Skip to main content

Research Repository

See what's under the surface


'If your mother says she loves you, check it out': citizens' approaches to evaluating the credibility of information provided online by political actors in Scotland. (2019)
Presentation / Conference
BAXTER, G. and MARCELLA, R. 2019. 'If your mother says she loves you, check it out': citizens' approaches to evaluating the credibility of information provided online by political actors in Scotland. Presented at the 2019 Media, Communication and Cultural Studies Association annual conference (MeCCSA 2019), 9-11 January 2019, Stirling, UK.

This paper provided an overview of developments in online information credibility evaluation over the previous 25 years, relating these to the results of two studies conducted by the authors in 2017: 1) an online survey of the general public (n = 538... Read More about 'If your mother says she loves you, check it out': citizens' approaches to evaluating the credibility of information provided online by political actors in Scotland..

Multi-label classification via label correlation and first order feature dependance in a data stream. (2019)
Journal Article
NGUYEN, T.T., NGUYEN, T.T.T., LUONG, A.V., NGUYEN, Q.V.H., LIEW, A.W.-C. and STANTIC, B. 2019. Multi-label classification via label correlation and first order feature dependance in a data stream. Pattern recognition [online], 90, pages 35-51. Available from: https://doi.org/10.1016/j.patcog.2019.01.007

Many batch learning algorithms have been introduced for offline multi-label classification (MLC) over the years. However, the increasing data volume in many applications such as social networks, sensor networks, and traffic monitoring has posed many... Read More about Multi-label classification via label correlation and first order feature dependance in a data stream..

Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis. (2018)
Journal Article
OCHEI, L.C., BASS, J.M. and PETROVSKI, A. 2018. Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis. Journal of cloud computing [online], 7, article ID 22. Available from: https://doi.org/10.1186/s13677-018-0121-8

A challenge, when implementing multi-tenancy in a cloud-hosted software service, is how to ensure that the performance and resource consumption of one tenant does not adversely affect other tenants. Software designers and architects must achieve an o... Read More about Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis..

Developing accessible services: understanding current knowledge and areas for future support. (2018)
Conference Proceeding
CRABB, M., HERON, M., JONES, R., ARMSTRONG, M., REID, H. and WILSON, A. 2019. Developing accessible services: understanding current knowledge and areas for future support. In Proceedings of the conference on human factors in computing systems 2019 (CHI 2019): weaving the threads of CHI, 4-9 May 2019, Glasgow, UK. New York: ACM [online] (accepted). Available from: https://doi.org/10.1145/3290605.3300446

When creating digital artefacts, it is important to ensure that the product being made is accessible to as much of the population as is possible. Many guidelines and supporting tools exist to assist reaching this goal. However, little is known about... Read More about Developing accessible services: understanding current knowledge and areas for future support..

X-FDR: a cross-layer routing protocol for multi-hop full-duplex wireless networks. (2018)
Journal Article
AL-KADRI, M.O., AIJAZ, A. and NALLANATHAN, A. 2019. X-FDR: a cross-layer routing protocol for multi-hop full-duplex wireless networks. IEEE wireless communications [online], 26(2), pages 70-77. Available from: https://doi.org/10.1109/MWC.2017.1700243

The recent developments in self-interference (SI) cancellation techniques have led to the practical realization of full-duplex (FD) radios that can perform simultaneous transmission and reception. FD technology is attractive for various legacy commun... Read More about X-FDR: a cross-layer routing protocol for multi-hop full-duplex wireless networks..

Real-time relative permeability prediction using deep learning. (2018)
Journal Article
ARIGBE, O.D., OYENEYIN, M.B., ARANA, I. and GHAZI, M.D. 2019. Real-time relative permeability prediction using deep learning. Journal of petroleum exploration and production technologies [online], 9(2), pages 1271-1284. Available from: https://doi.org/10.1007/s13202-018-0578-5

A review of the existing two and three phase relative permeability correlations shows a lot of pitfalls and restrictions imposed by (a) their assumptions (b) generalization ability and (c) difficulty with updating in real time for different reservoir... Read More about Real-time relative permeability prediction using deep learning..

Informed pair selection for self-paced metric learning in Siamese neural networks. (2018)
Conference Proceeding
MARTIN, K., WIRATUNGA, N., MASSIE, S. and CLOS, J. 2018. Informed pair selection for self-paced metric learning in Siamese neural networks. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 34-49. Available from: https://doi.org/10.1007/978-3-030-04191-5_3

Siamese Neural Networks (SNNs) are deep metric learners that use paired instance comparisons to learn similarity. The neural feature maps learnt in this way provide useful representations for classification tasks. Learning in SNNs is not reliant on e... Read More about Informed pair selection for self-paced metric learning in Siamese neural networks..

Risk information recommendation for engineering workers. (2018)
Conference Proceeding
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2018. Risk information recommendation for engineering workers. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 311-325. Available from: https://doi.org/10.1007/978-3-030-04191-5_27

Within any sufficiently expertise-reliant and work-driven domain there is a requirement to understand the similarities between specific work tasks. Though mechanisms to develop similarity models for these areas do exist, in practice they have been cr... Read More about Risk information recommendation for engineering workers..

GramError: a quality metric for machine generated songs. (2018)
Conference Proceeding
DAVIES, C., WIRATUNGA, N. and MARTIN, K. 2018. GramError: a quality metric for machine generated songs. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 184-190. Available from: https://doi.org/10.1007/978-3-030-04191-5_16

This paper explores whether a simple grammar-based metric can accurately predict human opinion of machine-generated song lyrics quality. The proposed metric considers the percentage of words written in natural English and the number of grammatical er... Read More about GramError: a quality metric for machine generated songs..

Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge. (2018)
Conference Proceeding
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and LUHAR, R. 2018. Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence xxxv: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in artificial intelligence, 11311. Cham: Springer [online], pages 357-371. Available from: https://doi.org/10.1007/978-3-030-04191-5_30

Aspect-level sentiment analysis of customer feedback data when done accurately can be leveraged to understand strong and weak performance points of businesses and services and also formulate critical action steps to improve their performance. In this... Read More about Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge..

A holistic metric approach to solving the dynamic location-allocation problem. (2018)
Conference Proceeding
ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A. and CONWAY, A. 2018. A holistic metric approach to solving the dynamic location-allocation problem. In Bramer, M. and PETRIDIS, M. (eds.) Artificial intelligence xxxv: proceedings of the 38th British Computer Society's specialist group on artificial intelligence (SGAI) annual international artificial intelligence conference (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in artificial intelligence, 11311. Cham: Springer [online], pages 433-439. Available from: https://doi.org/10.1007/978-3-030-04191-5_35

In this paper, we introduce a dynamic variant of the Location-Allocation problem: Dynamic Location-Allocation Problem (DULAP). DULAP involves the location of facilities to service a set of customer demands over a defined horizon. To evaluate a soluti... Read More about A holistic metric approach to solving the dynamic location-allocation problem..

Ranking of geostatistical models and uncertainty quantification using signal detection principle (SDP). (2018)
Journal Article
ANI, M., OLUYEMI, G., PETROVSKI, A. and REZAEI-GOMARI, S. 2019. Ranking of geostatistical models and uncertainty quantification using signal detection principle (SDP). Journal of petroleum science and engineering [online], 174, pages 833-843. Available from: https://doi.org/10.1016/j.petrol.2018.11.024

The selection of an optimal model from a set of multiple realizations for dynamic reservoir modelling and production forecasts has been a persistent issue for reservoir modelers and decision makers. Current evidence has shown that many presumably goo... Read More about Ranking of geostatistical models and uncertainty quantification using signal detection principle (SDP)..

Overlap-based undersampling for improving imbalanced data classification. (2018)
Conference Proceeding
VUTTIPITTAYAMONGKOL, P., ELYAN, E., PETROVSKI, A. and JAYNE, C. 2018. Overlap-based undersampling for improving imbalanced data classification. In Yin, H., Camacho, D., Novais, P. and Tallón-Ballesteros, A. (eds.) Intelligent data engineering and automated learning: proceedings of the 19th International intelligent data engineering and automated learning conference (IDEAL 2018), 21-23 November 2018, Madrid, Spain. Lecture notes in computer science, 11341. Cham: Springer [online], pages 689-697. Available from: https://doi.org/10.1007/978-3-030-03493-1_72

Classification of imbalanced data remains an important field in machine learning. Several methods have been proposed to address the class imbalance problem including data resampling, adaptive learning and cost adjusting algorithms. Data resampling me... Read More about Overlap-based undersampling for improving imbalanced data classification..

Emotion-aware polarity lexicons for Twitter sentiment analysis. (2018)
Journal Article
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and DEEPAK, P. 2018. Emotion-aware polarity lexicons for Twitter sentiment analysis. Expert systems [online], Early View. Available from: https://doi.org/10.1111/exsy.12332

Theoretical frameworks in psychology map the relationships between emotions and sentiments. In this paper we study the role of such mapping for computational emotion detection from text (e.g. social media) with a aim to understand the usefulness of a... Read More about Emotion-aware polarity lexicons for Twitter sentiment analysis..

Improving kNN for human activity recognition with privileged learning using translation models. (2018)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., SANI, S., MASSIE, S. and COOPER, K. 2018. Improving kNN for human activity recognition with privileged learning using translation models. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 448-463. Available from: https://doi.org/10.1007/978-3-030-01081-2_30

Multiple sensor modalities provide more accurate Human Activity Recognition (HAR) compared to using a single modality, yet the latter is preferred by consumers as it is more convenient and less intrusive. This presents a challenge to researchers, as... Read More about Improving kNN for human activity recognition with privileged learning using translation models..

Personalised human activity recognition using matching networks. (2018)
Conference Proceeding
SANI, S., WIRATUNGA, N., MASSIE, S. and COOPER, K. 2018. Personalised human activity recognition using matching networks. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 339-353. Available from: https://doi.org/10.1007/978-3-030-01081-2_23

Human Activity Recognition (HAR) is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to recognise future occurrences of these activities. An important consideration when trai... Read More about Personalised human activity recognition using matching networks..

Case based reasoning as a model for cognitive artificial intelligence. (2018)
Conference Proceeding
CRAW, S. and AAMODT, A. 2018. Case based reasoning as a model for cognitive artificial intelligence. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 62-77. Available from: https://doi.org/10.1007/978-3-030-01081-2_5

Cognitive Systems understand the world through learning and experience. Case Based Reasoning (CBR) systems naturally capture knowledge as experiences in memory and they are able to learn new experiences to retain in their memory. CBR's retrieve and r... Read More about Case based reasoning as a model for cognitive artificial intelligence..

FITsense: employing multi-modal sensors in smart homes to predict falls. (2018)
Conference Proceeding
MASSIE, S., FORBES, G., CRAW, S., FRASER, L. and HAMILTON, G. 2018. FITsense: employing multi-modal sensors in smart homes to predict falls. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 249-263. Available from: https://doi.org/10.1007/978-3-030-01081-2_17

As people live longer, the increasing average age of the population places additional strains on our health and social services. There are widely recognised benefits to both the individual and society from supporting people to live independently for... Read More about FITsense: employing multi-modal sensors in smart homes to predict falls..

Tactical plan optimisation for large multi-skilled workforces using a bi-level model. (2018)
Conference Proceeding
AINSLIE, R., MCCALL, J., SHAKYA, S. and OWUSU, G. 2018. Tactical plan optimisation for large multi-skilled workforces using a bi-level model. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article ID 8477701. Available from: https://doi.org/10.1109/CEC.2018.8477701

The service chain planning process is a critical component in the operations of companies in the service industry, such as logistics, telecoms or utilities. This process involves looking ahead over various timescales to ensure that available capacity... Read More about Tactical plan optimisation for large multi-skilled workforces using a bi-level model..

An analysis of indirect optimisation strategies for scheduling. (2018)
Conference Proceeding
NEAU, C., REGNIER-COUDERT, O. and MCCALL, J. 2018. An analysis of indirect optimisation strategies for scheduling. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article ID 8477967. Available from: https://doi.org/10.1109/CEC.2018.8477967

By incorporating domain knowledge, simple greedy procedures can be defined to generate reasonably good solutions to many optimisation problems. However, such solutions are unlikely to be optimal and their quality often depends on the way the decision... Read More about An analysis of indirect optimisation strategies for scheduling..