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/188.pdf

This study focuses on the use of composite alumina membranes for the separation of carbon dioxide from methane. The technique can be applied to pre, post and oxycombustion operations in industry and would be particularly useful in mitigating the effe... Read More about An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism..

Experimental determination of carbon capture and sequestration response to reservoir quantities. (2022)
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P., GOBINA, E. and GIWA, A. 2022. Experimental determination of carbon sequestration response to reservoir quantities. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 47-50. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/423.pdf

Reservoir entities can be classified into geological, geometrical and fluidic. To complicate matters, reservoirs are usually set in geological layers, such that each layer interacts with injected and resident fluids differently. Carbon dioxide (CO2)... Read More about Experimental determination of carbon capture and sequestration response to reservoir quantities..

Characterization of membranes for advanced direct carbon capture. (2022)
Presentation / Conference Contribution
HASHIM, I.A., AISUENI, F., ABUNOMAH, O., OGUNLUDE, P., RAMALAN, M., OGOUN, E. and GOBINA, E. 2022. Characterization of membranes for advanced direct air carbon capture. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 148-151. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/386.pdf

Carbon capture is essential for lowering anthropogenic carbon emissions and, as a result, limiting global warming. Membrane technology has a lot of potential for extremely efficient carbon capture because of its energy-efficient and environmentally f... Read More about Characterization of membranes for advanced direct carbon capture..

Nanoporous gas transport in shale gas reservoirs. (2022)
Journal Article
OGOUN, E., OGUNLUDE, P., ABUNOMAH, O. and GOBINA, E. 2022. Nanoporous gas transport in shale gas reservoirs. International journal on engineering, science and technology [online], 4(1), pages 73-84. Available from: https://doi.org/10.46328/ijonest.70

In more conventional gas reservoirs, gas flow is simple, uncomplicated, and described by simple flux pressure drop expressions. In shale reservoirs however, this relationship takes the form of a more complex and multiscale flow process involving spec... Read More about Nanoporous gas transport in shale gas reservoirs..

Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance. (2022)
Journal Article
ABUNUMAH, O., OGUNLUDE, P., OGOUN, E., RAMALAN, M., ANTWI, S., AISUENI, F., HASHIM, I. and GOBINA, E. 2022. Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance. International journal on engineering, science and technology [online], 4(1), pages 41-53. Available from: https://doi.org/10.46328/ijonest.72

In addition to the evolution of green and nano energy, sequestration of CO2 is also an evolving method to control the global CO2 footprint and greenhouse effect. Carbon Capture and Sequestration (CCS) is an established technique to capture carbon fro... Read More about Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance..

Mass transfer characteristics through alumina membranes with different pores sizes and porosity. (2022)
Journal Article
OGUNLUDE, P., ABUNOMAH, O., HASHIM, I., AISUENI, F., OGOUN, E., ANTWI, S., RAMALAN, M., WILLIAMWEST, T., SUKKI, F.M. and GOBINA, E. 2022. Mass transfer characteristics through alumina membranes with different pores sizes and porosity. International journal of engineering, science and technology [online], 4(1), pages 99-123. Available from: https://doi.org/10.46328/ijonest.71

Different membranes covering the macroporous to nano-pororous range and having different porosities have been used to study the mass transfer of methane and carbon dioxide single gases. The effect of flow parameters on the transport mechanisms throug... Read More about Mass transfer characteristics through alumina membranes with different pores sizes and porosity..

Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime. (2021)
Presentation / Conference Contribution
GOBINA, E., OGUNLUDE, P., ABUNUMAH, O., GIWA, A. and MUHAMMAD-SUKKI, F. 2021. Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime. In Proceedings of 2021 International congress of Scientific Advances (ICONSAD'21), 22-25 December 2021, [virtual conference]. Turkey: ICONSAD [online], pages 770-784. Available from: https://tinyurl.com/2p8uy2rh

The present work is focusing on the utilization of previously fabricated membrane to study the effect of pressure drop and temperature on permeability. Mass transfer considerations were used under previously optimized conditions. Subsequently, gas pe... Read More about Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime..

A study of gas transport mechanisms for CH4/CO2 using ceramic membranes. (2021)
Presentation / Conference Contribution
OGUNLUDE, P., ABUNUMAH, O., MUHAMMAD-SUKKI, F. and GOBINA, E. 2021. A study of gas transport mechanisms for CH4/CO2 using ceramic membranes. Crystals [online], 11(10): selected papers from 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference], article 1224. Available from: https://doi.org/10.3390/cryst11101224

Greenhouse gas emissions (GHGs) and their effects have been a matter of global concern over the past decade. As the demand for energy grows in developing economies, there has been a challenge in harnessing and utilising sustainable forms of energy to... Read More about A study of gas transport mechanisms for CH4/CO2 using ceramic membranes..

The effect of pressure and porous media structural parameters coupling on gas apparent viscosity. (2021)
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P. and GOBINA, E. 2021. The effect of pressure and porous media structural parameters coupling on gas apparent viscosity. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: ICANM, pages 42-46.

Crude oil production is still considered a significant contributor to global energy security. To improve oil production, gases such as CH4, N2, Air and CO2 are injected into oil reservoirs in a process called gas Enhanced Oil Recovery (EOR). Authors... Read More about The effect of pressure and porous media structural parameters coupling on gas apparent viscosity..

A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes. (2021)
Presentation / Conference Contribution
OGUNLUDE, P., ABUNUMAH, O., MOHAMMAD-SUKKI, F. and GOBINA, E. 2021. A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: IAEMM, pages 27-33.

Greenhouse gas emissions (GHGs) and their effects have been a matter of global concern over the past decade. With growing energy demands to support developing economies, there has been a challenge of harnessing and utilizing sustainable forms of ener... Read More about A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes..

An initial study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes. (2020)
Journal Article
OGUNLUDE, P., ABUNUMAH, O., ORAKWE, I., SHEHU, H., MUHAMMAD-SUKKI, F. and GOBINA, E. 2022. An initial study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes. Catalysis today [online], 388-389, pages 87-91. Available from: https://doi.org/10.1016/j.cattod.2020.11.006

Supplement to the depleting energy resources and the stringent environmental laws regarding the atmospheric emissions of greenhouse gases, the development of clean and renewable sources of energy has been a great issue. Worldwide, energy usage is ste... Read More about An initial study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes..