
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021.
Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N.
and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer
Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference].
CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-

ws.org/Vol-2894/short1.pdf

This document was downloaded from
https://openair.rgu.ac.uk

Counterfactual explanations for student outcome
prediction with Moodle footprints.

WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K.,
PALIHAWADANA, C. and CORSAR, D.

2021

http://ceur-ws.org/Vol-2894/short1.pdf
http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual Explanations for Student
Outcome Prediction with Moodle Footprints

Anjana Wijekoon, Nirmalie Wiratunga, Ikechukwu Nkisi-Orji, Kyle Martin,
Chamath Palihawadana, and David Corsar

School of Computing, Robert Gordon University, Aberdeen AB10 7GJ, Scotland, UK
{a.wijekoon, n.wiratunga, i.nkisi-orji, k.martin3, c.palihawadana,

d.corsar1}@rgu.ac.uk

Abstract. Counterfactual explanations focus on “actionable knowledge”
to help end-users understand how a machine learning outcome could be
changed to one that is more desirable. For this purpose a counterfactual
explainer needs to be able to reason with similarity knowledge in order to
discover input dependencies that relate to outcome changes. Identifying
the minimum subset of feature changes to action a change in the decision
is an interesting challenge for counterfactual explainers. In this paper we
show how feature relevance based explainers (such as LIME), can be
combined with a counterfactual explainer to identify the minimum sub-
set of “actionable features”. We demonstrate our hybrid approach on a
real-world use case on student outcome prediction using data from the
CampusMoodle Virtual Learning environment. Our preliminary results
demonstrate that counterfactual feature weighting to be a viable strategy
that should be adopted to minimise the number of actionable changes.

Keywords: Explainable AI, Counterfactual, LIME

1 Introduction

Understanding a user’s explanation need is central to a system’s capability of
provisioning an explanation which satisfies that need [4]. Typically an explana-
tion generated by an AI system is considered to convey the internal state or
workings of an algorithm that resulted in the system’s decision [6]. In machine
learning (ML) the decision tends to be a discrete label or class (or in the case of
regression tasks a numeric value). Although explanations focused on the internal
state or logic of the algorithm is helpful to ML researchers it is arguably less
useful to an end-user who may be more interested in what in their current cir-
cumstances could be changed to receive a desired (better) outcome in the future.
This calls for explanations that focus on discovering relationships between the
input dependencies that led to the systems’ decision.

A Nearest-Like Neighbours (NLN) based explainer, could focus on input de-
pendencies by identifying similarity relationships between the current problem

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 Anjana Wijekoon et al.

and the retrieved nearest neighbour [3]. Research has shown that when similarity
computation is focused on feature selection and weighting, it can significantly
improve retrieval of NLN [8, 7]. Accordingly it would be reasonable to expect
that NLN-based explanation generation would also benefit from the knowledge
of feature importance. Certainly having to focus on a few key features in do-
mains with large numbers of features is likely to improve the cognitive burden
of understanding NLN-based explanations.

Unlike NLN based explanations, a counterfactual explanation focuses on
identifying “actionable knowledge”; which is knowledge about important causal
dependencies between the input and the ML decision. Such knowledge helps to
understand what could be changed in the input to achieve a preferred (desired)
decision outcome. Typically a Nearest-Unlike-Neighbours (NUN) is used to iden-
tify the number of differences between the input and its neighbour, that when
changed can lead to a change in the system’s decision [2]. A key challenge that we
address in this paper is to identify the minimum subset of feature value changes
to achieve a change in the decision - the “actionable features”. In this paper, we
discover actionable knowledge as the minimum number of feature changes using
feature relevance based explainer methods like LIME [5].

The rest of the paper is organised as follows. Section 2 presents the Moodle1

use case followed by Section 3 which presents the proposed methods to improve
the discovery of actionable features. Section 4 presents the Moodle dataset de-
tails, evaluation methodology, performance metrics and results. Finally we draw
conclusions and discuss future work in Section 5.

2 Use Case: Student Outcome Prediction

Student information systems are increasingly using ML to identify and predict
events in a student’s journey to help improve early intervention and mitigate
at-risk students [1]. They help both the student to adopt positive behaviours
and to pinpoint improvements to teaching style and content. We have used the
CampusMoodle Virtual Learning Environment (VLE) to construct a student
footprint dataset for a single module of study delivered within Robert Gordon
University in Semester 1 of 2020/2021. VLE interactions help to capture vital
touchpoints that can be used as proxy measures of student engagement. It con-
tains a wealth of relevant data for each student such as the number of times they
have accessed individual learning materials gathered over a period of ten weeks
(full details of the dataset are described in Section 4.1).

The use case dataset links the “CampusMoodle footprint” with the “Assess-
ment Outcomes” data. This creates a classification task to predict the likely final
grade for a given student, and an associated explanation task to explain this out-
come given the student’s Moodle footprint. A student may want to know why
they received a lower grade and in response the nearest neighbour instance could
be used to factually confirm the credibility of that lower grade i.e. “other stu-
dents like you also received a similar lower grade”. Although such precedence can

1 Learning management system https://moodle.org/

Counterfactual Explanations for Student Outcome Prediction 3

be used to justify the student’s circumstances, it is not as useful as a “counter-
factual” explanation, which can provide indications as to how another student
with a similar profile ended up with a better grade simply because they had
completed a formative quiz exercise. Here we want the explainer to identify a
few important features to consider, instead of expecting the end-user to analyse
hundreds of features used to describe the Moodle footprint.

3 Actionable Explanations

Given a query instance, x = {x1, x2, ..., xm}, its counterfactual, x̂ = {x̂1, x̂2, ..., x̂m},
is identified as the nearest-unlike-neighbour (NUN) in the Euclidean feature
space [2]. Here m is the number of features used to represent instances (i.e. xi

and x̂i pairs).

d(x, x̂) =

√√√√√ m∑
i=1

(xi − x̂i) (1)

The goal of a counterfactual explanation is to guide the end-user to achieve
class change (i.e. actionable), with a focus on minimising the number of changes
needed to flip the decision to a more desirable outcome for the end-user. There-
fore in order for an instance to qualify as a NUN, for a given query instance,
it needs to be the nearest neighbour with a different class to that of the query.
Discovering the minimal number of actionable features (from a maximum of m
potential feature changes) and minimising the amount of change required on
each actionable feature are two main challenges for counterfactual explainers.

3.1 Actionable Feature Discovery with LIME

LIME [5] is a model-agnostic explainer which creates an interpretable model
around a query, x. The resulting local surrogate model is interpretable and only
locally faithful to the classifier but not globally. LIME creates a set of pertur-
bations within the neighbourhood of x. The original classifier is used to obtain
the class labels for perturbed data instances and this new labelled dataset is
used to create a local interpretable model (often a linear model). The new in-
terpretable model is used to predict the classification outcome of x that needs
to be explained. Accordingly, LIME outputs how each feature xi contributed to
the final classification outcome.

These local feature contribution weights form the main LIME output, which
is a list of tuples (wi, i), where each feature, xi, has its corresponding weight.

LIME output = [(w1, 1), (w2, 2), ..., (wm,m)] (2)

A positive weight (wi >= 0) indicates that the corresponding feature contributes
positively and a negative weight (wi < 0) corresponds negatively towards the
predicted class. Figure 1 shows a LIME explanation for a Moodle data instance

4 Anjana Wijekoon et al.

which predicted a Lower grade (See Section 4.1 for more details on the dataset).
Weights are ordered such that highest weights appear first, regardless of a pos-
itive or negative contribution to the predicted class. Here we can see that the

Fig. 1: LIME explanation for a student who received a Lower grade from the
prediction model

feature “Study Area: CM4107” had the highest positive impact and feature “As-
signment: DROPBOX WRITEUP: CW2” had the highest negative impact on
the Lower grade classification.

LIME can be used to provide relevance weights for both the query and its
potential NUN. The number of feature changes, n, required to achieve a class
change, can range from 1 to m (1 <= n <= m). We propose two methods to
find these actionable features, with the goal of minimising the number of feature
changes (n) needed for a succinct yet actionable explanation. The first method
is to replace the values of the most important features in the query with the
corresponding feature values from its NUN; or a second alternative is to identify
the most relevant features of the NUN and reuse those feature values in the
modified query instance.

Fig. 2: Using LIME feature importance of query (Left) or NUN (right) to discover
actionable features in Counterfactuals

Counterfactual Explanations for Student Outcome Prediction 5

We illustrate these two methods in Figure 2. Here, we depict an example
with 5 features where we replace features on the query until a class change is ob-
served. In the left, the query features are ordered by their LIME feature weights
and the most significant features are replaced by the respective NUN feature val-
ues (Method 1). In the right, the NUN features are ordered by their LIME feature
weights and the most significant features are reused by the query (Method 2).
Method 1 and 2 achieve class change with 3 and 2 feature replacements respec-
tively.

The general functions for actionable feature discovery using counterfactuals
is shown in Algorithms 1 and 2. Here F(x) = y is the classifier prediction for the
query and, ŷ = F(x̂) is the class prediction for the NUN. Given an instance, an
Actionable Feature Ordering function, AFOrderLIME(.) returns the feature
indices, I, ordered by the local importance of a given instance’s features for
the resultant class prediction. Thereafter Actionable Feature Discovery function,
AFDiscovery, uses I to create a perturbed version of the query, x′, where
important features are replaced one at a time with the corresponding feature
values from the NUN. The features with equal values are skipped. Feature values
are iteratively replaced until the actionable change condition is met i.e. F(x′) =
y′ ∧ y 6= y′. Clearly the fewer replacement iterations needed the better the
actionable features being discovered. Crucial to this minimisation is the ordering
methods that influence I:

Method1: uses AFOrderLIME(x) returning indices ordered on the basis of the
feature importance that led to the class prediction of the query; and

Method2: uses AFOrderLIME(x̂) returning indices ordered on the basis of
feature importance that led to the class prediction of the NUN.

Algorithm 1 AFDiscovery

Require: (x, y): query and label pair
Require: (x̂, ŷ): NUN and label pair
Require: F : classification model
Require: I: list of feature indices
1: Declare y′ = y; x′ = x; n = 0
2: while y′ = y do
3: x′[I[n]] = x̂[I[n]]
4: y′ = F(x′)
5: increment n
6: end while
7: return n

Algorithm 2 AFOrderLIME

Require: q: Data instance for which LIME
weights are retrieved

1: [(w1, 1), (w2, 2), ..., (wm,m)] = LIME(q)
2: return I: list of feature indices ordered by w

4 Evaluation

The goal of this evaluation is to determine the effectiveness of the actionable
feature discovery algorithm with different ordering strategies. We compare the
query and NUN feature relevance based ordering over a random ordering of

6 Anjana Wijekoon et al.

features for actionable feature discovery. The following algorithms are compared
in this evaluation:

1. Random: Instead of AFOrderLIME , Randomly ordered set of feature in-
dices is used in AFDiscovery.

2. Method1
3. Method2

4.1 Moodle Dataset

Moodle dataset consists of Moodle footprint of 79 students who were enrolled for
a course during September and December 2020 at RGU. There are 95 features
where each feature refers to the number of times the resource on the Course
page was accessed by a student. For instance, feature “Assignment: DROPBOX
WRITEUP: CW1” refers to the submission dropbox provided for submitting
coursework 1 and feature value refers to the number of times the student accessed
the dropbox.

Predicting student outcome using Moodle footprint The ML task of
this dataset is to predict if a student gets a higher or a lower grade based on
their Moodle footprint. We consider grades A and B as Higher grades and C,
D, E and F as Lower grades. Grades were consolidated as Higher and Lower
to mitigate the comparably lower number of data instances and class imbalance.
Five outlier student cases were also filtered out using the Density-based Spatial
Clustering method offered in sklearn Python libraries. This formed a dataset of
74 instances.

A RandomForest classifier was used to predict the grade based on the Moodle
footprint. There were 500 trees created using Python sklearn libraries which were
selected after an exhaustive search for the best ML algorithm using an AutoML
method. The classifier achieved 83% accuracy over three stratified folds. Note
that for our results when explaining an outcome, we assume that the classifier
has correctly predicted the grade.

Explaining predicted student outcome There are two explanation intents
explored in this paper: firstly a counterfactual type question, Why student A did
not receive a grade X?; or an alternative question Why did student A receive
grade Y? The latter can be explained using the LIME explainer presenting the
contribution of the most important features for the predicted grade; and the
former Why not type question explained through a counterfactual explanation
formed using methods for actionable feature discovery.

4.2 Evaluation Methodology

We consider two versions of the Moodle dataset in this evaluation: First with all
74 instances each being considered as the query; and Second with 50 instances

Counterfactual Explanations for Student Outcome Prediction 7

from the class Lower grade as the query. For each query the number of feature
changes required to observe a class change is calculated using the three meth-
ods described above. Final value is computed as the mean number of actionable
features. The first dataset provides a generalised comparison between the perfor-
mances of the three methods. The second dataset represents the situation that
is most likely to require a counterfactual explanation, i.e. students who ask how
to get a Higher grade or why did they not receive a Higher grade. Accordingly
the second version will further verify the comparative performances of the three
methods in a domain-specific context.

4.3 Results

Figures 3a and 3b present the comparison of the three methods for discover-
ing actionable features using the two datasets. With the full dataset, Random,
Method 1 and Method 2 observe a class change with 21.62, 8.14 and 8.61 fea-
ture changes on average. Similar results are observed in the domain-specific case
where Random, Method1 and Method2 observe a class change with 23.57, 9.34,
9.13 feature changes on average. Accordingly, two methods proposed in this
paper has significantly outperformed the random feature ordering approach to
achieving class change. LIME has highlighted the features that are actionable,
thus minimising the number of changes required.

Furthermore, with both datasets, Method1 and Method2 performances are
comparable. Accordingly, reusing features of NUN ordered by the significance
of how each contributed to predicting class label ŷ is found to be as effective
as considering Query feature significance. Given that a student’s goal is to find
actionable resources on Moodle towards achieving a different grade (commonly
a Higher grade) we find these results align with our domain knowledge.

(a) All Data (b) Data labelled Lower Grade

Fig. 3: Comparative Results

8 Anjana Wijekoon et al.

5 Conclusion

In this paper, we presented a novel approach to finding actionable knowledge
when constructing an explanation using a counterfactual. We used feature rele-
vance explainer LIME to order features that are most significant to a predicted
class and then used that knowledge to discover the minimal actionable features
to achieve class change. We demonstrated our approach using a dataset from the
CampusMoodle VLE where a course outcome (i.e. grade) is predicted using the
student’s Moodle footprint. Our empirical results showed that our approach is
significantly effective when compared with the random approach to discovering
actionable features. In future, we plan to extend our approach to use other fea-
ture relevance algorithms and further minimise the number of features to create
succinct actionable explanations.

Acknowledgements This research is funded by the iSee project (https://isee4xai.com/)
which received funding from EPSRC under the grant number EP/V061755/1.
iSee is part of the CHIST-ERA pathfinder programme for European coordinated
research on future and emerging information and communication technologies.

References

1. Conijn, R., Snijders, C., Kleingeld, A., Matzat, U.: Predicting student performance
from lms data: A comparison of 17 blended courses using moodle lms. IEEE Trans-
actions on Learning Technologies 10(1), 17–29 (2016)

2. Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: A case-based
technique for generating counterfactuals for explainable ai (xai). In: International
Conference on Case-Based Reasoning. pp. 163–178. Springer (2020)

3. Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural net-
works using case-based reasoning: Comparative tests of feature-weighting meth-
ods in ann-cbr twins for xai. In: Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-19. pp. 2708–2715. In-
ternational Joint Conferences on Artificial Intelligence Organization (7 2019).
https://doi.org/10.24963/ijcai.2019/376, https://doi.org/10.24963/ijcai.2019/376

4. Mohseni, S., Zarei, N., Ragan, E.D.: A survey of evaluation methods and measures
for interpretable machine learning. arXiv preprint arXiv:1811.11839 (2018)

5. Ribeiro, M.T., Singh, S., Guestrin, C.: ” why should i trust you?” explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. pp. 1135–1144 (2016)

6. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without open-
ing the black box: Automated decisions and the gdpr. Harv. JL & Tech. 31, 841
(2017)

7. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of fea-
ture weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11(1), 273–314 (1997)

8. Wiratunga, N., Koychev, I., Massie, S.: Feature selection and generalisation for
retrieval of textual cases. In: European Conference on Case-Based Reasoning. pp.
806–820. Springer (2004)

	coversheet_template
	WIJEKOON 2021 Counterfactual explanations (VOR)

