Skip to main content

Research Repository

Advanced Search

Professor Nirmalie Wiratunga


DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. In Proceedings of 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, Washington, USA [virtual conference]. Piscataway: IEEE [online], pages 1466-1473. Available from: https://doi.org/10.1109/ICTAI52525.2021.00233

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..

Clood CBR: towards microservices oriented case-based reasoning. (2020)
Conference Proceeding
NKISI-ORJI, I., WIRATUNGA, N., PALIHAWADANA, C., RECIO-GARCIA, J.A. and CORSAR, D. 2020. Clood CBR: towards microservices oriented case-based reasoning. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 129-143. Available from: https://doi.org/10.1007/978-3-030-58342-2_9

CBR applications have been deployed in a wide range of sectors, from pharmaceuticals; to defence and aerospace to IoT and transportation, to poetry and music generation; for example. However, a majority of these have been built using monolithic archi... Read More about Clood CBR: towards microservices oriented case-based reasoning..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Personalised meta-learning for human activity recognition with few-data. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 79-93. Available from: https://doi.org/10.1007/978-3-030-63799-6_6

State-of-the-art methods of Human Activity Recognition(HAR) rely on a considerable amount of labelled data to train deep architectures. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement... Read More about Personalised meta-learning for human activity recognition with few-data..

Reasoning with counterfactual explanations for code vulnerability detection and correction. (2021)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021 (AI-Cybersec 2021): proceedings of the workshop on AI and cybersecurity (AI-Cybersec 2021) co-located with 41st (British Computer Society's Specialist Group on Artificial Intelligence) SGAI international conference on artificial intelligence (SGAI 2021), 14 December 2021, Cambridge, UK: [virtual conference]. Aachen: CEUR Workshop Proceedings [online], 3125, pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf 14 December 2021, Cambridge, UK: [virtual event]. Aachen: CEUR Workshop Proceedings [online], 3125, pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf

Counterfactual explanations highlight "actionable knowledge" which helps the end-users to understand how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability detection, understanding these "actionable" correc... Read More about Reasoning with counterfactual explanations for code vulnerability detection and correction..

Autonomous CPSoS for cognitive large manufacturing industries. (2021)
Conference Proceeding
SANTOFIMIA, M.J., VILLANUEVA, F.J., CABA, J., FERNANDEZ-BERMEJO, J., DEL TORO, X., WIRATUNGA, N., TRAPERO, J.R., RUBIO, A., SALVADORI, C. and LOPEZ, J.C. 2021. Autonomous CPSoS for cognitive large manufacturing industries. In Proceedings of 47th Institute of Electrical and Electronics Engineers (IEEE) Industrial Electronics Society annual conference 2021 (IECON 2021), 13-16 October 2021, [virtual conference]. Piscataway: IEEE [online], article 9589159. Available from: https://doi.org/10.1109/IECON48115.2021.9589159

The general aim of a cognitive Cyber Physical System of Systems (CPSoS) is to provide managed access to data in a smart fashion such that sensing and actuation capabilities are connected. Whilst there is significant funding and research devoted to th... Read More about Autonomous CPSoS for cognitive large manufacturing industries..

Actionable feature discovery in counterfactuals using feature relevance explainers. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Actionable feature discovery in counterfactuals using feature relevance explainers. In Borck, H., Eisenstadt, V., Sánchez-Ruiz, A. and Floyd, M. (eds.) ICCBR 2021 workshop proceedings (ICCBR-WS 2021): workshop proceedings for the 29th International conference on case-based reasoning co-located with the 29th International conference on case-case based reasoning (ICCBR 2021), 13-16 September 2021, Salamanca, Spain [virtual conference]. CEUR-WS proceedings, 3017. Aachen: CEUR-WS [online], pages 63-74. Available from: http://ceur-ws.org/Vol-3017/101.pdf

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a Machine Learning model outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to be able to reason with si... Read More about Actionable feature discovery in counterfactuals using feature relevance explainers..

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..

Non-deterministic solvers and explainable AI through trajectory mining. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Non-deterministic solvers and explainable AI through trajectory mining. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 4, pages 75-78. Available from: http://ceur-ws.org/Vol-2894/poster2.pdf

Traditional methods of creating explanations from complex systems involving the use of AI have resulted in a wide variety of tools available to users to generate explanations regarding algorithm and network designs. This however has traditionally bee... Read More about Non-deterministic solvers and explainable AI through trajectory mining..

Learning to compare with few data for personalised human activity recognition. (2020)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A. and COOPER, K. 2020. Learning to compare with few data for personalised human activity recognition. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 3-14. Available from: https://doi.org/10.1007/978-3-030-58342-2_1

Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist... Read More about Learning to compare with few data for personalised human activity recognition..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..