Skip to main content

Research Repository

Advanced Search

All Outputs (256)

Optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in Internet of things. (2024)
Journal Article
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. [2024]. Optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in Internet of things. International journal of information security [online], Latest Articles. Available from: https://doi.org/10.1007/s10207-024-00855-7

Embedded systems, including the Internet of Things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performa... Read More about Optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in Internet of things..

Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning. (2024)
Journal Article
YAN, Y., REN, J., SUN, H. and WILLIAMS, R. 2024. Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning. IEEE transactions on industrial informatics [online], Early Access. Available from: https://doi.org/10.1109/TII.2024.3384609

Measuring the purity of the metal powder is essential to maintain the quality of additive manufacturing products. Contamination is a significant concern, leading to cracks and malfunctions in the final products. Conventional assessment methods focus... Read More about Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning..

Advancing early leukemia diagnostics: a comprehensive study incorporating image processing and transfer learning. (2024)
Journal Article
HAQUE, R., AL SAKIB, A., HOSSAIN, M.F., ISLAM, F., AZIZ, F.I., AHMED, M.R., KANNAN, S., ROHAN, A. and HASAN, M.J. 2024. Advancing early leukemia diagnostics: a comprehensive study incorporating image processing and transfer learning. BioMedInformatics [online], 4(2), pages 966-991. Available from: https://doi.org/10.3390/biomedinformatics4020054

Disease recognition has been revolutionized by autonomous systems in the rapidly developing field of medical technology. A crucial aspect of diagnosis involves the visual assessment and enumeration of white blood cells in microscopic peripheral blood... Read More about Advancing early leukemia diagnostics: a comprehensive study incorporating image processing and transfer learning..

DICAM: deep inception and channel-wise attention modules for underwater image enhancement. (2024)
Journal Article
FARHADI TOLIE, H., REN, J. and ELYAN, E. 2024. DICAM: deep inception and channel-wise attention modules for underwater image enhancement. Neurocomputing [online], 584, article number 127585. Available from: https://doi.org/10.1016/j.neucom.2024.127585

In underwater environments, imaging devices suffer from water turbidity, attenuation of lights, scattering, and particles, leading to low quality, poor contrast, and biased color images. This has led to great challenges for underwater condition monit... Read More about DICAM: deep inception and channel-wise attention modules for underwater image enhancement..

Exploring representations for optimising connected autonomous vehicle routes in multi-modal transport networks using evolutionary algorithms. (2024)
Journal Article
HAN, K., CHRISTIE, L.A., ZAVOIANU, A.-C. and MCCALL, J.A.W. 2024. Exploring representations for optimising connected autonomous vehicle routes in multi-modal transport networks using evolutionary algorithms. IEEE transactions on intelligent transportation systems, [online], Early Access. Available from: https://doi.org/10.1109/TITS.2024.3374550

The past five years have seen rapid development of plans and test pilots aimed at introducing connected and autonomous vehicles (CAVs) in public transport systems around the world. While self-driving technology is still being perfected, public transp... Read More about Exploring representations for optimising connected autonomous vehicle routes in multi-modal transport networks using evolutionary algorithms..

FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI. (2024)
Conference Proceeding
SENANAYAKE, J., KALUTARAGE, H., PETROVSKI, A., AL-KADRI, M.O. and PIRAS, L. 2024. FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI. In Katsikas, S. et al. (eds.) Computer security: revised selected papers from the proceedings of the International workshops of the 28th European symposium on research in computer security (ESORICS 2023 International Workshops), 25-29 September 2023, The Hague, Netherlands. Lecture notes in computer science, 14399. Cham: Springer [online], part II, pages 426-441. Available from: https://doi.org/10.1007/978-3-031-54129-2_25

Adhering to security best practices during the development of Android applications is of paramount importance due to the high prevalence of apps released without proper security measures. While automated tools can be employed to address vulnerabiliti... Read More about FedREVAN: real-time detection of vulnerable android source code through federated neural network with XAI..

Generalizing infrastructure inspection: step transfer learning aided extreme learning machine for automated crack detection in concrete structures. (2024)
Journal Article
SOHAIB, M., HASAN, M.J., CHEN, J. and ZHENG, Z. 2024. Generalizing infrastructure inspection: step transfer learning aided extreme learning machine for automated crack detection in concrete structures. Measurement science and technology [online], 35(5): AI-driven measurement methods for resilient infrastructure and communities, article number 055402. Available from: https://doi.org/10.1088/1361-6501/ad296c

Identification of damage and selection of a restoration strategy in concrete structures is contingent upon automatic inspection for crack detection and assessment. Most research on deep learning models for autonomous inspection has focused solely on... Read More about Generalizing infrastructure inspection: step transfer learning aided extreme learning machine for automated crack detection in concrete structures..

Two-layer ensemble of deep learning models for medical image segmentation. (2024)
Journal Article
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2024. Two-layer ensemble of deep learning models for medical image segmentation. Cognitive computation [online], In Press. Available from: https://doi.org/10.1007/s12559-024-10257-5

One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation al... Read More about Two-layer ensemble of deep learning models for medical image segmentation..

TPAAD: two‐phase authentication system for denial of service attack detection and mitigation using machine learning in software‐defined network. (2024)
Journal Article
NISA, N., KHAN, A.S., AHMAD, Z. and ABDULLAH, J. 2024. TPAAD: two-phase authentication system for denial of service attack detection and mitigation using machine learning in software-defined network. International journal of network management [online], Early View, article number e2258. Available from: https://doi.org/10.1002/nem.2258

Software-defined networking (SDN) has received considerable attention and adoption owing to its inherent advantages, such as enhanced scalability, increased adaptability, and the ability to exercise centralized control. However, the control plane of... Read More about TPAAD: two‐phase authentication system for denial of service attack detection and mitigation using machine learning in software‐defined network..

Detection-driven exposure-correction network for nighttime drone-view object detection. (2024)
Journal Article
XI, Y., JIA, W., MIAO, Q., FENG, J., REN, J. and LUO, H. 2024. Detection-driven exposure-correction network for nighttime drone-view object detection. IEEE transactions on geoscience and remote sensing [online], 62, article number 5605014. Available from: https://doi.org/10.1109/TGRS.2024.3351134

Drone-view object detection (DroneDet) models typically suffer a significant performance drop when applied to nighttime scenes. Existing solutions attempt to employ an exposure-adjustment module to reveal objects hidden in dark regions before detecti... Read More about Detection-driven exposure-correction network for nighttime drone-view object detection..

Feature aggregation and region-aware learning for detection of splicing forgery. (2024)
Journal Article
XU, Y., ZHENG, J., REN, J. and FANG, A. 2024. Feature aggregation and region-aware learning for detection of splicing forgery. IEEE signal processing letters [online], 31, pages 696-700. Available from: https://doi.org/10.1109/LSP.2023.3348689

Detection of image splicing forgery become an increasingly difficult task due to the scale variations of the forged areas and the covered traces of manipulation from post-processing techniques. Most existing methods fail to jointly multi-scale local... Read More about Feature aggregation and region-aware learning for detection of splicing forgery..

Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D. (2023)
Conference Proceeding
BANDA, T.M., ZĂVOIANU, A.-C., PETROVSKI, A., WÖCKINGER, D. and BRAMERDORFER, G. 2024. Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D. In Stratulat, S., Marin, M., Negru, V. and Zaharie, D. (eds.) Proceedings of the 25th International symposium on symbolic and numeric algorithms for scientific computing (SYNASC 2023), 11-14 September 2023, Nancy, France. Los Alamitos: IEEE Computer Society [online], pages 186-193. Available from: https://doi.org/10.1109/SYNASC61333.2023.00032

For engineers to create durable and effective electrical assemblies, modelling and controlling heat transfer in rotating electrical machines (such as motors) is crucial. In this paper, we compare the performance of three multi-objective evolutionary... Read More about Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D..

A weighted ensemble of regression methods for gross error identification problem. (2023)
Conference Proceeding
DOBOS, D., DANG, T., NGUYEN, T.T., MCCALL, J., WILSON, A., CORBETT, H. and STOCKTON, P. 2023. A weighted ensemble of regression methods for gross error identification problem. In Proceedings of the 2023 IEEE (Institute of Electrical and Electronics Engineers) Symposium series on computational intelligence (SSCI 2023), 5-8 December 2023, Mexico City, Mexico. Piscataway: IEEE [online], pages 413-420. Available from: https://doi.org/10.1109/SSCI52147.2023.10371882

In this study, we proposed a new ensemble method to predict the magnitude of gross errors (GEs) on measurement data obtained from the hydrocarbon and stream processing industries. Our proposed model consists of an ensemble of regressors (EoR) obtaine... Read More about A weighted ensemble of regression methods for gross error identification problem..

Enhancing brain tumor classification with transfer learning across multiple classes: an in-depth analysis. (2023)
Journal Article
AHMMED, S., PODDER, P., MONDAL, M.R.H., RAHMAN, S.M.A., KANNAN, S., HASAN, M.J., ROHAN, A. and PROSVIRIN, A.E. 2023. Enhancing brain tumor classification with transfer learning across multiple classes: an in-depth analysis. Biomedinformatics [online], 3(4), pages 1124-1144. Available from: https://doi.org/10.3390/biomedinformatics3040068

This study focuses on leveraging data-driven techniques to diagnose brain tumors through magnetic resonance imaging (MRI) images. Utilizing the rule of deep learning (DL), we introduce and fine-tune two robust frameworks, ResNet 50 and Inception V3,... Read More about Enhancing brain tumor classification with transfer learning across multiple classes: an in-depth analysis..

Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm. (2023)
Journal Article
ZHAO, J., LI, Y., LEI, H., REN, J., ZHANG, F. and SHEN, H. 2023. Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm. ACTA geophysica [online], Early Access. Available from: https://doi.org/10.1007/s11600-023-01222-1

Based on an analysis of the information processing mechanism in the primary visual cortex of biological vision, this study proposes an integration method of bar-combination of shifted filter responses (B-COSFIRE) filter with the differential evolutio... Read More about Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm..

Numerical study on the nucleation law of water vapor condensation in laval nozzle. (2023)
Conference Proceeding
NI, W., SUN, R., LIU, G., MA, F., FAN, C., XIE, C. and KANG, Y. 2023. Numerical study of the nucleation law of water vapor condensation in laval nozzle. In Proceedings of the 3rd International conference on new energy and power engineering 2023 (ICNEPE 2023), 24-26 November 2023, Huzhou, China. Piscataway: IEEE [online], pages 264-268. Available from: https://doi.org/10.1109/ICNEPE60694.2023.10429753

In order to explore the formation of condensed droplets and the process of agglomeration into droplets during the gas-liquid separation in the Laval nozzle, the wet gas is taken as the research object, and the numerical simulation model and control e... Read More about Numerical study on the nucleation law of water vapor condensation in laval nozzle..

Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data. (2023)
Journal Article
MA, P., MACDONALD, M., ROUSE, S. and REN, J. 2023. Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data. IEEE journal of oceanic engineering [online], Early Access. Available from: https://doi.org/10.1109/joe.2023.3319741

With the increasing trend of energy transition to low-carbon economies, the rate of offshore structure installation and removal will rapidly accelerate through offshore renewable energy development and oil and gas decommissioning. Knowledge of the lo... Read More about Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data..

PWDformer: deformable transformer for long-term series forecasting. (2023)
Journal Article
WANG, Z., RAN, H., REN, J. and SUN, M. 2024. PWDformer: deformable transformer for long-term series forecasting. Pattern recognition [online], 147, article number 110118. Available from: https://doi.org/10.1016/j.patcog.2023.110118

Long-term forecasting is of paramount importance in numerous scenarios, including predicting future energy, water, and food consumption. For instance, extreme weather events and natural disasters can profoundly impact infrastructure operations and po... Read More about PWDformer: deformable transformer for long-term series forecasting..

Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. (2023)
Conference Proceeding
COLLINS, J., ZĂVOIANU, A.-C. and MCCALL, J.A.W. 2023. Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI (Specialist Group on Artificial Intelligence) Artificial intelligence international conference 2023 (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 451-464. Available from: https://doi.org/10.1007/978-3-031-47994-6_39

Rosters are often used for real-world staff scheduling requirements. Multiple design factors such as demand variability, shift type placement, annual leave requirements, staff well-being and the placement of trainees need to be considered when constr... Read More about Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement..

Explaining a staff rostering problem by mining trajectory variance structures. (2023)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A., ZĂVOIANU, A.-C., BROWNLEE, A.E.I. and AINSLIE, R. 2023. Explaining a staff rostering problem by mining trajectory variance structures. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 275-290. Available from: https://doi.org/10.1007/978-3-031-47994-6_27

The use of Artificial Intelligence-driven solutions in domains involving end-user interaction and cooperation has been continually growing. This has also lead to an increasing need to communicate crucial information to end-users about algorithm behav... Read More about Explaining a staff rostering problem by mining trajectory variance structures..