Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and metaanalysis.

FARIAS DE OLIVEIRA, L., DOLAN, E., SWINTON, P.A., DURKALECMICHALSKI, K., ARTIOLI, G.G., MCNAUGHTON, L.R. and SAUNDERS, B.

2022

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/s40279-021-01575-x
Supplementary materials are included at the end of this file.

Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis

Review Article

Running head: Extracellular buffering supplements for exercise: meta-analysis

Luana Farias de Oliveira ${ }^{1}$, Eimear Dolan ${ }^{1}$, Paul A. Swinton ${ }^{2}$, Krzysztof DurkalecMichalski ${ }^{3,4}$, Guilherme G. Artioli ${ }^{1}$, Lars R. McNaughton ${ }^{5}$, Bryan Saunders ${ }^{1,3,6}$
${ }^{1}$ Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.
${ }^{2}$ School of Health Sciences, Robert Gordon University, Aberdeen, UK.
${ }^{3}$ Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
${ }^{4}$ Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
${ }^{5}$ Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.
${ }^{6}$ Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Brazil.

Correspondence:

Dr Bryan Saunders
Applied Physiology \& Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, Av. Dr. Arnaldo, 455 - Cerqueira César - CEP: 01246903

University of São Paulo,
São Paulo, SP, Brazil.
E-mail: drbryansaunders@,outlook.com
Phone: +55 11 3061-8789
Fax: +55 11 3813-5921

Abstract

Background: Extracellular buffering supplements (sodium bicarbonate [SB], sodium citrate [SC], sodium/calcium lactate [SL/CL]) are ergogenic supplements though questions remain about factors which may modify their effect.

Objective: To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach.

Methods This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles which were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses.

Results 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of $+5.2 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}: 4.7\right.$ to $\left.5.7 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$. The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo $\left(\mathrm{ES}_{0.5}=0.17\right.$ [$95 \% \mathrm{CrI}: 0.12$ to 0.21$\left.]\right)$ with potential moderating effects of exercise type, duration and mode, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of $0.5-10 \mathrm{~min}$ $\left(E_{0.5}=0.18[0.13-0.24]\right)$ and $>10 \min \left(E_{0.5}=0.22\right.$ [0.10-0.33]). Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium $\left(4-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ and large $\left(>6 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ compared with small $\left(\leq 4 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)\left(\beta_{\text {Small:Medium }}=0.16[95 \% \mathrm{CrI}: 0.02-\right.$ 0.32], $\beta_{\text {Small:Large }}=0.13$ [$\left.95 \% \mathrm{CrI}:-0.03-0.29\right]$). SB (192 outcomes) was more effective for performance compared to $\mathrm{SC}\left(39\right.$ outcomes) $\left(\beta_{\mathrm{SC}: \mathrm{SB}}=0.10\right.$ [$95 \% \mathrm{CrI}:-0.02$ to 0.22$]$).

Conclusions Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.

Key points

1. This systematic review and meta-analysis provided strong evidence that extracellular buffering agents are effective at improving exercise capacity and performance $\left(\mathrm{ES}_{0.5}=\right.$ 0.17 [95% CrI: 0.12 to 0.21]).
2. Exercise duration was identified as the strongest factor influencing the ergogenic effect, with exercise $\geq 30 \mathrm{~s}$ in duration showing greater improvements than exercise less than 30 s.
3. Individuals should aim to reach an increase of at least $+4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ in blood bicarbonate concentration to ensure an optimal chance of a performance improvement.
4. Sodium bicarbonate was identified as the most effective buffering supplement when compared to sodium citrate $\left(\beta_{\mathrm{SC}: \mathrm{SB}}=0.10\right.$ [95\%CrI: -0.02 to 0.22$]$).

1. Introduction

Sodium bicarbonate (SB), sodium citrate (SC), calcium (CL) and sodium lactate (SL) are ergogenic supplements that augment the body's extracellular buffering capacity via an increase in bicarbonate concentration [1]. This blood alkalosis leads to a greater efflux of the intramuscular hydrogen ions $\left(\mathrm{H}^{+}\right)$that are generated during high-intensity exercise out of the working muscle. Accumulation of H^{+}within the intracellular environment can interfere with several metabolic and contractile processes [2-5], ultimately leading to a reduction in force and power production and the onset of fatigue during exercise. Thus, it follows that improved maintenance of acid-base balance can positively favour exercise tasks limited by muscle acidosis through accelerating removal of H^{+}, and these extracellular buffering supplements have all been independently demonstrated to be effective ergogenic aids [1]. Nonetheless, substantial between and within-participant variation has been shown regarding the exercise response to some of these supplements [6, 7]. Thus, intriguing questions remain related to how the use of these buffering agents can be optimised, and addressing these questions has substantial potential to advance their efficacy in practice.

The landscape of nutritional supplementation to improve exercise performance and training is constantly advancing and adapting, and the same is true of extracellular buffering supplements. Determination of factors that might modify the responses to supplementation is gaining traction and interest in recent years [1]. Several moderating factors that appear to influence the individual response to extracellular buffering supplements include supplementation timing and the absolute changes in circulating bicarbonate concentration, the exercise task performed, training status, gender, genetics and associated side-effects [1, 8]. Nonetheless, evidence to support the contribution of these factors to variability in the supplementation response is still incipient or lacking. While previous meta-analyses have investigated the ergogenic effect of
these individual buffering supplements [9-11], most have not determined the extent to which modifying factors influence their efficacy. None have pooled data from all supplements that increase extracellular buffering capacity. It is vital that the impact of these factors is determined to identify more targeted and evidence-based dosing recommendations.

Speculation exists as to the minimum increase in circulating bicarbonate necessary to elicit an ergogenic effect, which has been suggested to be $+5-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}[1,12]$ although this claim is yet to be validated. It would be of interest to confirm these currently unsubstantiated thresholds and determine if performance improvements are indeed related to the change in circulating bicarbonate following supplementation and exceeding certain thresholds. A recent trend in extracellular buffering supplementation is the concept of time-to-peak, where the moment at which an individual's blood bicarbonate peaks following supplementation is determined, and this information is used in subsequent sessions to ensure that the exercise task coincides with each individual's peak blood bicarbonate concentration [13, 14]. Theoretically, this gives the greatest chance of a performance improvement since blood buffering capacity will be at its maximum, although this assumes a linear dose-response relationship between blood bicarbonate and performance, which is yet to be experimentally confirmed. Certainly, it appears logical that greater bioavailability of circulating bicarbonate will provide a greater chance of a performance improvement, and evidence exists demonstrating this strategy to be effective [13, 14]. One study has shown that using time-to-peak is more effective for rowing performance than supplementing sixty minutes prior to exercise [15] while others have suggested that there may be a long-lasting window of ergogenic opportunity considering bicarbonate increases above five to six $\mathrm{mmol} \cdot \mathrm{L}^{-1}$ following SB ingestion [16], It remains unclear if more blood bicarbonate as would occur at peak bicarbonate concentration elicits greater performance improvements.

The aim of this study was to address contemporary questions regarding the efficacy of extracellular buffering supplements on exercise capacity and performance using a systematic review and meta-analytic approach, while accounting for several potential modifying factors including: exercise duration, type, sample population, supplementation strategy, and changes in blood bicarbonate concentration.

2. Methods

2.1.Study Eligibility

Only peer-reviewed, original human studies in English were included within this review. The protocol for this study was designed in accordance with PRISMA guidelines [17] (see PRISMA checklist, Supplementary Material Appendix S1) and the question and eligibility criteria were determined according to PICOS (Population, Intervention, Comparison, Outcomes and Study Design). The population included healthy human males and females of any age, studies conducted with diseased-state participants were excluded. The intervention must have employed an acute (<1 day) or chronic (>1 day) supplementation protocol with either sodium bicarbonate, sodium citrate, calcium lactate or sodium lactate prior to performing an exercise test. In relation to the comparison, the protocol for this study determined that both single and double blinded, placebo-controlled studies were included. Studies that reported on outcomes based on exercise performance and capacity were considered for inclusion. Study design allowed for crossover or parallel group designs. This study was not pre-registered.

2.2. Search Strategy

An electronic search of the literature was undertaken by LFO using three databases (MEDLINE, Embase, SPORTDiscus) to identify all relevant articles. The search terms "sodium bicarbonate", "sodium citrate", "calcium lactate", "sodium lactate" and "alkalosis" were individually concatenated with "supplementation", "exercise", "training", "athlete" and "performance". An example search is included in Supplementary Material Appendix S2. Following the removal of duplicates, a two-phase search strategy was subsequently employed by two independent reviewers (LFO and ED) using freely available software (Rayyan QCRI; [18]). Phase one assessed the eligibility of the title and abstract of every paper retrieved from the search terms against the inclusion/exclusion criteria. Studies that had unclear suitability
were included at this stage and the final decision was reached at the next phase. In phase two, full articles were assessed against the eligibility criteria. Reference lists of included articles were screened using a snowballing approach to ensure all studies meeting the inclusion criteria were included. Any differences of opinion relating to study eligibility were resolved through discussion and consensus, with a third reviewer (BS) invited to mediate when necessary. The search strategy is summarised in Fig 1. No date limitations were included within the search, and a final updated search was completed in June 2021.

2.3. Certainty in cumulative outcomes

Certainty in outcomes was determined according to the framework provided by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) working group [19]. The approach considers eight factors which determine the level of certainty in each review outcome, five of which can be used to downgrade certainty in outcomes (risk of bias, imprecision, inconsistency, indirectness and publication bias). Certainty can also be upgraded if there is evidence of large effects; a dose-response; or the presence of plausible residual confounding factors. All included studies were initially provided an a-priori rating of "high" since they were all blinded, placebo-controlled trials. This rating was either maintained or downgraded following application of the strategy, with certainty in outcomes graded as "high", "moderate", "low" or "very low".

Risk of bias was assessed using the most recent Cochrane tool for assessing risk of bias in randomized trials (RoB 2) [20]. An additional question was included to address potential topicspecific sources of bias deemed particularly relevant to this investigation, namely in Domain 4 (Was there a familiarisation to the exercise protocol?). Evaluation of risk of bias was performed by three reviewers (LFO, ED and BS).

2.4. Data Extraction and Variable Categorisation

Data extraction was conducted by LFO using a standardized and pre-piloted Microsoft Excel spreadsheet and extraction was verified by BS. Where numerical data was not directly available, data were extracted from figures using software (DigitizeIt; [21]). Authors of articles whose data could not be extracted from writing or figures were contacted for data. Blood pH , bicarbonate and lactate values were extracted from three moments where available: i) presupplementation, ii) post-supplementation (and immediately pre-exercise), iii) immediately post-exercise. A single outcome measure was extracted from each exercise test according to availability and the hierarchical profile of Saunders et al. [22]. For repeated-bout exercise protocols, only data from the first bout were included in the overall meta-analytical model and subsequent bouts were included in a further analysis (detailed below).

Several factors that might modify the blood and exercise response to supplementation were identified a priori, and categorised as follows:

1) The size of change in blood pH and bicarbonate concentration from presupplementation to pre-exercise, and the change in blood pH , bicarbonate and lactate concentrations from pre-exercise to post-exercise.
2) Exercise protocols were separated by exercise duration [Exercise duration 1] according to the approach of Saunders et al. [22], namely $<0.5 \mathrm{~min} ; 0.5-10 \mathrm{~min} ;>10 \mathrm{~min}$. A further sub-analysis was performed within the $0.5-10 \mathrm{~min}$ timeframe [Exercise duration 2], according to the following timeframes: $0.5-<1.5 \mathrm{~min}, 1.5-<5 \mathrm{~min}$ and $5-$ 10 min . These timeframes were based on the distinct energy system contribution during exercise of different durations [23], subsequent H^{+}accumulation and the proposed physiological mechanisms of H^{+}buffering agents.
3) The effect of supplement dose [Supplement dose] on exercise outcomes was investigated here (Low, $<0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1}$ of body mass (BM); Mid, $0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}$; High, >0.3 $\mathrm{g} \cdot \mathrm{kg}^{-1} \mathrm{BM}$). The effect of supplementation strategy [Supplement strategy], as a single or split dose strategy; supplementation provided acutely (<1 day) vs. chronically (>1 day) [Acute/Chronic]; and supplement form [Supplement form], as a solution or capsule, on exercise outcomes was determined. The relationship between blood bicarbonate increases prior to exercise and exercise [Bicarbonate increase] were also evaluated.
4) Studies were separated according to the sample population recruited [Training status], since trained individuals may be less responsive to supplementation with buffering agents [10, 22]. Individuals were categorised into one of three groups: top-level, trained and non-trained. Participants who were described as "elite" and Olympic- or international-level in their area were categorised as top-level. Trained individuals were considered those engaged in a structured training programme with a training plan relevant to the exercise task employed in the study, but not elite or international standard. All remaining populations that did not fit these two previous descriptions (i.e., recreationally active) were categorised as non-trained.
5) Exercise protocols were categorised according to whether they measured exercise capacity or performance [Exercise type] [24]. Capacity tests require exertion to the point of volitional exhaustion (e.g., time-to-exhaustion text) whereas performance tests rely more on pacing strategies that might not elicit maximal exertion (e.g., time-trial).
6) Prior exercise can induce H^{+}accumulation which may affect subsequent exercise performance [25], thus, the influence of prior exercise [Prior exercise] as a moderating factor was determined.
7) Exercise tests were similarly categorised according to whether they employed an intermittent exercise protocol [Intermittent] and the effect on increasing numbers of exercise bouts was investigated.

2.5. Statistical Analysis

All analyses were performed within a Bayesian framework to provide a more flexible modelling approach and enable results to be interpreted intuitively through reporting of subjective probabilities [26]. Three-level hierarchical models were conducted on aggregate data to pool effects and investigate moderators whilst including random effects to account for within study variation, between study variation and covariance of multiple outcomes reported in the same study. The analysis was split into four stages. For the first stage, the effects of supplementation and exercise on biomarker outcomes (bicarbonate, pH and lactate) were investigated. Meta-analyses were performed on mean difference effect sizes calculated based on absolute values (e.g., $\mathrm{mmol} \cdot \mathrm{L}^{-1}$) to facilitate interpretation across three time points (presupplementation, pre-exercise and post-exercise). To fully describe the biomarker response across the three time points, effect sizes were calculated for both the supplement condition only, and by subtracting the mean difference from the placebo group (controlling for the placebo). Within-study variance of effect sizes were calculated according to standard distributions. However, such distributions are influenced by pre-post correlations (ρ) that are generally not reported. It was assumed that correlations were likely to range between 0.5 and 0.9 [27], and to meet this assumption an additional error term was included with informative prior included to model the range. Meta-regressions were used to explore potential moderating effects of factors such as supplement dose, exercise type and exercise duration.

The effect of supplementation on exercise outcomes was investigated in the second stage of the analysis. To pool results across a range of exercise outcomes (e.g., performance tests, time-to-exhaustion tests, and fatiguing resistance protocols), standardized mean difference effect sizes between supplementation and placebo were calculated. Due to the repeated measures nature of the data, within-study variances were calculated as described above using informative priors to account for uncertainty in unknown correlations. Meta-regressions were used to explore the potential moderating effects of exercise type, exercise duration and prior exercise. A sub-analysis was then completed on studies comprising up to three exercise bouts to investigate whether the effects of supplementation increased with subsequent bouts. In the third stage of the analysis the effects of different supplementation protocols (e.g., supplement form [gelatine capsules, solution, tablets], dose [Low $\left(<0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right), \operatorname{Mid}\left(0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right)$ or High ($\left.>0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right)$] and supplementation strategy [single or split-dose]) on exercise outcomes were investigated. Influential moderators identified in stage 2 of the analysis (exercise characteristics) were included in meta-regressions to control for confounding factors. In the final stage of the analysis the relationship between changes in blood bicarbonate concentration and exercise outcomes were investigated by meta-regression and categorising changes as small ($<4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase), moderate ($4-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase) and large ($>6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase) and controlling for the same influential moderators identified in stage 2 of the analysis.

Inferences from all analyses were performed on posterior samples generated using the Hamiltonian Markov Chain Monte Carlo method (five chains, 100,000 iterations and 50,000 warmup). Interpretations were based on the median value ($\mathrm{ES}_{0.5}$: 0.5 -quantile), the 95% credible interval (CrI) for location parameters, and the $75 \% \mathrm{CrI}$ for variance parameters. To assist with interpretation of standardized effect sizes, threshold values of $0.01,0.2,0.5$ and 0.8 were used to describe effect sizes as very small, small, medium and large [28]. Meta-
regressions were presented by selecting one level of the factor as a reference to make comparisons $\left(\beta_{\text {Reference:Comparison }}=\right.$ Median [95% CrI: LB to UB], such that $\beta>0$ indicates an increased effect of the comparison relative to the reference). Between-study variance (τ) and the intraclass correlation (ICC) calculated as the ratio of the between-outcomes variance relative to the total variance [29] were also presented for primary meta-analyses. Outlier values were identified by the method proposed by Verardi and Vermandele [30], adjusting the data by a Tukey g-and-h distribution to remove outliers from potentially skewed and heavy tailed distributions. Analyses were performed using the R wrapper package brms interfaced with Stan to perform sampling [31]. Convergence of parameter estimates was obtained for all models with Gelman-Rubin R-hat values below 1.1 [32]. Small-study effects (publication bias, etc.) were visually inspected with funnel plots.

3. Results

3.1. Study search

The literature search initially identified a total of 3621 potential studies, with 3142 remaining following removal of duplicates. After title and abstract screening, 293 full articles were evaluated according to the inclusion/exclusion criteria. A total of 189 studies including 2019 participants (Minimum: $\mathrm{N}=4$; Maximum: $\mathrm{N}=49$; Median: $\mathrm{N}=10$; IQR: 8 -12) met the inclusion criteria and were included in the meta-analysis (Fig 1) (Table of all include studies can be found in Supplementary Material Appendix S3). Studies included 158 involving SB supplementation (226 outcomes), 30 with SC (45 outcomes) and seven with CL or SL (7 outcomes); four studies (4 outcomes) provided a combination of buffering supplements together (e.g., SB and SC).

Fig 1 Flow diagram of search and study selection. Note: Several studies investigated more than one supplement, therefore, summing studies of individual supplements will lead to duplication and not accurately reflect the true number of studies.

3.2. Meta-analysis

3.2.1. Biomarker Outcomes

3.2.1.1. Pre-supplementation to Pre-exercise

The primary meta-analysis was completed on 131 outcomes from 87 studies. Supplementation was estimated to lead to a median increase in blood bicarbonate of $5.2 \mathrm{mmol} \cdot \mathrm{L}^{-1}[95 \% \mathrm{CrI}: 4.7$ to $\left.5.7 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$ relative to placebo. Moderate between-study variation $\left(\tau_{0.5}=1.5[75 \% \mathrm{CrI}\right.$: 0.9 to $\left.2.0 \mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~J}\right)$ and covariance between multiple outcomes reported from the same study (ICC: 0.58 [75% CrI: 0.41 to 0.79$]$) were identified. Due to the large number of studies and outcomes, visual presentations of meta-analysis results are included in funnel plots and not forest plots. The funnel plot of blood bicarbonate changes from pre-supplementation to preexercise provided no visual evidence of small-study effects, such as publication bias (Fig 2, Panel A). Most outcomes were obtained from SB supplementation ($\mathrm{N}=109$), followed by SC $(\mathrm{N}=19)$ and $\mathrm{CL} / \mathrm{SL}(\mathrm{N}=3)$. All supplement types were capable of increasing blood bicarbonate, although some evidence was obtained to indicate greater post-supplementation increases in blood bicarbonate from SB compared with $\mathrm{SC}\left(\beta_{\mathrm{SB}: S \mathrm{SC}}=-1.3 \mathrm{mmol} \cdot \mathrm{L}^{-1}[95 \% \mathrm{CrI}:-2.7\right.$ to 0.3 $\left.\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~J}\right)$ (Table 1). The average supplement dose was $0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}$ and ranged from 0.1 to $0.5 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}$. Evidence of a moderation effect of supplement dose was shown, with an estimated increase in blood bicarbonate of $1.1 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}: 0.7\right.$ to $\left.1.7 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$ per every additional $0.1 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}$ of supplement (Table 1). Similar general results were obtained for blood pH and are presented in Supplementary Material Appendix S4.

Fig 2 Panel A/B: Funnel plots illustrating mean difference effects of blood bicarbonate relative to placebo (A: Pre-supplementation to pre-exercise; B: Pre-exercise to post-exercise). Panel C: Plot illustrating prediction (blue) and 50% fitted intervals (black) of group mean supplementation and placebo blood bicarbonate values across three time points. $\mathrm{SB}=$ Sodium bicarbonate, $\mathrm{SC}=$ Sodium citrate.

3.2.1.2. Pre-exercise to Post-exercise

A large decrease in the blood bicarbonate pooled estimate (153 outcomes from 104 studies) was identified $\left(\mathrm{ES}_{0.5}=-12.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}:-13.0\right.\right.$ to $\left.\left.-10.9 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]\right)$ in the non-placebocontrolled effect sizes. Substantive between-study variation ($\tau_{0.5}=5.2$ [75\%CrI: 4.7 to 5.7 $\mathrm{mmol} \cdot \mathrm{L}^{-1} \mathrm{~J}$) and limited covariance between multiple outcomes reported from the same study (ICC: 0.09 [$75 \% \mathrm{CrI}: 0.06$ to 0.11]) were also identified. The magnitude of the decrease in blood bicarbonate was influenced by [Exercise type], with performance tests estimated to cause an additional drop compared to capacity tests ($\beta_{\text {Capacity:Performance }}=-4.1 \mathrm{mmol} \cdot \mathrm{L}^{-1}[95 \% \mathrm{CrI}:-5.9$ to $\left.\left.-2.3 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]\right)($ Table 1). A moderating effect of $[$ Exercise duration $]$ was also identified, with the greatest decreases in blood bicarbonate estimated for tests lasting between 0.5 and 10 minutes $\left(\beta_{0.5-10 \min :<0.5 \min }=0.90 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}:-1.0\right.\right.$ to $\left.2.8 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right] ; \beta_{0.5-10 \min :>10 \min }=5.5$ [$95 \% \mathrm{CrI}: 2.6$ to $\left.8.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$) (Table 1). When investigating the change relative to placebo, a greater decrease in blood bicarbonate following exercise was obtained in the supplementation condition $\left(\mathrm{ES}_{0.5}=-2.6 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}:-3.3\right.\right.$ to $\left.-2.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right] ; \tau_{0.5}=3.0[75 \% \mathrm{CrI}: 2.7$ to $\left.3.4 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$; ICC: 0.15 [$75 \% \mathrm{CrI}$: 0.10 to 0.22$]$). Funnel plot provided no visual evidence of small-study effects (Fig 2, Panel B). Similar general results for both placebo-controlled and non-controlled effects sizes were obtained for blood pH and are presented in Supplementary Material Appendix S4.

Blood lactate data were meta-analysed across the exercise period. The non-controlled mean difference effect sizes (139 outcomes from 104 studies) estimated a pooled increase of $\mathrm{ES}_{0.5}=$ $11.1 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left(\left[95 \% \mathrm{CrI}: 10.1\right.\right.$ to $\left.12.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right] ; \tau_{0.5}=3.9\left[75 \% \mathrm{CrI}: 3.4\right.$ to $\left.4.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$; ICC: 0.32 [$75 \% \mathrm{CrI}: 0.18$ to 0.40$]$), which was found to be greater than the increase obtained in the placebo condition $\left(\mathrm{ES}_{0.5}=1.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}: 1.3\right.\right.$ to $\left.1.8 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right] ; \tau_{0.5}=0.5[75 \% \mathrm{CrI}$:
0.2 to $\left.0.8 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$; ICC: 0.57 [$75 \% \mathrm{CrI}: 0.42$ to 0.70$]$). Similar to other biomarkers investigated, moderating effects of [Exercise type] and [Exercise duration] were identified, with the supplement condition demonstrating greater blood lactate increases with performance tests compared to capacity tests $\left(\beta_{\text {Capacity:Performance }}=2.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}: 0.9\right.\right.$ to $4.4 \mathrm{mmol} \cdot \mathrm{L}^{-}$ $\left.{ }^{1}\right]$), and the greater increases for tests lasting between 0.5 to 10 minutes ($\beta_{<0.5 \min : 0.5-10 \mathrm{~min}}=3.5$ $\mathrm{mmol} \cdot \mathrm{L}^{-1}\left[95 \% \mathrm{CrI}: 1.2\right.$ to $\left.5.7 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right] ; \beta_{0.5-10 \min :>10 \min }=-3.6 \mathrm{mmol} \cdot \mathrm{L}^{-1}[95 \% \mathrm{CrI}:-5.9$ to -1.2 $\left.\mathrm{mmol} \cdot \mathrm{L}^{-1}\right]$ (Table 1).

3.2.2. Exercise Outcomes

There were 256 exercise outcomes across 173 individual studies. Two negative outliers (effect size <-1.0) and thirteen positive outliers (effect size >1.9) were identified and removed from subsequent analyses. The pooled standardized mean difference identified a very small to small effect of supplementation on exercise outcomes compared to placebo $\left(\mathrm{ES}_{0.5}=0.17[95 \% \mathrm{CrI}\right.$: 0.12 to 0.21]; $\tau_{0.5}=0.13$ [$75 \% \mathrm{CrI}: 0.09$ to 0.17]; ICC: 0.04 [$75 \% \mathrm{CrI}: 0.00$ to 0.13$]$). Probabilities of the pooled effect size exceeding very small and small were $\mathrm{p}>0.999$ and $p=0.085$. A funnel plot provided evidence of small-study effects (i.e., publication bias) with substantive asymmetry and many large positive effect sizes far from the central cluster (Fig 3). Potential moderating effects (Table 2) were identified for [Exercise type], [Exercise duration] and [Exercise duration 2] with greater improvements for capacity tests $\left(\beta_{\text {Capacity:Performance }}=-\right.$ 0.06 [95% CrI: -0.15 to 0.02]), and exercise durations greater than $0.5 \mathrm{~min}\left(\beta_{<0.5 \min : 0.5-10 \mathrm{~min}}=\right.$ 0.12 [95% CrI: 0.00 to 0.24]; $\beta_{<0.5 \min :>10 \min }=0.16$ [$95 \% \mathrm{CrI}: 0.01$ to 0.31]). Largest effects within [Exercise duration 2] were shown for exercise 5-10 min in duration $\left(\beta_{0.5-1.5 \min : 5-10 \mathrm{~min}:}=0.02\right.$ [$95 \% \mathrm{CrI}:-0.13$ to 0.18$] ; \beta_{1.5-5 \min : 5-10 \min :}=0.10$ [$95 \% \mathrm{CrI}:-0.04$ to 0.25$]$) (Table 2). Exercise performed following prior exercise [Prior exercise] showed evidence of greater improvements with supplementation compared with no prior exercise $\left(\beta_{\text {PriorExercise:NoPriorExercise }}=-0.12\right.$
[95% CrI: -0.29 to 0.02]) (Table 2). In support of the moderating effects of prior exercise, analysis of research investigating multiple exercise bouts (143 outcomes from 41 studies) demonstrated that compared to placebo a greater pooled effect size was obtained in the second exercise bout compared to the first ($\beta_{\text {Bout1: Bout } 2}=0.07$ [$95 \% \mathrm{CrI}:-0.04$ to 0.17$]$), and an even greater pooled effect size obtained in the third $\left(\beta_{\text {Bout }: \text { Bout } 3}=0.16\right.$ [$95 \% \mathrm{CrI}: 0.04$ to 0.27$\left.]\right)$ (Table 2).

Most outcomes from a single bout of exercise were conducted on trained individuals (139 outcomes), followed by non-trained (80 outcomes) and top-level (21 outcomes) individuals. The greatest uncertainty in the pooled estimate was obtained for top-level athletes $\left(\mathrm{ES}_{0.5}=0.12\right.$ [$95 \% \mathrm{CrI}:-0.03$ to 0.27]), with similar values obtained across all groups but the highest estimates obtained for non-trained individuals $\left(\beta_{\text {Non-trained:Top-level }}=-0.07[95 \% \mathrm{CrI}:-0.24\right.$ to $0.09] ; \beta_{\text {Non-trained:Trained }}=-0.03[95 \% \mathrm{CrI}:-0.13$ to 0.07$\left.]\right)($ Table 2$)$. When all potential moderators were included in the same regression, large uncertainty with wide credible intervals were obtained for all factors except for exercise duration where consistent evidence was obtained for exercise of longer durations $\left(\beta_{<0.5 \min : 0.5-10 \min }=0.13[95 \% \mathrm{CrI}: 0.00\right.$ to 0.25$] ; \beta_{<0.5 \min :>10 \min }=$ 0.15 [95% CrI: 0.01 to 0.32]). Analysis of exercise outcomes were repeated for studies supplementing with SB only based on analyses demonstrating differences in blood biomarker response compared with sodium citrate. No substantive differences were identified in any of the moderator analyses however, effect sizes were increased systematically with SB by very small amounts (~ 0 to 0.05) (Supplementary Material Appendix S5).

<0.5 min
$0.5-10 \mathrm{~min} \bullet \quad>10 \mathrm{~min}$

Fig 3 Funnel plot illustrating standardized mean difference effect sizes for exercise outcomes relative to withinstudy standard errors. Centre dashed black line and blue region represent the mean pooled estimate and 95% credible interval.

3.2.3. Supplementation protocols and Exercise Outcomes

To assess the effect of supplement dose on exercise outcomes (Table 3), the dose provided was categorised as low ($<0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}, 33$ outcomes), moderate ($0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}, 162$ outcomes) or high ($>0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}, 43$ outcomes). Whilst controlling for exercise duration and the existence of prior exercise, no moderating effect of dose was identified $\left(\beta_{<0.3: 0.3}=0.03[95 \% \mathrm{CrI}:-0.10\right.$ to $0.17] ; \beta_{0.3:>0.3}=-0.01$ [$95 \% \mathrm{CrI}:-0.13$ to 0.10$]$]. In contrast, some evidence was obtained to indicate greater effects when the dose was consumed in a single preparation (162 outcomes) compared to split dose strategies (77 outcomes) ($\beta_{\text {Split:Single }}=0.11$ [$95 \% \mathrm{CrI}: 0.01$ to 0.20$]$); when the dose was consumed in solution (123 outcomes) compared with capsules (100 outcomes) $\left(\beta_{\text {Capsule:Solution }}=0.09\right.$ [95% CrI: 0.01 to 0.18$]$); and when SB (192 outcomes) was consumed compared with $\mathrm{SC}\left(39\right.$ outcomes) $\left(\beta_{\mathrm{SC}: \mathrm{SB}}=0.10[95 \% \mathrm{CrI}:-0.02\right.$ to 0.22$\left.]\right)$. There was some evidence that chronic supplementation was more effective than acute supplementation $\left(\beta_{\text {Acute:Chronic: }}=0.08\right.$ [95\%CrI: -0.11 to 0.26$\left.]\right)($ Table 3), although credible intervals were wide.

3.2.4. Blood Biomarkers and Exercise Outcomes

The effects of change in blood bicarbonate ([Bicarbonate increase]; pre-supplementation to pre-exercise) on exercise performance were investigated by categorising changes as small (≤ 4 $\mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase, 44 outcomes), medium ($4-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase, 51 outcomes) and large ($>6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ increase, 30 outcomes) and controlling for the effects of prior exercise and exercise duration. Evidence of greater effects of exercise were obtained for medium and large changes in blood bicarbonate compared with small changes $\left(\beta_{\text {Small:Medium }}=0.16[95 \% \mathrm{CrI}: 0.02\right.$ to 0.32], $\beta_{\text {Small:Large }}=0.13$ [$95 \% \mathrm{CrI}:-0.03$ to 0.29$]$). There was no evidence of increased performance effects comparing medium and large blood bicarbonate changes $\left(\beta_{\text {Medium:Large }}=-\right.$ 0.05 [$95 \% \mathrm{CrI}:-0.20$ to 0.12]; Fig 4). Prediction intervals were calculated for the different categories, with probabilities of modelled effect size exceeding standard thresholds equal to: very small effect (small changes: $p=0.553$, medium changes: $p=0.727$, large changes: $p=0.688$); small effect (small changes: $p=0.359$; medium changes: $p=0.536$; large changes: $p=0.496$); medium effect (small changes: $p=0.136$; medium changes: $p=0.242$; large changes: $p=0.225$); and large effect (small changes: $p=0.042$; medium changes: $p=0.081$; large changes: $p=0.086$).

Fig 4 Relationship between increased blood bicarbonate concentration following supplementation and exercise performance ([Bicarbonate increase]). Mean changes in blood bicarbonate (y-axis) following supplementation were separated into small ($\leq 4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$), medium ($4-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$), and large ($>6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$) increases. Standardized mean difference effects size is presented on the x -axis. Blue interval scale provides prediction intervals for the different categories. Black intervals represent the 50% fitted interval. Black points equal calculated standardized intervals from studies.

3.3. Certainty in cumulative outcomes

Blood and exercise outcomes were assigned an a-priori certainty rating of "high" because they were all based on blinded, placebo-controlled trials (as defined by the eligibility criteria). All studies included in the meta-analysis were classified as having at least "some concerns" according to ROB2 (Fig 5). Almost all studies were classified as having at least some concerns in Domain 1 due to a lack of detailed information regarding randomisation and allocation concealment, while all studies received some concerns due to a lack of a pre-specified analysis plan (as outlined in Domain 5). This was not deemed to pose an undue risk to outcome measures, thus no outcome was downgraded based on risk of bias (see Supplementary Material Appendix S6). The overall analysis of extracellular buffers on exercise outcomes received a "moderate" GRADE rating due to indirectness, while individual sub-analyses received ratings of "low" to "high" (Table 1, 2 and 3). Blood values generally received a "high" GRADE rating
except pre-supplementation to pre-exercise changes in bicarbonate per increase per $0.1 \mathrm{~g} \cdot \mathrm{~kg}^{-}$ ${ }^{1} \mathrm{BM}$ (Moderate) which was downgraded due to heterogeneity of results (Inconsistency; Table 1). Some exercise moderators were similarly downgraded due to heterogeneity of results (Inconsistency) while all were downgraded because of publication bias (Table 2). All moderator analyses of supplement protocols on exercise outcomes were graded as "low" due to heterogeneity of results (Inconsistency) and publication bias (Table 3).

Fig 5 Risk of bias assessment of the ten studies included in the meta-analysis (Plot was created using robvis [33] and is in a colour-blind-friendly colour scheme).

4. Discussion

The results of this systematic review and meta-analysis identified large increases in blood bicarbonate and pH with extracellular buffering supplements leading to an overall positive effect on exercise outcomes. The two most researched buffering supplements were SB and SC, with evidence that sodium bicarbonate generated both greater biomarker responses and larger improvements in exercise outcomes. Several factors moderating the blood biomarker and exercise response were identified, including exercise duration, exercise type, prior exercise and training status. Specifically, greater performance benefits can be expected for exercise lasting $>0.5 \mathrm{~min}$ while trained athletes might expect smaller gains compared to non-trained individuals. Exercise capacity tests showed greater improvements with supplementation than performance tests, while larger effects on outcomes were shown when exercise protocols were performed following prior exercise. A positive chain of association was identified between supplement dose, circulating blood bicarbonate concentration, and exercise performance.

4.1. Exercise duration

The strongest modifying factor that influenced the ergogenic effect of these buffering supplements was exercise duration, with exercise equal to or greater than thirty seconds duration showing greater improvements than exercise less than thirty seconds. These findings are in general consistent with previous results that showed induced alkalosis to be most effective for exercise lasting one to ten minutes [9]. Exercise tasks lasting thirty seconds to ten minutes were further sub-categorised ($0.5-<1.5 \mathrm{~min} ; 1.5-<5 \mathrm{~min} ; 5-10 \mathrm{~min}$) considering that glycolytic energy contribution, and concomitant H^{+}accumulation which can limit exercise capacity and performance [2-5], follows a hyperbolic curve with anaerobic contribution reducing as exercise duration increases [23]. Supplementation led to positive effects across all three categories, with some evidence to suggest exercise $30-90 \mathrm{~s}$ (e.g., 400 m running, 100 m
swimming) and $5-10 \mathrm{~min}$ (e.g., 4-km cycling, 2000 m rowing) was most susceptible to improvements with supplementation. Athletes whose main exercise modality fits into these categories should be aware that extracellular buffering agents may be effective within these types of events.

Exercise lasting less than thirty seconds is thought to be of insufficient duration to result in substantial H^{+}accumulation meaning that muscle acidosis is unlikely to affect performance [34]. The data here support this notion with evidence to support the use of extracellular buffering supplements for this type of short duration exercise. This supports previous metaanalytical data showing sodium bicarbonate to be effective for muscle endurance but not muscle strength [35]. This meta-analysis provides novel data that extracellular buffering supplements improve exercise greater than ten minutes in duration, which is somewhat in contrast with previous evidence on the efficacy of increased buffering capacity for endurance exercise [36]. This is thought to be because endurance exercise is not generally performed at an intensity that generates large H^{+}accumulation that will limit performance, highlighted by lower blood lactate concentration during exercise lasting less than ten minutes shown here. Nonetheless, during most endurance training and competition there are periods of increased intensity that might benefit from supplementation, including a sprint finish in cycling [37], or a final lap sprint as seen in 5000 and 10000 m running $[38,39]$. Improved overall performance during endurance activity following extracellular buffers supplementation might be due to the improved ability to transiently increase intensity at various moments throughout although no study has directly measured this and is an avenue worth investigating.

4.2. Training status

The ergogenic effect with buffering supplements was greater for non-trained individuals compared to trained individuals. A novelty in the current meta-analysis was that we could further separate sixteen studies that recruited top-level athletes, namely international-, Olympic- and elite-level competitors. However, the effect of extracellular buffers on exercise outcomes in top-level athletes was less clear due to substantive study heterogeneity. The training status of the individual has long been purported to modify the effect of buffering supplements on exercise outcomes $[9,10,36,40]$, albeit with contrasting opinion. Some have suggested that greater glycolytic capacity, as commonly seen in trained individuals [41], might allow for a greater performance benefit following induced alkalosis [40], while others suggest that training adaptations, including increased muscle buffering capacity [42], might leave athletes closer to their upper limit for improvements and minimising the effects of any ergogenic aid such as buffering supplements. It must be recognised that different training intensities will lead to distinct glycolytic and buffering adaptations [43, 44] making such generalisations difficult. Whatever the mechanistic reason for this difference, the current data provide support for the notion that less trained individuals experience greater improvements in exercise performance with extracellular buffering supplements compared to trained individuals. The necessity for supplementation in this untrained population is an important caveat to highlight, given that non-competitive athletes have less need for performance enhancing supplements, whereas the marginal gains for competitive athletes might be sufficient to affect medal or qualifying positions [45]. More work regarding extracellular buffers and toplevel athletes is required.

4.3. Moderating factors

Improvements in both exercise capacity and performance tests were shown here, with the greatest improvements obtained for capacity tests supporting our previous meta-analysis
investigating increased intracellular buffering capacity via beta-alanine supplementation [36]. Capacity tests (i.e., those that require maximal effort or exertion until exhaustion) have previously been shown to be more susceptible to improvement following increases in buffering capacity $[24,36]$. This is of relevance to athletes such as cycling domestiques who are sometimes required to exert themselves to the point of exhaustion for their team leader, or athletics athletes trying to maintain the pace of a faster opponent. The current analyses also showed a greater pooled effect of extracellular buffers on exercise performed following prior exercise, namely when a high-intensity or endurance bout of exercise was performed prior to the measured exercise outcome. This has important practical application since certain longdistance events, including endurance cycling and athletics, might be decided by whoever can maintain a higher intensity during the closing stages or final sprint. This was demonstrated by a study from Dalle et al. [37] who showed final sprint performance following 3-h simulated cycling was improved with SB supplementation.

4.4. Repeated-bout activities

The finding that prior exercise generated greater effects with supplementation were further supported by the results for repeated-bout intermittent activities, which showed larger effects with each additional exercise bout. This finding seems to be physiologically plausible, given that sodium bicarbonate supplementation has been reported to improve acid-base recovery kinetics following high-intensity exercise [46, 47], and also enhance phosphorylcreatine resynthesis which is impaired at low muscle pH [48]. Thus, supplementation may accelerate recovery between repeated high-intensity bouts and could be important for individuals involved in sports that require repeated high-intensity bouts with intermittent rest or recovery periods that do not allow for complete restoration of acid-base balance (e.g., team sports players, boxers or track cyclists), although no study has directly measured this with short recovery bouts. This
information could also be crucial for athletes engaged in repeated high-intensity training since supplementation with extracellular buffers prior to their training might lead to improved session quality, theoretically generating greater adaptations and gains over time. This may also be relevant to athletic groups whose competitions involves exercise less than thirty seconds in duration. Although results suggest that events less than 30 seconds are unlikely to benefit directly from extracellular buffers, athletes involved in such events likely perform a substantial proportion of their training undertaking high-intensity intermittent activities. Supplementation throughout training could indirectly lead to performance gains for their short duration event irrespective of supplementation prior to competition. This supports data from individual studies demonstrating that SB throughout short-term training (up to 8 weeks) might augment the response to training leading to improved performance even when the exercise test is performed without prior supplementation [49, 50]. However, supplementation and training studies are scarce and further experimental studies should look to determine how to implement these buffering agents throughout training and their longer-term impact on training adaptations.

4.5. Supplementation strategies

The importance of individualised supplement timing has gained traction in recent years with studies suggesting that coinciding the onset of exercise with peak bicarbonate leads to greater gains than standardized timing [13-15]. Conversely, several studies have suggested that a minimum increase of $5-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ in circulating bicarbonate is required to elicit likely and almost certain exercise improvements with buffering supplements [12, 16, 51], although it remained uncertain whether increases above these thresholds further enhance performance. The results of this meta-analysis provide support for a threshold hypothesis, with smaller performances improvements shown when the average increase in circulating bicarbonate was $<4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ compared with increases $\geq 4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. There was no evidence of a greater effect
on exercise outcomes with bicarbonate increases greater than $6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ compared with increases of 4-6 $\mathrm{mmol} \cdot \mathrm{L}^{-1}$, indicating a non-linear dose-response relationship which questions the necessity of time-to-peak or any other strategy that aims to increase blood bicarbonate above this $4-6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ threshold. Although this suggests that more blood bicarbonate is not necessarily better, some caution is advised since these analyses were performed using group data for blood bicarbonate and exercise outcomes. Experimental studies specifically designed to investigate the existence of this theoretical threshold and whether peak blood bicarbonate is necessary on an individual-participant basis are required to confirm or refute these data. We herein show that even small increases in circulating bicarbonate $\left(<4 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ contribute to performance gains, but individuals should ideally aim to ensure they reach an increase of at least 4-6 $\mathrm{mmol} \cdot \mathrm{L}^{-1}$ to ensure an optimal chance of an exercise performance improvement.

There was evidence that SB was the most effective supplement both for increasing blood bicarbonate and for improving exercise outcomes. It has been suggested that supplementation protocols with SC are suboptimal [52], with commonly employed supplementation protocols leading to exercise initiating at the moment of maximal side-effects and minimal bicarbonate changes. More work with more optimal dosing strategies [53] are warranted and the efficacy of SC should be revisited once more novel data has been accrued [54]. There was insufficient data on CL/SL to provide any clear estimates. There was some evidence that increasing supplement dose leads to greater increases in bicarbonate concentration, although there was little evidence of an effect of dose on exercise outcomes, an effect likely lost due to the heterogeneity in exercise tests. Single dose ingestion strategies appear to lead to greater exercise improvements than split-dose ingestion strategies, while ingestion in solution was more beneficial for exercise outcomes than in gelatine capsules although certainty in these outcomes was low. Greater improvements with solution could be due, in part, to placebo effects
associated with its ingestion [55], since it might be easier to identify the intervention condition due to its distinct salty taste and correct supplement identification can lead to greater ergogenic effects [56]. There was weak evidence that chronic ingestion led to greater performance improvements than acute supplementation. Previous work showed no differences in performance improvements between chronic and acute sodium bicarbonate supplementation strategies [57], while only acute but not chronic sodium citrate supplementation improved swim performance [58]. Thus, since these meta-analytical data were based upon few chronic $(\mathrm{n}=14)$ compared to acute $(\mathrm{n}=227)$ supplementation protocols, caution is advised, and individuals should adopt and trial their preferred supplementation strategy.

Supplementation with buffering agents results in a large increase in blood bicarbonate, and more bicarbonate is also subsequently used during exercise compared with placebo, leading to performance improvements. These data suggest that improvements in exercise outcomes are due to an increased buffering of H^{+}that are removed from the muscle. One might expect that the greater buffering capacity would allow an individual to exert themselves for longer eventually reaching the same acidotic endpoint (i.e., equally depleted bicarbonate and low pH), particularly during capacity tests to exhaustion. Nonetheless, the results show that at the end of exercise, supplemented conditions still have higher blood pH and bicarbonate values which suggests that individuals do not make full use of all this additional buffering capacity. Although acidosis can contribute to fatigue [2-5], not all exercise tests have a specific endpoint that is solely limited by this acidosis while the causes of fatigue during exercise are multifactorial. This means that although increased bicarbonate via supplementation may improve performance, it does not necessarily follow that blood bicarbonate will be further reduced compared to a placebo session. This supports the prior notion that time-to-peak may not be a
necessary strategy since bicarbonate availability may not be fully used, and that moderate increases in bicarbonate concentration are sufficient to bring about performance gains.

4.6. Limitations

One of the limitations of this meta-analysis is that we did not determine the influence of sideeffects associated with supplementation of these buffering agents on subsequent exercise performance. Symptoms of gastric discomfort including bloating and abdominal pain, nausea and vomiting are commonly reported side-effects following supplementation with alkalizing agents [12,53] and these could negatively impact performance [7]. However, there is a distinct lack of reporting of side-effects in many studies, while those that do are inconsistent in their reporting methods. Additionally, studies do not generally provide information as to whether side-effects were associated with changes in exercise outcomes. For these reasons, side-effects were not considered as moderators within the analysis. Despite their efficacy, coaches and athletes should be aware that supplementation with these ergogenic aids could generate uncomfortable side-effects that might negatively impact performance. Athletes are encouraged to trial these supplements away from competition first to determine their individual tolerance and performance effects which can then guide their own personal decision making as to their implementation. Further work in this area should aim to standardize the reporting of sideeffects with these supplements using validated questionnaires and provide detailed analysis of whether this impacted exercise performance. We also urge better reporting of participant flow throughout the study since associated side-effects could lead to dropouts, but these appear to be substantially underreported in the literature. Underreporting of participants dropouts or exclusion of individuals from data analysis due to complications [59] could skew data in favour of these buffering supplements.

Exercise comparisons here were made to a placebo session/group, however, real-world effects of supplements include both the active component of the supplement in addition to placebo effects [55]. Athletes might expect slightly greater effects than those shown here when ingesting these supplements due to the physiological and psychological components associated with supplementation [55]. Finally, studies here were predominantly performed with men, but we have previous shown that women can similarly expect to benefit from supplementation [8]. The existence of small-study effects was investigated by creating and interpreting funnel plots. For the biomarker response no asymmetry was detected. However, for exercise outcomes substantive asymmetry was detected with many very large positive effect sizes beyond the central cluster and very few correspondingly large negative effect sizes. The difference in funnel plot characteristics obtained for biomarkers and exercise performance may be explained by the greater range of outcomes available in the exercise domain and the ability of researchers to retrospectively select values which demonstrate the largest effects. Similar findings of smallstudy effects were obtained from a large meta-analysis investigating exercise performance following high intensity interval training [60] where researchers also commonly assess a range of outcome measures. All studies were deemed to have at least some risk of potential bias, although this was primarily due to underreporting of information relating to study randomisation and allocation sequence concealment, missing data and dropouts and a lack of preregistration. We encourage all future studies to better report their study proceeding relating to domains 1 (Randomisation), 3 (Missing outcome data) and 5 (Selection of reported results) to improve transparency and thus certainty in the strength of outcomes.

4.7. Practical Implications

The current systematic review and meta-analysis highlights important aspects that can guide athletes and coaches' decisions to consider supplementation with extracellular buffering
agents. Current evidence suggests individuals should preferentially supplement with SB over any other extracellular buffering supplement, as it leads to the largest increases in blood bicarbonate and the clearest exercise effects. A $0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}$ dose ingested in solution 60 to 180 min prior to starting exercise should lead to increases above $4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ in blood bicarbonate concentration which is what athletes should aim for to improve various exercise outcomes. Supplementation was shown to be most effective for capacity tests which is important information for individuals required to exert themselves maximally to the point of near or complete exhaustion (e.g., cycling domestiques, athletics athletes trying to maintain race pace), although exercise performance was also improved (e.g., time-trials). Athletes whose training and/or competitive event involves high-intensity activity lasting greater than 30 seconds or involving repeated-bout activity (e.g., team and combat sports, tennis, high intensity functional/cross training) should consider supplementing prior to competition. Some athletes involved in intermittent activities interspersed throughout the day (e.g., judo) might wish to supplement between bouts to accelerate recovery and optimise performance in subsequent bouts. Supplementation may also be advantageous throughout high-intensity training for athletes involved in all types of exercise, allowing more work and/or greater intensities to be performed, providing greater adaptations and performance gains even when competition is performed without prior acute supplementation. It is important to note that extracellular buffers can improve the capacity to undertake these high intensity efforts but will only likely be effective when the effort is maximal and limited by acidosis. Supplementation during training or competition that is sub-maximal will likely make little or no difference.

4.8. Conclusion

Extracellular buffering supplements generate large increases in circulating bicarbonate concentration leading to small positive overall effects on exercise, with sodium bicarbonate
being the most effective. Several potential moderating factors were identified (Fig 6), including exercise duration, exercise type and prior exercise, that appeared to modify the size of the ergogenic effect. These data can be used to guide an individual's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.

Fig 6 Overview of the factors that may moderate the ergogenic effect of extracellular buffering supplements on exercise outcomes. $\mathrm{SB}=$ Sodium bicarbonate, $\mathrm{SC}=$ Sodium citrate. The x -axis reflects mean effect sizes; note that the figure does not include credible intervals.

Declarations

Funding

No specific funding was received for this review. Bryan Saunders (2016/50438-0), Eimear Dolan (2019/05616 and 2019/26899-6) and Guilherme Artioli (2019/25032-9) have been financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) - Finance Code 001. Bryan Saunders has received a grant from Faculdade de Medicina da Universidade de São Paulo (2020.1.362.5.2). Krzysztof Durkalec-Michalski has received a grant from the Polish National Science Centre (grant number 2018/02/X/NZ7/03217).

Competing Interests

Several of the authors (LFO, GGA, BS) have previously received sodium bicarbonate, sodium citrate and calcium lactate supplements at no cost from a national supplement company (Farmácia Analítica, Rio de Janeiro, Brazil) for work unrelated to the current article. Farmácia Analítica have not had any input (financial, intellectual, or otherwise) into this review. The remaining authors report no conflict of interest.

Authors Contributions

LFO, ED and BS are responsible for the conception of the work. LFO and ED performed the literature search, article selection and data extraction. PS performed all data analysis. LFO and BS drafter the first version of the manuscript, ED, KD-M, GGA and LRM critically revised the work and content. All authors read and approved the final version.

Data Availability Statements

Extracted data and analysis codes are available upon reasonable request.

Ethics approval, Consent to participate and Consent for publication
Not applicable

References

1. Heibel AB, Perim PHL, Oliveira LF, McNaughton LR, Saunders B. Time to Optimize Supplementation: Modifying Factors Influencing the Individual Responses to Extracellular Buffering Agents. Front Nutr. 2018;5:35.
2. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008 Jan;88(1):287-332.
3. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994 Jan;74(1):49-94.
4. Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. Journal of muscle research and cell motility. 2018 Oct 31.
5. Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH. Effects of elevated H (+) and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol. 2018 Sep;596(17):3993-4015.
6. Froio de Araujo Dias G, da Eira Silva V, Painelli VS, Sale C, Giannini Artioli G, Gualano B, et al. (In)Consistencies in Responses to Sodium Bicarbonate Supplementation: A Randomised, Repeated Measures, Counterbalanced and Double-Blind Study. PloS one. 2015;10(11):e0143086.
7. Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensitycycling capacity: variability in responses. Int J Sports Physiol Perform. 2014 Jul;9(4):627-32.
8. Saunders B, Oliveira LF, Dolan E, Durkalec-Michalski K, McNaughton L, Artioli GG, et al. Sodium bicarbonate supplementation and the female athlete: A brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci. 2021 Feb 28:1-10.
9. Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011 Oct 01;41(10):801-14.
10. Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012 Jul;26(7):1975-83.
11. Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr. 1993 Mar;3(1):2-28.
12. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Effect of sodium bicarbonate on [HCO3-], pH, and gastrointestinal symptoms. Int J Sport Nutr Exerc Metab. 2011 Jun;21(3):189-94.
13. Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2017 Nov 29:1-8.
14. Miller P, Robinson AL, Sparks SA, Bridge CA, Bentley DJ, McNaughton LR. The Effects of Novel Ingestion of Sodium Bicarbonate on Repeated Sprint Ability. J Strength Cond Res. 2016 Feb;30(2):561-8.
15. Boegman S, Stellingwerff T, Shaw G, Clarke N, Graham K, Cross R, et al. The Impact of Individualizing Sodium Bicarbonate Supplementation Strategies on World-Class Rowing Performance. Front Nutr. 2020 2020-September-09;7(138).
16. de Oliveira LF, Saunders B, Yamaguchi G, Swinton P, Artioli GG. Is Individualization of Sodium Bicarbonate Ingestion Based on Time to Peak Necessary? Med Sci Sport Exer. 2020 Aug;52(8):1801-8.
17. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009 Aug 18;151(4):264-9, W64.
18. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Systematic reviews. 2016 Dec 5;5(1):210.
19. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Bmj. 2008 Apr 26;336(7650):924-6.
20. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019 Aug 28;366:14898.
21. Rakap S, Rakap S, Evran D, Cig O. Comparative evaluation of the reliability and validity of three data extraction programs: UnGraph, GraphClick, and DigitizeIt. Computers in Human Behavior. 2016 2016/02/01/;55:159-66.
22. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. Betaalanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017 Apr;51(8):658-69.
23. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725-41.
24. Hobson RM, Saunders B, Ball G, Harris R, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012 May;43(1):2537.
25. Johnson MA, Mills DE, Brown PI, Sharpe GR. Prior upper body exercise reduces cycling work capacity but not critical power. Med Sci Sports Exerc. 2014 Apr;46(4):802-8.
26. Kruschke JK, Liddell TM. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev. 2018 Feb;25(1):178-206.
27. Estrada E, Ferrer E, Pardo A. Statistics for Evaluating Pre-post Change: Relation Between Change in the Distribution Center and Change in the Individual Scores. Frontiers in Psychology. 2019;9(2696).
28. Sawilowsky SS. New Effect Size Rules of Thumb. J Mod Appl Stat Method. 2009;8(2):597-9.
29. Fernandez-Castilla B, Jamshidi L, Declercq L, Beretvas SN, Onghena P, Van den Noortgate W. The application of meta-analytic (multi-level) models with multiple random effects: A systematic review. Behav Res Methods. 2020 Mar 11;52:2031-52.
30. Verardi V, Vermandele C. Univariate and Multivariate Outlier Identification for Skewed or Heavy-Tailed Distributions. The Stata Journal. 2018;18(3):517-32.
31. Bürkner P-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J Stat Softw. 2017 2017-08-29;80(1):28.
32. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis: Taylor \& Francis; 2014.
33. McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Research Synthesis Methods. 2021;12(1):55-61.
34. Gaitanos GC, Nevill ME, Brooks S, Williams C. Repeated bouts of sprint running after induced alkalosis. J Sports Sci. 1991 Winter;9(4):355-70.
35. Grgic J, Rodriguez RF, Garofolini A, Saunders B, Bishop DJ, Schoenfeld BJ, et al. Effects of Sodium Bicarbonate Supplementation on Muscular Strength and Endurance: A Systematic Review and Meta-analysis. Sports Med. 2020 Jul;50(7):1361-75.
36. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017 Apr;51(8):658-69.
37. Dalle S, Koppo K, Hespel P. Sodium bicarbonate improves sprint performance in endurance cycling. J Sci Med Sport. 2021;24(3):301-6.
38. Aragon S, Lapresa D, Arana J, Anguera MT, Garzon B. Tactical behaviour of winning athletes in major championship $1500-\mathrm{m}$ and $5000-\mathrm{m}$ track finals. Eur J Sport Sci. 2016;16(3):279-86.
39. Tucker R, Lambert MI, Noakes TD. An analysis of pacing strategies during men's world-record performances in track athletics. Int J Sports Physiol Perform. 2006 Sep;1(3):23345.
40. Requena B, Zabala M, Padial P, Feriche B. Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res. 2005 Feb;19(1):213-24.
41. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53-73.
42. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(1):7-13.
43. Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006 Jan;96(1):97-105.
44. Edge EJ, Bishop D, Hill-Haas S, Dawson B, Goodman C. Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes. Eur J Appl Physiol. 2006 Feb;96(3):225-34.
45. Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and Bicarbonate for Speed. A Meta-Analysis of Legal Supplements Potential for Improving Intense Endurance Exercise Performance. Front Physiol. 2017;8:240.
46. Gough LA, Rimmer S, Osler CJ, Higgins MF. Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion. Int J Sport Nutr Exerc Metab. 2017 Oct;27(5):429-38.
47. Jones RL, Stellingwerff T, Swinton P, Artioli GG, Saunders B, Sale C. Warm-up intensity does not affect the ergogenic effect of sodium bicarbonate in adult men. Int J Sport Nutr Exerc Metab. in press.
48. Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, et al. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR in biomedicine. 2013 Nov;26(11):1403-11.
49. Edge J, Bishop D, Goodman C. Effects of chronic NaHCO 3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol (1985). 2006 Sep;101(3):918-25.
50. Wang J, Qiu J, Yi L, Hou Z, Benardot D, Cao W. Effect of sodium bicarbonate ingestion during 6 weeks of HIIT on anaerobic performance of college students. J Int Soc Sports Nutr. 2019 Apr 15;16(1):18.
51. Jones RL, Stellingwerff T, Artioli GG, Saunders B, Cooper S, Sale C. Dose-Response of Sodium Bicarbonate Ingestion Highlights Individuality in Time Course of Blood Analyte Responses. Int J Sport Nutr Exerc Metab. 2016 Oct;26(5):445-53.
52. Painelli VS, Lancha Junior AH. Thirty years of investigation on the ergogenic effects of sodium citrate: is it time for a fresh start? Br J Sports Med. 2018;52:942-3.
53. Urwin CS, Dwyer DB, Carr AJ. Induced Alkalosis and Gastrointestinal Symptoms After Sodium Citrate Ingestion: a Dose-Response Investigation. Int J Sport Nutr Exerc Metab. 2016 Dec;26(6):542-8.
54. Urwin CS, Snow RJ, Condo D, Snipe R, Wadley GD, Carr AJ. Factors Influencing Blood Alkalosis and Other Physiological Responses, Gastrointestinal Symptoms, and Exercise Performance Following Sodium Citrate Supplementation: A Review. Int J Sport Nutr Exerc Metab. 202101 Mar. 2021;31(2):168.
55. Marticorena FM, Carvalho A, de Oliveira LF, Dolan E, Gualano B, Swinton P, et al. Nonplacebo Controls to Determine the Magnitude of Ergogenic Interventions: A Systematic Review and Meta-analysis. Med Sci Sport Exer. 2021;53(8):1766-77.
56. Saunders B, de Oliveira LF, da Silva RP, Painelli VS, Goncalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017 Nov;27(11):1240-7.
57. McNaughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness. 2001 Dec;41(4):456-62.
58. Russell C, Papadopoulos E, Mezil Y, Wells GD, Plyley MJ, Greenway M, et al. Acute versus chronic supplementation of sodium citrate on 200 m performance in adolescent swimmers. J Int Soc Sports Nutr. 2014;11:26.
59. Farney TM, MacLellan MJ, Hearon CM, Johannsen NM, Nelson AG. The Effect of Aspartate and Sodium Bicarbonate Supplementation on Muscle Contractile Properties Among Trained Men. J Strength Cond Res. 2018;34(3):763-70.
60. Hall A, Aspe R, Craig T, Kavaliauskas M, Babraj J, Swinton P. The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. SportrXiv. 2021.
61. Aedma M, Timpmann S, Oopik V. Dietary sodium citrate supplementation does not improve upper-body anaerobic performance in trained wrestlers in simulated competition-day conditions. Eur J Appl Physiol. 2015;115(2):387-96.
62. Afman G, Garside RM, Dinan N, Gant N, Betts JA, Williams C. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test. Int J Sport Nutr Exerc Metab. 2014;24(6):632-44.
63. Ansdell P, Dekerle J. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J Strength Cond Res. 2017;34(5):1369-75.
64. Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha Jr AH, et al. Does sodium-bicarbonate ingestion improve simulated judo performance? Int J Sport Nutr Exerc Metab. 2007;17(2):206-17.
65. Aschenbach W, Ocel J, Craft L, Ward C, Spangenburg E, Williams J. Effect of oral sodium loading on high-intensity arm ergometry in college wrestlers. Med Sci Sports Exerc. 2000;32(3):669-75.
66. Ball D, Greenhaff PL, Maughan RJ. The acute reversal of a diet induced metabolic acidosis does not restore endurance capacity during high-intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1996;73(1-2):105-12.
67. Ball D, Maughan RJ. The effect of sodium nitrate ingestion on the metabolic response to intense exercise following diet manipulation in man. Experimental physiology. 1997;82(6):1041-56.
68. Bellinger PM, Howe ST, Shing CM, Fell JW. Effect of combined beta-alanine and sodiumbicarbonate supplementation on cycling performance. Med Sci Sports Exerc. 2012;44(8):1545-51.
69. Bird SR, Wiles J, Robbins J. The effect of sodium bicarbonate ingestion on $1500-\mathrm{m}$ racing time. J Sports Sci. 1995;13(5):399-403.
70. Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sport Exer. 2005;37(5):759-67.
71. Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36(5):807-13.
72. Boegman S, Stellingwerff T, Shaw G, Clarke N, Graham K, Cross R, et al. The Impact of Individualizing Sodium Bicarbonate Supplementation Strategies on World-Class Rowing Performance. Front Nutr. 2020;7.
73. Bouissou P, Defer G, Guezennec CY, Estrade PY, Serrurier B. Metabolic and blood catecholamine responses to exercise during alkalosis. Med Sci Sports Exerc. 1988;20(3):22832.
74. Brien DM, McKenzie DC. The effect of induced alkalosis and acidosis on plasma lactate and work output in elite oarsmen. Eur J Appl Physiol Occup Physiol. 1989;58(8):797802.
75. Brisola GMP, Miyagi WE, da Silva HS, Zagatto AM. Sodium bicarbonate supplementation improved MAOD but is not correlated with $200-$ and $400-\mathrm{m}$ running performances: A double-blind, crossover, and placebo-controlled study. Appl Physiol Nutr Metab. 2015;40(9):931-7.
76. Callahan MJ, Parr EB, Hawley JA, Burke LM. Single and combined effects of beetroot crystals and sodium bicarbonate on 4-km cycling time trial performance. Int J Sport Nutr Exerc Metab. 2017;27(3):171-8.
77. Campos EZ, Sangali EB, Neto JG, Gobbi RB, Freitas IF, Papoti M. Effects of sodium bicarbonate ingestion during an intermittent exercise on blood lactate,stroke parameters, and performance of swimmers. Journal of Exercise Physiology Online. 2012;15(6):84-92.
78. Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: Effects on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21(5):357-64.
79. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Reliability and effect of sodium bicarbonate: Buffering and 2000-m rowing performance. Int J Sports Physiol Perform. 2012;7(2):152-60.
80. Carr BM, Webster MJ, Boyd JC, Hudson GM, Scheett TP. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol. 2013;113(3):743-52.
81. Casarin CAS, Battazza RA, Lamolha MA, Kalytczak MM, Politti F, Evangelista AL, et al. Sodium bicarbonate supplementation improves performance in isometric fatigue protocol. Revista Brasileira de Medicina do Esporte. 2019;25(1):40-4.
82. Christensen PM, Petersen MH, Friis SN, Bangsbo J. Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Appl Physiol Nutr Metab. 2014;39(9):1058-63.
83. Coombes J, McNaughton LR. Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res. 1993;7(4).
84. Coppoolse R, Barstow TJ, Stringer WW, Carithers E, Casaburi R. Effect of acute bicarbonate administration on exercise responses of COPD patients. Med Sci Sports Exerc. 1997;29(6):725-32.
85. Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R, McConell GK, Bishop DJ, LimaSilva AE, et al. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial. Med Sci Sports Exerc. 2017;49(9):1899-910.
86. Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W. Acid-base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med. 1984;5(5):228-31.
87. Cox G, Jenkins DG. The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. J Sports Sci. 1994;12(5):469-75.
88. Cunha VCR, Aoki MS, Zourdos MC, Gomes RV, Barbosa WP, Massa M, et al. Sodium citrate supplementation enhances tennis skill performance: a crossover, placebo-controlled, double blind study. J Int Soc Sports Nutr. 2019;16(1):32.
89. da Silva RP, de Oliveira LF, Saunders B, de Andrade Kratz C, de Salles Painelli V, da Eira Silva V, et al. Effects of beta-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids. 2019;51(1):83-96.
90. Dalle S, De Smet S, Geuns W, Rompaye BV, Hespel P, Koppo K. Effect of Stacked Sodium Bicarbonate Loading on Repeated All-out Exercise. Int J Sports Med. 2019;40(11):711-6.
91. Danaher J, Gerber T, Wellard RM, Stathis CG. The effect of beta-alanine and NaHCO3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. 2014;114(8):1715-24.
92. De Araujo Dias GF, Eira Silva VD, Painelli VDS, Sale C, Artioli GG, Gualano B, et al. (In)consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PloS one. 2015;10(11):1-13.
93. Deb SK, Gough LA, Sparks SA, McNaughton LR. Determinants of curvature constant (W') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Eur J Appl Physiol. 2017;117(5):901-12.
94. Deb SK, Gough LA, Sparks SA, McNaughton LR. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. Eur J Appl Physiol. 2018;118(3):607-15.
95. Delextrat A, Mackessy S, Arceo-Rendon L, Scanlan A, Ramsbottom R, CallejaGonzalez J. Effects of Three-Day Serial Sodium Bicarbonate Loading on Performance and Physiological Parameters During a Simulated Basketball Test in Female University Players. Int J Sport Nutr Exerc Metab. 2018;28(5):547-52.
96. Do Valle Bargieri J, Berton DC, Aparecido De Almeida A, Asprón Garcia F, Carlos Da Silva A, Alberto Neder J, et al. Effects of bicarbonate on oxyhaemoglobin desaturation and exercise performance in athletes. J Sports Med Phys Fitness. 2013;53(5):470-6.
97. Douroudos II, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A, et al. Dose-related effects of prolonged NaHCO 3 ingestion during high-intensity exercise. Med Sci Sports Exerc. 2006;38(10):1746-53.
98. Driller M, Williams A, Bellinger P, Howe S, Fell J. The effects of NaHCO 3 and NaCl loading on hematocrit and high-intensity cycling performance. Journal of Exercise Physiology Online. 2012;15(1):47-56.
99. Driller MW, Gregory JR, Williams AD, Fell JW. The effects of serial and acute nahco3 loading in well-trained cyclists. J Strength Cond Res. 2012;26(10):2791-7.
100. Driller MW, Gregory JR, Williams AD, Fell JW. The effects of chronic sodium bicarbonate ingestion and interval training in highly trained rowers. Int J Sport Nutr Exerc Metab. 2013;23(1):40-7.
101. Ducker KJ, Dawson B, Wallman KE. Effect of beta alanine and sodium bicarbonate supplementation on repeated-sprint performance. J Strength Cond Res. 2013;27(12):3450-60.
102. Duncan MJ, Weldon A, Price MJ. The effect of sodium bicarbonate ingestion on back squat and bench press exercise to failure. Journal of strength and conditioning research / National Strength \& Conditioning Association. 2014;28(5):1358-66.
103. Durkalec-Michalski K, Zawieja EE, Podgorski T, Loniewski I, Zawieja BE, Warzybok M, et al. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PloS one. 2018;13(5):e0197480-e. 104. Durkalec-Michalski K, Zawieja EE, Podgórski T, Zawieja BE, Michalowska P, Loniewski I, et al. The effect of a new sodium bicarbonate loading regimen on anaerobic capacity and wrestling performance. Nutrients. 2018;10(6):697-.
104. Durkalec-Michalski K, Zawieja EE, Zawieja BE, Michałowska P, Podgórski T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci Rep. 2020;10(1):1878.
105. Egger F, Meyer T, Such U, Hecksteden A. Effects of sodium bicarbonate on highintensity endurance performance in cyclists: A double-blind, randomized cross-over trial. PloS one. 2014;9(12):e114729-e.
106. Felippe LC, Lopes-Silva JP, Bertuzzi R, McGinley C, Lima-Silva AE. Separate and Combined Effects of Caffeine and Sodium-Bicarbonate Intake on Judo Performance. Int J Sports Physiol Perform. 2016;11(2):221-6.
107. Feriche Fernández-Castanys B, Delgado Fernández M, Álvarez García J. The effect of sodium citrate intake on anaerobic performance in normoxia and after sudden ascent to a moderate altitude. J Sport Med Phys Fit. 2002;42(2):179-85.
108. Ferreira LHB, Smolarek AC, Chilibeck PD, Barros MP, McAnulty SR, Schoenfeld BJ, et al. High doses of sodium bicarbonate increase lactate levels and delay exhaustion in a cycling performance test. Nutrition. 2019;60:94-9.
109. Flinn S, Herbert K, Graham K, Siegler JC, Linn SAF, Erbert KAH, et al. Differential effect of metabolic alkalosis and hypoxia on high-intensity cycling performance. Journal of strength and conditioning research / National Strength \& Conditioning Association. 2014;28(10):2852-8.
110. Freis T, Hecksteden A, Such U, Meyer T. Effect of sodium bicarbonate on prolonged running performance: A randomized, double-blind, cross-over study. PloS one. 2017;12(8):e0182158-e.
111. Gaitanos GC, Nevill ME, Brooks S, Williams C. Repeated bouts of sprint running after induced alkalosis. J Sports Sci. 1991;9(4):355-70.
112. Gao J, Costill DL, Horswill CA, Park SH. Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):171-4.
113. Goldfinch J, Mc Naughton L, Davies P. Induced metabolic alkalosis and its effects on 400-m racing time. Eur J Appl Physiol Occup Physiol. 1988;57(1):45-8.
114. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid-base balance on the growth hormone response to acute high- intensity cycle exercise. J Appl Physiol (1985). 1994;76(2):821-9.
115. Gough LA, Brown D, Deb SK, Sparks SA, McNaughton LR. The influence of alkalosis on repeated high-intensity exercise performance and acid-base balance recovery in acute moderate hypoxic conditions. Eur J Appl Physiol. 2018;118(12):2489-98.
116. Gough LA, Deb SK, Sparks A, McNaughton LR. The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists. Sports Medicine Open. 2017;3(1):34.
117. Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2018;36(15):1705-12.
118. Gough LA, Rimmer S, Osler CJ, Higgins MF. Ingestion of sodium bicarbonate (NaHCO) following a fatiguing bout of exercise accelerates postexercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion. Int J Sport Nutr Exerc Metab. 2017;27(5):429-38.
119. Gough LA, Rimmer S, Sparks SA, McNaughton LR, Higgins MF. Post-exercise Supplementation of Sodium Bicarbonate Improves Acid Base Balance Recovery and Subsequent High-Intensity Boxing Specific Performance. Front Nutr. 2019;6(155).
120. Griffen C, Rogerson D, Ranchordas M, Ruddock A. Effects of creatine and sodium bicarbonate coingestion on multiple indices of mechanical power output during repeated wingate tests in trained men. Int J Sport Nutr Exerc Metab. 2015;25(3):298-306.
121. Haug WB, Nibali ML, Drinkwater EJ, Zhang A, Chapman DW. Responses to sodium bicarbonate supplementation in repeat sprint activity are individual. Medicina Sportiva. 2014;4(November 2016):2434-40.
122. Hausswirth C, Bigard AX, Lepers R, Berthelot M, Guezennec CY. Sodium citrate ingestion and muscle performance in acute hypobaric hypoxia. Eur J Appl Physiol Occup Physiol. 1995;71(4):362-8.
123. Higgins MF, James RS, Price MJ. The effects of sodium bicarbonate (NaHCO3) ingestion on high intensity cycling capacity. J Sport Sci. 2013;31(9):972-81.
124. Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Elliott-Sale KJ, et al. Effect of sodium bicarbonate supplementation on $2000-\mathrm{m}$ rowing performance. Int J Sports Physiol Perform. 2014;9(1):139-44.
125. Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Gualano B, et al. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2013;23(5):480-7.
126. Horswill CA, Costill DL, Fink WJ, Flynn MG, Kirwan JP, Mitchell JB, et al. Influence of sodium bicarbonate on sprint performance: relationship to dosage. Med Sci Sports Exerc. 1988;20(6):566-9.
127. Hunter AM, De Vito G, Bolger C, Mullany H, Galloway SD. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction. J Sports Sci. 2009;27(12):1261-9.
128. Ibanez J, Pullinen T, Gorostiaga E, Postigo A, Mero A. Blood lactate and ammonia in short-term anaerobic work following induced alkalosis. J Sport Med Phys Fit. 1995;35(3):18793.
129. Inbar O, Rotstein A, Jacobs I, Kaiser P, Dlin R, Dotan R. The effects of alkaline treatment on short-term maximal exercise. J Sport Sci. 1983.
130. Iwaoka K, Okagawa S, Mutoh Y, Miyashita M. Effects of bicarbonate ingestion on the respiratory compensation threshold and maximal exercise performance. The Japanese journal of physiology. 1989;39(2):255-65.
131. Joyce S, Minahan C, Anderson M, Osborne M. Acute and chronic loading of sodium bicarbonate in highly trained swimmers. Eur J Appl Physiol. 2012;112(2):461-9.
132. Katz A, Costill DL, King DS, Hargreaves M, Fink WJ. Maximal exercise tolerance after induced alkalosis. Int J Sports Med. 1984;5(2):107-10.
133. Kilding AE, Overton C, Gleave J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sport Nutr Exerc Metab. 2012;22(3):175-83.
134. Kowalchuk JM, Heigenhauser GJFF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1984;57(5):1558-63.
135. Kowalchuk JM, Maltais SA, Yamaji K, Hughson RL. The effect of citrate loading on exercise performance, acid-base balance and metabolism. Eur J Appl Physiol Occup Physiol. 1989;58(8):858-64.
136. Kozak-Collins K, Burke ER, Schoene RB. Sodium bicarbonate ingestion does not improve performance in women cyclists. Med Sci Sports Exerc. 1994;26(12):1510-5.
137. Kraemer WJ, Harman FS, Vos NH, Gordon SE, Nindl BC, Marx JO, et al. Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Canadian journal of applied physiology $=$ Revue canadienne de physiologie appliquee. 2000;25(2):127-38.
138. Kumstat M, Hlinsky T, Struhar I, Thomas A. Does Sodium Citrate Cause the Same Ergogenic Effect As Sodium Bicarbonate on Swimming Performance? J Hum Kinet. 2018;65:89-98.
139. Kupcis PD, Slater GJ, Pruscino CL, Kemp JG. Influence of sodium bicarbonate on performance and hydration in lightweight rowing. Int J Sports Physiol Perform. 2012;7(1):118.
140. Lambert CP, Greenhaff PL, Ball D, Maughan RJ. Influence of sodium bicarbonate ingestion on plasma ammonia accumulation during incremental exercise in man. Eur J Appl Physiol Occup Physiol. 1993;66(1):49-54.
141. Lavender G, Bird SR. Effect of sodium bicarbonate ingestion upon repeated sprints. Br J Sports Med. 1989;23(1):41-5.
142. Light RW, Peng ME, Stansbitry DW, Sassoon CSH, Despars JA, Kccs Mahitttc C. Effects of sodium bicarbonate administration on the exercise tolerance of normal subjects breathing through dead space. Chest. 1999;115(1):102-8.
143. Linderman J, Kirk L, Musselman J, Dolinar B, Fahey TD. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise capacity. J Sports Sci. 1992;10(3):243-53.
144. Lindh AM, Peyrebrune MC, Ingham SA, Bailey DM, Folland JP. Sodium bicarbonate improves swimming performance. Int J Sports Med. 2008;29(6):519-23.
145. Linossier MT, Dormois D, Bregere P, Geyssant A, Denis C. Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur J Appl Physiol Occup Physiol. 1997;76(1):48-54.
146. Lopes-Silva JP, Da Silva Santos JF, Artioli GG, Loturco I, Abbiss C, Franchini E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci. 2018;18(3):431-40.
147. Macutkiewicz D, Sunderland C. Sodium bicarbonate supplementation does not improve elite women's team sport running or field hockey skill performance. Physiological reports. 2018;6(19):e13818-e.
148. Margaria R, Aghemo P, Sassi G. Effect of alkalosis on performance and lactate formation in supramaximal exercise. Internationale Zeitschrift fur angewandte Physiologie, einschliesslich Arbeitsphysiologie. 1971;29(3):215-23.
149. Marriott M, Krustrup P, Mohr M. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise. J Int Soc Sports Nutr. 2015;12(13).
150. Martins AN, Artioli GG, Franchini E. Sodium citrate ingestion increases glycolytic activity but does not enhance 2000 m rowing performance. J Hum Sport Exerc. 2010;5(3):4117.
151. Marx JO, Gordon SE, Vos NH, Nindl BC, Gomez AL, Volek JS, et al. Effect of alkalosis on plasma epinephrine responses to high intensity cycle exercise in humans. Eur J Appl Physiol. 2002;87(1):72-7.
152. Materko W, Santos EL, Novaes JDS. Effect of bicarbonate supplementation on the muscular strength. Journal of Exercise Physiology Online. 2008;11(4):1-8.
153. Matsuura R, Arimitsu T, Kimura T, Yunoki T, Yano T. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints. Eur J Appl Physiol. 2007;101(4):409-17.
154. McCartney N, Heigenhauser GJFF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1983;55(1 I):225-9.
155. McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G. Maximal work production following two levels of artificially induced metabolic alkalosis. J Sports Sci. 1986;4(1):35-8.
156. McLellan T, Jacobs I, Lewis W. Acute altitude exposure and altered acid-base states. Eur J Appl Physiol Occup Physiol. 1988;57(4):445-51.
157. McNaughton L, Cedaro R, Mc Naughton L, Cedaro R. Sodium citrate ingestion and its effects on maximal anaerobic exercise of different durations. Eur J Appl Physiol Occup Physiol. 1992;64(1):36-41.
158. McNaughton L, Curtin R, Goodman G, Perry D, Turner B, Showell C. Anaerobic work and power output during cycle ergometer exercise: effects of bicarbonate loading. J Sports Sci. 1991;9(2):151-60.
159. McNaughton L, Dalton B, Palmer G. Sodium bicarbonate can be used as an ergogenic aid in high-intensity, competitive cycle ergometry of 1 h duration. Eur J Appl Physiol Occup Physiol. 1999;80(1):64-9.
160. McNaughton LR. Sodium citrate and anaereobic performance: Implifications of dosage. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):392-7.
161. McNaughton LR. Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. J Sports Sci. 1992;10(5):415-23.
162. McNaughton LR. Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. J Sports Sci. 1992;10(5):425-35.
163. McNaughton LR, Cedaro R. The effect of sodium bicarbonate on rowing ergometer performance in elite rowers. Australian journal of science and medicine in sport. 1991;23(3):66-9.
164. McNaughton LR, Ford S, Newbold C. Effect of sodium bicarbonate ingestion on high intensity exercise in moderately trained women. J Strength Cond Res. 1997;11(2):98-102.
165. McNaughton LR, Siegler JC, Keatley S, Hillman A. The effects of sodium bicarbonate ingestion on maximal tethered treadmill running. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2011;170(1):33-9.
166. Mero AA, Hirvonen P, Saarela J, Hulmi JJ, Hoffman JR, Stout JR. Effect of sodium bicarbonate and beta-alanine supplementation on maximal sprint swimming. J Int Soc Sports Nutr. 2013;10(1):52-.
167. Messonnier L, Kristensen M, Juel C, Denis C. Importance of pH regulation and lactate $/ \mathrm{H}+$ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol (1985). 2007;102(5):1936-44.
168. Miller P, Robinson AL, Sparks SA, Bridge CA, Bentley DJ, McNaughton LR. The Effects of Novel Ingestion of Sodium Bicarbonate on Repeated Sprint Ability. J Strength Cond Res. 2016;30(2):561-8.
169. Morris DM, Shafer RS, Fairbrother KR, Woodall MW. Effects of lactate consumption on blood bicarbonate levels and performance during high-intensity exercise. Int J Sport Nutr Exerc Metab. 2011;21(4):311-7.
170. Mueller SM, Gehrig SM, Frese S, Wagner CA, Boutellier U, Toigo M. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J Int Soc Sports Nutr. 2013;10(1):16-.
171. Mundel T, Mündel T. Sodium bicarbonate ingestion improves repeated high-intensity cycling performance in the heat. Temperature (Austin, Tex). 2018;5(4):343-7.
172. Northgraves MJ, Peart DJ, Jordan CA, Vince RV. Effect of lactate supplementation and sodium bicarbonate on $40-\mathrm{km}$ cycling time trial performance. J Strength Cond Res. 2014;28(1):273-80.
173. Obmiński Z, Ładyga M, Tomaszewski W. the Effect of Pre-Exercise Oral Administration of Alkalizing Mixture Upon Physical Performance and Post-Exercise Changes in Blood Biomarkers. Polish Journal of Sports Medicine. 2016;32(4):209-16.
174. Oliveira LF, de Salles Painelli V, Nemezio K, Goncalves LS, Yamaguchi G, Saunders B, et al. Chronic lactate supplementation does not improve blood buffering capacity and repeated high-intensity exercise. Scand J Med Sci Sports. 2017;27(11):1231-9.
175. Oöpik V, Saaremets I, Medijainen L, Karelson K, Janson T, Timpmann S, et al. Effects of sodium citrate ingestion before exercise on endurance performance in well trained college runners. Br J Sports Med. 2003;37(6):485-9.
176. Oöpik V, Saaremets I, Timpmann S, Medijainen L, Karelson K, Oopik V, et al. Effects of acute ingestion of sodium citrate on metabolism and $5-\mathrm{km}$ running performance: A field study. Canadian Journal of Applied Physiology. 2004;29(6):691-703.
177. Oöpik V, Timpmann S, Hackney AC, Kadak K, Medijainen L, Karelson K. Ingestion of sodium citrate suppresses aldosterone level in blood at rest and during exercise. Appl Physiol Nutr Metab. 2010;35(3):278-85.
178. Oöpik V, Timpmann S, Kadak K, Medijainen L, Karelson K, Oopik V, et al. The effects of sodium citrate ingestion on metabolism and $1500-\mathrm{m}$ racing time in trained female runners. J Sports Sci Med. 2008;7(1):125-31.
179. Painelli VS, Roschel H, Jesus F, Sale C, Harris RC, Solis MY, et al. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Appl Physiol Nutr Metab. 2013;38(5):525-32.
180. Painelli VSDS, Silva RP, de Oliveira Jr OM, De Oliveira LF, Benatti FB, Rabelo T, et al. The effects of two different doses of calcium lactate on blood pH , bicarbonate, and repeated high-intensity exercise performance. Int J Sport Nutr Exerc Metab. 2014;24(3):286-95.
181. Parry-Billings M, MacLaren DPM. The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. Eur J Appl Physiol Occup Physiol. 1986;55(5):524-9.
182. Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, et al. Preexercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. J Sci Med Sport. 2011;14(5):435-40.
183. Peinado AB, Holgado D, Luque-Casado A, Rojo-Tirado MA, Sanabria D, Gonzalez C, et al. Effect of induced alkalosis on performance during a field-simulated BMX cycling competition. J Sci Med Sport. 2019;22(3):335-41.
184. Peveler WW, Palmer TG. Effect of magnesium lactate dihydrate and calcium lactate monohydrate on 20-km cycling time trial performance. J Strength Cond Res. 2012;26(4):114953.
185. Pierce EF, Eastman NW, Hammer WH, Lynn TD. Effect of induced alkalosis on swimming time trials. J Sports Sci. 1992;10(3):255-9.
186. Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB. Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc. 1998;30(4):523-8.
187. Potteiger JA. The effects of buffer ingestion on metabolic factors related to distance running performance. Eur J Appl Physiol Occup Physiol. 1996;72(4):365-71.
188. Potteiger JA, Nickel GL, Webster MJ, Haub MD, Palmer RJ. Sodium Citrate Ingestion Enhances 30km Cycling Performance. Int J Sports Med. 1996;17(1):7-11.
189. Pouzash R, Azarbayjani M, Pouzesh J, Azali K, Fatolahi H. The Effect of Sodium Bicarbonate Supplement on Lactic Acid, Ammonia and the Performance of 400 Meters Male Runners. Baltic Journal of Health and Physical Activity. 2012;4(2):84-90.
190. Price MJ, Cripps D. The effects of combined glucose-electrolyte and sodium bicarbonate ingestion on prolonged intermittent exercise performance. J Sport Sci. 2012;30(10):975-83.
191. Price MJ, Simons C. The Effect of Sodium Bicarbonate Ingestion on High-Intensity Intermittent Running and Subsequent Performance. J Strength Cond Res. 2010;24(7):1834-42. 193. Pruscino CL, Ross MLR, Gregory JR, Savage B, Flanagan TR. Effects of sodium bicarbonate, caffeine, and their combination on repeated $200-\mathrm{m}$ freestyle performance. Int J Sport Nutr Exerc Metab. 2008;18(2):116-30.
192. Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol (1985). 2004;96(6):2050-6.
193. Rezaei S, Akbari K, Gahreman DE, Sarshin A, Tabben M, Kaviani M, et al. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. J Int Soc Sports Nutr. 2019;16(1):1-8.
194. Robergs R, Hutchinson K, Hendee S, Madden S, Siegler J. Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. Int J Sport Nutr Exerc Metab. 2005;15(1):59-74.
195. Robertson RJ, Falkel JE, Drash AL, Swank AM, Metz KF, Spungen SA, et al. Effect of induced alkalosis on physical work capacity during arm and leg exercise. Ergonomics. 1987;30(1):19-31.
196. Russ AE, Schifino AG, Leong CH. Effect of lactate supplementation on VO2peak and onset of blood lactate accumulation: A double-blind, placebo-controlled trial. Acta Gymnica. 2019;49(2):51-7.
197. Russell C, Papadopoulos E, Mezil Y, Wells GD, Plyley MJ, Greenway M, et al. Acute versus chronic supplementation of sodium citrate on 200 m performance in adolescent swimmers. J Int Soc Sports Nutr. 2014;11:26-
198. Sale C, Saunders B, Hudson S, Wise JA, Harris RC, Sunderland CD. Effect of betaalanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc. 2011;43(10):1972-8.
199. Saunders B, Sale C, Harris RC, Sunderland C. Effect of sodium bicarbonate and Betaalanine on repeated sprints during intermittent exercise performed in hypoxia. Int J Sport Nutr Exerc Metab. 2014;24(2):196-205.
200. Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensitycycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9(4):627-32.
201. Schabort EJ, Wilson G, Noakes TD. Dose-related elevations in venous pH with citrate ingestion do not alter 40-km cycling time-trial performance. Eur J Appl Physiol. 2000;83(4-5):320-7.
202. Shave R, Whyte G, Siemann A, Doggart L. The effects of sodium citrate ingestion on 3,000-meter time-trial performance. Journal of strength and conditioning research / National Strength \& Conditioning Association. 2001;15(2):230-4.
203. Siegler J, Poulsen M, Nielsen NP, Kennedy D, Marshall P, Green S. The effect of metabolic acidosis on maximal force production and muscle recruitment during repeated, submaximal calf contractions to task failure. Faseb J. 2014;28(1 SUPPL. 1).
204. Siegler JC, Gleadall-Siddall DO. Sodium bicarbonate ingestion and repeated swim sprint performance. Journal of strength and conditioning research / National Strength \& Conditioning Association. 2010;24(11):3105-11.
205. Siegler JC, Hirscher K. Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res. 2010;24(1):103-8.
206. Siegler JC, Keatley S, Midgley AW, Nevill AM, McNaughton LR. Pre-exercise alkalosis and acid-base recovery. Int J Sports Med. 2008;29(7):545-51.
207. Siegler JC, Marshall P, Pouslen MK, Nielsen NPB, Kennedy D, Green S. The effect of pH on fatigue during submaximal isometric contractions of the human calf muscle. Eur J Appl Physiol. 2015;115(3):565-77.
208. Siegler JC, Marshall PWM, Finn H, Cross R, Mudie K. Acute attenuation of fatigue after sodium bicarbonate supplementation does not manifest into greater training adaptations after 10-weeks of resistance training exercise. PloS one. 2018;13(5):e0196677-e.
209. Siegler JC, Marshall PWMM, Raftry S, Brooks C, Dowswell B, Romero R, et al. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling. J Appl Physiol (1985). 2013;115(11):1634-40.
210. Siegler JC, McNaughton LR, Midgley AW, Keatley S, Hillman A. Metabolic alkalosis, recovery and sprint performance. Int J Sports Med. 2010;31(11):797-802.
211. Siegler JC, Mudie K, Marshall P. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise. Experimental physiology. 2016;101(11):1383-91.
212. Siegler JC, Vargas N, Green S. Sodium bicarbonate supplementation minimally affects the accumulated oxygen deficit during intense cycling to exhaustion. Translational Sports Medicine. 2018;1(2):95-100.
213. Someren Kv, Fulcher K, McCarthy J, Moore J, Horgan G, Langford R. An Investigation into the Effects of Sodium Citrate Ingestion on High-Intensity Exercise Performance. Int J Sport Nutr. 1998;8(4):356-63.
214. Sostaric SM, Skinner SL, Brown MJ, Sangkabutra T, Medved I, Medley T, et al. Alkalosis increases muscle $\mathrm{K}+$ release, but lowers plasma $[\mathrm{K}+]$ and delays fatigue during dynamic forearm exercise. Journal of Physiology. 2006;570(1):185-205.
215. Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34(4):614-21.
216. Stöggl T, Torres-peralta R, Cetin E, Nagasaki M, Stoggl T, Torres-peralta R, et al. Repeated high intensity bouts with long recovery: Are bicarbonate or carbohydrate supplements an option? Scientific World Journal. 2014;2014:145747-.
217. Street D, Nielsen JJ, Bangsbo J, Juel C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. Journal of Physiology. 2005;566(2):481-9.
218. Sutton JR, Jones NL, Toews CJ. Effect of pH on Muscle Glycolysis during Exercise. Clin Sci. 1981;61(3):331-8.
219. Suvi S, Mooses M, Timpmann S, Medijainen L, Narõškina D, Unt E, et al. Impact of sodium citrate ingestion during recovery after dehydrating exercise on rehydration and subsequent $40-\mathrm{km}$ cycling time-trial performance in the heat. Appl Physiol Nutr Metab. 2018;43(6):571-9.
220. Tan F, Polglaze T, Cox G, Dawson B, Mujika I, Clark S. Effects of induced alkalosis on simulated match performance in elite female water polo players. Int J Sport Nutr Exerc Metab. 2010;20(3):198-205.
221. Thomas C, Delfour-Peyrethon R, Bishop DJ, Perrey S, Lepretre PM, Dorel S, et al. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise. Eur J Appl Physiol. 2016;116(1):85-95.
222. Timpmann S, Burk A, Medijainen L, Tamm M, Kreegipuu K, Vahi M, et al. Dietary sodium citrate supplementation enhances rehydration and recovery from rapid body mass loss in trained wrestlers. Appl Physiol Nutr Metab. 2012;37(6):1028-37.
223. Tiryaki GR, Atterbom HA. The effects of sodium bicarbonate and sodium citrate on 600 m running time of trained females. J Sport Med Phys Fit. 1995;35(3):194-8.
224. Tobias G, Benatti FB, Painelli VS, Roschel H, Gualano B, Sale C, et al. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45(2):309-17.
225. Vaher I, Timpmann S, Aedma M, Oopik V, Ööpik V. Impact of acute sodium citrate ingestion on endurance running performance in a warm environment. Eur J Appl Physiol. 2015;115(4):813-23.
226. Van Montfoort MCEE, Van Dieren L, Hopkins WG, Shearman JP. Effects of ingestion of bicarbonate, citrate lactate, and chloride on sprint running. Med Sci Sport Exer. 2004;36(7):1239-43.
227. Vanhatalo A, McNaughton LR, Siegler J, Jones AM. Effect of induced alkalosis on the power-duration relationship of "all-out" exercise. Med Sci Sports Exerc. 2010;42(3):563-70.
228. Voskamp AE, Van Den Bos S, Foster C, De Koning JJ, Noordhof DA. The effect of sodium bicarbonate supplementation on the decline in gross efficiency during a 2000-m cycling time trial. Int J Sport Physiol Perf. 2020;15(5):741-7.
229. Webster MJ, Webster MN, Crawford RE, Gladden LB. Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sports Exerc. 1993;25(8):960-5.
230. Wilkes D, Gledhill N, Smyth R. Effect of acute induced metabolic alkalosis on $800-\mathrm{m}$ racing time. Med Sci Sports Exerc. 1983;15(4):277-80.
231. Yunoki T, Matsuura R, Arimitsu T, Kimura T, Yano T. Effects of sodium bicarbonate ingestion on hyperventilation and recovery of blood ph after a short-term intense exercise. Physiological Research. 2009;58(4):537-43.
232. Zabala M, Peinado AB, Calderon FJ, Sampedro J, Castillo MJ, Benito PJ. Bicarbonate ingestion has no ergogenic effect on consecutive all out sprint tests in BMX elite cyclists. Eur J Appl Physiol. 2011;111(12):3127-34.
233. Zabala M, Requena B, Sanchez-Munoz C, Gonzalez-Badillo JJ, Garcia I, Oopik V, et al. Effects of sodium bicarbonate ingestion on performance and perceptual responses in a laboratory-simulated BMX cycling qualification series. Journal of strength and conditioning research / National Strength \& Conditioning Association. 2008;22(5):1645-53.
234. Zajac A, Cholewa J, Poprzecki SS, Waskiewicz Z, Langfort J, Waśkiewicz Z, et al. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. Journal of sports science \& medicine. 2009;8(1):45-50.
235. Zinner C, Wahl P, Achtzehn S, Sperlich B, Mester J. Effects of bicarbonate ingestion and high intensity exercise on lactate and $\mathrm{H}+$-ion distribution in different blood compartments. Eur J Appl Physiol. 2011;111(8):1641-8.
236. AbuMoh'd MF, Alsababha W, Haddad Y, Obeidat G, Telfah Y. Effect of Acute Sodium Bicarbonate Intake on Sprint-Intermittent Performance and Blood Biochemical Responses in Well-Trained Sprinters. Montenegrin Journal of Sports Science and Medicine. 2021;10(1):510.
237. dos Santos Guimarães R, de Morais Junior AC, Schincaglia RM, Pimentel GD, Mota JF, Saunders B. Sodium bicarbonate supplementation does not improve running anaerobic sprint test performance in semiprofessional adolescent soccer players. Int J Sport Nutr Exerc Metab. 2020;30(5):330-7.
238. Durkalec-Michalski K, Nowaczyk PM, Adrian J, Kamińska J, Podgórski T. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: A randomized, double-blind, placebocontrolled crossover study. Nutrition and Metabolism. 2020;17(1):1-15.
239. Gurton W, Macrae HZ, Gough LA, King DG. Effects of post-exercise sodium bicarbonate ingestion on acid-base balance recovery and time-to-exhaustion running performance: a randomised crossover trial in recreational athletes. Appl Physiol Nutr Metab. 2021:apnm-2020-1120.
240. Gurton WH, Faulkner SH, James RM. Effect of Warm-Up and Sodium Bicarbonate Ingestion on 4-km Cycling Time-Trial Performance. Int J Sport Physiol Perf. 2020;43(1):1-7.
241. Gurton WH, Gough LA, Sparks SA, Faghy MA, Reed KE. Sodium Bicarbonate Ingestion Improves Time-to-Exhaustion Cycling Performance and Alters Estimated Energy System Contribution: A Dose-Response Investigation. Front Nutr. 2020;7.
242. Hilton NP, Leach NK, Hilton MM, Sparks SA, McNaughton LR. Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists. Eur J Appl Physiol. 2020;120(7):1563-73.
243. Poffé C, Wyns F, Ramaekers M, Hespel P. Exogenous Ketosis Impairs 30-min TimeTrial Performance Independent of Bicarbonate Supplementation. Med Sci Sport Exer. 2021;53(5):1068-78.
244. Ragone L, Guilherme Vieira J, Camaroti Laterza M, Leitão L, Da Silva Novaes J, Macedo Vianna J, et al. Acute Effect of Sodium Bicarbonate Supplementation on Symptoms 1447 Hum Kinet. 2020;75(1):85-93.
1448 247. Sarshin A, Fallahi V, Forbes SC, Rahimi A, Koozehchian MS, Candow DG, et al. 1449 Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J Int Soc Sports Nutr. 2021;18(1):1-10.
1451 248. Thomas C, Delfour-Peyrethon R, Dorel S, Hanon C. Positive Effects of Pre-exercise 1452 Metabolic Alkalosis on Perceived Exertion and Post-exercise Squat Jump Performance in 1453 World-Class Cyclists. J Strength Cond Res. 2021;Publish Ahead of Print(1).
of Gastrointestinal Discomfort, Acid-Base Balance, and Performance of Jiu-Jitsu Athletes. J

Table 1. Moderator analyses conducted on biomarker data (blood bicarbonate and lactate) across supplementation and exercise periods.

Moderator		Parameter Estimate $[95 \% \mathrm{CrI}]$	Probabilities	$\begin{gathered} \text { Between study } \\ \text { SD } \tau \\ {[75 \% \mathrm{CrI}]} \end{gathered}$	Intraclass Correlation Coefficient [75\%CrI]	Grade
Bicarbonate Pre-supplementation to Pre-exercise						
[Supplement type]	SB ($\mathrm{n}=109$)	5.5 [4.9 to 6.0]	$P(\mathrm{SB}>\mathrm{SC})=0.932$	$\begin{gathered} 1.5 \\ {[1.0 \text { to } 1.9]} \end{gathered}$	$\begin{gathered} 0.58 \\ {[0.41 \text { to } 0.78]} \end{gathered}$	High
	SC ($\mathrm{n}=19$)	4.2 [2.2 to 5.9]				High
[Supplement dose]	Intercept $\left(0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right)$ Increase per 0.1 $\mathrm{g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}(\mathrm{n}=128)$	$\begin{aligned} & 5.2[4.8 \text { to } 5.8] \\ & 1.1[0.7 \text { to } 1.7] \end{aligned}$	$P($ Increase $>0)>0.999$	$\begin{gathered} 1.9 \\ {[1.5 \text { to } 2.2]} \end{gathered}$	$\begin{gathered} 0.36 \\ {[0.23 \text { to } 0.56]} \end{gathered}$	Moderate
Pre-exercise to Post-exercise (non-placebo controlled)						
[Exercise duration]	$\begin{gathered} <0.5 \min (\mathrm{n}=14) \\ 0.5-10 \min (\mathrm{n}=122) \\ >10 \min (\mathrm{n}=12) \end{gathered}$	$\begin{gathered} -11.8[-13.9 \text { to }-9.9] \\ -12.8[-13.9 \text { to }-11.7] \\ -7.3[-10.1 \text { to }-4.5] \end{gathered}$	$\begin{gathered} P(<0.5 \mathrm{~min}>0.5-10 \mathrm{~min})=0.818 \\ P(0.5-10 \mathrm{~min}<+10 \mathrm{~min})=0.999 \\ P(<0.5 \mathrm{~min}<+10 \mathrm{~min})=0.995 \end{gathered}$	$\begin{gathered} 4.8 \\ {[4.5 \text { to } 5.3]} \end{gathered}$	$\begin{gathered} 0.10 \\ {[0.07 \text { to } 0.14]} \end{gathered}$	High High High
[Exercise type]	Performance ($\mathrm{n}=101$) Capacity ($\mathrm{n}=52$)	$\begin{gathered} -13.5[-14.6 \text { to }-12.3] \\ -9.4[-10.9 \text { to }-7.9] \end{gathered}$	$P($ Capacity $>$ Performance $)>0.999$	$\begin{gathered} 4.7 \\ {[4.3 \text { to } 5.2]} \end{gathered}$	$\begin{gathered} 0.11 \\ {[0.08 \text { to } 0.15]} \end{gathered}$	High High

Lactate
Pre-exercise to Post-exercise (non-placebo controlled)

[Exercise duration 1]	<0.5 min ($\mathrm{n}=16$)	8.5 [6.5 to 10.6]	$P(<0.5 \mathrm{~min}<0.5-10 \mathrm{~min})=0.999$	$\begin{gathered} 4.1 \\ {[3.6 \text { to } 4.6]} \end{gathered}$	$\begin{gathered} 0.20 \\ {[0.13 \text { to } 0.30]} \end{gathered}$	High
	$0.5-10 \mathrm{~min}(\mathrm{n}=104)$	12.1 [11.0 to 13.0]	$P(0.5-10 \mathrm{~min}>+10 \mathrm{~min})=0.998$			High
	$>10 \mathrm{~min}(\mathrm{n}=19)$	8.5 [6.2 to 10.8]	$P(<0.5 \mathrm{~min}>+10 \mathrm{~min})=0.532$			High
[Exercise	Performance ($\mathrm{n}=95$)	11.9 [10.9 to 12.9]	$P($ Capacity $<$ Performance $)=0.998$	3.7	0.30	High
type]	Capacity ($\mathrm{n}=44$)	9.3 [7.9 to 10.7]		[3.2 to 4.3]	[0.21 to 0.44]	High

SD: Standard deviation; n: Number of outcomes for covariate or factor level; SB: Sodium bicarbonate; SC: Sodium citrate; g•kg ${ }^{-1}$ BM: grams per kilogram body mass: CrI. Bayesian credible interval. Note: The intercept value for [Supplement dose] provides the best estimate of the most common dose ($\left.\sim 0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right)$.

Table 2. Exercise outcomes moderator analyses conducted on placebo controlled standardized effect sizes.

Moderator		Parameter Estimate [95\% CrI]	Probabilities	$\begin{gathered} \hline \text { Between } \\ \text { study } \\ \text { SD }(\tau) \\ {[75 \% \mathrm{CrI}]} \end{gathered}$	Intraclass Correlation Coefficient [75\%CrI]	Grade
Exercise outcomes						
[Exercise duration 1]	$\begin{gathered} <0.5 \min (\mathrm{n}=36) \\ 0.5-10 \min (\mathrm{n}=168) \\ >10 \min (\mathrm{n}=37) \end{gathered}$	$\begin{aligned} & 0.06[-0.05 \text { to } 0.17] \\ & 0.18[0.13 \text { to } 0.24] \\ & 0.22[0.10 \text { to } 0.33] \end{aligned}$	$\begin{gathered} P(<0.5 \mathrm{~min}<0.5-10 \mathrm{~min})=0.978 \\ P(0.5-10 \mathrm{~min}>+10 \mathrm{~min})=0.700 \\ P(<0.5 \mathrm{~min}<+10 \mathrm{~min})=0.974 \end{gathered}$	$\begin{gathered} 0.13 \\ {[0.08 \text { to } 0.17]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.00 \text { to } 0.13]} \end{gathered}$	Low Moderate Moderate
[Exercise duration 2]	$\begin{gathered} 0.5-1.5 \min (\mathrm{n}=55) \\ 1.5-5 \min (\mathrm{n}=82) \\ 5-10 \min (\mathrm{n}=31) \end{gathered}$	$\begin{aligned} & 0.22[0.13 \text { to } 0.31] \\ & 0.14[0.06 \text { to } 0.21] \\ & 0.24[0.12 \text { to } 0.36] \end{aligned}$	$\begin{gathered} P(0.5-1.5 \mathrm{~min}>1.5-5 \mathrm{~min})=0.915 \\ P(1.5-5 \mathrm{~min}<5-10 \mathrm{~min})=0.930 \\ P(0.5-1.5 \mathrm{~min}<5-10 \mathrm{~min})=0.622 \end{gathered}$	$\begin{gathered} 0.11 \\ {[0.05 \text { to } 0.17]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.00 \text { to } 0.15]} \end{gathered}$	Moderate Moderate Moderate
[Exercise type]	Performance ($\mathrm{n}=149$) Capacity ($\mathrm{n}=92$)	$\begin{aligned} & 0.14[0.08 \text { to } 0.19] \\ & 0.20[0.13 \text { to } 0.28] \end{aligned}$	$P($ Capacity $>$ Performance $)=0.871$	$\begin{gathered} 0.13 \\ {[0.08 \text { to } 0.17]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.00 \text { to } 0.14]} \end{gathered}$	Moderate Moderate
[Prior exercise]	Prior ($\mathrm{n}=28$) No Prior ($\mathrm{n}=213$)	$\begin{aligned} & 0.28[0.15 \text { to } 0.42] \\ & 0.16[0.11 \text { to } 0.20] \end{aligned}$	$P($ Prior $>$ No Prior $)=0.956$	$\begin{gathered} 0.13 \\ {[0.08 \text { to } 0.17]} \end{gathered}$	$\begin{gathered} 0.03 \\ {[0.00 \text { to } 0.13]} \end{gathered}$	Low Moderate
[Training status]	Top-level ($\mathrm{n}=21$) Trained ($\mathrm{n}=139$) Non-trained ($\mathrm{n}=80$)	$\begin{aligned} & 0.12[-0.03 \text { to } 0.27] \\ & 0.16[0.11 \text { to } 0.23] \\ & 0.19[0.11 \text { to } 0.28] \end{aligned}$	$\begin{gathered} P(\text { Top-level }<\text { Trained })=0.700 \\ P(\text { Trained }<\text { Non-trained })=0.701 \\ P(\text { Top-level }<\text { Non-trained })=0.788 \end{gathered}$	$\begin{gathered} 0.13 \\ {[0.08 \text { to } 0.18]} \end{gathered}$	$\begin{gathered} 0.05 \\ {[0.00 \text { to } 0.14]} \end{gathered}$	Low Moderate Moderate
[Intermittent]	Bout 1 ($\mathrm{n}=51$) Bout 2 ($\mathrm{n}=51$) Bout 3 ($\mathrm{n}=42$)	$\begin{aligned} & 0.07[-0.03 \text { to } 0.17] \\ & 0.13[0.03 \text { to } 0.23] \\ & 0.22[0.11 \text { to } 0.33] \end{aligned}$	$\begin{aligned} & P(\text { Bout } 2>\text { Bout } 1)=0.886 \\ & P(\text { Bout } 3>\text { Bout } 2)=0.941 \\ & P(\text { Bout } 3>\text { Bout } 1)=0.996 \end{aligned}$	$\begin{gathered} 0.19 \\ {[0.15 \text { to } 0.23]} \end{gathered}$	$\begin{gathered} 0.00 \\ {[0.00 \text { to } 0.01]} \end{gathered}$	Moderate Moderate Moderate

SD: Standard deviation; n: Number of outcomes for covariate or factor level; CrI: Bayesian credible interval.

Table 3. Moderator analyses for supplement protocols conducted on placebo controlled standardized exercise effect sizes.

	Moderator	Parameter Estimate [95\% CrI]	Probabilities	Between study $\begin{gathered} \text { SD }(\tau) \\ {[75 \% \mathrm{CrI}]} \end{gathered}$	Intraclass Correlation Coefficient [75\%CrI]	Grade
Exercise Outcomes						
[Supplement dose]	Low ($<0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM} ; \mathrm{n}=33$) $\operatorname{Mid}\left(=0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM} ; \mathrm{n}=162\right)$ High ($>0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM} ; \mathrm{n}=43$)	$\begin{aligned} & 0.18[0.06 \text { to } 0.30] \\ & 0.17[0.12 \text { to } 0.23] \\ & 0.16[0.06 \text { to } 0.27] \end{aligned}$	$\begin{aligned} & P(\text { Low }>\mathrm{Mid})=0.527 \\ & P(\mathrm{Mid}>\mathrm{High})=0.574 \\ & P(\text { Low }>\mathrm{High})=0.581 \end{aligned}$	$\begin{gathered} 0.13 \\ {[0.08 \text { to } 0.18]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.00 \text { to } 0.14]} \end{gathered}$	Low Low Low
[Supplement strategy	Single dose ($n=162$) Split dose ($\mathrm{n}=77$)	$\begin{aligned} & 0.21[0.15 \text { to } 0.27] \\ & 0.09[0.02 \text { to } 0.17] \end{aligned}$	$P($ Single $>$ Split $)=0.994$	$\begin{gathered} 0.12 \\ {[0.07 \text { to } 0.17]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.01 \text { to } 0.10]} \end{gathered}$	Low Low
[Acute / Chronic]	Acute ($\mathrm{n}=227$) Chronic ($\mathrm{n}=14$)	$\begin{aligned} & 0.16[0.12 \text { to } 0.21] \\ & 0.24[0.06 \text { to } 0.43] \end{aligned}$	$P($ Acute $<$ Chronic $)=0.741$	$\begin{gathered} 0.14 \\ {[0.09 \text { to } 0.18]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.00 \text { to } 0.13]} \end{gathered}$	Moderate Moderate
[Supplement form]	Solution ($\mathrm{n}=123$) Capsule ($\mathrm{n}=100$)	$\begin{aligned} & 0.21[0.15 \text { to } 0.27] \\ & 0.11[0.05 \text { to } 0.18] \end{aligned}$	$P($ Solution $>$ Capsule $)=0.984$	$\begin{gathered} 0.09 \\ {[0.03 \text { to } 0.14]} \end{gathered}$	$\begin{gathered} 0.06 \\ {[0.02 \text { to } 0.13]} \end{gathered}$	Low Low
[Supplement type]	$\begin{gathered} \mathrm{SB}(\mathrm{n}=192) \\ \mathrm{SC}(\mathrm{n}=39) \end{gathered}$	$\begin{aligned} & 0.19[0.14 \text { to } 0.24] \\ & 0.10[0.00 \text { to } 0.23] \end{aligned}$	$P(\mathrm{SB}>\mathrm{SC})=0.881$	0.13 $[0.08$ to 0.18$]$	$\begin{gathered} 0.05 \\ {[0.01 \text { to } 0.11]} \end{gathered}$	Low Low
[Bicarbonate increase	Small ($\leq 4 \mathrm{mmol} \cdot \mathrm{L}^{-1} ; \mathrm{n}=44$) Medium (4-6 mmol $\cdot \mathrm{L}^{-1} ; \mathrm{n}=51$) Large ($>6 \mathrm{mmol} \cdot \mathrm{L}^{-1} ; \mathrm{n}=30$)	$\begin{aligned} & 0.11[0.00 \text { to } 0.22] \\ & 0.24[0.15 \text { to } 0.35] \\ & 0.22[0.09 \text { to } 0.35] \end{aligned}$	$\begin{gathered} P(\text { Med }>\text { Small })=0.967 \\ P(\text { Med }>\text { Large })=0.612 \\ P(\text { Large }>\text { Small })=0.909 \end{gathered}$	$\begin{gathered} 0.28 \\ {[0.09 \text { to } 0.49]} \end{gathered}$	$\begin{gathered} 0.27 \\ {[0.15 \text { to } 0.38]} \end{gathered}$	Low Low Low

Parameter values are obtained from unadjusted meta-regressions. SD: Standard deviation; n: Number of outcomes for covariate or factor level; CrI: Bayesian credible interval. SB: Sodium bicarbonate; SC: Sodium citrate.

PRISMA 2009 Checklist

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis. Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.
E-mail: drbryansaunders@outlook.com

Section/topic	\#	Checklist item	Reported on page \#
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	7
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7-8
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	9

PRISMA 2009 Checklist

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency $\left(\right.$ (e.g., $\left.\mathrm{I}^{2}\right)$ for each meta-analysis.	8-9 $11-13$

Page 1 of 2

Page 1 of 2			
Section/topic	\#	Checklist item	Reported on page \#
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8,11-13
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	11-13
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	14
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	14. Supplementary Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	22-23
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	15-21
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	15-21
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	22-23
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	15-21
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	24-33
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	29-30
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	32
FUNDING			

PRISMA 2009 Checklist

Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	34

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis.

Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.

E-mail: drbryansaunders@outlook.com

Supplementary Material Appendix S3. Literature searches on 16/06.2021
Medline + Embase (deduplicated using OVID option). $\mathrm{N}=199$

Sport Discus. $\mathrm{N}=30$

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis.
Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.

E-mail: drbryansaunders@outlook.com

Supplementary Material Appendix S3. Table of all included studies.

STUDY	SAMPLE	STUDY DESIGN	SUPLEMENTATION	EXERCISE		
Authors (Year) Location	Population	(N)	Design Blinding	Form (dose $\left[\right.$ in $\left.\left.\mathrm{g} \cdot \mathrm{kg}{ }^{-1} \mathrm{BM}\right]\right)$ Ingestion time prior to exercise		Protocol
:---						
(Familiarisation)						

SODIUM BICARBONATE

1	AbuMoh'd (2021) Jordan	Well-trained sprinting athletes $(\mathrm{N}=13)$	Crossover Double-blind	Solution $(0.3) 60 \mathrm{~min}$	Intermittent sprint test on treadmill, with repeated $60-\mathrm{s}$ sprint bouts until volitional exhaustion with 30 s recovery between bouts. $($ Familiarisation $=$ Yes $)$
2	Afman (2014) UK	Well-trained male basketball players $(\mathrm{N}=7)$	Crossover Double-blind	Solution $\text { (0.2) } 90 \mathrm{~min} ;(0.2) 20 \mathrm{~min}$	4 blocks of the modified LIST $($ Familiarisation $=$ Yes)
3	Ansdell (2017) UK	Healthy and active male basketball players $(\mathrm{N}=10)$	Crossover Double-blind	Solution $\text { (0.2) } 90 \mathrm{~min} ;(0.2) 20 \mathrm{~min}$	4 blocks of the modified LIST (Familiarisation $=$ Yes)
4	Araújo Dias (2015) Brazil	Recreationally active males $(\mathrm{N}=15)$	Crossover Double-blind	Capsule (0.3) 90 min	4 SB sessions of the $\mathrm{CCT}_{110 \%}$ (Familiarisation $=$ Yes)
5	Artioli (2007) Brazil	Experienced judo competitors $(\mathrm{N}=9)$ Experienced judo competitors	Crossover Double-blind	Capsule (0.3) 120 min	Special judo fitness test $($ Familiarisation $=$ No $)$ Wingate Test for Upper Limbs (4 bouts)

6 Aschenbach (2000)
USA
$7 \quad$ Ball (1996)
UK

8 Bellinger (2012)
Australia
$9 \quad \operatorname{Bird}(1995)$
UK

10 Bishop (2004) Australia

11 Bishop (2005) Australia

Bouissou (1988)

France

Brien (1989)
Canada

Brisola (2015)
Brazil

15
Callahan (2016)
Australia
($\mathrm{N}=14$)
Members of the Virginia Tech NCAA Division I varsity
wrestling team
($\mathrm{N}=8$)

Healthy males
$(\mathrm{N}=6)$

Highly trained male cyclists ($\mathrm{N}=7$)

Male distance runners
($\mathrm{N}=10$)
Recreational, team-sport playing females
($\mathrm{N}=10$)

Female team-sport athletes
$(\mathrm{N}=7)$

Healthy male volunteers
($\mathrm{N}=6$)
Oarsmen from the National rowing team
($\mathrm{N}=6$)
Healthy and moderately active
($\mathrm{N}=15$)
Well-trained cyclists
($\mathrm{N}=8$)

		(Familiarisation $=$ No)
Crossover	Solution	$8 \times 15 \mathrm{~s}$ arm cranks
Double-blind	$(0.15) 90 \mathrm{~min} ;(0.15) 60 \mathrm{~min}$	(Familiarisation $=$ No)

Crossover Double-blind	Capsule (0.3) 180-60 min	Cycle to exhaustion at $95 \% \mathrm{VO}_{2 \text { max }}$ on a normal and low carbohydrate diet (Familiarisation $=$ Yes)
Crossover Double-blind	Capsule (03) 90-30 min	Maximal 4 min cycling performance trial (Familiarisation $=$ Yes)
Crossover Double-blind	Solution (0.15) $120 \mathrm{~min} ;(0.15) 60$ min	Two SB sessions of a 1500 m running (Familiarisation $=$ Yes)
Crossover Double-blind	Capsule $\text { (0.3) } 90 \mathrm{~min}$	5×6 s repeated sprint cycling test (Familiarisation $=$ Yes)
Crossover Double-blind	Capsule (0.2) 110-90 min; (0.2) 50 - 20 min	Intermittent sprint test 2 x 36 min of 4 s sprint 100s recovery active +20 s recovery passive $($ Familiarisation $=$ Yes $)$
Crossover Single-blind	Capsule $(0.3) 120 \mathrm{~min}$	A supramaximal cycle bout at 125% of peak aerobic power $($ Familiarisation $=\mathrm{No})$
Crossover Double-blind	Capsule $\text { (0.3) } 90 \mathrm{~min}$	4 min rowing at 80% following 2 min maximal effort $($ Familiarisation $=$ No $)$
Crossover Double-blind	Capsule $\text { (0.3) } 90 \mathrm{~min}$	Supramaximal effort at $110 \% \mathrm{VO}_{2 \text { max }}$ in the treadmill $($ Familiarisation $=$ No $)$
Crossover Double-blind	Capsule (0.3) 150-75 min	4 km cycling TT $($ Familiarisation $=$ Yes)

Carr (2011)
Australia

Australia

Carr (2013)
USA

Casarin (2019)
Brazil
Christensen (2014)
Denmark
Coombes (1993)
Australia

Coppoolse (1997)
USA
24 Correia-Oliveira (2017)

Swimmers (minimum 2 y
experience in competitive swimming)
($\mathrm{N}=10$)
Well-trained rowers
($\mathrm{N}=8$)

Well-trained rowers
($\mathrm{N}=7$)

Healthy, resistance-trained ($\mathrm{N}=12$)

Healthy
$(\mathrm{N}=12)$
International level rowers
($\mathrm{N}=12$)
Healthy physical education university students
($\mathrm{N}=9$)
Healthy
($\mathrm{N}=5$)

Recreationally trained cyclists

Crossover Double-blind	Capsule (0.3) 60 min	6 maximal 100 m swims $($ Familiarisation $=$ No $)$
Crossover Double-blind	Capsule $\text { (0.3) } 90 \mathrm{~min}$	2000m rowing ergometer TT (Familiarisation $=$ Yes)
Crossover Double-blind	Capsule (0.3) 120 min Capsule $(0.5)^{-1}$ day for 3 days	2 SB sessions of a 2000 m rowing ergometer TT $($ Familiarisation $=Y e s)$
Crossover Double-blind	$\begin{aligned} & \text { Capsule } \\ & (0.075) 80 \mathrm{~min} ;(0.075) 70 \\ & \min ;(0.075) 60 \mathrm{~min} ;(0.075) \\ & 50 \mathrm{~min} ; \end{aligned}$	Back squats (Familiarisation $=$ Yes) Inclined leg press (Familiarisation $=$ Yes) Knee extension (Familiarisation $=$ Yes) Knee extension at 50\% of 1RM until exhaustion (Familiarisation $=$ Yes)

Crossover	Capsule
Double-blind	$(0.3) 60 \mathrm{~min}$

Crossover	Capsule
Double-blind	$(0.3) 60 \mathrm{~min}$

Crossover Solution

Double-blind (0.3) 90 min

Crossover Solution
NI
Crossover
(0.3) 60 min

Capsule

6 maximal 100 m swims
$($ Familiarisation $=$ No $)$

2000m rowing ergometer TT
(Familiarisation $=$ Yes)

2 SB sessions of a 2000 m rowing ergometer TT
$($ Familiarisation $=Y e s)$

Back squats
Familiarisation $=$ Yes)
Inclined leg press

Knee extension
(Familiarisation $=$ Yes)
Knee extension at 50\% of 1RM until
(Familiarisation $=$ Yes)
Isometric knee extension during 8 min or exhaustion at $70 \% \mathrm{RM}$
(Familiarisation $=$ Yes)
6 min maximal rowing test
$($ Familiarisation $=$ No $)$
Isokinetic leg extension/flexion exercise
$($ Familiarisation $=$ No)
Cycling test with a work rate increment of 25 or $30 \mathrm{~W} / \mathrm{min}$
(Familiarisation $=$ Yes)
4 km TT cycling

$$
(\mathrm{N}=15)
$$

Brazil $\quad(\mathrm{N}=15)$

Costill (1984)
Netherlands

$$
(\mathrm{N}=11)
$$

Belgium

Danaher (2014) Australia
($\mathrm{N}=12$)

Cyclists
($\mathrm{N}=11$) active
($\mathrm{N}=8$)

Trained cyclists
($\mathrm{N}=11$)
($\mathrm{N}=11$) ($\mathrm{N}=15$)

Do Valle Bargieri (2013) Brazil

Douroudos (2006)

Healthy
"No description"

Physically actives

Apparently healthy, recreationally

Recreationally active males

University basketball players Greece

High performance athletes ($\mathrm{N}=8$)

Double-blind (0.3) 90 min

Crossover Double-blind	Solution $(0.2) 60 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.43) 540-60 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.15) 120 ;(0.15) 30 \mathrm{~min}$

(Familiarisation $=$ Yes)
4 x sprints cycling bouts of 1 min at
$125 \% \mathrm{VO}_{2 \max }$ with 1 min recovery and
the fifth bout until exhaustion
$($ Familiarisation $=\mathrm{No})$
2 min all-out cycling bouts 3 h intervals $($ Familiarisation $=$ Yes)
3-h intermittent exercise bout aimed to
simulate a cycling race followed by a $90-$
s all-out'sprint'.
$($ Familiarisation $=$ Yes $)$
$\mathrm{CCT}_{110 \%}$
(Familiarisation $=$ Yes)
Repeated sprint ability test 5 x 6 s
maximal cycling bouts
(Familiarisation $=$ Yes)
2 SB sessions (normoxia, hypoxia) of the
3 min Critical power cycling test
(Familiarisation $=$ Yes)
Intermittent cycling test 60s with 20s
recovery until exhaustion
(Familiarisation $=$ Yes)
Basketball exercise simulation test
$($ Familiarisation $=$ Yes)
Incremental treadmill cardiopulmonary exercise test
$($ Familiarisation $=$ Yes)
Wingate test at $0.075 \mathrm{~kg}^{-1} \mathrm{BM}$
(Familiarisation $=$ Yes)
Wingate test at $0.075 \mathrm{~kg}^{-1} \mathrm{BM}$
$($ Familiarisation $=Y e s)$

Driller (2012)
Australia

Driller (2012)
Australia
Driller (2013)
Australia

Duncan (2014)

Well-trained cyclists

$$
(\mathrm{N}=8)
$$

Well-trained cyclists

$$
(\mathrm{N}=8)
$$

National representative rowers

$$
(\mathrm{N}=12)
$$

Competitive team-sport athletes ($\mathrm{N}=12$)

UK

40
Durkalec-Michalski (2018) Poland

Recreationally training CrossFit ($\mathrm{N}=21$)
Experience resistance exercise ($\mathrm{N}=8$)

Athletes of Polish wrestling national team

$$
(\mathrm{N}=49)
$$

Crossover	Capsule $(0.3) 90-60 \mathrm{~min}$ Double-blind
Capsule $(0.4)^{-1}$ day for 3 days	

Crossover	Capsule
Double-blind	$(0.3) 120-60 \mathrm{~min}$

Parallel Capsule

Double-blind (0.3) 90-60 min
Parallel
Single-blin

Crossover
Solution
Double-blind (0.3) 60 min

Parallel
Double-blind
Tablet
$(0.0375)^{-1}$ day for days $1-2$;
$(0.075)^{-1}$ day for days $3-4$;
$(0.1125)^{-1}$ day for days $5-7$;
$(0.150)^{-1}$ day for days $8-10$

Tablet
Parallel
Double-blind
$(0.025)^{-1}$ day for days $1-2$;
$(0.05)^{-1}$ day for days $3-5$;
$(0.075)^{-1}$ day for days $6-7$;
$(0.1)^{-1}$ day for days $8-10$

Parallel
Double-blind

4 min performance test cycling (Familiarisation $=$ Yes)

2 SB sessions of a 2 min performance test cycling
$($ Familiarisation $=$ Yes $)$
2000 m rowing ergometer TT
(Familiarisation $=$ Yes)
$3 x$ (of 6 x 20 m run sprint with 25 s
recovery) 4 min recovery
$($ Familiarisation $=\mathrm{No})$
$3 x$ back squat at $80 \% 1$ RM until failure with 3 min rest
(Familiarisation $=$ Yes)
3 x bench press at $80 \% 1 \mathrm{RM}$ until failure with 3 min rest
(Familiarisation $=$ Yes)
CrossFit FGB 3x 5 multi-joint exercises $($ Familiarisation $=$ Yes)

Incremental cycling test
$($ Familiarisation $=$ Yes $)$

2x 30s Wingate test 7.5\%BM
$($ Familiarisation $=\mathrm{Yes})$
Wrestling-specific performance
$($ Familiarisation $=$ Yes $)$
2 Wingate bouts
(Familiarisation $=$ Yes)
Dummy throw test
Field hockey players
$(\mathrm{N}=24)$

Well-trained cyclists
($\mathrm{N}=21$)

Involved in a structured exercise training program
($\mathrm{N}=11$)
Judo athletes
($\mathrm{N}=10$)

Cyclists

($\mathrm{N}=21$)

Recreationally trained
($\mathrm{N}=12$)

Endurance athletes
($\mathrm{N}=18$)

Physical education students
($\mathrm{N}=7$)
$(0.075)^{-1}$ day for days $6-7$;
(Familiarisation $=$ Yes)
$(0.1)^{-1}$ day for days $8-10$
Tablet
Crossover
Double-blind
$(0.05)^{-1}$ day for days $1-2$;
$(0.1)^{-1}$ day for days $3-4$;
$(0.15)^{-1}$ day for days $5-6$;
(0.2) ${ }^{-1}$ day for days $7-8$;

Crossover Solution
Double-blind (0.3)60 min

Crossover	Solution Single-blind $(0.3) 60 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.1) 120 \mathrm{~min} ;(0.1) 90 \mathrm{~min} ;$ $(0.1) 60 \mathrm{~min}$
	Solution Crossover $(0.1) 60 \mathrm{~min}$ Double-blind
	Solution $(0.3) 60 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.1) 90 \mathrm{~min} ;(0.1) 60 \mathrm{~min} ;$ $(0.1) 30 \mathrm{~min}$

(Familiarisation $=$ Yes)
Special judo fitness test
(Familiarisation $=$ No)

Cycling at $1 \mathrm{~kg}+5 \% \mathrm{BM}$ until exhaustion (Familiarisation $=$ Yes)

2 SB sessions (normoxia and hypoxia)
120W 30s 30W 30s until exhaustion (Familiarisation $=$ Yes)
Constant load cycling to exhaustion (Familiarisation $=$ No)

Graded exercise cycle $($ Familiarisation $=$ No $)$
10 x max 6 s sprints with 30 s recovery (Familiarisation $=$ Yes)

50	$\begin{aligned} & \text { Gao (1988) } \\ & \text { USA } \end{aligned}$	Well-trained college swimmers $(\mathrm{N}=10)$	Crossover Double-blind	Solution $(0.29) 60 \mathrm{~min}$
51	George (1988) UK	Health actively competitive sports ($\mathrm{N}=7$)	Crossover Double-blind	Capsule (0.2) 180 min
52	Goldfinch (1988) Australia	Athletes $(\mathrm{N}=6)$	Crossover Double-blind	Solution $\text { (0.4) } 60 \mathrm{~min}$
53	$\begin{aligned} & \text { Gordon (1994) } \\ & \text { USA } \end{aligned}$	Healthy active $(\mathrm{N}=10)$	Crossover Double-blind	Solution $\text { (0.3) } 90 \mathrm{~min}$
54	$\begin{aligned} & \text { Gough (2017) } \\ & \text { UK } \end{aligned}$	Healthy active $(\mathrm{N}=9)$	Crossover Double-blind	Solution $(0.3) 60 \mathrm{~min}$
55	$\begin{aligned} & \text { Gough (2017) } \\ & \text { UK } \end{aligned}$	Cyclists $(\mathrm{N}=11)$	Crossover Double-blind	Solution (0.2) ITTP Solution (0.3) ITTP
56	Gough (2018) UK	Cyclists $(\mathrm{N}=10)$	Crossover Double-blind	Solution (0.2) ITTP Solution (0.3) ITTP
57	Gough (2019) UK	Club-level cyclists $(\mathrm{N}=14)$	Crossover Single-blind	Solution (0.2) ITTP Solution (0.3) ITTP
58	$\begin{aligned} & \text { Griffen (2015) } \\ & \text { UK } \end{aligned}$	Well-trained $(\mathrm{N}=9)$	Crossover Double-blind	Solution (0.3) $)^{-1}$ day for 7 days
59	Guimarães (2020) Brazil	Semi-professional adolescent soccer players $(\mathrm{N}=15)$	Crossover Double-blind	Solution $\text { (0.3) } 90 \mathrm{~min}$

2 SB sessions of 5×100-yard front crawl
swimming; 2 min recovery
$($ Familiarisation $=$ No)
Run to volitional exhaustion
$($ Familiarisation $=$ No $)$
400 m run
$($ Familiarisation $=\mathrm{No})$
Single-bout maximal cycle ergometry <2 min
$($ Familiarisation $=$ Yes $)$
Bout of cycling at $100 \% \mathrm{~W}_{\text {peak }}$ until exhaustion following prior exercise $($ Familiarisation $=$ Yes $)$

4 km cycling TT
$($ Familiarisation $=$ Yes $)$

2x 4 km cycling TT with 40 min interval (Familiarisation $=$ No)

4 km cycling TT
$($ Familiarisation $=$ No $)$
6×10 s cycling sprints $7.5 \% \mathrm{BM}$
$($ Familiarisation $=$ Yes)
Running anaerobic sprint test (RAST) performing six maximal $35-\mathrm{m}$ sprints, with a passive 10 -s interval between runs.

Club-level male cyclists
($\mathrm{N}=8$)

Recreationally active
($\mathrm{N}=12$)

Recreationally trained runners ($\mathrm{N}=11$)

Athletes Australian national short track speed skating team
($\mathrm{N}=8$)

Healthy active
($\mathrm{N}=10$)

Higgins (2013)
UK

Horswill (1988)
trained male cyclists
($\mathrm{N}=11$)
Competitive club-level rowers
($\mathrm{N}=20$)
Competitive club-level rowers ($\mathrm{N}=20$)

Endurance-trained cyclists
($\mathrm{N}=9$)

Crossover	Solution
Double-blind	(0.3) ITTP

Crossover Solution
Single-blind (0.3) 60 min

Crossover Solution
Single-blind (0.3) 30 min
Crossover Tablet
Double-blind (0.3) 75 min

Crossover	Solution
Double-blind	$(0.3) 60$ min

Crossover Capsules (GR)
Double-blind (0.3) ITTP
Crossover Capsule
Double-blind (0.2) 240 min ; (0.1) 120 min
Crossover Capsule
Double-blind (0.2) 240 min ; (0.1) 120 min
Solution
Crossover
NI
$($ Familiarisation $=\mathrm{No})$
4-km cycling TT
(Familiarisation $=$ Yes)
Three bouts of 60 s cycling (90,95 , and 100% MAP), interspersed with 90 s of active recovery (100 W) and TTE cycling at 105% MAP.
(Familiarisation $=$ Yes)
Running TTE protocol at $100 \% \mathrm{VO}_{2 \text { max }}$ on the treadmill (Familiarisation $=\mathrm{No})$

1 skater racing at maximal effort for 1 lap
$($ Familiarisation $=$ No $)$
Cycling to volitional exhaustion at 100% $W_{\text {peak }}$
(Familiarisation $=$ Yes)
Cycling to volitional exhaustion at 110% $\mathrm{W}_{\text {peak }}$
(Familiarisation $=$ Yes)
Cycling to volitional exhaustion at 120% $\mathrm{W}_{\text {peak }}$
$($ Familiarisation $=$ Yes)
4 km cycling time trial
$($ Familiarisation $=$ Yes $)$
2000 m rowing ergometer TT
(Familiarisation $=$ Yes)
2000 m rowing ergometer TT
(Familiarisation $=$ Yes)

2 min exercise bout cycling
$($ Familiarisation $=$ No $)$
Spain
Inbar (1983)
Israel

Kilding (2012)
New Zealand

Kowalchuk (1984)
Canada

Kozak-Collins (1994)
USA

Kraemer (2000)

Club triathletes
($\mathrm{N}=8$)
Athletes runners 400 m below 50s
($\mathrm{N}=6$)
Physical education students ($\mathrm{N}=13$)

Physical education students ($\mathrm{N}=6$)

Swimmers

($\mathrm{N}=8$)

Healthy
($\mathrm{N}=8$)
Well-trained cyclists
($\mathrm{N}=10$)
Healthy
($\mathrm{N}=6$)

Competitive cyclists
($\mathrm{N}=7$)

USA

Healthy active ($\mathrm{N}=10$)
(0.2) 60 min

Solution
(0.15) 60 min

Crossover Capsule
Double-blind (0.3) 180 mi

Crossover	Solution
Single-blind	$(0.5) 180 \mathrm{~min}$
Crossover	Capsule
NI	$(0.15) 170 \mathrm{~min}$
Crossover	Capsule E
Double-blind	$(0.2) 120 \mathrm{~min}$

MVC
$($ Familiarisation $=$ Yes $)$
300m running sprint
$($ Familiarisation $=$ No $)$
Want sprint 30s with 4.41/BM
(Familiarisation $=\mathrm{No}$)
Cycling $10 \mathrm{~min} 40 \% \mathrm{VO}_{2 \max } ; 15 \mathrm{~min}$
12 W ; then until exhaustion at 95%
$\mathrm{VO}_{2 \text { max }}$
$($ Familiarisation $=$ Yes $)$

200 m swim
$($ Familiarisation $=$ No $)$

Cycling at $125 \% \mathrm{VO}_{2 \text { max }}$ until exhaustion
$($ Familiarisation $=$ No $)$
3 km TT cycling
(Familiarisation $=$ Yes)
Cycling until exhaustion with increase of $100 \mathrm{kpm} / \mathrm{min}$
$($ Familiarisation $=\mathrm{No})$
1 min cycling at $95 \% \mathrm{VO}_{2 \max } ; 1 \mathrm{~min}$ recovery at 60 W ; repeated until exhaustion
$($ Familiarisation $=\mathrm{No})$
Cycling sprint for 90 s with $0.05 \mathrm{~kg} / \mathrm{BM}$ $($ Familiarisation $=\mathrm{No})$

79	Kumstát (2018) Czech Republic	Elite level swimmers $(\mathrm{N}=6)$	Crossover Double-blind	Capsule (0.3) 60 min	400 m freestyle swim $($ Familiarisation $=$ No $)$
80	Kupcis (2012) Australia	Nationally competitive lightweight rowers $(\mathrm{N}=7)$	Crossover Double-blind	Capsule $\begin{aligned} & (0.1) 90 \mathrm{~min} ;(0.1) 80 \mathrm{~min} \text {; } \\ & (0.1) 70 \mathrm{~min} \end{aligned}$	2000 m rowing ergometer TT (Familiarisation $=$ Yes)
81	Lambert (1993) Scotland	Healthy $(\mathrm{N}=6)$	Crossover Double-blind	$\begin{aligned} & \text { NI } \\ & (0.3) 180 \mathrm{~min} \end{aligned}$	Cycle at $70,80,90$ of $\mathrm{VO}_{2 \text { max }}$ by 5 min with 5 min interval between each bout then at 100% until exhaustion $($ Familiarisation $=$ Yes)
82	Lavender (1989) UK	Members of the movement studies department $(\mathrm{N}=23)$	Crossover Double-blind	Solution $(0.3) 120 \mathrm{~min}$	Ten maximal cycle sprints 10s of duration a 50 s recovery (Familiarisation $=$ Yes)
83	$\begin{aligned} & \text { Light (1999) } \\ & \text { USA } \end{aligned}$	Normal $(\mathrm{N}=6)$	Crossover Double-blind	Capsule $(0.3)^{-1}$ day for 5 days	Maximal exercise cycling test in incremental 30W/min $($ Familiarisation $=$ Yes)
84	Linderman (1992) USA	Cyclists $(\mathrm{N}=8)$	Crossover Double-blind	Tablet $\text { (0.2) } 90 \mathrm{~min}$	Cycling at the $\mathrm{P}_{\text {max }}$ until exhaustion (Familiarisation $=$ No)
85	$\begin{aligned} & \text { Lindh (2008) } \\ & \text { UK } \end{aligned}$	Elite-standard swimmers $(\mathrm{N}=9)$	Crossover Double-blind	Capsule $\text { (0.3) } 90 \mathrm{~min}$	200m freestyle swim $($ Familiarisation $=$ No)
86	Lopes-Silva (2018) Brazil	Taekwondo black belt athletes $(\mathrm{N}=9)$	Crossover Double-blind	Capsule (0.3) 90 min	Simulated taekwondo combat $($ Familiarisation $=$ No $)$
87	Macutkiewicz (2018) UK	Elite hockey players $(\mathrm{N}=8)$	Crossover Single-blind	Capsule $\text { (0.2) } 180 \mathrm{~min} ;(0.1) 90 \mathrm{~min}$	LIST $($ Familiarisation $=$ No $)$
88	Margaria (1971) Italy	Athletes, sportsmen and sedentary $(\mathrm{N}=12)$	Crossover NI	$\begin{aligned} & \text { NI } \\ & (0.167) 60 \mathrm{~min} \end{aligned}$	Running on treadmill at $16 \mathrm{~km} / \mathrm{h}$ at 16% inclination (Familiarisation $=$ Yes)
89	Marriott (2015) Sweden	Sub-elite team-sports $(\mathrm{N}=12)$	Crossover Single-blind	Capsule (0.4) 90 min	Yo-Yo IR2 following prior upper body exercise (Familiarisation $=$ Yes)
90	$\begin{aligned} & \text { Marx (2002) } \\ & \text { USA } \end{aligned}$	Healthy $(\mathrm{N}=10)$	Crossover Double-blind	Solution $\text { (0.3) } 60 \mathrm{~min}$	90 s cycle at $0.5 \mathrm{~N} / \mathrm{BM}$ (Familiarisation $=$ Yes)
91	Materko (2008)	Strength trained	Crossover	Solution	Bench press test

Brazil

$$
(\mathrm{N}=11)
$$

Double-blind (0.3) 120 min

Undergraduate students

 ($\mathrm{N}=8$)Healthy
($\mathrm{N}=6$)

Athletes
($\mathrm{N}=6$)
$(\mathrm{N}=4)$

McLellan (1988)
Canada

96

98
Matsuura (2007)
Japan

McCartney (1983)
Canada

McKenzie (1986)
Canada

McNaughton (1991)
Australia
McNaughton (1991)
Australia

McNaughton (1992) Australia

Healthy
($\mathrm{N}=9$)
$\left.\begin{array}{ll}\begin{array}{l}\text { Crossover } \\ \text { Single-blind }\end{array} & \begin{array}{l}\text { Solution } \\ (0.3) 180 \mathrm{~min}\end{array} \\ \text { Crossover } & \begin{array}{l}\text { Capsule } \\ \text { NI }\end{array} \\ & \begin{array}{l}\text { Solution }\end{array} \\ \text { Crossover } \\ (0.15) 60 \mathrm{~min}\end{array}\right]$
(Familiarisation $=$ Yes)
Pull press test
$($ Familiarisation $=Y e s)$
10s cycling sprints with 30 s passive recovery; with 360 s recovery at 5 th and 9th sprint
$($ Familiarisation $=$ Yes)
Maximal force on the pedals of a constant velocity cycle ergometer at 100 rpm for 30 s
$($ Familiarisation $=\mathrm{No})$
6 x 60 s cycling bouts with 60 s recovery at $125 \% \mathrm{VO}_{2 \text { max }} .6^{\text {th }}$ bout continued until exhaustion.
$($ Familiarisation $=\mathrm{No})$
Cycling: 10 min at 50 and 70% and 90% of $\mathrm{VO}_{2 \max }$ until exhaustion
$($ Familiarisation $=$ No $)$
Maximal 1 min cycle effort
$($ Familiarisation $=$ No)
6 min rowing ergometer
$($ Familiarisation $=$ No $)$

Maximal 1 min cycle effort
$($ Familiarisation $=$ No $)$

McNaughton (1997)
Australia

Mero (2013)
Filand

UK

Mueller (2013)
Switzerland
(0.5) 90 min

$$
(\mathrm{N}=8)
$$

	$(0.5) 90 \mathrm{~min}$
Crossover Double-blind Solution $(0.3) 90 \mathrm{~min}$	

Physical active
($\mathrm{N}=10$)
Cyclists
($\mathrm{N}=10$)
Males
($\mathrm{N}=8$)
National and international level swimmers
($\mathrm{N}=13$)
Active team and individual sports ($\mathrm{N}=11$)

Cyclists and triathletes
($\mathrm{N}=11$)
Healthy in competitive sports and trained
($\mathrm{N}=10$)
Recreationally active non-smoking ($\mathrm{N}=7$)

Double-blind (0.3) 90 min

Crossover	Solution
Double-blind	$(0.3) 90 \mathrm{~min}$

Crossover Solution
Double-blind (0.3) 90 min
Crossover Solution
Double-blind (0.3) 60 min

Crossover Capsule
Double-blind (0.3) 60 min

Crossover Solution
Double-blind (0.3) ITTP

Crossover Tablet
Double-blind (0.3) 90 min
Crossover Solution
Double-blind (0.1) 480 min ; (0.1) 180
min; (0.1) 60 min
$\begin{array}{ll}\text { Crossover } & \text { Capsule } \\ \text { Double-blind } & (0.3) 60 \mathrm{~min}\end{array}$

Maximal 10s cycle effort
$($ Familiarisation $=$ No $)$
Maximal 30 s cycle effort $($ Familiarisation $=$ No $)$
Maximal 120s cycle effort $($ Familiarisation $=$ No $)$

Maximal 240s cycle effort $($ Familiarisation $=\mathrm{No})$
Maximal 1 min cycle effort
(Familiarisation $=$ No)
60 min cycling
$($ Familiarisation $=\mathrm{No})$
Running on treadmill 3 x of maximal 30s with 180s recovery
(Familiarisation $=$ Yes)
2 x 100 m maximal freestyle sprint swimming
$($ Familiarisation $=\mathrm{No})$
Repeated sprint cycling 10x6s sprints with 60 recovery $($ Familiarisation $=\mathrm{No})$

5 SB sessions of a Constant load cycling
at critical power until exhaustion
(Familiarisation $=$ No)
2 x 30 s Wingate anaerobic test at 7.5% BM
(Familiarisation $=$ Yes)
40km cycling TT
$($ Familiarisation $=$ Yes $)$

Oliveira (2017)
Brazil

109
Painelli (2013)
Brazil

110 Parry-Billings (1986)
UK
111
Peart (2011)
UK

112
Peinado (2018)
Spain

113 Pierce (1992)
USA

Athletes of rugby, judo and jiujitsu at university level
($\mathrm{N}=18$)

Junior-standard swimmers
 ($\mathrm{N}=7$)

Active
($\mathrm{N}=6$)
Recreationally active
($\mathrm{N}=7$)
Elite BMX cyclist from Spanish National team
($\mathrm{N}=12$)

Varsity swimmers

($\mathrm{N}=7$)

Highly-trained male cyclists ($\mathrm{N}=12$)

Involved weight training program ($\mathrm{N}=15$)

Competitive distance runners
($\mathrm{N}=7$)
400m runners
($\mathrm{N}=16$)

Crossover	Capsule
Double-blind	$(0.5)^{-1}$ day for 5 days

Crossover	Capsule
Double-blind	$(0.3) 90 \mathrm{~min}$

Crossover	Solution
Single-blind	$(0.3) 150 \mathrm{~min}$
Crossover	Solution NI
	$(0.3) 90 \mathrm{~min}$

Crossover	Solution
Double-blind	$(0.2) 60 \mathrm{~min}$

Crossover	Capsule
Double-blind	$(0.18) 190-10$ min

Crossover Capsule
Double-blind (0.3) 90 min
Crossover Capsule
Double-blind (0.3) 120 min
Crossove
NI
Capsule
(0.3) 60 min

4 bouts of 30 s with 3 min recovery
Wingate upper body anaerobic test
(Familiarisation $=$ Yes)
100 m swimming TT
$($ Familiarisation $=$ No $)$
200m swimming TT
$($ Familiarisation $=\mathrm{No})$
3 x 30 s Wingate test with 6 min recovery (Familiarisation $=$ Yes)

4-min bout of all out in cycle ergometer (Familiarisation $=$ Yes)
3x races in BMX Olympic trach with 15 min recovery
$($ Familiarisation $=$ Yes $)$
100-yard ($91,4 \mathrm{~m}$) swim freestyle
$($ Familiarisation $=$ No $)$
Individual 200-yard swims
$($ Familiarisation $=$ No $)$
Individual 200-yard swims
$($ Familiarisation $=$ No $)$
60 min warm up +30 min TT + all-out
cycling bout at 175% of the LT
(Familiarisation $=$ Yes)
5 maximal sets on leg press machine
(Familiarisation $=$ Yes)
30 min run following by 110% of LT
until exhaustion
$($ Familiarisation $=\mathrm{No})$
400 m running test
$($ Familiarisation $=$ No $)$
$118 \begin{aligned} & \text { Price (2010) } \\ & \text { UK }\end{aligned}$

Price (2012) UK

Pruscino (2008) Australia

Ragone (2021) Brazil

Healthy competed at University
level
($\mathrm{N}=8$)

Healthy, recreationally active ($\mathrm{N}=9$)
Highly trained elite freestyle
swimmers
$(\mathrm{N}=6)$

$$
(\mathrm{N}=6)
$$

Jiu-jitsu athletes blue belt graduates and affiliated to the Brazilian Jiu-Jitsu Confederation ($\mathrm{N}=10$)

Healthy and moderately active ($\mathrm{N}=6$)

Karateka

($\mathrm{N}=8$)

University students
($\mathrm{N}=10$)

Crossover
NI
(0.3) 60 min

Crossover	Solution
Double-blind	$(0.3) 60 \mathrm{~min}$

Crossover Capsule

Double-blind (0.3) 90 min

Crossover Solution Double-blind (0.3) 90-60 min

Crossover	Capsule
NI	$(0.3) 90 \mathrm{~min}$

Capsule

Crossover	$(0.3)^{-1}$ day for 3 days; (0.1)
Double-blind	$120 \mathrm{~min} ;(0.1) 90 \mathrm{~min} ;(0.1)$
	60 min

60 min

Crossover
Double-blind (0.3) 120 min
Capsule

$24 x 24$ s runs treadmill at velocity of
$\mathrm{VO}_{2 \text { max }}$, then at 120% of $\mathrm{VO}_{2 \text { max }}$ until exhaustion
$($ Familiarisation $=\mathrm{No})$
Two 30 min intermittent cycling trials
(repeated 3 min blocks; 90 s at 40%
$\mathrm{VO}_{2 \text { max }}, 60 \mathrm{~s}$ at $60 \% \mathrm{VO}_{2 \text { max }}, 14 \mathrm{~s}$
maximal sprint, 16 s rest)
$($ Familiarisation $=$ No $)$
200m TT swim
$($ Familiarisation $=\mathrm{No})$

Maximum voluntary contraction test (MVC) handgrip force, and "Intermittent isometric contraction Test (ISO) in the
largest number of successive cycles of 5
s of isometric contraction at 50% of
MVC, with 5 s relaxation until fatigue."
(Familiarisation $=$ Yes)
2 SB sessions of a Progressive wrist
flexion until exhaustion
$($ Familiarisation $=$ No $)$

Karate specific aerobic test (Familiarisation $=$ Yes)

Cycling at $80 \% \mathrm{VO}_{2 \max }$ until exhaustion $($ Familiarisation $=\mathrm{No})$

Cranking at $80 \% \mathrm{VO}_{2 \text { max }}$ until exhaustion $($ Familiarisation $=\mathrm{No})$
Cycling and cranking at $80 \% \mathrm{VO}_{2 \text { max }}$ until exhaustion $($ Familiarisation $=\mathrm{No})$

Iran

Saunders (2014)
UK

Siegler (2014) Australia

Physical active
($\mathrm{N}=10$)
Professional taekwondo athletes actively competing in the national taekwondo league
($\mathrm{N}=16$)
Recreationally active games
players
($\mathrm{N}=20$)
Recreationally active
($\mathrm{N}=21$)
Males
($\mathrm{N}=9$)

Recreationally active and healthy ($\mathrm{N}=9$)

Members of a university
swimming club
($\mathrm{N}=14$)
Amateur boxers (representing country at national and international tournaments
[Olympic competition]).
($\mathrm{N}=10$)
Recreationally active and healthy
$(\mathrm{N}=10)$
Recreationally active and healthy
$(\mathrm{N}=8)$ ($\mathrm{N}=8$)
$\begin{array}{ll}\text { Crossover } & \text { Capsule } \\ \text { Double-blind } & (0.2) 240 \mathrm{~min} ;(0.1) 120 \mathrm{~min}\end{array}$

Parallel	Solution
Double-blind	$(0.5)^{-1}$ day for 5 days

$\begin{array}{ll}\text { Crossover } & \text { Capsule } \\ \text { Double-blind } & (0.2) 240 \mathrm{~min} ;(0.1) 120 \mathrm{~min}\end{array}$
Crossover Capsule
Double-blind (0.2) 240 min ; (0.1) 120 min

Crossover Solution
Double-blind (0.3) 60 min

Crossover Solution
Single-blind (0.3) 60 min

Crossover	Solution
Single-blind	$(0.3) 150 \mathrm{~min}$

Crossover Solution
Double-blind (0.3) 60 min

Crossover
Double-blind
Capsule
(0.1) 90 min ; (0.1) 60 min ;
(0.1) 30 min

Crossover
Double-blind

CCT $_{110 \%}$
$($ Familiarisation $=$ Yes $)$
Taekwondo Anaerobic Intermittent Kick Test (TAIKT)
$($ Familiarisation $=$ Yes)
3 sets of Repeated Running Sprints ($5 \times$
6 s)
(Familiarisation $=$ Yes)
$\mathrm{CCT}_{110 \%}$
(Familiarisation $=$ Yes)
A bout of intense cycling at 120% PPO
to volitional fatigue
(Familiarisation $=$ Yes)
30s maximal efforts running with 180s walking
$($ Familiarisation $=$ Yes $)$
30s maximal efforts running with 180s standing
$($ Familiarisation $=$ Yes $)$
8 x 25 m front crawl swimming maximal effort sprint
$($ Familiarisation $=\mathrm{No})$

Box $4 \times 3 \mathrm{~min}$ round with 1 min recovery
(Familiarisation $=$ No)

Cycling: 120 PPO for 30 s and active recovery of 30 s until exhaustion $($ Familiarisation $=$ Yes)

Submaximal calf contractions at 55\% MVC to task failure

Siegler (2015)
Australia

Siegler (2016)
Australia
Australia

Siegler (2018)
Australia
Siegler (2018)
Australia
Silva (2019)
Brazil
Sostaric (2005)
Australia

Stephens (2002)
Australia

Stöggl (2014)
Austria
Sutton (1981)
Canada
Tan (2010)
Australia

Recreationally active and healthy

 ($\mathrm{N}=11$)Resistance trained
($\mathrm{N}=12$)

Resistance trained
($\mathrm{N}=6$)
Healthy
($\mathrm{N}=8$)
Cyclists
($\mathrm{N}=17$)
Healthy
($\mathrm{N}=9$)
Cyclists, triathletes, and crosscountry skier
($\mathrm{N}=6$)

Endurance-trained
($\mathrm{N}=12$)
Healthy
($\mathrm{N}=5$)
Elite players water polo squad ($\mathrm{N}=12$)

Cyclists

35(0.1) 90 min ; (0.1) 60
min ; (0.1) 30 min
Crossover
Double-blind
Capsule
(0.1) 90 min ; (0.1) 60 min ;
(0.1) 30 min

	Capsule
Crossover	(0.1) $90 \mathrm{~min} ;(0.1) 60 \mathrm{~min} ;$
Double-blind	$(0.1) 30 \mathrm{~min}$

Crossover	Capsule
Double-blind	$(0.1) 90 \mathrm{~min} ;(0.1) 60 \mathrm{~min} ;$
	$(0.1) 30 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.3) 90 \mathrm{~min}$
Parallel	Capsule
Double-blind	$(0.3) 60 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.3) 180-105 \mathrm{~min}$
	Capsule
Crossover	$(0.075) 120 \mathrm{~min} ;(0.075) 110$
Double-blind	min; $(0.075) 100 \mathrm{~min} ;$
	$(0.075) 90 \mathrm{~min}$

Crossover Solution
Double-blind (0.3) 90 min
Crossover Capsule
Double-blind (0.3) 180 min
Crossover
Capsule
Double-blind (0.3) 90 min
Crossover
Capsule
$($ Familiarisation $=$ Yes $)$

MVC
$($ Familiarisation $=$ Yes $)$
Triceps surae maximal voluntary efforts $($ Familiarisation $=$ Yes $)$
Triceps Brachii maximal voluntary efforts
(Familiarisation $=$ Yes)
Leg extension before and after a training session
$($ Familiarisation $=$ Yes $)$
Cycling until exhaustion at $125 \% \mathrm{VO}_{2 \text { peak }}$ (Familiarisation $=$ Yes)
Cycling 30 kJ TT
(Familiarisation $=$ Yes)
Finger flexion exercise until exhaustion $($ Familiarisation $=$ Yes $)$

30 min cycling at $77 \% \mathrm{VO}_{2 \text { peak }}$ then 469
kJ as quick as possible
(Familiarisation $=$ Yes)
3 x running bouts until exhaustion
recovery of 25 min
(Familiarisation $=$ Yes)
Cycling at $95 \% \mathrm{VO}_{2 \max }$ until exhaustion (Familiarisation $=$ No)
Match simulation test 59 min with sprints of 10 m
$($ Familiarisation $=Y e s)$
70s cycling sprint test

France

Thomas (2021)
France

Tiryaki (1995)
Turkey
148 Tobias (2013) Brazil Spain
($\mathrm{N}=11$)
World-class athletes from the
French international track cycling
team
($\mathrm{N}=6$)
Track athletes and non-athletes ($\mathrm{N}=15$)

Well-trained judo and jiu-jitsu ($\mathrm{N}=18$)

Distance runners
($\mathrm{N}=15$)
Habitually active
($\mathrm{N}=8$)
Competitive cyclists
(Male, $\mathrm{N}=16$; Female, $\mathrm{N}=16$)
Involved in a regular weight
training program
($\mathrm{N}=6$)
Varsity track athletes
($\mathrm{N}=6$)
Healthy
($\mathrm{N}=7$)

Elite BMX cyclist from Spanish
National team
($\mathrm{N}=9$)

Double-blind (0.3) 90 min

Crossover	Capsule
Double-blind	$(0.3) 90 \mathrm{~min}$

Crossover Solution Double-blind (0.3) 120 min

Parallel Capsule
Double-blind $\quad(0.5)^{-1}$ day for 7 days

Crossover Capsule

Double-blind (0.3) 90 min

Crossover	Solution
Single-blind	$(0.3) 60 \mathrm{~min}$

Crossover Capsule
Double-blind (0.3) 150 min

Crossover	Solution
Double-blind	$(0.3) 105 \mathrm{~min}$

Crossover Solution
Double-blind (0.3) 120 min
Crossover Solution
Single-blind (0.3) 60 min

Crossover Solution
Double-blind (0.3) 90 min
$($ Familiarisation $=$ Yes $)$
$3 \times 500 \mathrm{~m}$ all-out sprints with 20 -minute
recovery per sprint, and Squat Jump
Tests
(Familiarisation $=$ Yes)
600 m running test
(Familiarisation $=$ Yes)
4×30 s upper-body Wingate test at 5%
BM with 3 min recovery between bouts
$($ Familiarisation $=\mathrm{No})$
Treadmill run at velocity to reach
exhaustion between 1-2 min
(Familiarisation $=$ Yes)
3 min all-out cycling test
$($ Familiarisation $=$ Yes)
Cycling TT 2000m
(Familiarisation $=$ Yes)
4×12 rep with 5 th set until exhaustion at $70 \% \mathrm{RM}$ in leg press machine
$($ Familiarisation $=$ Yes $)$
800m run race
$($ Familiarisation $=\mathrm{No})$
Short-term intense cycling exercise
(STIE) for 40 s
(Familiarisation $=$ Yes)
Vertical jump test
$($ Familiarisation $=$ Yes $)$
3×30 s Wingate test at $0.7 \mathrm{~N}^{-1} \mathrm{BM}$ with 3 min recovery
(Familiarisation $=$ Yes)
Vertical jump test
$\left.\begin{array}{lllll|l}\text { Spain } & \text { Double-blind } & (0.3) 90 \mathrm{~min} & & \begin{array}{l}\text { (Familiarisation }=\text { Yes) } \\ \text { National team } \\ (\mathrm{N}=10)\end{array} & \\ 3 \times 30 \mathrm{~s} \text { Wingate test at } 0.7 \mathrm{~N}^{-1} \mathrm{BM} \text { with } 3 \\ \text { min recovery } \\ \text { (Familiarisation }=\text { Yes) }\end{array}\right]$

SODIUM CITRATE

1	Aedma (2015) Estonia	Trained Brazilian Jiu Jitsu and Submission Wrestling practitioners ($\mathrm{N}=11$)	Crossover Double-blind	Capsule (0.9) 1020-30 min	6 min Upper Body intermittent sprint performance test $($ Familiarisation $=$ Yes $)$
2	$\begin{aligned} & \text { Ball (1997) } \\ & \text { UK } \end{aligned}$	Healthy males $(\mathrm{N}=6)$	Crossover Double-blind	Capsule (0.3) 180-60 min	2 SC sessions of a Cycle to exhaustion at $100 \% \mathrm{VO}_{2} \max$ (Familiarisation $=$ Yes)
3	Cox (1994) Australia	Moderately trained students ($\mathrm{N}=8$)	Crossover Double-blind	Solution $\text { (0.5) } 90 \mathrm{~min}$	5 x 60 s all-out cycling sprints at $0.075 \mathrm{~kg}^{-}$ ${ }^{1} \mathrm{BM}$ with 5 min recovery (Familiarisation $=$ Yes)
4	Cunha (2019) Brazil	Tennis players $(\mathrm{N}=10)$	Crossover Double-blind	$\begin{aligned} & \text { Capsule } \\ & (0.5) 120 \mathrm{~min} \end{aligned}$	Repeated-sprint ability shuttle test (RSA): $10 \times 22 \mathrm{~m}$ running sprints $($ Familiarisation $=$ Yes)
5	Fernandez-Castanys (2002) Spain	Physical education students $(\mathrm{N}=17)$	Crossover Double-blind	Solution $(0.4) 120 \mathrm{~min}$	Cycling at 112% of $\mathrm{VO}_{2 \max }$ until exhaustion in normoxia and hypoxia $($ Familiarisation $=$ No)
6	Hausswirth (1995) France	Healthy $(\mathrm{N}=8)$	Crossover Double-blind	Solution $(0.4) 120 \mathrm{~min}$	Right isometric knee extension in normoxia and hypoxia $($ Familiarisation $=$ Yes $)$

7 Kowalchuk (1989)
Canada

8 Kumstát (2018)
Czech Republic

Linossier (1997)
France

10
Martins (2010)
Brazil

11
Australia

Active university students ($\mathrm{N}=9$)

Elite level swimmers ($\mathrm{N}=6$)

Moderately active students ($\mathrm{N}=8$)

Competitive rowers
($\mathrm{N}=6$)

Healthy
$(\mathrm{N}=11)$

Crossover Solution
 NI (0.3) 60 min

Crossover	Capsule
Double-blind	$(0.3) 60 \mathrm{~min}$

Crossover	NI
Double-blind	$(0.5) 90 \mathrm{~min}$

Crossover	Solution
Double-blind	$(0.5) 130 \mathrm{~min}$

Solution
(0.1) 90 min

Solution
(0.2) 90 min

Solution
(0.3) 90 min

Solution
(0.4) 90 min

Solution
(0.5) 90 min
$\begin{array}{ll}\text { Crossover } & \text { Solution } \\ \text { Double-blind } & (0.5) 90 \mathrm{~min}\end{array}$

Isometric contraction at $35 \% \mathrm{MVC}$ in normoxia and hypoxia
(Familiarisation $=$ Yes)
Cycling at $33 \% \mathrm{VO}_{2 \text { max }}$ for $20 \mathrm{~min} 66 \%$
$\mathrm{VO}_{2 \max }$ for $20 \min 95 \% \mathrm{VO}_{2 \max }$ until exhaustion
$($ Familiarisation $=\mathrm{No})$
400 m freestyle swim
$($ Familiarisation $=\mathrm{No})$
Cycle at $50 \% \mathrm{VO}_{2 \text { peak }}$ for 15 min 15 min recovery; $60-80 \% \mathrm{VO}_{2 \text { peak }}$ for 15 min and $120 \% \mathrm{VO}_{2 \text { peak }}$ until exhaustion (Familiarisation $=$ Yes)

2000 m rowing ergometer TT
$($ Familiarisation $=$ No $)$

Maximal 1 min cycle effort $($ Familiarisation $=$ No $)$

Maximal 10s cycle effort
$($ Familiarisation $=$ No $)$
Maximal 30s cycle effort $($ Familiarisation $=$ No $)$
Maximal 120s cycle effort
$($ Familiarisation $=$ No $)$
Messonier (2007)

France
Oöpik (2003)
Estonia
Oöpik (2004) Estonia
Oöpik (2008)
Estonia
Oöpik (2010)
Estonia
Parry-Billings (1986) UK

Potteiger (1996)
USA
Potteiger (1996)
USA

Russell (2014)
Canada

Healthy
($\mathrm{N}=8$)
College runners
($\mathrm{N}=17$)
Runners
($\mathrm{N}=10$)
Middle-distance runners
($\mathrm{N}=17$)
Well-trained middle- and long-
distance runners
($\mathrm{N}=13$)
Active
($\mathrm{N}=6$)
Competitive cyclists
($\mathrm{N}=8$)
Competitive distance runners
($\mathrm{N}=7$)

Well trained adolescent swimmers
($\mathrm{N}=10$)

Competitive cyclists and
triathletes
($\mathrm{N}=8$)

Crossover	NI
NI	$(0.5) 90 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.5) 120 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.5) 180 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.4) 120 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.5) 120 \mathrm{~min}$
Crossover	Solution
Single-blind	$(0.3) 150 \mathrm{~min}$
Crossover	Solution
Double-blind	$(0.5) 90 \mathrm{~min}$
Crossover	Capsule
Double-blind	$(0.5) 120 \mathrm{~min}$

Solution

(0.5) 120 min

Solution
$(0.1)^{-1}$ day for 3 days; (0.3)
120 min
Solution
(0.2) 60 min

Solution
(0.4) 60 min

Solution
(0.6) 60 min

Maximal 240s cycle effort
(Familiarisation = No)
Cycle $120 \% \mathrm{~W}_{\text {max }}$ until exhaustion
(Familiarisation $=$ Yes)
5 km running TT
(Familiarisation $=$ No)
5 km running TT
(Familiarisation $=$ No)
1500 m run indoor oval track
(Familiarisation = No)
Continuous incremental running test to
exhaustion on treadmill
(Familiarisation $=$ No)
3×30 s Wingate test with 6 min recovery
(Familiarisation $=$ Yes)
30 km TT cycling
(Familiarisation $=$ No)
30 min run following by 110% of LT
until exhaustion
(Familiarisation $=$ No)

200 m TT swim
(Familiarisation $=\mathrm{No}$)

40 km TT cycling
(Familiarisation = No)

23	Shave (2001) UK	Elite, multidisciplinary athletes (triathletes and modern pentathletes) $(\mathrm{N}=9)$	Crossover Double-blind	Solution $(0.5) 60 \mathrm{~min}$	$\begin{aligned} & 3000 \mathrm{~m} \text { run TT } \\ & (\text { Familiarisation }=\text { No }) \end{aligned}$
24	Someren (1998) UK	Healthy active $(\mathrm{N}=12)$	Crossover Double-blind	Solution $\text { (0.3) } 90 \mathrm{~min}$	5x 45s Wingate Anaerobic Test 4\%BM (Familiarisation $=$ Yes)
25	Street (2005) Denmark	Active with no health problems $(\mathrm{N}=7)$	Crossover NI	Solution $\text { (0.3) } 150 \mathrm{~min}$	Constant load cycling exercise to exhaustion $($ Familiarisation $=$ No)
26	Suvi (2018) Estonia	Endurance athletes $(\mathrm{N}=20)$	Crossover Double-blind	Capsule $(0.6) 180 \mathrm{~min}$	40 km TT cycling (Familiarisation = Yes)
27	Timpmann (2012) Estonia	Wrestlers $(\mathrm{N}=16)$	Parallel Double-blind	Capsule (0.6) 960-120 min	Upper body intermittent sprint test at $0.04 \mathrm{~kg}^{-1} \mathrm{BM}$ $($ Familiarisation $=$ Yes)
28	Tiryaki (1995) Turkey	Track athletes and non-athletes $(\mathrm{N}=15)$	Crossover Double-blind	Solution $(0.3) 120 \mathrm{~min}$	600 m running test (Familiarisation $=$ Yes)
29	Vaher (2014) Estonia	Healthy, endurance trained $(\mathrm{N}=16)$	Crossover Double-blind	Capsule $(0.5) 120 \mathrm{~min}$	5000 m run treadmill (Familiarisation $=$ Yes)
30	Van Montfoort (2004) Netherlands	Distance runners $(\mathrm{N}=15)$	Crossover Double-blind	Capsule $(0.525) 90 \mathrm{~min}$	Treadmill run at velocity to reach exhaustion between 1-2 min (Familiarisation $=$ Yes)

SODIUM /CALCIUM LACTATE

1	Morris (2011) USA	Competitive cyclists $(\mathrm{N}=11)$	Crossover Double-blind	Capsule $\text { (0.12) } 90 \mathrm{~min}$	Cycling test until exhaustion initial at $3 \mathrm{w}^{-}$ ${ }^{1} \mathrm{BM}$ and increase $0.3 \mathrm{~W}^{-1} \mathrm{BM}$ (Familiarisation $=$ Yes)
2	Northgraves (2014) UK	Recreationally active non-smoking $(\mathrm{N}=7)$	Crossover Double-blind	Capsule $(0.014) 60 \mathrm{~min}$	40km cycling TT (Familiarisation $=$ Yes)
3	Oliveira (2017) Brazil	Athletes of rugby, judo, and jiujitsu at university level ($\mathrm{N}=18$)	Crossover Double-blind	Capsule $(0.5)^{-1}$ day for 5 days	4 bouts of 30s with 3 min recovery Wingate upper body anaerobic test $($ Familiarisation $=$ Yes $)$

4	Painelli (2014) Brazil	Healthy recreationally active $(\mathrm{N}=12)$	Crossover Double-blind	Capsule (0.15) 90 min Capsule (0.3) 90 min	$3 x 30$ s upper body Wingate test at 4% BM with 3 min recovery $($ Familiarisation $=$ Yes $)$
5	Peveler (2012) USA	Competitive cyclists $(\mathrm{N}=9)$	Crossover Double-blind	$\begin{aligned} & \text { NI } \\ & (0.022) 60 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~km} \mathrm{TT} \\ & \text { (Familiarisation }=\text { Yes) } \end{aligned}$
6	$\begin{aligned} & \text { Russ (2019) } \\ & \text { USA } \end{aligned}$	Recreationally active $(\mathrm{N}=18)$	Parallel Double-blind	Capsule $(0.016) 60 \mathrm{~min}$	Graded cycling test 25 W every 3 min (Familiarisation $=$ Yes)
7	Van Montfoort (2004) Netherlands	Distance runners $(\mathrm{N}=15)$	Crossover Double-blind	Capsule (0.4) 90 min	Treadmill run at velocity to reach exhaustion between 1-2 min (Familiarisation $=$ Yes)

MIXED BUFFERS

1	Margaria (1971) Italy	Athletes, sportsmen and sedentary $(\mathrm{N}=12)$	Crossover Double-blind	$\begin{aligned} & \text { NI } \\ & (0.135) 60 \mathrm{~min} \end{aligned}$	Running on treadmill at $16 \mathrm{~km} / \mathrm{h}$ at 16% inclination (Familiarisation $=$ Yes)
2	Obminski (2016) Poland	Highly trained rowers $(\mathrm{N}=8)$	Crossover Double-blind	Solution $\text { (0.3) } 90 \mathrm{~min}$	Cycling sprint at $95 \% \mathrm{VO}_{2 \max }$ until volitional exhaustion $($ Familiarisation $=$ No $)$
3	Parry-Billings (1986) UK	Active $(\mathrm{N}=6)$	Crossover Single-blind	Solution (0.3) 150 min	3x 30s Wingate test with 6 min recovery (Familiarisation $=$ Yes)
4	Robergs (2005) USA	Healthy competitive cyclists $(\mathrm{N}=12)$	Crossover NI	$\begin{aligned} & \text { NI } \\ & (0.4) 60 \mathrm{~min} \end{aligned}$	Cycling bout at $110 \% \mathrm{VO}_{2 \text { max }}$ to fatigue (Familiarisation $=$ No)

$\mathrm{NI}=$ No information; $\mathrm{SB}=$ Sodium bicarbonate; $\mathrm{SC}=$ Sodium citrate; $\mathrm{GR}=$ Gastrorresistente; LIST = Loughborough Intermittent Shuttle Test; $\mathrm{CCT}_{110}=$ Cycling capacity test at 110% of maximal power output; $\mathrm{VO}_{2 \max }=$ maximal oxygen uptake; $\mathrm{RM}=$ Repetition maximum; $\mathrm{TT}=\mathrm{Time}$-trial; $\mathrm{FGB}=\mathrm{Fight} \mathrm{Gone} \mathrm{Bad} ; \mathrm{BM}=\mathrm{Body}$ mass; IAT = Individual anaerobic threshold; $\mathrm{W}_{\text {peak }}=$ Peak power output; $\mathrm{MVC}=$ Maximum voluntary contraction; ; $\mathrm{P}_{\max }=$ Maximum power output; RPM $=$
Revolutions per minute; $\mathrm{LT}=$ Lactate threshold; $\mathrm{PPO}=$ Peak power output; $\mathrm{VO}_{2 \text { peak }}=$ Peak oxygen consumption; RSA $=$ Repeated sprint ability; $\mathrm{W}_{\text {max }}=$ Powermax;

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis.
Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.

E-mail: drbryansaunders@outlook.com

Supplementary Material Appendix S4. Moderator analyses conducted on blood pH across supplementation and exercise periods.

Moderator		Parameter Estimate [95\% CrI]	Probabilities	Between study $\begin{gathered} \text { SD } \tau \\ {[75 \% \mathrm{CrI}]} \end{gathered}$	Intraclass Correlation Coefficient $[75 \% \mathrm{CrI}]$	Grade
Bicarbonate Pre-supplementation to Pre-exercise						
[Supplement type]	$\begin{aligned} & \text { SB }(n=97) \\ & S C(n=18) \end{aligned}$	$\begin{aligned} & 0.063[0.053 \text { to } 0.073] \\ & 0.044[0.023 \text { to } 0.072] \end{aligned}$	$P(\mathrm{SB}>\mathrm{SC})=0.926$	$\begin{gathered} 0.027 \\ {[0.013 \text { to } 0.036]} \end{gathered}$	$\begin{gathered} 0.28 \\ {[0.02 \text { to } 0.78]} \end{gathered}$	High High
[Supplement dose]	Intercept $\left(0.3 \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}\right)$ Increase per 0.1 $\mathrm{g} \cdot \mathrm{kg}^{-1} \mathrm{BM}(\mathrm{n}=103)$	$\begin{aligned} & 0.060[0.051 \text { to } 0.070] \\ & 0.012[0.001 \text { to } 0.023] \end{aligned}$	$P($ Increase $>0)=0.979$	$\begin{gathered} 0.036 \\ {[0.027 \text { to } 0.043]} \end{gathered}$	$\begin{gathered} 0.14 \\ {[0.01 \text { to } 0.37]} \end{gathered}$	Moderate
Pre-exercise to Post-exercise (non-placebo controlled)						
[Exercise duration]	$\begin{gathered} <0.5 \min (\mathrm{n}=13) \\ 0.5-10 \min (\mathrm{n}=115) \\ >10 \min (\mathrm{n}=18) \end{gathered}$	$\begin{aligned} & -0.17[-0.22 \text { to }-0.12] \\ & -0.21[-0.23 \text { to }-018] \\ & -0.08[-0.13 \text { to }-0.02] \end{aligned}$	$\begin{gathered} P(<0.5 \min >0.5-10 \mathrm{~min})=0.927 \\ P(0.5-10 \mathrm{~min}<>10 \mathrm{~min})>0.999 \\ P(<0.5 \min <10 \mathrm{~min})=0.990 \end{gathered}$	$\begin{gathered} 0.10 \\ {[0.09 \text { to } 0.10]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.01 \text { to } 0.07]} \end{gathered}$	High High High
[Exercise type]	Performance ($\mathrm{n}=90$) Capacity ($\mathrm{n}=56$)	$\begin{aligned} & -0.21[-0.24 \text { to }-0.19] \\ & -0.14[-0.17 \text { to }-0.11] \end{aligned}$	$P($ Capacity $>$ Performance $)>0.999$	$\begin{gathered} 0.09 \\ {[0.09 \text { to } 0.10]} \end{gathered}$	$\begin{gathered} 0.05 \\ {[0.00 \text { to } 0.13]} \end{gathered}$	High High

SD: Standard deviation; n: Number of outcomes for covariate or factor level; SB: Sodium bicarbonate; SC: Sodium citrate; $\mathrm{g} \cdot \mathrm{kg}{ }^{-1} \mathrm{BM}$: grams per kilogram body mass: CrI: Bayesian credible interval.

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis.
Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.

E-mail: drbryansaunders@outlook.com

Supplementary Material Appendix S5. Table. Exercise performance moderator analyses conducted on placebo controlled standardized effect sizes with sodium bicarbonate only.

				Metween study SD $(\boldsymbol{\tau})$	Intraclass Correlation Coefficient
[95\%					

SD: Standard deviation; n: Number of outcomes for covariate or factor level; CrI: Bayesian credible interval.

Article title: Extracellular buffering supplements to improve exercise capacity and performance: a comprehensive systematic review and meta-analysis.
Corresponding author: Dr Bryan Saunders. Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, SP, BR.

E-mail: drbryansaunders@outlook.com

Supplementary Material Appendix S6.
Table 1. Grade analysis of moderator analyses conducted on biomarker data post supplementation and post-exercise.

Moderator		ROB2	Imprecision	Inconsistency	Indirectness	Publication Bias	Upgrade	Grade
Bicarbonate Pre-supplementation to Pre-exercise								
[Supplement type]	$\text { SB }(\mathrm{n}=97)$	$\oplus \oplus \oplus \oplus$	High					
	SC ($\mathrm{n}=19$)	$\oplus \oplus \oplus \oplus$	High					
[Supplement dose]	$\begin{gathered} \text { Increase per } 0.1 \\ \mathrm{~g} \cdot \mathrm{~kg}^{-1} \mathrm{BM}(\mathrm{n}=115) \end{gathered}$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	Moderate			
Pre-exercise to Post-exercise (non-placebo controlled)								
[Exercise duration]	<0.5 min ($\mathrm{n}=13$)	$\oplus \oplus \oplus \oplus$	High					
	$0.5-10 \min (\mathrm{n}=114)$	$\oplus \oplus \oplus \oplus$	High					
	>10 min ($\mathrm{n}=12$)	$\oplus \oplus \oplus \oplus$	High					
[Exercise type]	Performance ($\mathrm{n}=90$)		$\oplus \oplus \oplus \oplus$	High				
	Capacity (n=49)	$\oplus \oplus \oplus \oplus$	High					
Lactate Pre-exercise to Post-exercise (non-placebo controlled)								
[Exercise duration]	<0.5 min ($\mathrm{n}=16$)	$\oplus \oplus \oplus \oplus$	High					
	$0.5-10 \min (\mathrm{n}=97)$	$\oplus \oplus \oplus \oplus$	High					
	$>10 \mathrm{~min}(\mathrm{n}=14)$	$\oplus \oplus \oplus \oplus$	High					
[Exercise type]	Performance ($\mathrm{n}=89$)	$\oplus \oplus \oplus \oplus$	High					
	Capacity ($\mathrm{n}=42$)	$\oplus \oplus \oplus \oplus$	High					

SB: Sodium bicarbonate; SC: Sodium citrate.

Table 2. Grade analysis for exercise performance moderator analyses conducted on placebo controlled standardized effect sizes.

Moderator		ROB2	Imprecision	Inconsistency	Indirectness	Publication Bias	Upgrade	Grade
[Exercise duration 1]	<0.5 min	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	$0.5-10 \mathrm{~min}$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	>10 min	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
[Exercise duration 2]	$0.5-1.5 \mathrm{~min}$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	1.5-5 min	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	5-10 min	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
[Exercise type]	Performance	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	Capacity	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
[Acute/Chronic]	Acute	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	Chronic	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
[Prior exercise]	Prior	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	No Prior	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
[Training status]	Top-level	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	Trained	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	Non-trained	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
[Intermittent]	Bout 1	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	Bout 2	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			
	Bout 3	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	Moderate			

Table 3. Grade analysis for the moderator analyses for supplement protocols conducted on placebo controlled standardized exercise effect sizes.

Moderator		ROB2	Imprecision	Inconsistency	Indirectness	Publication Bias	Upgrade	Grade
Exercise Outcomes								
[Supplement Dose]	Low ($<0.3 \mathrm{~g} / \mathrm{kg}$)	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	$\operatorname{Mid}(=0.3 \mathrm{~g} / \mathrm{kg})$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	High ($>0.3 \mathrm{~g} / \mathrm{kg}$)	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
[Supplement Strat]	Single dose	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	Split dose	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
[Supplement Form]	Solution	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	Capsule	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
[Supplement Type]	SB	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc$	Low
	SC	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
[Bicarbonate increase]	Small ($\leq 4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$)	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	Medium (4-6 mmol $\cdot \mathrm{L}^{-1}$)	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low
	Large ($>6 \mathrm{mmol} \cdot \mathrm{L}^{-1}$)	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \oplus \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	$\oplus \oplus \bigcirc \bigcirc$	Low

$\overline{\text { SB: Sodium bicarbonate; SC: Sodium citrate. }}$

