Skip to main content

Research Repository

Advanced Search

Dr Mostafa Sarker


Efficient breast cancer classification network with dual squeeze and excitation in histopathological images. (2022)
Journal Article
SARKER, M.M.K., AKRAM, F., ALSHARID, M., SINGH, V.K., YASRAB, R. and ELYAN, E. 2023. Efficient breast cancer classification network with dual squeeze and excitation in histopathological images. Diagnostics [online], 13(1), article 103. Available from: https://doi.org/10.3390/diagnostics13010103

Medical image analysis methods for mammograms, ultrasound, and magnetic resonance imaging (MRI) cannot provide the underline features on the cellular level to understand the cancer microenvironment which makes them unsuitable for breast cancer subtyp... Read More about Efficient breast cancer classification network with dual squeeze and excitation in histopathological images..

ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network. (2022)
Journal Article
SINGH, V.K., SARKER, M.M.K., MAKHLOUF, Y., CRAIG, S.G., HUMPHRIES, M.P., LOUGHREY, M.B., JAMES, J.A., SALTO-TELLEZ, M., O'REILLY, P. and MAXWELL, P. 2022. ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network. Cancers [online], 14(16), article 3910. Available from: https://doi.org/10.3390/cancers14163910

In this article, we propose ICOSeg, a lightweight deep learning model that accurately segments the immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS) protein in colon cancer from immunohistochemistry (IHC) slide patches. The proposed m... Read More about ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network..

TransSLC: skin lesion classification in dermatoscopic images using transformers. (2022)
Conference Proceeding
SARKER, M.M.K., MORENO-GARCÍA, C.F., REN, J. and ELYAN, E. 2022. TransSLC: skin lesion classification in dermatoscopic images using transformers. In Yang, G., Aviles-Rivero, A., Roberts, M. and Schönlieb, C.-B. (eds.) Medical image understanding and analysis: proceedings of 26th Medical image understanding and analysis 2022 (MIUA 2022), 27-29 July 2022, Cambridge, UK. Lecture notes in computer sciences, 13413. Cham: Springer [online], pages 651-660. Available from: https://doi.org/10.1007/978-3-031-12053-4_48

Early diagnosis and treatment of skin cancer can reduce patients' fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and rec... Read More about TransSLC: skin lesion classification in dermatoscopic images using transformers..

Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. (2022)
Journal Article
ELYAN, E., VUTTIPITTAYAMONGKOL, P., JOHNSTON, P., MARTIN, K., MCPHERSON, K., MORENO-GARCIA, C.F., JAYNE, C. and SARKER, M.M.K. 2022. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Artificial intelligence surgery [online], 2, pages 24-25. Available from: https://doi.org/10.20517/ais.2021.15

The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmen... Read More about Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward..

A black hole-aided deep-helix channel model for DNA. [Preprint] (2022)
Working Paper
SARKER, M.A.L., KADER, M.F., SARKER, M.M.K., LEE, M.H. and HAN, D.S. 2022. A black hole-aided deep-helix channel model for DNA. Research square [online], 10 January 2022, Preprint (version 3). Available from: https://doi.org/10.21203/rs.3.rs-1026992/v3

In this article, we present a black-hole-aided deep-helix (bh-dh) channel model to enhance information bound and mitigate a multiple-helix directional issue in Deoxyribonucleic acid (DNA) communications. The recent observations of DNA do not match wi... Read More about A black hole-aided deep-helix channel model for DNA. [Preprint].

AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation. (2021)
Journal Article
BANU, S.F., SARKER, M.M.K., ABDEL-NASSER, M., PUIG, D. and RASWAN, H.A. 2021. AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation. Applied science [online], 11(21), article 10132. Available from: https://doi.org/10.3390/app112110132

Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face... Read More about AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation..

A means of assessing deep learning-based detection of ICOS protein expression in colon cancer. (2021)
Journal Article
SARKER, M.M.K., MAKHLOUF, Y., CRAIG, S.G., HUMPHRIES, M.P., LOUGHREY, M., JAMES, J.A., SALTO-TELLEZ, M., O'REILLY, P. and MAXWELL, P. 2021. A means of assessing deep learning-based detection of ICOS protein expression in colon cancer. Cancers [online], 13(15): machine learning techniques in cancer, article 3825. Available from: https://doi.org/10.3390/cancers13153825

Biomarkers identify patient response to therapy. The potential immune?checkpoint bi-omarker, Inducible T?cell COStimulator (ICOS), expressed on regulating T?cell activation and involved in adaptive immune responses, is of great interest. We have prev... Read More about A means of assessing deep learning-based detection of ICOS protein expression in colon cancer..

SLSNet: skin lesion segmentation using a lightweight generative adversarial network. (2021)
Journal Article
SARKER, M.M.K., RASHWAN, H.A., AKRAM, F., SINGH, V.K., BANU, S.F., CHOWDHURY, F.U.H., CHOUDHURY, K.A., CHAMBON, S., RADEVA, P., PUIG, D. and ABDEL-NASSER, M. 2021. SLSNet: skin lesion segmentation using a lightweight generative adversarial network. Expert systems with applications [online], 183, article 115433. Available from: https://doi.org/10.1016/j.eswa.2021.115433

The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the... Read More about SLSNet: skin lesion segmentation using a lightweight generative adversarial network..

Web‐based efficient dual attention networks to detect COVID‐19 from X‐ray images. (2020)
Journal Article
SARKER, M.M.K., MAKHLOUF, Y., BANU, S.F., CHAMBON, S., RADEVA, P. and PUIG, D. 2020. Web-based efficient dual attention networks to detect COVID-19 from X-ray images. Electronics letters [online], 56(24), pages 1298-1301. Available from: https://doi.org/10.1049/el.2020.1962

Rapid and accurate detection of COVID-19 is a crucial step to control the virus. For this purpose, the authors designed a web-based COVID-19 detector using efficient dual attention networks, called ‘EDANet’. The EDANet architecture is based on invert... Read More about Web‐based efficient dual attention networks to detect COVID‐19 from X‐ray images..

Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. (2020)
Journal Article
SINGH, V.K., ABDEL-NASSER, M., AKRAM, F., RASHWAN, H.A., SARKER, M.M.K., PANDEY, N., ROMANI, S. and PUIG, D. 2020. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert systems with applications [online], 162, article 113870. Available from: https://doi.org/10.1016/j.eswa.2020.113870

Automatic tumor segmentation in breast ultrasound (BUS) images is still a challenging task because of many sources of uncertainty, such as speckle noise, very low signal-to-noise ratio, shadows that make the anatomical boundaries of tumors ambiguous,... Read More about Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework..