Skip to main content

Research Repository

Advanced Search

Outputs (4)

Uncertainty reduction in reservoir parameters prediction from multiscale data using machine learning in deep offshore reservoirs. (2020)
Thesis
ARIGBE, O.D. 2020. Uncertainty reduction in reservoir parameters prediction from multiscale data using machine learning in deep offshore reservoirs. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Developing a complete characterization of reservoir properties involved in subsurface multiphase flow is a very challenging task. In most cases, these properties - such as porosity, water saturation, permeability (and their variants), pressure, wetta... Read More about Uncertainty reduction in reservoir parameters prediction from multiscale data using machine learning in deep offshore reservoirs..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

CFD modelling of flow-induced vibration under multiphase flow regimes. (2020)
Thesis
ASIEGBU, N.M. 2020. CFD modelling of flow-induced vibration under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Internal multiphase flow-induced vibration (MFIV) in pipe bends poses serious problems in oil and gas, nuclear and chemical flow systems. The problems include: high amplitude displacement of the pipe structure due to resonance; fatigue failure due to... Read More about CFD modelling of flow-induced vibration under multiphase flow regimes..

CFD modelling of pipe erosion under multiphase flow regimes. (2020)
Thesis
OGUNSESAN, O.A. 2020. CFD modelling of pipe erosion under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Pipe erosion due to sand transport can have an adverse effect on the production efficiency of pipe-lines and other related flow systems. Proper knowledge of the flow characteristics, particle behaviour and geometric effects is very important in the a... Read More about CFD modelling of pipe erosion under multiphase flow regimes..