Skip to main content

Research Repository

Advanced Search

Dr Kyle Martin


Informed pair selection for self-paced metric learning in Siamese neural networks. (2018)
Conference Proceeding
MARTIN, K., WIRATUNGA, N., MASSIE, S. and CLOS, J. 2018. Informed pair selection for self-paced metric learning in Siamese neural networks. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 34-49. Available from: https://doi.org/10.1007/978-3-030-04191-5_3

Siamese Neural Networks (SNNs) are deep metric learners that use paired instance comparisons to learn similarity. The neural feature maps learnt in this way provide useful representations for classification tasks. Learning in SNNs is not reliant on e... Read More about Informed pair selection for self-paced metric learning in Siamese neural networks..

Risk information recommendation for engineering workers. (2018)
Conference Proceeding
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2018. Risk information recommendation for engineering workers. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 311-325. Available from: https://doi.org/10.1007/978-3-030-04191-5_27

Within any sufficiently expertise-reliant and work-driven domain there is a requirement to understand the similarities between specific work tasks. Though mechanisms to develop similarity models for these areas do exist, in practice they have been cr... Read More about Risk information recommendation for engineering workers..

GramError: a quality metric for machine generated songs. (2018)
Conference Proceeding
DAVIES, C., WIRATUNGA, N. and MARTIN, K. 2018. GramError: a quality metric for machine generated songs. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 184-190. Available from: https://doi.org/10.1007/978-3-030-04191-5_16

This paper explores whether a simple grammar-based metric can accurately predict human opinion of machine-generated song lyrics quality. The proposed metric considers the percentage of words written in natural English and the number of grammatical er... Read More about GramError: a quality metric for machine generated songs..

Digital interpretation of sensor-equipment diagrams. (2018)
Conference Proceeding
MORENO-GARC√ćA, C.F. 2018. Digital interpretation of sensor-equipment diagrams. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR Workshop ProceedingsCEUR-WS [online], session 2, paper 1. Available from: http://ceur-ws.org/Vol-2151/Paper_s2.pdf

A sensor-equipment diagram is a type of engineering drawing used in the industrial practice that depicts the interconnectivity between a group of sensors and a portion of an Oil & Gas facility. The interpretation of these documents is not a straightf... Read More about Digital interpretation of sensor-equipment diagrams..

Browse

Advanced Search