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Abstract: As for the cell-to-cell inconsistency of packing lithium-ion batteries, accurate equivalent modeling plays a 

significant role in the working characteristic monitoring and improving the safety protection quality under complex 

working conditions. In this work, a novel covariance matching - electrical equivalent circuit modeling method is proposed 

to realize the adaptive working state characterization by considering the internal reaction features, and an improved 

adaptive weighting factor correction - differential Kalman filtering model is constructed for the iterative calculation 

process. A new parameter named state-of-balance is introduced to describe the cell-to-cell variation mathematically by 

forming an effective influence correction strategy. An adaptive covariance matching method is investigated to update and 

transmit the noise matrix for high-power energy supply conditions, in which the weighting factor correction is conducted 

by considering the coupling relationship to improve the prediction accuracy. Experimental tests are conducted to verify the 

estimation effect, in which the closed-circuit voltage responds well corresponding to the battery state variation. The 

maximum closed-circuit voltage traction error is 1.80% and the maximum SOC estimation error for packing lithium-ion 

batteries is 1.114% for the long-term experimental tests with the MAE value of 0.00481 and RMSE value of 5.44085E-5. 

The improved covariance matching - electrical equivalent circuit modeling method provides a theoretical foundation for the 

reliable application of lithium-ion batteries.
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1. Introduction

As the energy sustainability determines the vitality of lithium-ion batteries in the power supply application, 

mathematical modeling is necessary to be conducted to increase the safety level and cycling lifespan of packing 

lithium-ion batteries and the battery system also benefits from the electrical modeling strategy optimization 

[1-3]. Constructed by multiple cells, the battery system has characteristics of large capacity, extensive 

series-parallel nodes, and strict safety boundaries. Meanwhile, effective real-time state monitoring and control 

become crucial to ensure the safety and durability of the power supply systems [4-10]. In pack applications, 

balancing and equalization are conducted and the balancing current is usually not measured. In this case, the 

current is no longer accurate when identifying the model parameters. Consequently, only the cell voltage and 

closed-circuit voltage (CCV) can be used to compensate for the cell-to-cell difference influence [11]. As a 

crucial technology of the battery system, the accurate estimation of model parameters and state of charge (SOC) 

has great significance for the accurate remaining useful life (RUL) prediction [12-15], which optimizes the 

overall performance of the battery packs.

The battery working process has strong nonlinear dynamic characteristics, involving multiple mutually 

coupled processing schedules, including electrochemical reaction, energy-heat transformation, and so on. The 

electrical equivalent circuit (EEC) modeling is investigated to realize the accurate parameter identification as 

well as the mathematical state-space expression, which becomes a basis of the subsequent safety protection 

[16-20]. The precise modeling and effective mathematical expression are important for the accurate working 
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3

state and model parameter estimation in the industrial power supply applications, in which the sensitivity of the 

working environment situation increases along with the modeling difficulties [21-23]. Considering the aging 

characteristics and complex environmental variability, it is crucial to take in multiple aspects and establish 

accurate mathematical models for performance optimization [24, 25]. To simulate the responding voltage 

characteristics under different power supply conditions, the equivalent modeling is divided into black-box, 

electrochemical, and electrical circuit types. The black-box modeling is a kind of non-linear treatment to 

describe the voltage-response characteristics [26-28], which includes neural networks (NN), support vector 

machines (SVM), and so on. The black-box model is trained by the real-time measured data, depending on the 

experimental test seriously [29-31]. Subsequently, to describe the dynamic characteristics, improved EEC 

modeling methods are introduced into the accurate battery state description.

The cell-to-cell consistency difference has a great influence on the packing interaction, in which a complex 

series-parallel combining structure is used to overcome the limitation of the single battery cell for the special 

voltage and capacity requirement. The inconsistency between the battery cells makes the packing equivalent 

modeling treatment to be difficult in the power supply process. Symptoms such as spontaneous combustion, 

explosion, and early scrap caused by lacking safety management have brought hidden safety hazards and 

economic losses to society and posed a great threat to the power supply security [32-35]. Therefore, 

breakthrough modeling is one of the core battery management factors, which is also an effective method to 

prevent safety accidents. When it is combined with a complex monolithic structure, the packing equivalent 

modeling is crucial to improve the management efficiency and safety. The noise interference should be 

conducted under dynamic working conditions and the reliable battery application needs an exact equivalent 

model to realize the mathematical characterization, which is the decision basis of energy controlling and 

management [36-39]. As the internal battery parameters in the equivalent model cannot be measured online and 
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4

need to be calculated indirectly through the experimental analysis, such as ohmic resistance, polarization 

resistance, and capacitance [40-42]. Therefore, the mathematical description could only be implemented by 

utilizing external measurable parameters, such as voltage, current, and temperature.

The state-space equation of the EEC model should be established for the iterative calculation, which is then 

introduced into the battery state evaluation process considering the voltage limitation of the state of power 

(SOP) prediction. However, ignoring the cell-to-cell difference impacts on the state monitoring and 

management may result in the over-charge or over-discharge risks [43-46]. As a result, outside model 

parameters are used as constraints, such as voltage, current, SOC, state-of-health (SOH), and rated capacity. 

Afterward, the peak SOP is predicted by the resistance-capacitance EEC model, and the model parameters are 

obtained by the genetic calculation to improve the estimation accuracy, according to which the suitable 

linearization treatment is conducted for the SOC and SOP co-estimation [21, 47-53]. The statistical analysis is 

investigated to describe the influencing mechanism of various constraints on the working state and model 

parameter estimation [54-56], which has an important significance for the energy and power characteristics but 

adapts to limited scenarios and complex strategies [54-56]. How to estimate the battery state effectively is an 

important solution to improve the estimation accuracy by conducting the packing equivalent modeling as well as 

the research on the joint estimation of working state and model parameters.

The coupling relationship between model parameters and state factors is not considered in most existing 

researches, which has a great effect on the estimation accuracy, such as ohmic resistance, polarization 

resistance, and capacitance. Consequently, an improved packing covariance matching – electrical equivalent 

circuit (CM-EEC) modeling method is proposed for the joint estimation of working state and model parameters 

considering the consistency influences by introducing a new factor of SOB considering the cell voltage 
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5

difference over internal-connected battery cells under complex working conditions. Through modular circuit 

characterization, the battery state variation law is obtained along with the complex working conditions. An 

improved weighting factor correction - differential Kalman filtering (WFC-DKF) model is constructed for the 

iterative calculation. The adaptive covariance matching treatment is investigated to update and transmit the 

noise matrix for high-power energy supply conditions, in which the weighting factor correction and coupling 

relationship are further explored to improve the prediction accuracy. Combined with the influencing factor 

correction strategy analysis, the inter-unit inconsistency effect is reduced effectively. The proposed modeling 

and collaborative prediction-correction methods play an important role in improving the battery state estimation 

accuracy and robustness.

2. Mathematical Analysis

2.1. Covariance matching - Electrical Equivalent Modeling

The improved CM-EEC modeling mechanism is revealed to estimate the collaborative battery state 

effectively for the crucial breakthroughs in energy management. The optimizing strategy is analyzed for 

different power supply conditions as well as safety protection. The attenuation modeling is conducted together 

with the coordinated estimation of working state and model parameters to realize the safe and reliable 

wide-temperature-range energy supply. Moreover, full-life-cycle modeling and dynamic characteristic 

description are conducted. The online model parameter identification is combined with the SOC estimation, 

which is also a collaborative premise of the SOH evaluation. Furthermore, the performance description ensures 

the scientific and advanced nature of the entire theoretical modeling process. The initial implementation and 

exploratory application are conducted to verify the effectiveness and usability, as shown in Figure 1. 
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of BC and DE. As can be known from theoretical analysis, the calculation formula of  is obtained, as shown�0

in Equation (1).

�0 =
(��	
�| + ��	�|)

(��)
(1)

In Equation (1),  is the internal resistance.  and  are the voltage changes varying from time�0 �	
� �	�

point  to  as well as  to . According to the parameter influencing results for the SOC estimation, the 
 �  �

combined calculation is conducted with highly robust adaptive characteristics as well as the WFC-DKF 

optimization based on the state-space description, considering the dynamic effect of temperature, aging, and 

current rate variation. Corresponding to the zero-input response of the CM-EEC model shown in Figure 1, the 

corresponding segment voltage variation is obtained as shown in Figure 2 (b). Consequently, the mathematical 

relationship is obtained, as illustrated in Equation (2).

{ 	� = 	
� 	��
�
�

�

	� = 	
� 	��
�

(��� ��)

�

(2)

In Equation (2),  is the CCV value at the time point ;  is the CCV value at the time point ;  is	� �� 	
 �
 	�

the CCV value at the time point ;  is the polarization voltage;  is the time constant for the parallel�� 	� �

connected RC circuit of . The influencing factor is described under different working conditions based on���

the CM-EEC modeling, and the mathematical description is utilized by combining the working condition 

influence to construct different component modules, which is performed along with the structural optimization. 

The module characterization is realized by combining the CM-EEC model and structural changes, according to 

which the mathematical characteristic description is conducted adaptive to different working conditions by 

utilizing the streamlined particles, unscented transformation, and functional modification. Subsequently, 

adaptive joint model parameters and SOC estimation are conducted. As for the time constant calculation, the 
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9

mathematical relationship is constructed, as shown in Equation (3).

� = �
(��� ��)

�� [
(	
� 	�)

(	
� 	�)] (3)

In Equation (3),  is the CCV value at the time point ;  is the CCV value at the time point ;  is	� �� 	
 �
 	�

the CCV value at the time point ;  is the time constent. The piece-wise linearization processing is realized�� �

for the nonlinear battery system, according to which the adaptive mathematical relationship is obtained between 

the state-space equation and time-varying model parameters. The exact mathematical characteristic description 

is investigated to provide a theoretical basis of constructing the adaptive joint SOC and model parameter 

estimation model, in which  is calculated from the voltage variation between the time points of  and , as�� � 

shown in Equation (4).

�� =
(	�� 	)

[��� � �
�

(�� ��)

� )]
(4)

In Equation (4),  is the CCV value at the time point ;  is the CCV value at the time point ;  is	� �� 	 � ��

the polarization resistance;  is the time constant for the parallel connected RC circuit of ;  is the current� ��� �

in the pulse charge-discharge test. As the model parameters are obtained at each SOC level, the point-to-point 

calculation treatment picks up data for the entire pulse power response, which is used sufficiently in the accurate 

identification process. According to the electrochemical characteristics, several electronic components are used 

in the state-space equations, including voltage sources, resistors, and capacitors. Combined with the internal 

resistance and resistance-capacitance network, the improved CM-EEC model is constructed to perform the 

high-precision battery state estimation, which is then introduced into the improved iterative calculation process, 

fully considering the circuit response to the SOC variation. The resistance-capacitance circuit determines the 
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10

output voltage towards the SOC variation, which is realized by combining advantages of electrochemical and 

electrical description.

As an effective model-based estimation approach, the appropriate CM-EEC modeling method is used to 

characterize the dynamic behavior of the voltage response to the specific SOC levels. As shown in Figure 1, the 

resistor-capacitor circuit boosts the modeling accuracy and structural effect. The configuration of the 

corresponding circuit model is adequate for the time-varying temperature conditions.  is the battery ohmic�0

resistance.  and  indicate the polarization resistance and capacitance respectively. The open-circuit�� �

voltage (OCV) is indicated by  which features a monotonous relationship to the SOC variation.  is the	� ��

current and  is the CCV. The OCV is reflected by , , and  together with the equivalent circuit 	� 	1 	2

components respectively, according to which the mathematical relationship is derived, as shown in Equation (5). 

	� = 	�( ) � 	1 � 	2 � (�0 × ��) � 	"� (�" × ��) (5)

In Equation (5),  is the OCV value corresponding to a particular SOC level;  is polarization	�( ) 	1

voltage for the parallel connected RC circuit of ;  is voltage for the parallel connected resistance circuit��� 	2

of ;  is the ohmic resistance;  is current flowing through the whole circuit;  is the reverse�#||�$ �0 �� 	"

voltage source for the influencing effect of the cell-to-cell difference;  is the added resistance influenced by�"

the cell-to-cell difference effect; , , and are taken as state variables;  is the observing vector. Aiming	1 	2 	�

at the dynamic power supply characteristics under wide-temperature-range conditions, the model parameter 

changing function is obtained along with the variation of the charge-discharge current rate, temperature, and 

other influencing factors, according to which the modeling equations are derived, as shown in Equation (6).

	1 = (��||�)��;	2 = (�#||�$)��;  = 1 � ��� (&'�) (6)

In Equation (6),  is polarization voltage for the parallel connected RC circuit of ;  is the voltage	1 ��� 	2
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11

for the parallel connected resistance circuit of ;  is the SOC value that can be calculated by the�#||�$   

closed-circuit current , the Coulomb efficiency  and rated capacity . As for the improved CM-EEC��  & '�

modeling,  is set as a state variable matrix, which is then used to describe the battery operating[  	1 	2]

characteristics by the mathematical state-space equation. The parameters in the state-space equation have an 

obvious relationship towards the working condition change, including the environmental temperature and 

current. Besides, the main factor variation law also changes in the adaptive correction process to make the 

iterative calculation have self-learning characteristics, so that the model can be adaptive to the ambient 

environment change and the aging process. By introducing the adaptive self-learning mechanism, the 

environmental change is taken into consideration as well as the aging effect. The theoretical analysis is carried 

out for the online parameter identification, according to which the relationship is obtained between model 

parameters and influencing factors. Consequently, the state-space equation is obtained for the mathematical 

description, as shown in Equation (7).

{ [
 ( + 1

	�)( + 1

	�)( + 1
] = [

1 0 0

0 �� � �� 0

0 0 �� � �#][
 (
	�)(
	�)(

] + [
� � (&'�)

��(1 � �� � �)
�2

]�(()

	( + 1 = 	�( ( + 1) � 	�)( + 1 � 	�)( + 1 � �(()�0 � 	"� [�" × �(()]

(7)

In Equation (7),  is the state variable matrix;  and  are two adjacent time points;  is the[  	1 	2] ( + 1 ( ��

polarization resistance;  is the Coulomb efficiency;  is the rated capacity;  is the time constant for the& '� �

parallel connected RC circuit of ;  is the charge-discharge difference resistance that equals  for��� �2 �#

charging and  for discharging;  is the overall current at the time point of ;  is the OCV�$ �(() ( 	�( ( + 1)

value corresponding to the particular SOC level at the time point ;  is polarization voltage;  is( + 1 	1 	2

voltage for the parallel connected resistance circuit of ;  is the ohmic resistance;  is the reverse�#||�$ �0 	"

voltage source for the influencing effect of the cell-to-cell difference;  is the resistance for the added�"
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12

resistance influenced by the cell-to-cell difference and variation. Combining the variance and coefficient, SOB 

is introduced to describe the difference between the internal-connected battery cells. The SOB value is then 

incorporated into the online parameter identification and the iterative calculation process by implementing the 

mathematical expression, according to which the comprehensive CM-EEC model is established that is adaptive 

to the whole-life-cycle battery system features. Depending on the variation of the terminal CCV relaxation 

represented by the first part of Equation (8), the second-order constant parameters are calculated accordingly. 

Replacing the prediction coefficient factors and updating the calculation process, the mathematical relationship 

is obtained for the simplified expression of the polarization effect, as shown in Equation (8).

UL = UOC � IRpe

�t

3 = UOC � ae �bt,3 = RpCp
(8)

In Equation (8),  is CCV and  is OCV;  is the current;  is the polarization resistance;  is the time constant UL 	�  � �� �

for the parallel connected RC circuit of ;  and  are coefficient parameters for the exponential function. The online��� 6 b

parameter identification is conducted by mathematical modeling, in which the covariance is taken as a known 

factor together with the noise characteristics. And then, the additional environmental influence is described by 

sub-modules. After the state-space equation is established, the initial coefficient value is determined, so that the 

online parameter identification is implemented in a separate module. Aiming at the joint model parameter and 

SOC estimation, the iterative calculation schedule is constructed. Comparing the coefficients in two sub 

formulas illustrated in Equation (8), the mathematical calculation relationship for the polarization effect is obtained, as 

shown in Equation (9).

��( ) =
6

��
,�( ) =

1

(�� × 7)
(9)

In Equation (9),  is the polarization resistance;  is the polarization capacitance;  is the overall current flowing �� � ��

through the circuit;  and  are coefficient parameters for the exponential function. To obtain the accurate 6 b
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13

mathematical expression of the battery working characteristics, different internal factors are expressed by using 

the proposed adaptive CM-EEC model adaptive to the cell-to-cell cascaded structures of the lithium-ion battery 

packs. Assuming that the voltage before the current change is expressed by  and the varying voltage is	0

described by , the ohmic resistance calculation can be realized, as shown in Equation (10).	1

�0� � =
�	

��
=

(	1 � 	0)

��
(10)

In Equation (10), the state-space equation is conducted in practice by fully considering the working 

characteristics and internal composition. 

2.3. Dual Unscented Transformation

As high-order expansion terms of the transformation are ignored, the error triggered by the linearization processing may 

cause the system to diverge. Besides, it is difficult to obtain the derivative Jacobian matrix of the nonlinear battery system 

in practical application. Thus, an improved dual unscented transformation (DUT) method is introduced to calculate the 

random vector probability. The Sigma point set is formed in the unscented transformation on-premise of ensuring the 

sampling mean and covariance respectively. Applying the nonlinear transformation to each Sigma point, the sampled data 

point set is obtained, as shown in Equation (11). 

{ 89( � 1 = 8( � 1 + ( �� + (��( � 1)9)9 = 1,2:�
89( � 1 = 8( � 1 � ( �� + (��( � 1)9)9 = � + �)� + 2:�� (11)

In Equation (11),  is the -th particle for the time point of ; is the predicted value;  and 89( � 1 9 ( � 1 8( � 1 �

 are coefficient parameters;  is the covariance for the time point of . The DUT is conducted to realize( �( � 1 ( � 1

the mathematical joint estimation of the model parameters and SOC by the functional fitting treatment, which is adaptive to 

different working conditions. The mathematical expression is realized for the strong nonlinear characteristics, according to 

which the mathematical description is revealed for different conditions. The error caused by the state-space equation 

linearization is eliminated from the square root value obtained by the Cholesky decomposition. After obtaining the sigma 
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points, the quantity and variance matrices are predicted, as shown in Equation (12).

{
89( = 
; � 18

9
( � 1 + �( � 1<( � 1

8( =

��

=
9 = 0

>?
9 8

9
(

@8)( =

��

=
9 = 0

>#
9[8

9
(� 8(][89(� 8(]A + '(

(12)

In Equation (12),  is the -th particle for the time point of ; is the predicted value for the time 89( � 1 9 ( � 1 8(

point of ;  is the coefficient for the  particles in the state prediction process; is the covariance of all ( >?
9 �� + 1 @8)(

the  particles for the time point ; is the weighting factor for the covariance correction; is the �� + 1 ( >#
9 '(

processing noise covariance matrix. To avoid the situation of the nonpositive matrix, the square root decomposition is 

conducted to replace the covariance matrix in the iterative calculation. And then, the square root treatment is conducted for 

the covariance matrix  instead of  to participate in the iterative operation, as shown in Equation (13). ( @(

{
8( � 1 = [8( � 1,8( � 1 + � + ( (,8( � 1 � � + ( (]

B
( = CD{ >#

9(89( � 1 � 8(), '(}
 ( = #FG�<�$6��{ B

( ,80
( � 1 � 8(,>#

0}
(13)

In Equation (13),  is the state matrix formed by three parts of the mathematical treatment for the time8( � 1

point of ; is the predicted value for the time point of ; is the weighting factor for the covariance ( � 1 8( ( >#
9

correction with an initial value of ; is the processing noise covariance matrix; is the square root of covariance >#
0 '(  (

matrix; the Sigma point data set  is obtained by the mathematical DUT treatment. The square root value is then8( � 1

calculated for the covariance matrix to solve the problem that the matrix cannot be decomposed because of the negative 

definition, as shown in Equation (14). 

{
H9( � 1 = ( � 18( � 1 + �( � 1<( � 1

H( =

��

=
9 = 0

>?
9 H

9
( � 1

(14)

In Equation (14),  is the observation value of the -th particle for the time point of ; is the H9( � 1 9 ( � 1 8( � 1

state parameter value for the time point of ;  is the input parameter;  and  are the( � 1 <( � 1 ( � 1 �( � 1
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15

coefficient parameters for the observation function; is the processing noise covariance matrix. The resampling value '(

is brought into the observed equation to update the time-varying variables, according to which the variance 

matrix at the time point  is obtained by combining the predicted value and the calculated value according to (

the weighting factors, as shown in Equation (15).

{
B
HH = CD{ >#

9(H9( � 1 � H(), �(}
 HH = #FG�<�$6��{ B

HH,(H0
( � 1 � H(),>#

0}

@8H =

��

=
9 = 0

>#
9[8

9
( � 1 � 8(][H9( � 1 � H(]A

(15)

In Equation (15), is the variance matrix of the output variable at the time point ; is weighting factors  HH ( >#
9

for the covariance correction with the initial value of ; is the state matrix formed by three parts of the >#
0  8( � 1

mathematical treatment for the time point of ;  is the predicted value for the time point of ;  is the( � 1 8( ( '(

processing noise covariance matrix;  is the covariance matrix of the state quantity. And then, the observed state@8H

quantity of the state-space equation is introduced to calculate the Kalman gain, as shown in Equation (16).

;( = @8H ( AHH HH) (16)

In Equation (16),  is the Kalman gain that has a weighting relationship between predicted and observed;(

values;  is the covariance matrix of state quantity;  is the variance matrix of the output variable.@8H  HH

Considering temperature and charge-discharge current variation influence the specific parameters of 

Ampere-hour (Ah) integration, the main factors are considered to describe the influences on the coulomb effect 

and charge-discharge efficiency. The capacity attenuation factor is proposed innovatively to characterize the 

coulomb and charge-discharge current efficiency effect on the available battery capacity, which is used to 

calibrate the available capacity for specific wide-temperature-range conditions. And then, the state matrix is 

updated as well as the error covariance to complete the iterative calculation, as shown in Equation (17).

{8( = 8( + ;((H(� H(),	( = ;( HH
 ( = #FG�<�$6��{ ( � 1,	(, � 1} (17)
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In Equation (17),  is the corrected state value for the time point of ;  is the predicted state value for the8( ( 8(

time point of ;  is the Kalman gain that has a weighting relationship between predicted and observed( ;(

values;  is the measured observation value for the time point of ;  is the predicted observation value forH( ( H(

the time point of ;  is the variance matrix of the output variable for the time point of . In the iterative(  ( (

calculation procedure, the state matrix and covariance are brought into the step-to-step correction. The repeated 

prediction-correction treatment is conducted to update the state matrix, making the estimated state approach the 

measured value effectively. The available capacity is calibrated by taking the influencing factors into account, 

which corrects the estimation error effectively caused by the Coulomb and charge-discharge efficiency change.

The influencing calibration of the different temperature and charge-discharge current improves the estimation 

effect on the extreme temperature and current rate conditions. The proposed WFC-DKF algorithm realizes the 

accurate working state and model parameter estimation considering the low temperature and high discharging 

current rate influence. After analyzing the merits and demerits, the estimation accuracy is improved effectively 

that is adaptive to the temperature, current rate, and time-varying SOH influence. The varying capacity is 

analyzed for different temperature conditions and the improved Ah integral formula is constructed, as shown in 

Equation (18).

 ��� =  A�� � 1) � &I
�

� � 1

�

A
$� (18)

In Equation (18),  is the SOC factor for the temperature  at the time point of ;  is the ��� A �  A�� � 1)

predicted value for the temperature  converted from the previous time point;  is the battery capacityA A

considering the temperature influence of ; - is the coulomb efficiency. The available capacity change is A

considered according to the temperature variation, which determines the SOC conversion that varies from the 

previous to the present state point, improving the Ah integral performance for the low-temperature environment. 

As the SOH and current rate influence on the SOC estimation cannot be ignored, the adaptive integral 

Page 16 of 37

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

calculation is realized by considering the parameter changes under the influence of three main factors, including 

temperature, charge-discharge current, and SOH. The shifting rule is further analyzed, according to which an 

improved composite correction factor is constructed for the Ah integral process, and the adaptive calculation 

formula is obtained, as shown in Equation (19).

 ��� =  �A)��(0) �
I
�

0
�$�

[J B �A)��]
=  �A)��(0) �

I
�

0
�$�

K
(19)

In Equation (19), is the state factor converted to the present temperature  and current rate   �A)��(0) A �

from the previous time point by the combined analysis of Equation (18). During the iterative calculation 

process, the predicted value is updated by the assignment and conversion, which is also corrected by the 

real-time measured CCV value before each cyclic calculation step.  is the state parameter at the present  ���

temperature and current rate conditions.  is a capacity attenuation factor that varies from 0.8 to 1.0. C(T, R) J

refers to the maximum available capacity considering the temperature and current influence.  represents the J

composite capacity correction factor. Using the improved Ah integral formula, the state estimation performance 

is optimized. Considering the environmental factors of the temperature difference and regional climate 

variation, the working conditions of lithium-ion batteries are affected greatly. As the average discharging 

current varies frequently from the power supply application and the internal parameters, the battery performance 

declines gradually along with the increasing charge-discharge cycles, and the composite capacity correcting 

factor plays a great role in improving the power supply performance.

2.4. Weighting Factor Correction- Differential Kalman Filtering

The noise variance is difficult to be obtained by the UKF algorithm due to the vague characteristics, so it is usually set 

as a fixed vacant value to simplify the calculating amount. However, the inaccurate statistical noise characteristic reduces 

the estimation accuracy, which even makes the calculation divergence. Consequently, the adaptive weighting factor 
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correction is conducted that updates and transmits the noise matrix of the power supply application conditions. 

Automatically, the definition of the observed variable at the time point  is described by in the first part of Equation ( �(

(20), which is named as the absolute deviation. As the interest is mainly determined by the measurement error, the new 

covariance reveals error influence well, which is weighted by the previous M-time interest. After that, the new covariance 

is averaged to obtain the expression of  shown in the second part of Equation (20) named as the averaged absoluteL(

deviation. As  is quite big with large , the root mean square (RMS) deviation ( ) is used instead of  to obtainL( �( M( L(

smaller  and  with large , the calculation process of which is shown in the third part of Equation (20).' � L(

{
(1)�( = |H( - H(�( - 1|

(2)L( = (
1

N)
(

=
9 = ( -N + 1

�(�(
A

(3)M( = L( = ��PN�

(

=
9 = ( -N + 1

�(�(
A

(20)

In Equation (20),  is the absolute deviation obtained by the comparison of the measured  and observed variable�( H(

 at the time point ;  is averaged absolute deviation;  is the RMS deviation. As the estimation result isH(�( - 1 ( L( M(

influenced greatly by the virtual window width and urged by iterative precision-correction treatment, the covariance value 

is predicted real-timely by the estimation principle, and  represents the window size. For the limited external measurable N

signal detection and the discretized digital sampling noise, the cumulative error is brought into the iterative calculation, so 

the updating treatment of the processing and observing noise is introduced, as shown in Equation (21).

(1){'( = ;(L(;(
A + L(

�( = L( - (@((
A Q(2){'( = ;(M(;(

A + M(
�( = M( - (@((

A (21)

In Equation (21),  is the processing noise covariance matrix;  is the observing noise covariance matrix;  is'( �( L(

averaged absolute deviation;  is the Kalman gain that has a weighting relationship between predicted and;(

observed values;  is the RMS deviation. The observation noise is inseparable from  to improve the estimationM( L(

accuracy along with the computational time-varying minimization treatment, and the previous three unstable innovation 
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parts are calculated systematically as . Since decreases gradually along with the time extension and tends to be N= 3 �(

zero eventually, it is negligible for the portion of , so that the single-chip realization is conducted in a stable(@((
A

operating state above 3.24 V described by  with the calculated remaining power of  and the initial  = '/'� '

value of . CCV is characterized by  with a maximum SOC value of 1, so the ratio of  to  is the'� 	� ' '�

present SOC value and the estimation error is obtained by real-time core parameter measurement and 

estimation. 

2.5. Differential prediction-correction 

The available energy prediction is implemented by using the relationship between OCV and power 

availability, in which the Ah segmentation between temperature coefficient and the WFC-DKF algorithm is 

used for iterative battery state calculation. This algorithm uses minimum variance to realize the optimal 

co-estimation of working state and modeling parameters, which predicts variable factor values according to the 

recursive optimal state from the previous time point. The predicted value is then corrected by the difference 

between the observed and predicted values to guarantee the reliability that is suitable for both stationary and 

non-stationary estimation processes. Furthermore, the prediction-correction treatment is revealed, and the 

real-time performance evaluation is implemented conveniently. The state-space form of the scientific 

discretization is designed, as shown in Equation (22).

{8( = 
( - 18( - 1 + �(
-1
<( � 1 + R( - 1

H( = (8( + �(<( + S( (22)

In Equation (22),  is the state parameter for the time point of ;  is the state parameter for the time8( ( 8( - 1

point of ;  is the coefficient for the  particles in the state prediction process; is the covariance ( � 1 >?
9 �� + 1 @8)(

of all the  particles for the time point of ; is weighting factors for the covariance correction; is the �� + 1 ( >#
9 '(

processing noise covariance matrix. Consequently, a linear relationship is constructed for the input and output 
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variables, in which the prediction effect is obtained for the expected period and the CCV value exhibits strong 

nonlinearity respectively. Therefore, the specific calculating flowchart is designed to overcome the traditional 

limitations and restrictions, according to which the prediction accuracy is improved greatly and the calculation 

error is restrained effectively. And then, the required state variable is initialized as well as the covariance 

without repetition, as shown in Equation (23).

80|0 = ��80),@0|0 = T6D�80) (23)

In Equation (23), is the estimated initial state parameter that is obtained by the expected calculation; 80|0

 is the initial covariance that is obtained by the variance treatment;  is the initial state. And then, the initial @0|0 80

state parameters are obtained by the expectation and variance calculation. The calculation structure is 

substituted to obtain a high-accuracy predicting effect and extend the application range of the nonlinear battery 

system, which has strong nonlinear changes towards the parameter variation on internal resistance, CCV, and 

available energy for the power supply operation that is linearized repeatedly by the first-order Taylor expansion. 

The state variable is updated real-timely and the prediction is investigated by Equation (24).

8(�( - 1 = 
( - 18( - ��( - 1 + �( - 1<( - 1 (24)

In Equation (24),  is the predicted state parameter from the time point  to the time point ;8(�( - 1 ( - 1 (

 is the input parameter;  and  are the coefficients for the state and input correction<( - 1 
( - 1 �( - 1

parameters. The Taylor truncation error is produced in the linearization process, as the second-order and other 

high-order terms are neglected in the calculation process, which leads the prediction model to diverge in the 

calculation process. Moreover, the Jacobian matrix is calculated repeatedly in each cycling calculation step, 

which prolongs the computational time as well as the remarkable substantial resources. Consequently, the error 

covariance is updated with high reliability, as shown in Equation (25).
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@(�( � 1 = �[(8( - 8(�( - 1)(8( - 8(�( - 1)A] = 
( - 1@( � ��( � 1
( - 1
A + '( - 1 (25)

In Equation (25),  is the predicted error covariance from the time point  to the time point ;@(�( � 1 ( - 1 (

 is the state parameter for the time point of ;  is the predicted state parameter from the time point 8( ( 8(�( - 1 (

 to the time point ;  is the error covariance for the time point ;  is the coefficient- 1 ( @( � ��( � 1 ( - 1 
( - 1

matrix for the state function;  is the processing noise variance. Thus, the covariance value is optimized by'( - 1

the iterative calculation, in which the state and observation equations have nonlinear time-continuous 

characteristics. Consequently, the nonlinearity degree returns to be normal with high accuracy. Therefore, the 

global convergence is calculated and stretched, in which the state-space equations are used relatively and the 

Kalman gain matrix is obtained, as shown in Equation (26).

;( = @(�( - 1(
A((@(�( - 1(

A + �() -1 (26)

In Equation (26),  is the Kalman gain;  is the predicted error covariance from the time point ;( @(�( � 1 ( -

 to the time point ;  is the coefficient matrix for the observation function;  is the prediction noise1 ( ( �(

variance. The proposed derivative WFC-DKF algorithm is introduced into the iterative calculation, in which an 

improved linearizing strategy is investigated and the state variable measurement is updated, as shown in 

Equation (27).

8(�( = 8(�( - 1 + ;((H( - (8(�( - 1 - �(<() (27)

In Equation (27),  is the corrected state parameter for the time point of ;  is the predicted state8(�( ( 8(�( - 1

parameter from the time point  to the time point ;  is the Kalman gain;  is the observed( - 1 ( ;( H(

parameter;  is the coefficient matrix for the predicted state parameters;  is the coefficient matrix for the( �(

input parameters. Consequently, an approximation of the probability density distribution is conducted for state 

variables to reinforce the stability reflected by the correcting process. 
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In Figure 3, the experimental platform structure includes the following components: (1) the battery 

charge-discharge tester (CT-4016-5 V100A-NTFA); (2) the independent-control temperature testing chamber; 

(3) the supporting experimental equipment (BTT-331C); (4) the charge-discharge measurement-control host.

The main charge-discharge hybrid pulse power test is designed to verify the accuracy of the proposed CM-EEC 

model. The parameter identification validity is evaluated by comparing the estimated CCV value with the 

measured data for the same input current conditions. If the deviation is large, it indicates that parameters are not 

recognized with a high-precision effect or the model accuracy is defective. 

3.2. Parameter Identification and Adaptive Filtering

The OCV value equals the stable electromotive force when the battery is shelved for more than 30 minutes, 

which has a close relationship with each other. In each step-by-step test, the battery is charged with the 

recommended C/2 current rate for 12 minutes, which is followed by a relaxation period of 40 minutes, making 

the battery return to a stable condition before the next cyclic test is conducted. The CCV value is measured and 

the experiment is continued to be repeated until the entire experimental test is completed. The curve fitting 

method is used to describe the polynomial relationship between OCV and SOC. In the curve fitting analysis, 

 has a functional relationship to the SOC variation, which is expressed by the 6-order polynomial formula, 	�

as shown in Equation (28).

	� = U( ) = @1 ×  6 + @2 ×  5 + @3 ×  4 + @4 ×  3 + @5 ×  2 + @6 ×  + @7

= 20.08 ×  6 � 61.22 ×  5 + 68.12 ×  4 � 32.07 ×  3 + 5.234 ×  2 + 0.6794 ×  + 3.36
(28)

In Equation (28), P1 to P7 are coefficient parameters obtained by the least-squares curve fitting treatment, in 

which  represents the converting function of  and . The OCV value is 3.36 V when SOC turns to beU( )  	�

zero. The corresponding relationship is used in the revised mathematical description of subsequent parameters 

to obtain the approximate capacity. The model parameters of polarization resistance and capacitance are 

Page 23 of 37

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24

obtained by least-squares curve fitting according to the formula defined in Equations (8) and (9). Consequently, 

the experimental results are obtained, as shown in Table 1.

Table 1 Discharging profile criteria under different SOC levels

S (%) UOC (V) R0 ?KA Rp1 ?KA Rp2 ?KA Cp1 (F) Cp2 (F)

10% 3.4545 0.00148 0.00069 0.0001 17529 4495

20% 3.5367 0.00140 0.00003 0.00045 13469 27034

30% 3.5900 0.00135 0.00003 0.00038 17552 31568

40% 3.6163 0.00132 0.00034 0.00003 33144 29758

50% 3.6511 0.00131 0.00003 0.00034 20421 31815

60% 3.7366 0.00131 0.00004 0.00057 20176 23233

70% 3.8309 0.00130 0.00004 0.00064 18860 25931

80% 3.9360 0.00130 0.00004 0.00056 23504 25388

90% 4.0513 0.00130 0.00003 0.00048 19710 25491

100% 4.1840 0.00131 0.00003 0.00045 26053 28427

In Table 1, the factor influencing effect is used to describe the battery working characteristic changes of 

voltage, internal resistance, temperature, and self-discharge parameters. And then, the correlation feature is used 

for internal resistance, capacity uniformity, voltage, cycling lifespan, and output characteristics, which is used to 

obtain the CCV altering law towards the variation of the current rate, temperature, and other factors. Combined 

with experimental analysis, the in-depth influencing mechanism is discovered for the operating condition 

changes to obtain the characteristic variation law of the dynamic packing application. The partial least square 

and polynomial fitting algorithms are used to explore the mathematical representation approach suitable for 

different working conditions, realizing the accurate battery characteristic description. The electrical equivalent 

model is designed and established by the integration of the resistance-capacitance circuit. As the experimental 

results of R0, Rp1, Rp2, Cp1, and Cp2 reflect parameters respectively for the improved CM-EEC model, the curve fitting is 

conducted to obtain the parameter relationship. Subsequently, the model parameter values can be obtained according to 

the polynomial treatment. The evaluation parameters are introduced to analyze the estimation effect, including mean 

squared error (MSE) and root mean squared error (RMSE). Considering both the accuracy and the calculation complexity, 
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In Figure 4, the original sampling process is described in subfigure (a), which is conducted for the fixed periods in the 

time domain even when the sampling interval is short. And then, an iterative operation is performed at each sampling data 

point to update the co-estimation result of the working state and model parameters. The Riemann integral treatment is 

conducted corresponding to each sampling time point, as shown in subfigure (b). The dense-red dotted line depicts that 

mounts of iterative operations have been carried out in this period, but the estimation result converts little. Consequently, 

the iterative operation of sampling data points in this period is redundant and wastes a lot of processing resources. To 

optimize the iterative computation, the computational sampling is combined with the Lebesgue integral treatment. The 

schematic Lebesgue sampling diagram is shown in subfigure (c), which is dissimilar to the Riemann sampling. During the 

industrial application of lithium-ion batteries, so the Riemann sampling wastes more processing resources in practical 

engineering applications, while the Lebesgue sampling point changes obviously according to the SOC variation. The 

density-red dotted line represents the calculation number variation shown in subfigure (d). The denser the dotted line, the 

more the calculation number is. The calculation number reduces in a stage when the SOC changes slowly. When the SOC 

change is insignificant in a period, the iterative operation is an iterative operating strategy in the SOC estimation process 

that greatly reduces the processing occupation time requirements.

3.3. Multiple Current-rate Characteristic Tests

The experiments adopt mixed pulse power performance of the battery charge-discharge test, recording the 

OCV-SOC change for the analog circuits and current. And then, the state-space equation of the CM-EEC model 

is used to obtain the internal model parameters. The pulse power test is conducted in the charging process to 

obtain the CCV value for various current conditions. The OCV-SOC relationship curve is obtained by 

experimental results, in which the theoretical value of various model parameters is obtained by the characteristic 

description equations. The charging mode of constant-current (CC) to constant-voltage (CV) is conducted by 
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taking 4.20 V as the terminal charging voltage. The nominal charging current rate is set to be 0.20 C to 1.20 C 

in the experiment to obtain the CV variation curve in the charging process, as shown in Figure 5.
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Figure 5 Experimental voltage response characteristics for battery cells and packs

In Figure 5, the discharging experiment is carried on the lithium-ion batteries by CC treatment using 

different magnifying current rates, and the relationship between voltage and time is obtained at each discharging 

current rate. As can be known from the observation curve, the available capacity is smaller with a higher 

discharge current rate. When the SOC continues to decline, the bigger the current rate, the faster the discharge 

speed is. The OCV-SOC calibration is conducted as an intermittent discharge result. For each SOC=0.1 

variation, the battery is shelved for 45 minutes before the next experimental test. The battery CCV value in this 

stage is used as OCV value. And finally, the relationship curve is obtained between OCV and SOC through the 

experimental tests shown in Figure 5 (c) and (d). In Figure 5 (d), U1 is the voltage value at the end of pulse 
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(c) Capacity variation towards temperature change (d) OCV variation at different temperature conditions

Figure 6. Experimental voltage response to the complex time-varying current variation

In Figure 6, the CCV change in the pulse power test is depicted as illustrated in subgraph (a) and (b); the 

available capacity is calibrated at different SOC conditions, according to which the capacity changing curve 

towards the temperature variation is shown in subgraph (c); the OCV switching law is obtained through an 

experimental test corresponding to different temperature conditions, as shown in subgraph (d). The battery CCV 

value increases gradually after a one-hour shelved period at the end of each CC discharge treatment. The 

internal chemical reaction is struck as a basic SOB considering the thermal effect, so the CCV value at this time 

point equals the OCV value. Consequently, the OCV-SOC relationship is obtained. As the result is much the 

same as the OCV fitting curve, several useful data segments are extracted from the overall processing data 

before the parameter identification is performed. 

3.5. Closed-Circuit Voltage Prediction Effect

The model output voltage responds well to battery current variation, and the maximum error is 0.165 V. As 

the terminal voltage is 4.20 V for the charging CCV of lithium-ion batteries, the model accuracy is better than 

96.07%, which is the same with battery experimental characteristics under charging conditions. And then, the 

operating energy equilibrium index is analyzed separately for the CC discharge process. The CCV measurement 

scheme is designed as follows. S1: The battery is charged with 1/3 C to 4.15 V and turns to be CC charging 

until the current rate is lower than 0.05 C. S2: The battery is then shelved for 30 minutes. S3: The battery is 

discharged at a current rate of 0.2 C for 5.00% of the rated capacity and the CCV value is measured in this 

period until the charging is stopped. S4: The battery is shelved again for 30 minutes and the corresponding CCV 

value is recorded. S5: The procedure of S1 to S4 is repeated to carry out a cyclic pulse power test, and the CCV 
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considering complex working condition influences, which reflects the battery working characteristics effectively 

when the current rate and temperature changes. An improved weighting factor correction - differential Kalman 

filtering (WFC-DKF) model is constructed for the iterative calculation, in which the adaptive covariance 

matching treatment is investigated to update and transmit the noise matrix for high-power energy supply 

conditions. Combined with influencing factor analysis and correction strategy design, the inter-unit 

inconsistency effect is reduced effectively. The battery transient characteristics are adapted effectively by 

considering the current rate and temperature variation influence, which simulates the charge-discharge process 

accurately by considering the OCV change contributed to the current accumulation. The maximum error of the 

CCV traction is obtained with an error percentage of 1.80%. The maximum SOC estimation error for packing 

lithium-ion batteries is 1.114% for the long-term experimental tests with the MAE value of 0.00481 and RMSE 

value of 5.44085E-5. Verified by the complex time-varying working conditions, the model is adaptive to both 

the long-term and transient energy supply working conditions, including the fast and slow current changing 

processes. Thus, the improved CM-EEC modeling and WFC-DKF iterative calculation methods provide a 

useful reference for the working state monitoring of packing lithium-ion batteries in the long-term application 

and transient energy supply processes.

Data availability
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