GUPTA, R., BADEL, B., GUPTA, P., BUCKNALL, D.G., FLYNN, D. and PANCHOLI, K. 2021. Flexible low-density polyethylene–BaTiO3 nanoparticle composites for monitoring leakage current in high-tension equipment. [Dataset]. *ACS applied nano materials* [online], 4(3), pages 2413-2422. Available from: <u>https://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02719/suppl_file/an0c02719_si_001.pdf</u>

Flexible low-density polyethylene–BaTiO3 nanoparticle composites for monitoring leakage current in high-tension equipment. [Dataset].

GUPTA, R., BADEL, B., GUPTA, P., BUCKNALL, D.G., FLYNN, D. and PANCHOLI, K.

2021

This document was downloaded from https://openair.rgu.ac.uk

Supporting Information

Flexible Low-Density Polyethylene-BaTiO₃ Nanoparticle Composites for Monitoring Leakage Current in High-Tension Equipment

Ranjeetkumar Gupta^{1*}, Birzhan Badel², Priya Gupta³, David G Bucknall¹, David Flynn¹, Ketan Pancholi^{2*}

¹School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, U.K.
²School of Engineering, Robert Gordon University, Aberdeen, U.K.
³Department of Electrical and Electronics Engineering, LNCTS, Indore, India.
*Corresponding authors: r.gupta@hw.ac.uk (R. Gupta); k.pancholi2@rgu.ac.uk (K. Pancholi)

Section 1.

The prepared film sample is as shown in Figure 1 and the attachment of the copper electrodes is also shown.

The effect of the silica coating is observed in the TEM images as compared below:

Figure 2. TEM images of uncoated (Left) and silica coated (Right) BaTiO₃ nanoparticles. The coated layer of ca. 10-15 nm is observed on the nanoparticles. (Scale bar represents 100 nm)

The TEM image for the uncoated $BaTiO_3$ nanoparticles sample was also taken for highlighting the improvement due to the silica functionalisation of the nanoparticles. The agglomeration of the nanoparticles due to the dipole-dipole attraction amongst them is clearly observed in the following Figure 3.

Figure 3. TEM image of uncoated BaTiO₃ nanoparticle sample. (Scale bar represents 500 nm)

The TEM images of all the polymer-nanoparticle composite samples prepared with the coated $BaTiO_3$ nanoparticles are shown as below in Figure 4. The dispersion state improvement is clear, when comparing the Figure 4 with Figure 3.

Figure 4. The TEM micrograph images for all the synthesised samples with varying wt.% of nanoparticles, wherein (a) 6% Sample, (b) 9% Sample, (c) 12% Sample, and (d) 15% Sample. (Scale bar represents 500 nm)

Section 2.

The enthalpy of all the samples were calculated using the Universal Analysis software that comes along with the DSC instrument control package. By quantifying the heat associated with the melting endotherm. This heat was then reported in terms of percent crystallinity by normalizing the observed heat of fusion with that of the 100% crystalline LDPE polymer. The area used for the enthalpy (crystallinity) calculation as identified using the "Integrate Peak" functionality of the TA Universal Analysis 2000 software [1] is recreated in the plots in Figure 6 (included in the main text). The same analysis also helped identify the "Melt Peak Temperature" of the endotherm peak, which was the melting point T_m of the samples and listed in the Table below. Adding to the discussion, the Glass transition temperature T_g was also identified using the "Glass/Step transition" functionality available in the same software.

The degree of crystallinity for all the samples was calculated from the following Equation 1 [1], using the standard reference value of LDPE as cited in the main text.

Sample Degree of Crystallinity =
$$\frac{Sample Enthalpy from DSC plot}{PA6 Enthalpy from Reference Text} \times 100\%$$
 Eqn. 1

The important observations from the DSC plot and the calculated degree of crystallinity are summarised in Table 1 below.

Table 1. Melting temperature (T_m) and degree of crystallinity from DSC results for Pure LDPE and the prepared 6%, 9%, 12% and 15% polymer-nanoparticle composite samples.

Sample	T _m	Enthalpy Degree of	
	(°C)	(J/g)	Crystallinity (%)
Pure LDPE	109 ± 1	110 ± 1	39 ± 1
6% Sample	111 ± 2	109 ± 2	38 ± 2
9% Sample	110 ± 1	104 ± 1	36 ± 1
12% Sample	109 ± 1	99 ± 1	34 ± 1
15% Sample	108 ± 2	86 ± 3	30 ± 3

Section 3.

The TEM images were first processed using Photoshop[®] software; wherein they were rotated, cropped, and enlarged to remove edge distortion and any background distortion. Subsequently, these images were enhanced digitally using filters for background noise removal and their artefacts or improving the sharpness and definition of the image. Furthermore, the grayscale images were adjusted for their contrast and brightness to achieve correct tonalities of black and white shades. This helped in distinguishing the polymer matrix, as represented by white or grayscale region and the nanoparticles represented as pure black entities. Then the final processed image was saved as 8-bit TIFF format and loaded in ImageJ image processing software for estimating the nanoparticles/agglomerates sizes for all the processed TEM images of the sample variations.

Table 2. Calculated ferret diameters of NP/agglomerate regions as identified in TEM micrographs and calculated using ImageJ.

Sample	Biggest agglomerate size (nm)	Smallest nanoparticle/ agglomerate size (nm)
6% Sample	260 ± 10	30 ± 5
9% Sample	310 ± 25	30 ± 5
12% Sample	340 ± 20	40 ± 5
15% Sample	410 ± 20	35 ± 5

The values in Table 2 were then used as an input for the designed MATLAB[®] code to generate the simulated 3D model of the polymer nanocomposite with NP/agglomerates represented as spherical entities, as shown in Figure 4 here.

Figure 5. Simulated model representation of the individual nanoparticle/agglomerate present in the synthesised nanocomposite (1 cubic micron size) samples with varying wt% of nanoparticle loading, wherein (a) 6 wt% Sample, (b) 9 wt% Sample, (c) 12 wt% Sample and (d) 15 wt% Sample.

The interaction radius calculated by considering the positions of each nanoparticle/agglomerate in the simulated model is summarised in Table 3 as follows. This data is used for representing the interaction region or influencing region of each nanoparticle/agglomerate in the simulated model, as shown in Figure 9 of the manuscript.

	Minimum	Maximum	Average	Standard
Sample	Interaction	Interaction	Interaction	Deviation
	Radius (nm)	Radius (nm)	Radius (nm)	(nm)
6% Sample	143	521	275	120
9% Sample	174	515	290	90
12% Sample	260	450	310	70
15% Sample	255	440	300	100

Table 3. Interaction radius (IR) values as calculated by the MATLAB® code for the simulated model of each sample type.

References

1. Blaine RL. Determination of polymer crystallinity by DSC. TA Instruments, New Castle, DE. 2013.