Skip to main content

Research Repository

Advanced Search

Professor John McCall


Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms. In Bramer, M. and Ellis, R (eds.) Artificial intelligence XXXVIII: proceedings of 41st British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2021 (AI-2021) (SGAI-AI 2021), 14-16 December 2021, [virtual conference]. Lecture notes in computer science, 13101. Cham: Springer [online], pages 89-102. Available from: https://doi.org/10.1007/978-3-030-91100-3_7

The generation of explanations regarding decisions made by population-based meta-heuristics is often a difficult task due to the nature of the mechanisms employed by these approaches. With the increase in use of these methods for optimisation in indu... Read More about Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms..

Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem. (2021)
Conference Proceeding
ALZA, J., BARTLETT, M., CEBERIO, J. and MCCALL, J. 2021. Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem. In Chicano, F. (ed.) GECCO '21: proceedings of 2021 Genetic and evolutionary computation conference companion, 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 1405-1413. Available from: https://doi.org/10.1145/3449726.3463139

Recent work in combinatorial optimisation have demonstrated that neighbouring solutions of a local optima may belong to more favourable attraction basins. In this sense, the perturbation strategy plays a critical role on local search based algorithms... Read More about Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem..

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Conference Proceeding
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. (2021)
Conference Proceeding
LIEFOOGHE, A., VEREL, S., LACROIX, B., ZĂVOIANU, A.-C. and MCCALL, J. 2021. Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. In Chicano, F. (ed) Proceedings of 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 421-429. Available from: https://doi.org/10.1145/3449639.3459353

In this paper, we demonstrate the application of features from landscape analysis, initially proposed for multi-objective combinatorial optimisation, to a benchmark set of 1 200 randomly-generated multiobjective interpolated continuous optimisation p... Read More about Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems..

Non-deterministic solvers and explainable AI through trajectory mining. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Non-deterministic solvers and explainable AI through trajectory mining. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 4, pages 75-78. Available from: http://ceur-ws.org/Vol-2894/poster2.pdf

Traditional methods of creating explanations from complex systems involving the use of AI have resulted in a wide variety of tools available to users to generate explanations regarding algorithm and network designs. This however has traditionally bee... Read More about Non-deterministic solvers and explainable AI through trajectory mining..

VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. (2021)
Conference Proceeding
HAN, K., PHAM, T., VU, T.H., DANG, T., MCCALL, J. and NGUYEN, T.T. 2021. VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. In Nguyen, N.T., Chittayasothorn, S., Niyato, D. and Trawiński, B. (eds.) Intelligent information and database systems: proceedings of the 13th Asian conference on intelligent information and database systems 2021 (ACCIIDS 2021), 7-10 April 2021, [virtual conference]. Lecture Notes in Computer Science, 12672. Cham: Springer [online], pages 168–180. Available from: https://doi.org/10.1007/978-3-030-73280-6_14

In this study, we introduce an ensemble selection method for deep ensemble systems called VEGAS. The deep ensemble models include multiple layers of the ensemble of classifiers (EoC). At each layer, we train the EoC and generates training data for th... Read More about VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning..

Ensemble-based relationship discovery in relational databases. (2020)
Conference Proceeding
OGUNSEMI, A., MCCALL, J., KERN, M., LACROIX, B., CORSAR, D. and OWUSU, G. 2020. Ensemble-based relationship discovery in relational databases. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 286-300. Available from: https://doi.org/10.1007/978-3-030-63799-6_22

We performed an investigation of how several data relationship discovery algorithms can be combined to improve performance. We investigated eight relationship discovery algorithms like Cosine similarity, Soundex similarity, Name similarity, Value ran... Read More about Ensemble-based relationship discovery in relational databases..

Toward an ensemble of object detectors. (2020)
Conference Proceeding
DANG, T., NGUYEN, T.T. and MCCALL, J. 2020. Toward an ensemble of object detectors. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 458-467. Available from: https://doi.org/10.1007/978-3-030-63823-8_53

The field of object detection has witnessed great strides in recent years. With the wave of deep neural networks (DNN), many breakthroughs have achieved for the problems of object detection which previously were thought to be difficult. However, ther... Read More about Toward an ensemble of object detectors..

A homogeneous-heterogeneous ensemble of classifiers. (2020)
Conference Proceeding
LUONG, A.V., VU, T.H., NGUYEN, P.M., VAN PHAM, N., MCCALL, J., LIEW, A.W.-C. and NGUYEN, T.T. 2020. A homogeneous-heterogeneous ensemble of classifiers. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 251-259. Available from: https://doi.org/10.1007/978-3-030-63823-8_30

In this study, we introduce an ensemble system by combining homogeneous ensemble and heterogeneous ensemble into a single framework. Based on the observation that the projected data is significantly different from the original data as well as each ot... Read More about A homogeneous-heterogeneous ensemble of classifiers..

Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. (2020)
Conference Proceeding
ZĂVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2020. Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, The Netherlands. Lecture notes in computer science, 12269. Cham; Springer, part 1, pages 287-300. Available from: https://doi.org/10.1007/978-3-030-58112-1_20

We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time converge... Read More about Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems..