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Abstract. In the last years, efforts in the pattern recognition field have been 12 
especially focused on developing systems that use graph based representations. 13 
To that aim, some graph repositories have been presented to test graph-matching 14 
algorithms or to learn some parameters needed on such algorithms. The aim of 15 
these tests has always been to increase the recognition ratio in a classification 16 
framework. Nevertheless, some graph-matching applications are not solely 17 
intended for classification purposes, but to detect similarities between the local 18 
parts of the objects that they represent. Thus, current state of the art repositories 19 
provide insufficient information. We present a graph repository structure such 20 
that each register is not only composed of a graph and its class, but also of a pair 21 
of graphs and a ground-truth correspondence between them, as well as their 22 
class. This repository structure is useful to analyse and develop graph-matching 23 
algorithms and to learn their parameters in a broadly manner. We present seven 24 
different databases, which are publicly available, with these structure and present 25 
some quality measures experimented on them. 26 
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1 Introduction 32 

In pattern recognition, benchmarking is the process of measuring the quality of the 33 
representation of the objects, or the quality of the algorithms involved on comparing, 34 
classifying or clustering these objects. The objective of benchmarking is to improve 35 
performance of the involved object representations and pattern recognition algorithms. 36 
Pattern recognition, through graph-based representations, has been developed through 37 
the last forty years with great success and acknowledgement. Interesting surveys about 38 
this subject are [1, 2] or [3]. The first error-tolerant graph matching algorithms were 39 
published in 1983, [4, 5], and since then, several new algorithms have been presented. 40 
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For this reason, in 2008, a specific database to perform benchmarking on graph 45 
databases was published for the first time [6]. As authors reported, they presented such 46 
database and published its paper with the aim of providing to the scientific community 47 
a public and general framework to evaluate graph representations and graph algorithms 48 
[7–9], such as error-tolerant graph matching, [10–15] learning the consensus of several 49 
correspondences, [16–20], image registration based on graphs, [21, 22], learning graph-50 
matching parameters [23, 24], and so on. Note that a huge amount of methods has been 51 
presented, and the previous list is simply a small sample of them. For a detailed list of 52 
methods, we refer to the aforementioned surveys [1–3]. This database, called IAM [25], 53 
has been largely cited and used to develop new algorithms. It is composed of twelve 54 
datasets containing diverse attributed graphs, for instance, proteins, fingerprints, hand 55 
written characters, among others. 56 

With the same idea, another graph database had been previously published in 2001 57 
[26, 27]. Nevertheless, the aim of this database [28] is to perform exact isomorphism 58 
benchmarking and cannot be used to test error-tolerant graph matching since nodes and 59 
edges are unattributed. It contains 166’000 graphs with very diverse graph sizes. Most 60 
recently in 2015 [29], a new graph repository [30] was presented in order to compare 61 
exact graph edit distance (GED) calculation methods, where data from [26, 31] was 62 
collected and enhanced using low-level information. 63 

Note that other papers have presented with new graph-based methodologies and, 64 
with the aim of experimental reproducibility, reported their self-made databases and 65 
made them public. This is the case of the one first presented in 2006 [32, 33]. It is 66 
composed of attributed graphs extracted from image sequences taken from the CMU 67 
repository [34]. Graph nodes represent salient points of some images and graph edges 68 
have been generated through Delaunay triangulation or represent shape edges. 69 

Registers of the aforementioned databases are composed of a graph and its class 70 
(except for the one in [29] that incorporates some additional information). Thus, the 71 
only quality measures that we can extract from the algorithms applied to these data- 72 
bases are related on classification purposes. For instance, the usual measures are the 73 
false positives, the false negatives and the recognition ratio. 74 

In this paper, we present a new graph-database structure. Registers on this database 75 
are composed of a pair of graphs, a ground-truth correspondence between them as well 76 
as the class of these graphs. This ground-truth is independent of the graph-matching 77 
algorithm and also on their specific parameters, since it has been imposed by a human 78 
or an optimal automatic technique. Therefore, the quality measures that we can extract 79 
not only are the ones related on classification, but also the ones related on the ground-80 
truth correspondence, such as the Hamming distance (HD) between the obtained 81 
correspondence and the ground-truth correspondence. Moreover, some graph-matching 82 
learning algorithms that need a given ground-truth correspondence [19, 33, 35–37] 83 
could be applied and evaluated. We concretise this structure on seven different 84 
databases, and we present some quality measures experimented on them. 85 

Similar to the case of the IAM graph database repository [25], we divide the 86 
databases in three sets, viz. learning, test and validation. In machine learning 87 
applications, the learning set is used to learn the database knowledge that is usually 88 
materialised on the algorithms’ input parameters. The validation set is used for 89 
regularisation purposes, that is, to tune the over-fitting or under-fitting of the learned 90 



 

parameters. Finally, the test set is used to test the quality measures of the methods 91 
learned through the learning and the validation sets. 92 

The rest of the paper is structured in two other sections. In the first one, we present 93 
the graph repository and its benchmarks. In the second one, we conclude the paper. 94 

 95 

2 The Graph Repository 96 

The “Tarragona Repository” (publicly available at [38]) is described in this section, 97 
which is divided into three sub-sections. In the first one, the general structure of the 98 
whole databases is described. In the second one, we describe the current databases in 99 
the repository. Note the aim of this paper is to define a new method to structure graph 100 
databases and therefore, other databases could be included by the authors or other 101 
researches in a near future. In the third sub-section, we summarise the main features of 102 
each database and we present some experimental results performed on them. 103 

 104 
 105 

2.1 General Structure 106 

Databases in the “Tarragona repository” are composed of registers with a format Gi; 107 
G0i; f i; Ci . Attributed graphs Gi and G0i  need to be defined in the same attribute domain, 108 
but may have different orders. The ground-truth correspondence f i between the nodes of 109 
Gi and G0i may have some nodes of Gi mapped to nodes of G0i, and other ones mapped 110 
to a null node. Nevertheless, two nodes of Gi cannot be mapped to the same node of G0i. 111 
The null node is a mechanism to represent that a node of Gi do not have to be mapped 112 
to any node of G0i [10]. Note some nodes of G0i may not have been mapped to any node 113 
of Gi through f i. Moreover, we impose both graphs to belong to the same class. This is 114 
because we consider it has no sense to map local parts of objects that belong to different 115 
classes. For instance, if graphs represent hand-written characters, there is no ground-116 
truth correspondence between an “A” and a “J”. 117 

Our databases are composed of five terms: Name, Description, Learning, Test and 118 
Validation. Name and Description are obvious, and Learning, Test and Validation are 119 
the three common datasets to perform benchmarking. 120 

We present in [38], together with these databases, the following Matlab functions: 121 
– Load Register Database; Set; Register: Returns the register Register in the data- 122 

base Database and the set Set that accepts three values: Learning, Test or Validation. 123 
The output has the format Gi; G0i; Ci; f i; Ii; I 0i. Gi and G0i are both graphs with their 124 
class Ci, f i is the ground-truth correspondence, and values Ii and I 0i are the indices 125 
of graphs Gi and G0i respectively. These indices are useful to know which graphs have 126 
been mapped to other ones since any given graph can appear in several registers 127 
although each time has to be mapped to a different graph. 128 

– Load Graph Database; Set; Index: it returns the graph in position Index. This 129 
function is useful to test the classification ratio. 130 

– Classification Database; Set1; Set2; Kv; Ke: Returns the classification ratio and the 131 
average Hamming distance given sets Set1 and Set2 in Database. The fast bipartite 132 



 

graph matching (FBP) [13] has been used to compute the GED [10] and the 133 
correspondences. Parameter Kv is the insertion and deletion costs on the nodes, and 134 
parameter Ke is the insertion and deletion cost on the edges. 135 

– Plot Graph Graph; Image: Plots the graph over the image where it was extracted 136 
from, in the case that the graph represents an object on an image. This function 137 
assumes that the first two node attributes are the image coordinates x; y. 138 
With the aim of reducing the memory space, the Learning, Test and Validation sets 139 

of each database have been logically structured as shown in Fig. 1. There is a main 140 
vector, where each cell is composed of a structure of three elements. The first one 141 
contains a graph, the second one assigns a class to this graph, and the third one describes 142 
the correspondences from this graph to the rest of graphs. Considering the graphs, the 143 
set of nodes and edges are defined as numerical matrices. The order of each graph is N 144 
and nodes have A attributes. Graphs can have different orders N, but they have the same 145 
number of attributes A given the whole database. Edges do not have attributes. The 146 
existence of an edge is represented by a 1, and the non-existence is represented by a 0. 147 
Classes are defined as string of characters. Each correspondence cell f i;a maps the 148 
original graph Gi to another graph Ga and it is composed of a structure of two elements 149 
that are the index of the input graph and the node-to-node mapping vector. In the node-150 
to-node mapping vector, there are natural numbers representing the index node, and the 151 
value 1, which can appear in several positions of the correspondence, represents a 152 
mapping to a null node. 153 

 154 
 155 
 156 

 157 
Fig. 1. Scheme representing the distribution of the information contained in each set (learning, 158 
validation or test) of a database. 159 



 

2.2 Databases 160 

The databases that are currently available are: 161 
 162 

2.2.1 Rotation Zoom 163 
This database contains graphs that have been extracted from 5 classes that have 10 164 
images of outdoors scenes. Per each class, images were taken from different angles and 165 
positions. We were able to generate a correspondence between all the generated graphs 166 
by using the image homography, which was provided on the original image database 167 
[39]. Each node represents a salient point of the image. It is attributed with the position 168 
of the salient point in the image x; y and also a 64-size feature vector obtained by the 169 
SIFT extractor [40]. Edges are conformed using the Delaunay triangulation and do not 170 
have attributes. An example with a graph of each class is shown in Fig. 2. 171 

 172 
 173 

Fig. 2. The first image of each of the 5 classes and their graphs. 174 
 175 

2.2.2 Palmprint 176 
In order to construct this database, we used palmprint images contained in the Tsinghua 177 
500 DPI Database [41], which currently has more than 150 subjects whose right and 178 
left palm has been scanned a total of 8 times each. Using the first 20 palms of the 179 
original database (10 right hands and 10 left hands), this database is constituted by a 180 
total of 20 classes of 8 graphs each. Minutiae were extracted using the algorithm 181 
proposed in [42] and graphs were constructed with each node representing a minutia. 182 
Node attributes contain information such as the minutiae position, angle, type 183 
(termination or bifurcation) and quality (good or poor). Edges are conformed using the 184 
Delaunay triangulation and do not have attributes. Finally, a correspondence between 185 
all graphs of the same class is generated using a greedy matching algorithm based on 186 
the Hough transform [43]. An example of a palmprint image and its graph is provided 187 
in Fig. 3. 188 



 

 189 

 190 
 191 

Fig. 3. A palmprint and its graph. 192 
 193 

2.2.3 Letters 194 
The Letters graph database originally presented in [6] consists on a set of graphs that 195 
represent artificially distorted letters of the Latin alphabet. For each class, a prototype 196 
line drawing was manually constructed. These prototype drawings are then converted 197 
into prototype graphs by representing the lines through undirected edges, and the ending 198 
points of such lines through nodes. Attributes on nodes are only the bi-dimensional 199 
position of the junctions and edges do not have attributes. Figure 4 shows four samples 200 
of letter A. 201 

 202 
 203 

 204 
Fig. 4. Different instances of letter A. 205 

 206 
There are three variants of the database depending on the degree of distortion with 207 

respect to the original prototype (adding, deleting and moving nodes and edges), viz. 208 
low, medium and high. The ground-truth correspondence between the nodes is well-209 
known, because graphs of each class are generated from an original prototype. 210 



 

2.2.4 Sagrada Familia 3D 211 
The Sagrada Familia 3D database consist of a set of graphs, where each one represents 212 
a cloud of 3D points with structural relations between them. Nodes represent 3D points 213 
and their attributes are the 3D position. Edges represent proximity and do not have 214 
attributes. These points have been extracted as follows. First, a sequence of 473 photos 215 
were taken from different positions around the Sagrada Familia church in Barcelona 216 
(Catalonia, Spain), pointing the camera at the centre of it. Using the whole sequence of 217 
2D images, a 3D model of the monument was built through the Bundler method [44, 218 
45]. This method deducts a global cloud of 3D points of a central object using the salient 219 
points of the set of 2D images. Moreover, it also returns the correspondence between 220 
the 3D points of the resultant model and the salient points of the 2D images. Each graph 221 
in the database represents the 3D information of the salient points that appear in each 222 
image. Figure 5 shows the process to generate the graphs. Red points are the 3D model 223 
of Sagrada Familia, blue points are the different poses of the camera that has captured 224 
the images of the model and black points represent the salient points of images. 225 

 226 
 227 

Fig. 5. The process to generate Sagrada Familia 3D database. (Color figure online) 228 
 229 
 230 

2.2.5 House-Hotel 231 
The original CMU “house” and “hotel” databases consist of 111 graphs corresponding 232 
to a toy house and 101 graphs corresponding to a hotel [46]. Each frame of these 233 
sequences has the same 30 hand-marked salient points identified and labelled with some 234 
attributes. Therefore, nodes in the graphs represent the salient points, with their position 235 
in the image plus a 60-size feature vector using Context Shape (CS) as attributes. Edges 236 
are unattributed and were constructed using the Delaunay triangulation. In this database 237 
there are three sets of pairs of frames, considering as baseline the number of frames of 238 
separation in the video sequence (Fig. 6). 239 



 

 240 

 241 
 242 

Fig. 6. Different images of each of the two classes and their graphs. 243 
 244 

2.3 Repository Summary 245 

Table 1 summarises the main characteristics of the repository. The databases contained 246 
have been selected due to the variability on their characteristics, such as the number of 247 
nodes and edges, the number of classes, the type of attributes or the number of nodes 248 
that the ground-truth correspondences maps to the null node. These differences directly 249 
influence on the behaviour of the implemented algorithms and therefore, these data- 250 
bases can be used to analyse different situations and arrive to interesting conclusions, 251 
such as whether the functionality of certain methodology could be better than another, 252 
given a determined situation. 253 

 254 
 255 

Table 1. Summary of the characteristics of each database. 256 
 257 

Database Rotation 
zoom 

Palmprint Letter Sagrada 
Familia 

House- 
Hotel Low Med High 

Number of graphs Train 20 80 750 750 750 136 71 
Validation 10 0 750 750 750 136 71 
Test 20 80 750 750 750 135 70 

Number of 
correspondences 

Train 80 320 37500 37500 37500 18496 2627 
Validation 40 0 37500 37500 37500 18255 2627 
Test 80 320 37500 37500 37500 18255 2590 

Number of classes 5 20 15 15 15 1 2 
Number of node attributes 66 5 2 2 2 3 62 
Attributes’ description (x,y) 

64 SIFT 
(x,y) 
1 Angle 
1 Type 
1 Quality 

(x,y) (x,y,z) (x,y) 
60 CS 

Avg. nodes 50 836.3 4.6 4.6 4.6 39.3 30 
Avg. edges 277.4 4971.2 6.2 6.4 9 456.5 154.4 
Avg. null correspondences 31.6 152.1 0.4 0.4 0.4 30.1 0 
Max. nodes 50 1505 8 9 9 141 30 
Max. edges 284 8962 12 14 18 1918 158 
Max. null correspondences 50 619 4 5 5 139 0 

258 



 

Table 2 shows the classification ratio and the average Hamming distance between 259 
the computed correspondences and the ground-truth correspondences. It is the result of 260 
running the Matlab function Classification Database; Test; Reference; Kv; Ke available 261 
in [36] (explained in Sect. 2.1). As commented, the FBP [13] has been used to compute 262 
the GEDs [10] and the correspondences. Insertion and deletion cost on nodes, Kv, and 263 
insertion and deletion cost on edges, Ke, have been deducted through the learning 264 
algorithm presented in [37]. The aim of this table is not to report the best achieved 265 
results but simply to show an example of a specific graph-matching algorithm and 266 
learning algorithm. We encourage other researches to share their results, while showing 267 
these ones as a starting point. 268 

 269 
Table 2. Classification ratio and HD obtained with the FBP [13] given edit costs Kv and Ke, 270 
which have been learned by a correspondence-based learning algorithm [37]. 271 

 272 
Database Edit costs Classification 

ratio 
Hamming 
distance Kv Ke 

Rotation 
zoom 

0.0325 −0.0027 1 0.8598 

Palmprint 210 5 0.85 0.4763 
Letter Low 1 1 0.9453 0.9096 

Med 1 1 0.8667 0.8382 
High 1 1 0.8080 0.8303 

Sagrada 
Familia 

0.05 0.05 – 0.7439 

House- 
Hotel 

1000 1 1 0.8598 

 273 
 274 

3 Conclusions 275 

We have presented a publicly available graph repository to perform benchmarking on 276 
graph algorithms such as graph matching, graph clustering, leaning consensus 277 
correspondence or parameter learning. The main feature of this repository is that 278 
registers of these databases do not have the classical structure composed of a graph and 279 
its class, but are composed of a pair of graphs, their class and the ground-truth 280 
correspondence. We want this repository not to be seen as a concluded project, but a 281 
dynamic one, in which other researches contribute with more graph databases. 282 
Moreover, we have presented some classification ratios and Hamming distance on these 283 
databases, given some specific algorithms and parameterisations. For this aspect as well, 284 
we invite other researches to contribute with more results and therefore, to extend and 285 
disseminate the results obtained so far. 286 
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