Skip to main content

Research Repository

Advanced Search

Outputs (43)

Analytical modelling of the hydraulic effect of hydrate deposition on transportability and plugging location in subsea gas pipelines. (2023)
Journal Article
UMUTEME, O.M., ISLAM, S.Z., HOSSAIN, M. and KARNIK, A. [2023]. Analytical modelling of the hydraulic effect of hydrate deposition on transportability and plugging location in subsea gas pipelines. Proceedings of the Institution of Mechanical Engineers, Part C: journal of mechanical engineering science [online], Online First. Available from: https://doi.org/10.1177/09544062231196986

Accurate prediction of the hydraulic effect of hydrate deposition and plug location is critical to the safety and operability of natural gas transport pipelines, especially for gas-dominant subsea pipelines where maintenance and intervention activiti... Read More about Analytical modelling of the hydraulic effect of hydrate deposition on transportability and plugging location in subsea gas pipelines..

Start-up dynamics of vertical axis wind turbines: a review. (2023)
Journal Article
LOUGH, J., ASIM, T., COULL, S., MARSHALL, A., ISLAM, S.Z. and AMBER, I. 2023. Start-up dynamics of vertical axis wind turbines: a review. Journal of physics: conference series [online], 2626: proceedings from the 2023 EERA (European Energy Research Alliance) DeepWind conference, 18-20 January 2023, Trondheim, Norway, article 012006. Available from: https://doi.org/10.1088/1742-6596/2626/1/012006

Vertical Axis Wind Turbines (VAWTs) are becoming increasingly popular for wind power extraction due to their simpler design, lower manufacturing and maintenance costs. The omni-directionality of these power generating machines make them more suitable... Read More about Start-up dynamics of vertical axis wind turbines: a review..

Modelling hydrate deposition in gas-dominant subsea pipelines in operating and shutdown scenarios. (2023)
Journal Article
UMUTEME, O.M., ISLAM, S.Z., HOSSAIN, M. and KARNIK, A. 2023. Modelling hydrate deposition in gas-dominant subsea pipelines in operating and shutdown scenarios. Sustainability [online], 15(18), article number 13824. Available from: https://doi.org/10.3390/su151813824

This study addresses a significant research gap related to hydrate formation in subsea gas pipelines, with a specific focus on deposition rates during shutdown scenarios, which has received limited attention in previous studies. Past research has emp... Read More about Modelling hydrate deposition in gas-dominant subsea pipelines in operating and shutdown scenarios..

Computational fluid dynamics simulation of natural gas hydrate sloughing and pipewall shedding temperature profile: implications for CO2 transportation in subsea pipeline. (2023)
Journal Article
UMUTEME, O.M., ISLAM, S.Z., HOSSAIN, M. and KARNIK, A. 2023. Computational fluid dynamics simulation of natural gas hydrate sloughing and pipewall shedding temperature profile: implications for CO2 transportation in subsea pipeline. Gas science and engineering [online], 116, article number 205048. Available from: https://doi.org/10.1016/j.jgsce.2023.205048

The continuous flow assurance in subsea gas pipelines relies heavily on the assessment of temperature profile during hydrate sloughing and pipewall shedding caused by hydrates, with similar implications for carbon dioxide (CO2) transportation under h... Read More about Computational fluid dynamics simulation of natural gas hydrate sloughing and pipewall shedding temperature profile: implications for CO2 transportation in subsea pipeline..

Real-time monitoring of cement sheath integrity under high-angle HPHT wellbore conditions. (2023)
Thesis
WILCOX, L.B. 2023. Real-time monitoring of cement sheath integrity under high-angle HPHT wellbore conditions. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-2071847

The lengthy time span over which the cemented well needs to retain its integrity is a massive challenge today. The cement plugs in abandoned wells, in conjunction with the annular cement sheath, need to prevent leakages well beyond the life of the we... Read More about Real-time monitoring of cement sheath integrity under high-angle HPHT wellbore conditions..

The impact of ice formation on vertical axis wind turbine performance and aerodynamics. (2023)
Journal Article
GERRIE, S., ISLAM, S.Z., GERRIE, C., DROUBI, G. and ASIM, T. 2023. The impact of ice formation on vertical axis wind turbine performance and aerodynamics. Wind [online], 3(1), pages 16-24. Available from: https://doi.org/10.3390/wind3010003

This study investigated the impact of ice formation on the performance and aerodynamics of a vertical axis wind turbine (VAWT). This is an area that is becoming more prevalent as VAWTs are installed alongside horizontal axis wind turbines (HAWTs) in... Read More about The impact of ice formation on vertical axis wind turbine performance and aerodynamics..

3D CFD modelling of performance of a vertical axis turbine. (2023)
Journal Article
GERRIE, C., ISLAM, S.Z., GERRIE, S., TURNER, N. and ASIM, T. 2023. 3D CFD modelling of performance of a vertical axis turbine. Energies [online], 16(3), article 1144. Available from: https://doi.org/10.3390/en16031144

Recently, wind turbine research has switched focus to vertical axis wind turbines due to the extensive research that has been performed on horizontal axis wind turbines and the potential of vertical axis wind turbines in built-up areas. This study ai... Read More about 3D CFD modelling of performance of a vertical axis turbine..

Magnetic field directed self-assembly of gold Pickering emulsion for preparing patterned film. (2022)
Thesis
OKPOZO, O.P. 2022. Magnetic field directed self-assembly of gold Pickering emulsion for preparing patterned film. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1987909

Patterning plays a vital in role in sensor-based devices like surface-enhanced Raman spectroscopy (SERS), surface-enhanced infrared absorption (SEIRA), radio frequency (RF) antennas and many others. The linear array spacing and width of gold strips h... Read More about Magnetic field directed self-assembly of gold Pickering emulsion for preparing patterned film..

An improved computational fluid dynamics (CFD) model for predicting hydrate deposition rate and wall shear stress in offshore gas-dominated pipeline. (2022)
Journal Article
UMUTEME, O.M., ISLAM, S.Z., HOSSAIN, M. and KARNIK, A. 2022. An improved computational fluid dynamics (CFD) model for predicting hydrate deposition rate and wall shear stress in offshore gas-dominated pipeline. Journal of natural gas science and engineering [online], 107, article 104800. Available from: https://doi.org/10.1016/j.jngse.2022.104800

Gas hydrates in pipelines is still a flow assurance problem in the oil and gas industry, and requires a proactive hydrate plugging risk predicting model. As an active area of research, this work has developed a 3D 10m length by 0.0204m diameter horiz... Read More about An improved computational fluid dynamics (CFD) model for predicting hydrate deposition rate and wall shear stress in offshore gas-dominated pipeline..

Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. (2022)
Journal Article
ASIEGBU, N.M., HOSSAIN, M., DROUBI, G.M. and ISLAM, S.Z. 2023. Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. Proceedings of the Institution of Mechanical Engineers, part E: journal of process mechanical engineering [online], 237(4), pages 1319-1330. Available from: https://doi.org/10.1177/09544089221115520

Computational fluid dynamics modelling of internal two-phase flow induced transient forces at 90° elbows have been carried out to evaluate the effect of pipe diameter on the characteristics of multiphase flow induced vibration. Simulations of two-pha... Read More about Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance..

Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset] (2022)
Dataset
ASIEGBU, N.M., HOSSAIN, M., DROUBI, G.M. and ISLAM, S.Z. 2023. Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset]. Proceedings of the Institution of Mechanical Engineers, part E: journal of process mechanical engineering [online], 237(4), pages 1319-1330. Available from: https://journals.sagepub.com/doi/suppl/10.1177/09544089221115520

This output contains supplementary material of tables and figures to accompany the main article of 'Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance' by Nkemjika Mirian Asiegbu, Mamdud Ho... Read More about Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance. [Dataset].

Development of an optimised integrated underbalanced drilling strategy for cuttings transport in gas-liquid flow through wellbore annuli. (2022)
Thesis
MAHON, R. 2022. Development of an optimised integrated underbalanced drilling strategy for cuttings transport in gas-liquid flow through wellbore annuli. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1880278

Although understanding the relationship between gas-liquid two-phase fluid flows and the effects of the major drilling variables is critical to optimising underbalanced drilling (UBD) operations, to date, this has been an area of limited research and... Read More about Development of an optimised integrated underbalanced drilling strategy for cuttings transport in gas-liquid flow through wellbore annuli..

A review of recent advancements in offshore wind turbine technology. (2022)
Journal Article
ASIM, T., ISLAM, S.Z., HEMMATI, A. and KHALID, M.S.U. 2022. A review of recent advancements in offshore wind turbine technology. Energies [online], 15(2), article 579. Available from: https://doi.org/10.3390/en15020579

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbine... Read More about A review of recent advancements in offshore wind turbine technology..

Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles. (2021)
Thesis
ALAITA, D.A. 2021. Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1603672

Multi-phase flow is the type of flow common in the oil and gas industry, as oil reservoirs contain mixtures of oil, gas and water with sand particles from sandstone reservoirs. Accurate design of oil and gas production equipment greatly depends on de... Read More about Computational fluid dynamics modelling of multi-phase flow transition in presence of solid particles..

Effects of damaged rotor on wake dynamics of vertical axis wind turbines. (2021)
Journal Article
ASIM, T. and ISLAM, S.Z. 2021. Effects of damaged rotor on wake dynamics of vertical axis wind turbines. Energies [online], 14(21), article 7060. Available from: https://doi.org/10.3390/en14217060

Vertical Axis Wind Turbines (VAWTs) are omni-directional turbomachines commonly used in rural areas for small-to-medium-scale power generation. The complex flow observed in the wake region of VAWTs is affected by a number of factors, such as rotor bl... Read More about Effects of damaged rotor on wake dynamics of vertical axis wind turbines..

Computational fluid dynamics modelling of fluid flow inside fractured reservoirs. (2021)
Thesis
AL-MASHHADANIE, H.A.J. 2021. Computational fluid dynamics modelling of fluid flow inside fractured reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1603660

Fractured media exist in most layers of the earth's crust, often dominating bulk properties of subsurface geological formations. Therefore, fractured media are involved in many key engineering sectors that impact humans living on Earth. Fractured for... Read More about Computational fluid dynamics modelling of fluid flow inside fractured reservoirs..

CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation. (2021)
Journal Article
DURKACZ, J., ISLAM, S., CHAN, R., FONG, E., GILLIES, H., KARNIK, A. and MULLAN, T. 2021. CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation. Energy reports [online], 7(Supplement 3): 6th International conference on advances on clean energy research 2021 (ICACER 2021), 15-17 April 2021, [virtual conference], pages 119-126. Available from: https://doi.org/10.1016/j.egyr.2021.06.019

This study aims to improve the applicability of Vertical Axis Wind Turbines (VAWTs) by investigating their feasibility in a novel planetary cluster configuration by observing its effect on efficiency and overall power density. Computational Fluid Dyn... Read More about CFD modelling and prototype testing of a vertical axis wind turbines in planetary cluster formation..

Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. (2020)
Journal Article
PEGG, C., SURI, Y., ISLAM, S.Z., ASTHANA, A. and HOSSAIN, M. 2020. Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. International journal of design engineering [online], 9(2): energy and sustainable futures, pages 81-100. Available from: https://doi.org/10.1504/IJDE.2020.113057

Power kites provide the potential rewards of obtaining the disused energy supply from high altitude wind. This paper aims to provide a design of power kite and optimise the potential for renewable power generation. The power kite was modelled using c... Read More about Computational fluid dynamics modelling to design and optimise power kites for renewable power generation..

Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. (2020)
Thesis
SURI, Y. 2020. Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk

The distribution of proppant injected in hydraulic fractures significantly affects fracture-conductivity and well-performance. The proppant transport and suspension in thin fracturing fluid used in unconventional reservoirs are considerably differe... Read More about Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs..

Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. (2020)
Thesis
ADEWOYE, A.J. 2020. Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1357822

Hydrocyclone is used to separate particles from produced water. It can be used in different industries, including oil and gas, water treatment and pharmaceutical (among others). The hydrocyclone can effectively separate particles larger than 10μm, bu... Read More about Improvement to hydrocyclone used in separating particles from produced water in the oil and gas industry..

Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y. ISLAM, S.Z. and HOSSAIN, M. 2020. Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. Journal of natural gas science and engineering [online], 80, article ID 103401. Available from: https://doi.org/10.1016/j.jngse.2020.103401

The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fract... Read More about Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. International journal of rock mechanics and mining sciences [online], 131, article ID 104356. Available from: https://doi.org/10.1016/j.ijrmms.2020.104356

Numerically modelling the fluid flow with proppant transport and fracture propagation together are one of the significant technical challenges in hydraulic fracturing of unconventional hydrocarbon reservoirs. The existing models either model the prop... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset] (2020)
Dataset
ISLAM, S., HOSSAIN, M. and SURI, Y. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset]. Hosted on Mendeley Data [online]. Available from: https://doi.org/10.17632/sdzxzd9krm.1

The aim of this research was to find a dynamic and integrated numerical model that uses computational fluid dynamics (CFD) technique to model the fluid flow with proppant transport and Extended finite element method (XFEM) to model the fracture propa... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset].

Numerical modelling of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Numerical modelling of proppant transport in hydraulic fractures. Fluid dynamics and materials processing [online], 16(2), pages 297-337. Available from: https://doi.org/10.32604/fdmp.2020.08421

The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is co... Read More about Numerical modelling of proppant transport in hydraulic fractures..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

CFD modelling of flow-induced vibration under multiphase flow regimes. (2020)
Thesis
ASIEGBU, N.M. 2020. CFD modelling of flow-induced vibration under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Internal multiphase flow-induced vibration (MFIV) in pipe bends poses serious problems in oil and gas, nuclear and chemical flow systems. The problems include: high amplitude displacement of the pipe structure due to resonance; fatigue failure due to... Read More about CFD modelling of flow-induced vibration under multiphase flow regimes..

Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. (2019)
Thesis
ZORASI, C.B. 2019. Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. Robert Gordon University [online], MRes thesis. Available from: https://openair.rgu.ac.uk

The aim of this study is to evaluate marginal field petrophysical and geomechanical parameters, and to develop a model for analysis of geomechanical problems, in order to mitigate stress-related issues in drilling, development and reservoir managemen... Read More about Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta..

Investigation of slug-churn flow induced transient excitation forces at pipe bend. (2019)
Journal Article
HOSSAIN, M., CHINENYE-KANU, N.M., DROUBI, G.M. and ISLAM, S.Z. 2019. Investigation of slug-churn flow induced transient excitation forces at pipe bend. Journal of fluids and structures [online], 91, article ID 102733. Available from: https://doi.org/10.1016/j.jfluidstructs.2019.102733

Numerical simulations of two-phase flow induced fluctuating forces at a pipe bend have been carried out to study the characteristics of multiphase flow induced vibration (FIV). The multiphase flow patterns and turbulence were modelled using the volum... Read More about Investigation of slug-churn flow induced transient excitation forces at pipe bend..

A new CFD approach for proppant transport in unconventional hydraulic fractures. (2019)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2019. A new CFD approach for proppant transport in unconventional hydraulic fractures. Journal of natural gas science and engineering [online], 70, article number 102951. Available from: https://doi.org/10.1016/j.jngse.2019.102951

For hydraulic fracturing design in unconventional reservoirs, the existing proppant transport models ignore the fluid leak-off effect from the fracture side wall and the effect of fracture roughness. In this paper, a model is proposed using three-dim... Read More about A new CFD approach for proppant transport in unconventional hydraulic fractures..

Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures. (2019)
Journal Article
AHAMMAD, F., MAHMUD, S. and ISLAM, S.Z. 2019. Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures. Journal of petroleum exploration and production technology [online], 9(4), pages 2717-2727. Available from: https://doi.org/10.1007/s13202-019-0646-5

Presence of natural fractures in sub-surface makes an oil well drilling operation very challenging. As one of the major functions of drilling mud is to maintain bottomhole pressure inside a wellbore to avoid any invasion of unwanted high-pressure inf... Read More about Computational fluid dynamics study of yield power law drilling fluid flow through smooth-walled fractures..

Modelling multiphase flow in vertical pipe using CFD method. (2018)
Conference Proceeding
ALAITA, D., HOSSAIN, M. and ISLAM, S.Z. 2018. Modelling multiphase flow in vertical pipe using CFD method. In Wahab, M.A. (ed.) Proceedings of the 1st International conference on numerical modelling in engineering (NME 2018), 28-29 August 2018, Ghent, Belgium. Volume 2: numerical modelling in mechanical and materials engineering. Lecture notes in mechanical engineering. Singapore: Springer [online], pages 300-319. Available from: https://doi.org/10.1007/978-981-13-2273-0_24

Investigations of gas-liquid-solid flows in large diameter vertical pipes are scarce and detailed three phase flow study is still required to understand the flow interactions. Further investigation using high fidelity modelling is thus necessary due... Read More about Modelling multiphase flow in vertical pipe using CFD method..

Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow. (2018)
Conference Proceeding
CHINENYE-KANU, N.M., HOSSAIN, M., DROUBI, M.G. and ISLAM, S.Z. 2018. Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow. In Wahab, M.A. (ed.) Proceedings of the 1st International conference on numerical modelling in engineering (NME 2018), 28-29 August 2018, Ghent, Belgium. Volume 2: numerical modelling in mechanical and materials engineering. Lecture notes in mechanical engineering. Singapore: Springer [online], pages 124-141. Available from: https://doi.org/10.1007/978-981-13-2273-0_11

The local interactions and fluctuations of multiphase flow properties present in upward slug/churn flow patterns through a 900 pipe bend has been investigated. Numerical modelling technique using the Volume of Fluid method (VOF) and Reynolds Average... Read More about Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow..

Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline. (2018)
Journal Article
YAN, Y., LIU, Y., JIANG, H., PENG, Z., CRAWFORD, A., WILLIAMSON, J., THOMPSON, J., KERINS, G., YUSUPOV, A. and ISLAM, S. 2019. Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline. Proceedings of the Institution of Mechanical Engineers, part C: journal of mechanical engineering science [online], 233(3), pages 880-894. Available from: https://doi.org/10.1177/0954406218766200

This paper studies the prototype development of the vibro-impact capsule system aiming for autonomous mobile sensing for pipeline inspection. Self-propelled progression of the system is obtained by employing a vibro-impact oscillator encapsuled in th... Read More about Optimization and experimental verification of the vibro-impact capsule system in fluid pipeline..

Investigation of sand transport in an undulated pipe using computational fluid dynamics. (2017)
Journal Article
TEBOWEI, R., HOSSAIN, M., ISLAM, S.Z., DROUBI, M.G. and OLUYEMI, G. 2018. Investigation of sand transport in an undulated pipe using computational fluid dynamics. Journal of petroleum science and engineering [online], 162, pages 747-762. Available from: https://doi.org/10.1016/j.petrol.2017.11.003

A CFD model has been implemented to investigate the effects the pipe undulation on sand transport. Of particular interest of the present study is the sand deposition in small angled V-inclined bend relevant to oil and gas subsea flowlines where sand... Read More about Investigation of sand transport in an undulated pipe using computational fluid dynamics..

Efficiency improvement of vertical axis wind turbines with an upstream deflector. (2017)
Journal Article
STOUT, C., ISLAM, S., WHITE, A., ARNOTT, S., KOLLOVOZI, E., SHAW, M., DROUBI, G., SINHA, Y. and BIRD, B. 2017. Efficiency improvement of vertical axis wind turbines with an upstream deflector. Energy procedia [online], 118: proceedings of the 2nd International conference on advances on clean energy research (ICACER 2017), 7-9 April 2017, Berlin, Germany, pages 141-148. Available from: https://doi.org/10.1016/j.egypro.2017.07.032

The suitability of using an upstream deflector to improve the efficiency of a vertical axis wind turbine is presented in this study. A two-dimensional vertical axis wind turbine (VAWT) was modelled and simulated using ANSYS Fluent 14.0 computational... Read More about Efficiency improvement of vertical axis wind turbines with an upstream deflector..

Fuel cells as an energy source for desalination applications. (2017)
Book Chapter
FAISAL, N.H., AHMED, R., ISLAM, S.K., HOSSAIN, M., GOOSEN, M.F.A. and KATIKANENI, S.P. 2017. Fuel cells as an energy source for desalination applications. In Mahmoudi, H., Ghaffour, N., Goosen, M.F.A. and Bundschuh, J. (eds.) Renewable energy technologies for water desalination. Boca Raton: CRC Press [online], chapter 7, pages 131-145. Available from: https://doi.org/10.1201/9781315643915-7

Nowadays, there is a renewed interest in fuel cell technology from industry and academia, electrochemistry and catalysis scientists. This interest is due to environmental legislations for CO2 and other greenhouse gases emissions (United Nations Envir... Read More about Fuel cells as an energy source for desalination applications..

Computational fluid dynamics (CFD) modelling of critical velocity for sand transport flow regimes in multiphase pipe bends. (2016)
Thesis
TEBOWEI, R. 2016. Computational fluid dynamics (CFD) modelling of critical velocity for sand transport flow regimes in multiphase pipe bends. Robert Gordon University, PhD thesis.

The production and transportation of hydrocarbon fluids in multiphase pipelines could be severely hindered by particulate solids deposit - such as the sand particles that can accompany hydrocarbon production. Knowledge of the flow characteristics of... Read More about Computational fluid dynamics (CFD) modelling of critical velocity for sand transport flow regimes in multiphase pipe bends..

Optimization of the vibro-impact capsule system. (2016)
Journal Article
LIU, Y., ISLAM, S., PAVLOVSKAIA, E. and WIERCIGROCH, M. 2016. Optimization of the vibro-impact capsule system. Strojniški vestnik: journal of mechanical engineering [online], 62(7-8), pages 430-439. Available from: https://doi.org/10.5545/sv-jme.2016.3754

Optimization of the vibro-impact capsule system for the best progression is considered in this paper focusing on the choice of the excitation parameters and the shape of the capsule. Firstly, the fastest and the most efficient progressions are obtain... Read More about Optimization of the vibro-impact capsule system..

Computational fluid dynamic analysis of sand erosion in 90 degree sharp bend geometry. (2016)
Conference Proceeding
DROUBI, M.G., TEBOWEI, R., ISLAM, S.Z., HOSSAIN, M. and MITCHELL, E. 2016. Computational fluid dynamic analysis of sand erosion in 90 degree sharp bend geometry. In Proceedings of the 9th International conference on computational fluid dynamics (ICCFD9), 11-15 July 2016, Istanbul, Turkey. Istanbul: International conference on computational fluid dynamics (ICCFD) [online], article ID ICCFD9-2016-128. Available from: http://iccfd9.itu.edu.tr/assets/pdf/papers/ICCFD9-2016-128.pdf.

The prediction of erosion damage due to sand presence during hydrocarbon production is a major threat to the integrity of the production facilities. Sand production from oil and gas reservoirs can cause a significant damage to different pipeline comp... Read More about Computational fluid dynamic analysis of sand erosion in 90 degree sharp bend geometry..

Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling. (2012)
Journal Article
HOSSAIN, M., ISLAM, S.Z., and POLLARD, P. 2013. Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling. Renewable energy [online], 51, pages 404-418. Available from: https://doi.org/10.1016/j.renene.2012.10.008

A two-phase polymer electrolyte membrane fuel cell model has been developed to investigate transport of species in a gas diffusion layer taking into account effects of liquid water saturation. A set of governing equations for mass, momentum, species... Read More about Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling..

Water dynamics inside a cathode channel of a polymer electrolyte membrane fuel cell. (2012)
Journal Article
HOSSAIN, M., ISLAM, S.Z., COLLEY-DAVIES, A. and ADOM, E. 2013. Water dynamics inside a cathode channel of a polymer electrolyte membrane fuel cell. Renewable energy [online], 50, pages 763-779. Available from: https://doi.org/10.1016/j.renene.2012.08.041

The present study focuses on the investigation of water dynamics inside a polymer electrolyte membrane fuel cell using two different modelling approaches: Eulerian two-phase mixture and volume of fluid interface tracking models. The Eulerian two-phas... Read More about Water dynamics inside a cathode channel of a polymer electrolyte membrane fuel cell..

Numerical study of the effect of effective diffusivity and permeability of the gas diffusion layer on fuel cell performance. (2012)
Journal Article
HOSSAIN, M., ISLAM, S.Z. and POLLARD, P. 2012. Numerical study of the effect of effective diffusivity and permeability of the gas diffusion layer on fuel cell performance. Proceedings of the Institution of Mechanical Engineers, part A: journal of power and energy [online], 226(7), pages 907-921. Available from: https://doi.org/10.1177/0957650912454402

A three-dimensional, single-phase, isothermal, explicit electrochemistry polymer electrolyte membrane fuel cell model has been developed and the developed computational model has been used to compare various effective diffusivity models of the gas di... Read More about Numerical study of the effect of effective diffusivity and permeability of the gas diffusion layer on fuel cell performance..

Computational fluid dynamics modelling of PEM fuel cells to investigate transport limitations. (2012)
Thesis
ISLAM, S.Z. 2012. Computational fluid dynamics modelling of PEM fuel cells to investigate transport limitations. Robert Gordon University, PhD thesis.

Modern technological advancements in our lifestyle have caused a significant increase in the consumption of energy. With this growing demand, people are more concerned about the rational use of existing limited energy and searching for alternative fo... Read More about Computational fluid dynamics modelling of PEM fuel cells to investigate transport limitations..