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Novel Gumbel-Softmax Trick Enabled Concrete
Autoencoder with Entropy Constraints for

Unsupervised Hyperspectral Band Selection
He Sun, Jinchang Ren, Senior Member, IEEE, Huimin Zhao, Peter Yuen, and Julius Tschannerl

Abstract—As an important topic in hyperspectral image (HSI)
analysis, band selection has attracted increasing attention in
the last two decades for dimensionality reduction in HSI. With
the great success of deep learning (DL)-based models recently,
a robust unsupervised band selection (UBS) neural network is
highly desired, particularly due to the lack of sufficient ground
truth information to train the DL networks. Existing DL models
for band selection either depend on the class label information or
have unstable results via ranking the learned weights. To tackle
these challenging issues, in this paper, we propose a gumbel-
softmax (GS) trick enabled concrete autoencoder based UBS
framework (CAE-UBS) for HSI, in which the learning process
is featured by the introduced concrete random variables and the
reconstruction loss. By searching from the generated potential
band selection candidates from the concrete encoder, the optimal
band subset can be selected based on an information entropy (IE)
criterion. The idea of the CAE-UBS is quite straightforward,
which does not rely on any complicated strategies or metrics.
The robust performance on four publicly available datasets
have validated the superiority of our CAE-UBS framework in
classification of the HSIs.

Index Terms—Unsupervised band selection; hyperspectral im-
age; autoencoder; concrete random variable; information en-
tropy.

I. INTRODUCTION

AS an emerging technology in the past few years, hyper-
spectral images (HSIs) have become increasingly popular

on nondestructive inspection and characterization, owing to
their rich spectral information spanning from visible to (near)
infrared wavelengths. With the capability in identifying minor
changes or differences of certain physical properties, such as
moisture and temperature, and chemical components, HSIs
have been successfully applied in a wide range of applications
[1]–[4], especially in remote sensing, such as land cover
analysis [5]–[7], precision agriculture [8], and object detection
[9], [10], etc. Although the high-dimension spectral data is
beneficial in discriminating different materials and objects, it
has evitablly led to the ‘Hughes phenomenon’ [11], where
the performance of the designed algorithms can be severely
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affected by insufficient t raining samples i n comparison t o the 
large number of spectral dimension. Moreover, the vast data 
volume of HSI also results in a huge computation cost, and 
the difficulty of data storage, transmission, and processing. Be-
sides, the redundant information in HSIs may bring undesired 
properties and lower the efficiency of data analysis. Therefore, 
it is crucial to reduce the data dimension of the HSI data whilst 
preserving the essential discriminative information.

Although most of the feature extraction methods, such as 
the principal component analysis (PCA) [12], [13], the inde-
pendent component analysis (ICA) [14], the wavelet transform 
[15], and the maximum noise reduction (MNF) [16] etc., can 
generate a discriminative and low dimensional feature set, the 
obtained features fail to preserve the physical characteristics of 
data acquired from the optical sensors. On the contrary, feature 
selection methods, which are also known as band selection, 
can choose a desired band subset and maintain the physical 
characteristics from the raw HSI [17]–[36].

According to whether the class label information is uti-
lized, band selection methods can be grouped into three 
categories, i.e. supervised, semi-supervised and unsupervised. 
With the aid of the prior knowledge of the labeled pixels,
(semi-)supervised methods select the optimal subset of bands 
by maximizing or minimizing a certain criterion [17], [20],
[21]. However, they suffer from several intrinsical limitations. 
Firstly, it is impractical to collect sufficient training samples 
for each labeled category in real applications, especially for 
DL. Secondly, relying heavily on the classification perfor-
mance can easily lead to overfitting and poor generalisity. Be-
sides, the results can be of poor robustness as the selected band
subset is subject to the randomly chosen training samples. As
the label information is rarely available in real applications,
unsupervised band selection (UBS) is focused in this paper.

Nowadays, DL-based methods have been successfully ap-
plied in many computer vision tasks and beyond [38]–
[44], [46], [47]. In comparison to the conventional methods, 
DL-based approaches can automatically generate favourable
features, not relying on manual intervention and subjective
parameter settings. Many deep-learning models have already
been applied in HSI, such as convolutional neural network
(CNN) [39]–[41] and autoencoder (AE) [44], [46], [47], which
are mainly for feature extraction and data classification [41],
anomaly detection [46], [47], etc. Unlike the aforementioned
tasks in HSI, there is no available ground truth in band
selection to evaluate the chosen band subset for training the DL
networks. Therefore, it is extremely challenging to determine
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a desired band subset by using a DL-based UBS method.
In this paper, we have proposed a novel AE-based DL 

framework for UBS in HSI. By training an AE with the defined 
reconstruction loss, the optimal band subset can be determined 
for reconstructing the original HSI cube. Different from our 
previous work in [44], the optimal band subset is obtained 
directly from the trained AE without the assistance of ranking 
the significance o f e ach b and. T he m ajor c ontribution o f this 
paper can be highlighted as follows:
1) A concrete end-to-end AE-based UBS framework, CAE-

UBS, is proposed, in which the optimal band subset with 
the desired number of bands can be easily determined 
according to the best reconstruction of the original 
HSI. Rather than using continuous real-numbers as the 
weights in the encoder module, a novel concrete layer is 
implemented with a binary weight of 1 and 0 to indicate 
whether the corresponding band is selectable or not. 
It is only because of the introduced Gumbel-Softmax, 
the obtained discrete weight matrix can be transformed 
to continuous variables for optimization of the selected 
band subset during the backpropagation. To the best 
of our knowledge, this is the first time to employ the 
Gumbel-Softmax trick to obtain the desired band subset 
directly in AE deep learning-based UBS in HSI.

2) Being implemented in an unsupervised manner, the 
proposed CAE-UBS network is found to be efficient and 
robust for UBS according to the reconstruction loss and 
the classification accuracy of the HSI. With the aid of 
an information entropy-based criterion, the desired band 
subset can be determined with much less computational 
cost than other DL methods.

3) In the proposed CAE-UBS framework, a weight matrix 
from a fully connected (FC) layer has been utilized to 
initialize the class probabilities, which can effectively 
improve the classification performance. The superior 
performance of our proposed CAE-UBS framework has 
been validated on four commonly used HSI datasets to 
demonstrate its merits over a number of state-of-the-art 
(SOTA) UBS and one supervised methods, especially a 
more robust performance with less trainable parameters 
and no label information needed.

The rest of this paper is organized as follows. Section 
II introduces the related UBS methods and AE-based DL 
methods. Section III details the proposed framework, including 
CAE-based band selection and optimal band subset searching. 
The experimental results on four HSI datasets are presented 
and discussed in Section IV. Finally, Section V concludes the 
paper along with some future directions.

II. RELATED WORK

In the last two decades, a number of UBS approaches have 
been proposed, which can be grouped into four main cate-
gories, i.e. ranking-based, clustering-based, searching-based 
methods, and sparsity-based. For each category, a detailed 
literature review is summarized below. In addition, the back-
ground information of the AE and AE-based UBS methods 
will also be introduced in this section.

In ranking-based band selection, many efforts have been 
made to evaluate and rank the importance of the raw spec-
tral bands so as to determine the most significant bands 
from the raw spectral cube. In [22], a maximum-variance 
PCA (MVPCA) criterion was utilized to estimate the band 
prioritization. As MVPCA considers the representative and 
discriminative ability of each individual band but ignores 
the correlation between the chosen bands, the selected band 
subset is generally lack of robustness. In Chang and Wang 
[23], a constraint band correlation (CBS) strategy is proposed 
for ranking-based UBS. Four criteria are adopted in the 
CBS framework for choosing the highly correlated dependent 
bands, including the band correlation minimization (BCM), the 
band dependence minimization (BDM), the band correlation 
constraint (BCC), and the band dependence constraint (BDC). 
Although noisy band which has less correlation to all other 
bands will be discarded, similar to MVPCA, the band subset 
selected from CBS still contains a high degree of redundancy. 
For ranking-based methods, the result is usually quite redun-
dant because of the high correlation between the selected 
bands, due mainly to focusing only on the performance of each 
band rather than the relationship between different bands.

Unlike ranking-based approaches, clustering-based methods 
firstly group all the bands into clusters before selecting the 
most representative band from each cluster. By clustering 
adajacent bands together under various similarity metrics, the 
correlation of the bands chosen from different clusters can 
be naturally reduced. In [24], a hierarchy clustering algorithm 
(WaLuDi/WaLuMi) is proposed based on the Ward’s linkage, 
which clusters the bands by maximizing the inter-cluster vari-
ance whilst minimizing the intra-cluster variance. According 
to the Ward’s linkage theory, the chosen band from each 
cluster is the most representative one hence the formed band 
subset will be robust. However, the WaLuDi/WaLuMi method 
suffers from a huge computational cost due to its hierarchy 
architecture.

Some researchers have dedicated their work to improving 
the clustering-based method by combining with some ranking 
strategies. Inspired by the fast density-peak-based clustering 
(FDPC) [45], an enhanced FDPC (E-FDPC) [26] was proposed 
to rank each band by considering the local density and the 
intra-cluster distance simultaneously, where the introduction 
of the intra-cluster distance has effectively reduced the cor-
relation between the selected bands. In [27], Wang et al. 
have proposed an optimal clustering framework (OCF) for 
UBS in HSI with two objective functions, inspired by the 
top-ranked cut and the normalized cut for effective band 
clustering. Afterwards, three ranking strategies are utilized 
to rank the bands within each cluster for band selection, 
where the top-ranked band in each cluster is chosen to form 
the selected band subset. Although these clustering methods 
achieve a good performance, noisy bands are prone to become 
a single cluster and lower the robustness. To tackle this, an 
adaptive distance-based band hierarchy (ADBH) [28] has been 
proposed recently to reflect the hierarchy structure of HSI and 
produce any number of desired band subsets, whilst the effect 
of noisy bands can be suppressed. In clustering-based methods, 
choosing only the most representative band from each cluster
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may be insufficient as the second representative band in one 
cluster may contain more information than the first one in 
another cluster. Thus it is more important to rank the band 
subset as a whole rather than individually, which can also 
avoid the effect of noisy bands, as it can easily form a separate 
cluster in such approaches.

With a given objective function and a search strategy, 
searching-based methods determine an optimal band subset 
by exploring different possible combinations of the bands. In 
[30], the Volume Gradient band selection (VGBS) method is 
introduced, where the defined ‘volume’ information can be 
obtained from the estimated covariance matrix of all bands. By 
assuming the most redundant band has the maximum gradient, 
the VGBS can iteratively remove redundant bands until the 
desired number of bands is reached. By developing a structure-
aware metric for measuring band informativeness and indepen-
dence, Zhu et al [34] proposed a dominant-set extraction UBS 
(DSEBS)method. As a greedy search-based method, DSEBS 
tackles the UBS as a clustering problem. As searching for 
the optimal subset is an NP-hard problem and too costly, 
the used meta-heuristic or evolutionary algorithms usually 
produces a suboptimal solution [34]. In [52], the relationship 
between each band and the entire hypercube is determined 
through the linear reconstruction, and a desired band subset 
can be searched by removing the effect of noisy bands, the 
proposed optimal neighborhood reconstruction (ONR) method 
has achieved a good performance on UBS.

Apart from the searching-based methods, the sparsity-based 
methods utilize the sparse representation (SR) to explore the 
underlying structures within the HSI data [32]. The multitask 
sparsity pursuit (MTSP) [31] searches the optimal band subset 
with the aid of the SR and the immune clonal strategy. 
Although in SR based methods it is quite straightforward to 
select the informative bands based on the estimated sparse 
coefficients, the overall computational complexity is still quite 
high especially in constructing the SR matrix for large-scale 
HSI datasets [27].

Recently, DL and its variations have shown great superiority 
in extracting more effective features in HSI. Cai et al [40] have 
proposed an end-to-end CNN-based model for band selection, 
where the final band subset is determined by ranking the 
average of the learned weights for each band. Unlike other 
deep learning-based neural networks, the basic idea of AE-
based feature selection is to learn the hidden representations 
that can effectively reconstruct the input data. Due to its strong 
ability to explore both linear and nonlinear structures among 
the extracted features, AE has been successfully applied for 
feature selection in high dimensional data in an unsupervised 
manner [44]. For UBS in HSI, the AE-based methods are not 
as popularly used as the aforementioned other categories of 
the methods. In our previous work [44], the input weights of 
the AE are utilized to select the most significant bands in an 
unsupervised way. However, there are several drawbacks 
for this kind of methods. The generated representation from 
the encoder is more like a combination of the raw data, where 
the weight values of nodes in the encoder layer can be both 
pos-itive and negative. Some bands are chosen only because 
they have large absolute weights, which does not fully 

represent their significance. Besides, the aforementioned 
methods rely on the ranking value or the weight to choose the 
desired band, which can inevitably suffer from the 
disadvantages of ranking-based UBS methods, especially the 
high redundancy between the chosen bands. These will be 
tackled in our proposed approach as detailed in the next 
section.

III. METHODOLOGY

Fig. 1: The flowchart of the proposed CAE-UBS framework.

In this section, our proposed CAE-UBS framework will be
presented in detail, including the concept of CAE-based band
selection, determing the optimal band subset, and computa-
tional complexity analysis. According to the flowchart shown
in Fig. 1, first a HSI hypercube is taken as the input to the
designed CAE. Potential band subsets can be acquired based
on minimizing the reconstruction error of the hypercube with
the designed CAE. After calculating the IE of each candidate
of band subsets, the band subset with the maximum IE will
be chosen as the result of band selection. Relevant details are
presented as follow.

A. CAE based band selection

Fig. 2: Weight values of one column in the learned weight ma-
trix W en, the horizontal and vertical axes represent the band
index and weight values of Indian Pine dataset, respectively.
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X̂

In general, a standard AE includes one encoder and one 
decoder module. The encoder represents the mapping be-
tween the input data and the hidden representation while 
the decoder is to reconstruct the input data from the hidden 
representation. Let us project an HSI image into a matrix 
X = [X1, . . . Xi, . . . , Xm] ∈ RD×m denote the projected data 
from a hypercube, where m represents the total number of 
samples in the HSI image and D is the number of spectral 
bands. Based on that, the encoder function can be depicted 
as Hi = σen(XiW en + ben) and the decoder function that 
reconstructs the input data as X̂i = σde(HiW de + bde), where 
the Hi is the hidden representation of the input data and the 

i is the reconstructed data. σen and σde are the activation 
functions, and W and b are the weighted matrices and bias vec-
tor of each module, respectively. For the UBS work, the wen

d

within the input weight matrix W en = (wen
1 , ..., wen

d , ..., wen
D )

actually measures the dth band and represents the contribution
of the dth band in the reconstruction process. The AE can be
trained with the supervision of the reconstruction loss:

L =
1

2m
||X − X̂||F (1)

In our previous work [44] and other similar work [40], the
desired band subset can be chosen by ranking the learned
weight W en from the encoder part. The basic assumption here
is that a highly ranked weight indicates more important of
the corresponding band. However, the weight learned from
AE in general cannot represent the significance of each band.
For example, Fig. 2 shows the learned input weight with one
column in the learned weights matrix W en of the Indian Pines
dataset. Although the positive values represent the contribution
of this band, it has several negative values. Besides, the
motivation of AE-based band selection is to select the most
significant bands for spectrum reconstruction, yet the input
weight based band selection strategy seems not linked to this
objective. Therefore, it is inappropriate to choose the band
according to the weight values.

As the purpose of the AE-based band selection is to learn
an important hidden representation from the input data for
HSI reconstruction, it would be more reasonable to extract
the desired band subset from the encoder part as the key latent
features of the raw data. Inspired by this, we aim to determine
a sparse input weight matrix, whose values can be only 1 and
0, indicating the corresponding band is selected or not. In
this manner, the weight of the bands that do not contribute to
the reconstruction will be 0, otherwise will be 1. Moreover,
the extracted band subset will be optimal as the weights of
the chosen bands are jointly learned. However, this sparse
weight matrix cannot be updated during the backpropagation
in a standard AE as each column of this matrix is a one-
hot vector, i,e, a non-differentiable discrete variable. To tackle
this problem, we have introduced a novel concrete AE for the
UBS, where the sparse matrix can be estimated with the aid of
concrete distribution [48], [49] as detailed in next subsection.

In our proposed CAE-UBS framework, we have employed
the above concrete random variables to select the input bands.
Let the desired number of bands in the band subset be k, a new

Fig. 3: The diagram of the designed concrete autoencoder,
where the Xi,D represents the Dth band of the original HSI
data Xi and X̂i,D is its corresponding reconstructed value, the
Hi denotes the chosen band subset with k bands

sparse weight matrix S will be built with a size of D×k. For
each column of the weight matrix S, a D-dimensional concrete
random variable Sk is sampled following (3). In this way, the
output of the encoder module is Hi = XiS for an input sample
Xi. As Sk is a one-hot vector, it can select a band to recon-
struct the original data. Thus, the composed weight matrix S
becomes a desired sparse matrix, in which the selected k bands
can be directly identified without introducing another criterion.
With the aid of the introduced concrete random variable and
reparameterization, the forward propagation can generate a
band subset, and the backpropagation will optimize the band
selection result.

B. Concrete distribution

The GS distribution, also referred as the concrete distribu-
tion, is defined to produce a continuous distribution over a
discrete variable, e.g., a one-hot vector. As a reparameteriza-
tion trick, the Gumble-softmax trick can efficiently sample z,
i.e. a one-hot vector, from a catergorical distribution with class
probabilities αk, where gk is the sample drawn from Gumbel
(0, 1)1 and k is the element-wise index of the generated one-
hot vector z.

z = one hot

{
argmax

k
[gk + log(αk)]

}
(2)

As the above operation is non-differentiable, which cannot
be back-propagated in the network for optimization. To tackle
this issue, the GS distribution [48] using the softmax function
is proposed as a continuous differentiable approximation to
replace the argmax function in (2) for calculating the contin-
uous relaxation of the one-hot vector z, where the kth element
of the generated sample S from the concrete distribution is
given by:

Sk =
exp((gk + log(αk))/T )∑D
d=1 exp((gk + log(αk))/T )

(3)
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the temperature parameter T controls the relaxation of the 
one-hot vector, where Sk will nearly equal to 1 when T ap-
proaches to 0. With the reparameterization trick, Sk becomes 
differentiable when estimating the gradient in the process of 
backpropagation.

C. Optimal band subset searching

Fig. 4: Top-right: Training loss curve in 200 training epochs on
the Indian Pines dataset. Bottom-left: The training loss from
the 100th training epoch on the Indian Pines dataset, where
the number of iterations equals to the number of batches.

For searching the desired band subset efficiently, we ran-
domly divide all samples from an hypercube into different
batches in a similar way as other DL models [38]. In this way,
multiple band subsets can be obtained during each epoch. Let
N be the number of band subsets determined in one epoch, it
actually equals to the number of iterations, i.e. the number of
batches, in each epoch. Although a band subset is selected
according to the minimized reconstruction error, it can be
potentially only the local optimal solution due to the random
selection of the batch, where searching for a global optimal
band subset is still needed. To this end, a simple yet robust
IE-based searching strategy is introduced in our CAE-UBS
framework as detailed below [35].

Generally, there are several motivations for considering the
global searching strategy. The first is to find an efficient way
to determine the optimal band subset whilst avoiding a huge
computational cost. Nowadays, most of the efficient UBS
methods are still not DL-related, where in AE-based UBS
the optimal band subset is assumed to be the one with the
best reconstruction ability. We have further speculated that
the desired band groups contain more information than other
subsets, which is beneficial for spectrum reconstruction. To
this end, we have defined a global searching strategy using
information theory [35], the Shannon IE, where the IE of band
Xi is defined as:

IE(Xi) = −
∫
Xi

P (Xi)log(P (Xi))dx (4)

where P (Xi) denotes the probability density function of Xi,
which can be usually estimated by [27], [35]. Based on the

determined IE for each band, the band subset with the largest
accumulated IE is chosen as the desired band subset, and the
result is considered as the global optimal solution [27], [35].
As this search strategy is quite straightforward and efficient,
it has been adopted in the proposed CAE-UBS approach.

D. New weights initialization for improved efficiency

To further improve the efficiency of DL-based UBS in
HSI, a rapid convergence of the designed network is essential
for significantly reducing the computational complexity. In
existing GS-based methods [48], [49], the class probability
αk is often randomly initialized in small positive values for
exploring different linear combinations of the inputs, which
may affect the convergence of the network and the result of
band selection. In our CAE-UBS framework, we initialize the
αk with the weight matrix from a FC layer to regularize the
learning process, where the initialized weight matrix has the
same size of the composed weight matrix S. In this way, αk

are initialized within (−
√
D,
√
D), adaptive to the number of

bands, which is further normalized to (0, 1) to indicate the
class probability. The efficacy of the proposed initialization
has been further validated in the comparison experiments in
the next section.

To obtain the desired band subsets without too much compu-
tational cost, another key point is the efficiency in generating
potential candidates. As one training epoch can produce N
candidates, this will end up with a large search space after
a few epochs. Besides, more training epochs increase the
running time of the whole framework. To find the optimal band
subset efficiently, we need to reduce the number of training
epochs. With our proposed CAE, we have found that the
convergence is faster due to the data volume as the HSI data
is around 100 thousands pixels about several hundreds MB
but RGB dataset is usually GB level. In Fig. 4, the training
loss, i.e. the reconstruction loss, of 200 training epochs on the
Indian Pines dataset is presented. As seen, the training loss is
obviously reduced in each epoch in Fig. 4. Based on that, we
conclude that the proposed network can converge within only
one epoch, and the optimal band subset can be chosen from
the generated N candidates. In this manner, the efficiency of
the proposed CAE-UBS framework can be ensured.

E. Merits of CAE-UBS

With the concrete random variable-based AE and IE based
searching strategy, our CAE-UBS framework can determine
an optimal band subset for the effective reconstruction of the
original spectral data. Different from other AE-based band
selection frameworks, we have formulated the band selection
task as a searching-based task by maximizing the accumulated
IE of the desired band group instead of ranking the significance
of each band. Moreover, the proposed CAE can solve the
problem of backpropagation even with a discrete variable in
the UBS task, which enables the designed network able to be
trained with the reconstruction loss L. Being trained in a self-
learning way without introducing any class label information,
the proposed CAE-UBS has the potential to inspire more
related research on the DL-based band selection in the future.
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Algorithm 1 CAE-UBS

1: Input: Raw HSI data X = [X1, . . .Xi, . . . , Xm] ∈
Rm×D, desired number of bands k.

2: Initialize: Hyperparameters Initialization :Adam opti-
mizer with learning rate lr, Temperature parameter T ,
Batch size B.

3: BEGIN
4: Estimate IE of each band in X
5: while the first epoch do
6: Encoder module: Initialize αk;
7: Encoder module: learn S based on (3);
8: Hi = XiS;
9: Save N band subsets

10: Decoder module;
11: Update reconstruction loss L based on (1);
12: Backpropagation with optimizer;
13: end while
14: Global optimal band subset searching with IE (4) of each

band and N band subsets;
15: Output: Band subset n.
16: END

The whole process of the proposed CAE-UBS is summarized
in Algorithm 1, where the performance is further discussed in
the next section.

IV. EXPERIMENTAL RESULTS

Due to the lack of the ground truth in the UBS task, the
performance of band selection is usually indirectly assessed by
evaluating the classification accuracy with the selected bands.
In our experiments, the proposed CAE-UBS is compared with
several SOTA methods based on the classification performance
as detailed below.

A. Datasets

Four commonly used HSI remote sensing datasets are used
in our experiments. The first is the Indian Pines dataset,
which was captured by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the North-Western Indian,
USA in 1992. The raw data has 224 spectral bands with the
wavelength ranging from 0.4-2.5µm. It has a spatial size of
145×145 pixels, in which 10249 pixels are manually labelled
in 16 land-cover categories. Often, the dataset is corrected
to have 200 bands after the removal of 24 noisy and water
absorption bands.

The second is the Pavia University (PaviaU) dataset, which
was collected by the Reflective Optics System Imaging Spec-
trometer (ROSIS) system over the Engineering School of the
University of Pavia, Italy. The commonly used PaviaU dataset
is a cropped version, which consists of 610×340 pixels with a
spectral range of 0.43-0.86 µm. This dataset has 42776 pixels
labelled in 9 land-cover classes.

The third is the Salinas dataset, which was also acquired
by the AVIRIS over the Salinas Valley, California, USA in
1998. Therefore, it shares the same wavelength range with the
Indian Pines dataset in 224 spectral bands. The spatial size is
512×217, in which 54129 pixels are labelled in 16 classes.
After removing the noisy and water absorption bands, 204
bands are remained for experiments.

The last is the Botswana dataset, which was captured by
NASA EO-1 satellite sensor over OKAvango Delta, Botswana
in 2011. The original dataset contain 242 bands ranging from
400-2500nm. With a spatial size 1476×256 pixels, in total
3248 pixels are labelled in 16 semantic classes. After the
removal of 97 noise-corrupted bands, a corrected dataset with
145 bands is often utilized.

B. Settings
For quantitative evaluation of the classification results with

the selected bands as features, three commonly used metrics
derived from the confusion matrix are adopted, including the
overall accuracy (OA), the average accuracy (AA), and the
Kappa coefficient. OA represents the percentage of corrected
classified pixels, and AA is the mean classification accuracy
over all classes. The Kappa coefficient is introduced to esti-
mate the reliability of the obtained results.

For performance evaluation, we have compared our method
with a few SOTA UBS algorithms, including the optimal
clustering framework (OCF) (TRC-OC-EFDPC) [27], the band
selection with dominant set extraction (DSEBS) [34], the vol-
ume gradient band selection (VGBS) [30], WaLuDi/WaLuMi
[24], the enhanced fast-peak-based clustering (E-FDPC) [26],
the Adaptive Subspace Partition Strategy (ASPS) [29], and the
Adaptive Distance based Band Hierarchy (ADBH) [28]. These
SOTA UBS algorithms are introduced as follows:

1) OCF [27]: a SOTA clustering-based method with a
leading performance in the UBS of HSI.

2)

3)

DSEBS [34]: one of the most representative searching-
based UBS methods. By developing a structure-aware 
measurement for band informativeness and indepen-
dence, it tackles the UBS as a greedy-searching problem, 
which has achieved a relatively good performance on 
several public datasets.
VGBS [30]: also a searching-based method, frequently 
cited in UBS [27], [28]

4) WaLuDi/WaLuMi [24]: Although being proposed earlier 
than other compared methods, they are still classical 
clustering-based methods and frequently cited in many 
literatures [27]–[29], [34].

5) E-FDPC [26]: Different from other ranking-based meth-
ods, an enhanced fast density-peak-based clustering pro-
posed to rank each band by considering the local density 
and the intra-cluster distance simultaneously, which has 
a leading performance in ranking-based methods.

6) ASPS [29]: a novel clustering-based method with a 
robust performance in the UBS of HSI.

7) ADBH [28]: an adaptive distance-based band hierarchy 
based UBS to reflect the hierarchy structure of HSI for 
easily producing any number of desired band subsets 
whilst suppressing the effect of noisy bands.
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TABLE I: Classification results for the Indian Pines dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 64.52±3.45 59.06± 3.26 68.74±3.39 63.35±2.89 51.90±8.28 61.21±1.76 67.93±3.32 64.27±5.24 67.94±2.74 67.65±0.02
AA by KNN(%) 55.03±3.96 46.98±2.73 54.99±2.68 51.48±3.01 39.67±9.42 47.01±2.87 57.76±3.78 52.77±5.66 57.55±2.3 54.22±0.01
Kappa by KNN 0.59±0.04 0.53±0.04 0.64±0.04 0.58±0.04 0.45±0.1 0.55±0.03 0.63±0.04 0.59±0.06 0.64±0.03 0.62±0.01
OA by SVM(%) 75.39±6.21 66.66±5.51 74.34±5.6 73.99±4.03 65.89±12.63 69.52±5 76.43±5.48 73.29±7.75 75.98±5.4 79.33±0.01
AA by SVM(%) 73.36±9.02 62.2±7.56 71.89±8.83 72.33±5.72 57.84±21.51 65.76±10.57 74.13±9.02 70.66±12.03 74.12±6.96 71.47±0.01
Kappa by SVM 0.72±0.07 0.62±0.07 0.70±0.07 0.70±0.05 0.60±0.16 0.65±0.06 0.73±0.08 0.70±0.1 0.73±0.07 0.75±0.01

TABLE II: Classification results for the PaviaU dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 83.19±1.72 83.91±1.84 81.92±2.36 83.96±1.94 85.07±2.05 84.24±0.92 83.18±1.86 85.69±1.68 85.34±2.4 85.73±0.02
AA by KNN(%) 79.12±2.03 80.38±2.29 76.38±3.2 79.86±2.27 81.88±2.38 80.68±1.56 78.76±2.86 82.45±1.92 81.18±3.43 82.02±0.01
Kappa by KNN 0.77±0.02 0.78±0.03 0.75±0.03 0.78±0.03 0.80±0.03 0.79±0.01 0.77±0.03 0.81±0.02 0.80±0.03 0.81±0.01
OA by SVM(%) 88.4±3.42 88.47±4.28 87.52±4.07 89±3.33 89.15±3.02 87.06±2.02 88.69±3.57 83.49±3.73 89.92±4.01 91.64±0.01
AA by SVM(%) 86.11±4.95 84.93±7.91 84.55±5.68 86±5.75 86.32±4.75 83.97±3.68 85.61±6.34 77.29±3.65 86.24±6.47 88.12±0.01
Kappa by SVM 0.85±0.05 0.85±0.07 0.83±0.05 0.85±0.05 0.86±0.05 0.83±0.03 0.86±0.06 0.78±0.03 0.87±0.00 0.89±0.00

For a fair comparison, the original codes from the authors
and the default parameters are used. Besides, the classification
results from the original data are also included (shown as ‘Raw
data’ in this paper).

The proposed CAE-UBS method also has several param-
eters. In the training process, we have employed the Adam
optimizer with a learning rate of 1e-3, where the training epoch
is set to 1 for efficiency. In DL, a large batch size can improve
the training efficiency than a small one, yet it may suffer from
poor convergence and poor generalization. As a result, a proper
batch size needs to be determined, which is suggested to be
linked to the size of the image [38]. In our experiments, the
batch sizes for Indian Pines, PaviaU, Salinas, and Botswana
datasets are empirically set to 512, 8192, 8192, and 8192 by
considering their spatial sizes, i.e. the number of pixels. These
parameters are found to produce particular good results in band
selection in our proposed approach. In addition, the activation
function of the designed stacked decoder is ReLU. For the
temperature parameter, we follow the schedule in [49].

For the classification part, two commonly used classifiers,
K-Nearest Neighbourhood (KNN) [50] and Support Vector
Machine (SVM) [11], are employed with the selected band
subsets from each method as features. In our experiments, the
parameters of KNN and the SVM are optimized through a 10-
folds cross-validation. We use 10% of the randomly chosen
labelled samples as the training set, and the rest for testing.
For the compared methods, the experiments are repeated 10
times, and the average metrics are reported. As our approach
is DL-based, the chosen band subset can be affected by some
stochastic issues. Therefore, the output band subset slightly
different in each run of experiments.

Nowadays, DL-based methods usually report their best
results from the trained models in other computer vision tasks
such as image segmentation and object detection [38]. Con-
sidering that non-deep-learning based conventional approaches
may produce fixed results, it is unfair they are compared with
the best results from DL approaches. Therefore, we randomly
choose five groups of the band selection results from our
CAE-UBS framework, where the selected bands are taken

as features for classification in 10 repeated runs. Afterwards,
the average metrics of these five subsets in 50 total runs are
reported for comparison with the peers.

For the hardware and software settings, the proposed CAE-
UBS framework is implemented on the Pytorch 1.1.0 package
without CUDA. All other band selection methods and the
classification part are implemented on the MATLAB 2019a.
All experiments are done with an Intel i5-8400 CPU, 16GB
rem, with the results reported below.

Fig. 5: OA curves on the Indian Pines dataset with different
UBS methods. Bottom-Left: OA by KNN; Top-right: OA by
SVM.

C. Results and discussions

For performance assessment, the OA curves of all methods
on the four HSI datasets are generated 3-30 chosen bands
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Fig. 6: OA curves on the PaviaU dataset with different UBS
methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

and shown in Figs. 5-8. As seen, most of the comparing
methods compete with the performance using raw data when
the number of chosen bands is around 30. Besides, we have
compared the average OA, AA, and the Kappa coefficient and
their corresponding standard variation under various number
of selected bands. A detailed comparison of each method on
the four datasets is given in Tables I-IV, respectively, where
the best result is highlighted in bold except those from the raw
data.

To summarize the experimental results from the four
datasets, some extended discussions are given below. In par-
ticular, we will discuss in three aspects, i.e. the performance
of our method, the comparison between our method and BS-
Net, another SOTA DL-based UBS method, and analysis of
the computational time of each method.

1) Comparison results in different datasets: For the In-
dian Pines dataset, the classification results from different
approaches are presented in Fig. 5 and Table I. As seen
in Fig. 5, our method has a robust performance on both
KNN and SVM classifiers. Although the performance is the
second best on the KNN classifier, the difference to the first
place, the DSEBS, is marginal. When more than 20 bands
are selected, only the DSEBS, ADBH and our CAE-UBS
approaches performance well. For the SVM classifier, our
results are also quite stable, especially when the number of
selected bands is beyond 20. Although our approach does not
outperform others in all cases, a robust OA curve has validated
its superiority. Table I shows the classification results of all
methods. As seen, the proposed method along with the ADBH
and DSEBS methods have better performance than the rest on
the KNN classifier. However, the performance of DSEBS with
on SVM seems not as good as on the KNN classifier. For our
approach, it has achieved the second best results with both

classifiers, indicating its robustness.
For the PaviaU dataset, the results are compared in Fig. 6

and Table II, and again our proposed method has shown quite
stable performance. For the KNN classifier, our approach has
an increasing OA. Although the WaLuMi method produces the
best results with the KNN classifier when more than 25 bands
are selected, it does not perform well with a small number of
selected bands, and the performance with the SVM seems not
robust as shown in Fig. 6. With the SVM classifier, our method
has achieved a more robust OA than all others. Considering
both the classifiers, our generated OA curves are steadier,
which has validated the robustness of our CAE-UBS method.
This has been further verified in the quantitative results in
Table II, where our approach has achieved the best OA on
SVM and the second best OA on the KNN classifier. Although
the ASPS has achieved the best classification result on the
KNN, its performance on the SVM is rather poor. For the
OCF and ADBH, their performance on the PaviaU dataset are
not good.

Fig. 7 and Table III show the classification results for the
Salinas dataset. In Fig. 7, our method again has achieved
nearly the best performance on the KNN classifier and a
robust performance on the SVM. Although our approach is
not the best on the KNN when less than 15 bands are chosen,
its superiority accelerates when more bands are selected.
Although OCF has a better performance when less than 15
bands are selected, its OA curve on the KNN classifier is not
as stable as ours. For the VGBS and the WaLuDi methods,
they fail to produce satisfying results on the KNN. For the
SVM classifier, most of the methods have achieved a robust
performance except for the WaLuDi, whilst our is the third
best slightly behind the ADBH and OCF methods. This is also
consistent with the results in Table III, where our approach is
the thrid best on the KNN and the SVM, whilst the difference
between ours and the two leading ones are minor.

For the Botswana dataset, the classification results from
different UBS approaches are presented in Fig. 8 and Table IV.
As seen in Fig. 8, our method has the most robust OA curves
than all others on both classifiers. Although the WaLuDi has
a better performance when 5 or less bands are chosen, our
CAE-UBS method has a more stable OA curve. With the SVM
classifier, the WaLuDi does not perform well when more than
5 bands are chosen. The VGBS has a poor performance with
less selected bands even though it has the best result when
30 bands are chosen. As shown in Table IV, our approach
has the best average OA on the SVM classifier. For the
KNN classifier, we have the second best averaged OA with a
marginal difference to the WaLuDi, which demonstrates again
its robustness.

2) Further Result Analysis: Although the proposed method
has obtained quite good results with the two popular classifiers
on the four HSI datasets, the OA is not always the best which
can be explained as follows. In fact, the network architecture
and the strategy for searching the optimal band subset used
in the proposed method are relatively simple. Taking the
proposed CAE-UBS framework as a baseline, its performance
can be further improved by introducing a larger neural network
or certain regularization terms such as spatial constraints.
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TABLE III: Classification results for the Salinas dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 88.33±0.73 84.84±1.39 87.28±2.37 85.65±1.02 86.81±2.1 87.43±1.43 88.48±0.65 86.58±1.73 88.18±1.34 87.70±0.01
AA by KNN(%) 93.32±0.64 88.94±2.15 92.36±1.87 91.32±1.45 91.24±2.79 92.61±1.49 93.3±0.75 91.82±1.69 92.95±1.22 93.27±0.01
Kappa by KNN 0.87±0.01 0.83±0.02 0.86±0.03 0.84±0.01 0.85±0.02 0.86±0.01 0.87±0.01 0.85±0.01 0.87±0.01 0.86±0.01
OA by SVM(%) 92.22±1.71 91.66±1.92 90.87±3.46 90.14±2.15 91.46±3.21 91.82±1.59 92.45±1.61 90.84±3.27 91.95±2.04 92.87±0.00
AA by SVM(%) 95.8±1.26 95.18±1.64 94.91±2.58 94.27±2.38 94.53±3.82 95.38±1.55 95.85±1.24 94.63±2.69 95.51±1.6 96.42±0.00
Kappa by SVM 0.91±0.02 0.91±0.02 0.90±0.04 0.89±0.02 0.90±0.04 0.91±0.02 0.92±0.02 0.90±0.04 0.92±0.00 0.92±0.01

TABLE IV: Classification results for the Botswana dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 80.53±2.95 78.21±2.9 79.99±3.71 82.36±0.66 80.76±2.9 79.6±4.13 81.15±1.66 77.52±7.83 82.25±2.85 82.44±0.01
AA by KNN(%) 77.81±3.06 75.22±3.15 77.39±3.76 79.72±0.75 78.16±2.74 76.98±4.13 78.52±1.69 74.95±7.77 79.21±3.79 80.11±0.01
Kappa by KNN 0.79±0.03 0.76±0.03 0.78±0.04 0.81±0.01 0.79±0.03 0.78±0.05 0.8±0.02 0.76±0.09 0.81±0.03 0.81±0.02
OA by SVM(%) 86.37±3.47 86.43±4.39 85.11±4.19 87.72±1.11 86.97±3.84 85.35±4.17 86.41±2.94 83.06±7.83 88.1±2.96 89.94±0.01
AA by SVM(%) 87.21±3.59 87.26±4.73 86.14±4.23 88.6±1.05 87.94±3.82 86.15±4.33 87.45±2.89 84.04±7.88 88.82±3.44 91.54±0.02
Kappa by SVM 0.85±0.04 0.85±0.05 0.84±0.05 0.87±0.01 0.86±0.04 0.84±0.04 0.85±0.03 0.82±0.08 0.87±0.03 0.89±0.01

Fig. 7: OA curves on the Salinas dataset with different UBS
methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

Actually, the quite satisfactory results on four datasets from
three different sensors, i.e. the AVIRIS, ROSIS, and the NASA
EO-1 sensors, have validated the robust performance and high
generalization capability of the proposed network. To this end,
it is safely to say that the proposed method can generate a
global optimal solution in most cases.

As shown in the previous subsection, our proposed CAE-
UBS framework can usually produce better results when more
bands are selected. For example, our OA curve in Fig. 6
outperforms all others when more than 15 bands are chosen.
As our method is searching-based, a larger search space with
more bands tends to produce better results. Therefore, it is
prone to find the optimal band subset from the increased
number of band combinations, which validates the searching

Fig. 8: OA curves on the Botswana dataset with different UBS
methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

ability of our developed DL-based UBS method.
3) Comparison with other deep learning-based UBS meth-

ods: To further evaluate the effectiveness of the proposed
method, we have compared it with one SOTA DL-based UBS
method, the BS-Net [40], and the AE-UBS [44]. For BS-Net,
the indexes of selected bands provided by the authors are used
to test the classification accuracy. For the three test datasets,
Indian Pines, PaviaU, and Salinas, the numbers of selected
bands given in [40] are 25, 15, and 20, respectively. As a
result, we compare our approach with BS-Net using the same
number of selected bands. The selected bands by BS-Net and
our method are listed in the Appendix, where the BS-Net
has two groups of results, i.e. by using FC networks (BS-
Net-FC) and convolutional neural networks (BS-Net-Conv) for
evaluation and comparison. In addition, we have listed five
groups of results from our approach and one group of results
from our previous approach [44]. Taking the selected bands
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TABLE V: Comparison results between other deep
learning-based UBS methods [40], [44] and the proposed

method on the first three datasets.

Dataset Classifier CAE-UBS AE-UBS [44] BS-Net-FC [40] BS-Net-Conv [40]

Indian Pines

OA by KNN(%) 68.36±0.01 68.07±0.01 64.76±0.00 71.91±0.02
AA by KNN(%) 58.77±0.01 51.70±0.01 53.18±0.01 61.97±0.02
Kappa by KNN 0.65±0.01 0.64±0.01 0.59±0.01 0.68±0.03
OA by SVM(%) 79.31±0.01 77.99±0.01 76.85±0.01 80.66±0.00
AA by SVM(%) 79.62±0.011 76.18±0.01 73.96±0.00 80.39±0.00
Kappa by SVM 0.78±0.011 0.75±0.01 0.74±0.01 0.78±0.01

PaviaU

OA by KNN(%) 85.66±0.00 84.70±0.01 87.11±0.01 83.99±0.01
AA by KNN(%) 82.31±0.00 81.04±0.00 84.38±0.01 79.92±0.01
Kappa by KNN 0.81±0.01 0.79±0.01 0.83±0.01 0.78±0.01
OA by SVM(%) 92.84±0.01 85.00±0.01 92.63±0.01 92.75±0.01
AA by SVM(%) 90.93±0.01 75.79±0.01 90.75±0.01 90.59±0.00
Kappa by SVM 0.91±0.01 0.79±0.00 0.90±0.00 0.90±0.01

Salinas

OA by KNN(%) 88.77±0.01 88.49±0.01 88.18±0.01 87.11±0.01
AA by KNN(%) 93.70±0.00 93.16±0.01 93.45±0.01 92.87±0.01
Kappa by KNN 0.87±0.01 0.87±0.01 0.87±0.01 0.86±0.00
OA by SVM(%) 93.18±0.01 92.80±0.00 92.70±0.00 91.99±0.01
AA by SVM(%) 96.35±0.01 96.20±0.01 96.23±0.01 95.96±0.00
Kappa by SVM 0.92±0.01 0.92±0.01 0.92±0.00 0.91±0.01

Fig. 9: OA curves on the three datasets with different methods,
‘Ours’ represents the proposed method, ‘General’ is the pro-
posed method with general GS initialization, and the ‘efdpc’
denotes the proposed method with the E-FDPC ranking instead
of IE. Bottom-left: Indian Pines; Mid: PaviaU, Top-right:
Salinas.

as the spectral features, we can then use the classification
results as an indicator to evaluate the efficacy of the band
selection approaches. In Table V, quantitative results in terms
of OA, AA and Kappa from the BS-Net, AE-UBS, and CAE-
UBS are given for comparison, using the KNN and SVM
classifiers on the three datasets. As seen in Table V, the BS-
Net-Conv has the best performance on the Indian Pines dataset
with both classifiers, followed slightly behind, especially for
SVM, is our CAE-UBS method. Nevertheless, our method
significantly outperforms the BS-Net-FC with both classifiers.
For the PaviaU dataset, the proposed approach has the best
performance with the SVM classifier and the second best
performance with the KNN classifier, while the BS-Net-FC
has achieved the best performance with the KNN classifier.
Surprisingly, BS-Net-Conv has produced much worse results
than the BS-Net-FC, especially for the KNN classifier, al-
though it has the best results on the Indian Pines dataset.

This has indicated relevant lack of robustness of the BS-Net
model in different datasets. Finally, for the Salinas dataset,
our CAE-UBS method has yielded the best performance with
both classifiers, though it seems BS-Net-FC performs slightly
better than BS-Net-Conv. Besides, our proposed CAE-UBS
method has outperformed the AE-UBS with both classifiers
in the three validated datasets.

It is worth noting that the reported band subsets chosen
from the BS-Net are selective the best to produce the highest
classification accuracies. For our approach, we have used the
averaged classification results from five randomly chosen band
subsets. To this end, the superior performance has validated the
robustness and efficacy of the proposed CAE-UBS method. As
our method is implemented using a less complicated network
with only the FC layers, the performance could be further
improved by introducing the convolutional kernels or adding
more layers, which will be explored in the future.

4) Effect of αk initialization: Generally, the GS distribution
initializes the αk with small positive values. In our CAE-UBS,
we assume the general GS initialization method cannot reflect
the class probabilities, we have employed the weight from
a FC layer to initialize the αk. To illustrate the effectiveness
of our proposed initialization approach, we have compared the
classification results with the general GS initialization methods
and ours. The classification results in terms of OA with the
SVM classifier on the first three datasets are shown in Fig.
9. As seen, our initialization method has produced a more
robust OA curve than the general one, especially in the PaviaU
dataset. Accordingly, it can consistently produce improved
classification accuracy under the same number of selected
bands, which has validated the superiority of the proposed
initialization scheme.

5) Analysis of the IE: To further analyse the effect of the
utilized (IE) criterion in our proposed CAE-UBS approach,
we have replaced it by E-FDPC [26], a popularly used method
to rank the band importance [27], [28]. The ranking values
obtained by E-FDPC are employed to determine the desired
band subset, and the results with the SVM classifier are also
compared in Fig. 9. As seen in Fig. 9, the proposed CAE-
UBS with the IE criterion has consistently outperformed the
variation with the E-FDPC for band ranking rather than the
IE, especially on the Salinas dataset. The robust performance
here has validated the superiority of the IE criterion used in
the proposed CAE-UBS approach.

TABLE VI: Computational time(s) of different UBS methods
with 30 selected bands vs. the average OA in 3-30 selected

bands with the SVM classifier on the four datasets.

Methods Avg. OA(%) Indian Pines Pavia U Salinas Botswana

Ours 86.49 0.75 1.9 1.5 4.7

ADBH 85.99 0.35 2.69 2.23 7.73

OCF 85.59 0.7 0.65 1.13 2.5

WaLuDi 85.21 41.95 99.7 198.51 322.25

DSEBS 84.46 0.2 1.02 1.05 8.63

E-FDPC 83.44 0.97 6.85 3.11 22.35

WaLuMi 83.37 14.04 13.82 29.68 77.59

VGBS 83.31 0.54 0.24 0.82 0.47
ASPS 82.67 0.56 1.89 1.01 7.72
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6) Comparison of computational time: To evaluate the 
efficiency o f t he p roposed a pproach, w e h ave a lso compared 
in Table VI the computational times of various methods 
with 30 selected bands. Meanwhile, the average OA from 
the SVM classifier i n 3 -30 s elected b ands f or a ll t he four 
datasets is used to indicate the efficacy of these band selection 
algorithms. As seen in Table VI, our method has outperformed 
all others yet with a comparable computational complexity to 
the conventional methods without DL. Although OCF seems 
quite efficient, i ts O A i s a bout 0 .9% l ower t han o urs. For 
WaLuDi and WaLuMi, their computational complexity is quite 
high due to the time-consuming process in calculating the 
mutual information. As it only requires one training epoch, 
the proposed CAE-UBS approach has actually provided an 
efficient and e ffective solution for UBS i n HSI.

As an indicator of the computational complexity of the DL-
based approaches, the numbers of parameters of our proposed 
CAE-UBS approach, and BS-Net [40] are compared in Table 
VII. As seen, our CAE-UBS has much less trainable parame-
ters than the BS-Net and AE-UBS. However, the classification 
accuracies are comparable to or even superior than BS-Net 
as shown in Table V. Note that the reported computational 
time including the training process for HSI reconstruction is 
implemented on CPU, hence the efficiency c an b e further 
improved with the aid of GPU like other DL-based band 
selection approaches such as the BS-Nets [40]. In comparison 
to BS-Nets implemented on a 11GB GPU, our CAE-UBS 
algorithm implemented on a CPU is about 1000 times faster, 
yet the classification r esults a re v ery c omparable o r superior. 
Thanks to the GS trick and entropy constraints, this has 
validated again the great potential of CAE based UBS in HSI.

TABLE VII: Number of parameters in CAE-UBS.

No.of.Parms Indian Pines PaviaU Salinas Botswana

CAE-UBS 43244 17489 51860 29669

AE-UBS 85533 25437 85760 46283

BS-Net-FC 152592 - - -

BS-Net-Conv 590288 - - -

V. CONCLUSIONS

Although a few unsupervised approaches have been pro-
posed for hyperspectral band selection in the last two decades,
the results in general show lack of robustness due to the bank
ranking schemed adopted, whilst the DL-based approaches
often suffer from huge computational burden due to numerous
training epochs requested. In this paper, we have proposed
a novel CAE-UBS framework for unsupervised hyperspectral
band selection. With the introduced CAE, the collaborative
behaviour of the bands during the HSI reconstruction process
can be exploited for searching the candidates of potential
band subsets. By implementing a novel encoder layer with
the GS trick, a discrete matrix can be generated to choose the
desired band subset, where parameters of the proposed CAE
can be learned by the constraints of the reconstruction loss.
In addition, maximizing the accumulated IE is found to be an

effective global searching strategy to determine the optimal
band subset. As the proposed CAE can produce satisfactory
results with only one training epochs, its computational time
has been significantly reduced to the same level as conven-
tional methods. The robust performance from experiments on
four publicly available datasets has fully demonstrated the
efficiency and efficacy of the proposed CAE-UBS framework.

Although the proposed approach produces overall the best
performance, the results vary in the four datasets. In the future,
we will focus the development of a multi-task network for
selecting more discriminative bands for classification, aiming
to achieve more consistent performance in different datasets.
In addition, we will explore other band selection applications
in HSI beyond image classification, such as spectral unmixing
and HSI reconstruction.
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APPENDIX

To further demonstrate the performance of our proposed
method, we have compared our method with a novel super-
vised deep learning-based method, the BHCNN [51]. Due to
the limited computational resource, we could not run the code
of [51] directly. Instead, we have compared our method with
it using the 30 selected bands in the Indian Pines and PaviaU
datasets, based on the band selection results provided by [51].
Taking these selected bands as input features, we can produce
the classification results using KNN and SVM for comparison.
As seen in Table A-I, the propsoed method outperforms the
BHCNN [51] in the selected 30 bands.

The results of selected bands by the proposed method and
the BS-Net on three HSI datasets, Indian Pines, PaviaU and
Salinas, are shown in Tabel A-II, where the number of bands
are the same as used in BS-Net, i.e. 25, 15 and 20 for
the three datasets. For visual comparison of the importance
of each band, we compute the band significance according
to the chosen times of each band divided in five repeated
experiments. The band significance from these three datasets
are shown in Fig. A. 1.
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Fig. A.1: The band significance based on the given band subset of CAE-UBS in the Table A-II, where the horizontal axis and
vertical axis denote the band index and the probability of each band to be selected for Indian Pines (a), PaviaU (b), Salinas
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Supplementary materials
I. COMPARISON RESULTS WITH BHCNN

To further demonstrate the performance of our proposed method, we have compared our method with a novel supervised
deep learning-based method, the BHCNN [51]. Due to the limited computational resource, we could not run the code
of [51] directly. Instead, we have compared our method with it using the 30 selected bands in the Indian Pines and
PaviaU datasets, based on the band selection results provided by [51]. Taking these selected bands as input features, we
can produce the classification results using KNN and SVM for comparison. As seen in Table A-I, the propsoed method
outperforms the BHCNN [51] in the selected 30 bands.

TABLE S-I: Comparison results between a supervised deep learning-based BS methods, BHCNN [51] and the
proposed method on the first two datasets.

Dataset Classifiers CAE-UBS BHCNN [51]

Indian Pines

OA by KNN(%) 69.82±0.01 66.09±0.01
AA by KNN(%) 54.36±0.01 51.99±0.01
Kappa by KNN 0.64±0.01 0.61±0.01
OA by SVM(%) 79.68±0.01 78.14±0.01
AA by SVM(%) 77.08±0.01 74.05±0.01
Kappa by SVM 0.77±0.01 0.75±0.01

PaviaU

OA by KNN(%) 86.56±0.00 85.32±0.02
AA by KNN(%) 83.44±0.01 81.72±0.01
Kappa by KNN 0.82±0.01 0.80±0.01
OA by SVM(%) 92.15±0.01 89.53±0.01
AA by SVM(%) 90.15±0.01 83.57±0.01
Kappa by SVM 0.90±0.01 0.86±0.01

II. BAND SELECTION RESULTS

The results of selected bands by the proposed method and the BS-Net on three HSI datasets, Indian Pines, PaviaU
and Salinas, are shown in Tabel S-II, where the number of bands are the same as used in BS-Net, i.e. 25, 15 and 20 for
the three datasets. For visual comparison of the importance of each band, we compute the band significance according
to the chosen times of each band divided in five repeated experiments. The band significance from these three datasets
are shown in Fig. S. 1.

(a) (b) (c)

Fig. S.1: The band significance based on the given band subset of CAE-UBS in the Table A-II, where the horizontal
axis and vertical axis denote the band index and the probability of each band to be selected for Indian Pines (a), PaviaU
(b), Salinas (c), respectively.
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TABLE S-II: Selected bands by the proposed method and BS-Net on three datasets.

Dataset Methods Selected bands

Indian Pines
CAE-UBS

12 13 15 17 35 38 40 49 51 52 73 86 92 102 112 125 126 133 137 146 153 158 175 190 200
5 12 17 19 27 36 37 41 65 68 84 90 109 117 119 123 128 132 133 134 147 168 174 178 186

19 23 27 31 41 43 50 52 53 54 62 80 83 85 89 93 94 110 111 115 147 162 165 169 183
14 15 16 18 21 24 28 29 31 34 38 47 49 51 59 69 71 80 118 142 162 163 168 191 193

19 42 46 52 54 55 56 58 61 63 69 71 75 80 95 96 101 110 113 116 123 125 135 171 184
AE-UBS 25 31 32 39 41 54 55 62 69 91 92 101 106 128 135 140 149 150 151 159 180 186 188 190 196

BS-Net-FC 1 6 12 13 23 27 35 36 39 47 52 53 61 66 72 75 76 89 95 101 161 165 166 180 185
BS-Net-Conv 17 25 25 29 34 36 37 45 47 54 67 72 81 84 120 127 139 141 153 157 162 179 181 186 193

PaviaU
CAE-UBS

4 18 23 37 45 46 48 56 64 77 82 87 89 93 94
17 18 30 36 48 51 62 67 78 86 88 89 96 98 103
5 11 32 42 46 53 54 63 66 81 83 85 91 93 102
6 21 22 39 42 45 63 65 77 78 85 86 91 102 103
4 14 28 33 57 59 65 69 78 80 86 87 88 90 96

AE-UBS 2 5 12 14 15 18 24 28 33 37 42 62 68 91 102
BS-Net-FC 18 21 39 63 66 67 75 79 80 82 86 91 93 96 99

BS-Net-Conv 4 5 8 17 32 39 43 49 54 72 79 81 91 99 100

Salinas
CAE-UBS

7 9 12 32 38 45 48 60 63 67 68 76 78 79 123 151 169 186 193 201
1 14 15 17 25 30 32 40 55 64 65 72 78 87 115 135 139 156 181 196
4 13 15 18 26 33 44 45 50 58 66 86 91 96 104 121 136 137 162 169
7 13 24 40 47 50 56 67 73 77 83 88 91 117 129 142 163 173 198 199

12 15 22 46 49 54 63 68 71 75 85 88 96 112 129 135 138 156 159 183
AE-UBS 10 27 31 32 43 44 51 81 89 119 120 123 124 165 171 173 179 193 196 202

BS-Net-FC 6 9 17 19 22 38 41 44 46 50 54 55 57 62 78 159 177 180 190 198
BS-Net-Conv 19 20 47 92 96 98 105 109 117 142 143 145 151 154 172 177 180 190 195 204
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