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Abstract—Although Extreme Learning Machines (ELM) 

have been successfully applied for the classification of 

hyperspectral images (HSIs), they still suffer from three 

main drawbacks. These include: 1) Ineffective feature 

extraction in HSIs due to a single hidden layer neuron 

network used; 2) ill-posed problems caused by the random 

input weights and biases; and 3) lack of spatial information 

for HSIs classification. To tackle the first problem, we 

construct a multilayer ELM for effective feature extraction 

from HSIs. The sparse representation is adopted with the 

multilayer ELM to tackle the ill-posed problem of ELM, 

which can be solved by the alternative direction method of 

multipliers (ADMM). This has resulted in the proposed 

multilayer sparse ELM (MSELM) model. Considering that 

the neighboring pixels are more likely from the same class, 

a local block extension is introduced for MSELM to extract 

the local spatial information, leading to the local block 

MSELM (LBMSLM). The loopy belief propagation (LBP) 

is also applied to the proposed MSELM and LBMSELM 

approaches to further utilize the rich spectral and spatial 

information for improving the classification. Experimental 

results show that the proposed methods have outperformed 

the ELM and other state-of-the-art approaches. 

Index Terms—Extreme learning machine (ELM); 

hyperspectral images (HSI); local block multilayer sparse ELM 

(LBMSELM); loopy belief propagation (LBP); alternative 

direction method of multipliers (ADMM). 

I. INTRODUCTION 

n the last 1-2 decades, hyperspectral images (HSIs) have 

been widely and successfully applied in many application 

fields, such as crop analysis, geological research, environment 

mapping and the geology [1-4]. A pixel in HSIs is a 
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high-dimensional vector which contains the spectral responses 

from various spectral bands. Depending on the specific spectral 

range, the rich spectral information in HSIs allows to classify 

and identify from each pixel with certain physical and chemical 

parameters, such as temperature, moisture and chemical 

components [5]. Although relatively good results of 

classification have been reported, mainly using supervised 

learning, accurate classification of HSI remains a challenging 

problem due to the Hughes phenomenon [6], which is caused 

by the ratio of the large number of spectral bands and limited 

samples of training pixels. Besides, the materials from the same 

category may have different spectral features whilst different 

classes of samples may share similar spectral characteristic due 

to noise of the sensors and environments [7].  

To tackle these problems, a number of state-of-the-art 

algorithms have been proposed, such as the support vector 

machine [8] (SVM), the multi-kernel classification [9] (MK), 

the sparse multinomial logistic regression [10-11] and the 

extreme learning machine [12-13] (ELM). Besides, a number 

of methods have also been proposed for feature extraction, such 

as principal component analysis (PCA) and its variations 

[14-16], segmented auto-encoder [17] and singular spectrum 

analysis (SSA) [18-20]. Among these algorithms, the ELM has 

attracted much attention in terms of its good performance. 

   ELM has been proven a promise algorithm in many 

applications due to its fast implementation, straightforward 

solution and strong generalization capability [13, 21-23]. In 

[24-25], a theoretical assessment has shown the feasible 

performance of ELM. In [26], a regularized ELM has been 

proposed for regression with missing data. In [27], the ELM 

auto-encoder has been proposed for dimension reduction and 

feature extraction. ELM has also been applied for HSIs 

classification [28-32], for example, in [28-29], local binary 

patterns were used for feature extraction, followed by ELM for 

classification. In [30-31], ELM was employed for classification 

with features extracted using extended morphological profiles 

and bilateral filtering, respectively. In [32], an optimized 

extreme learning machine (OELM) was proposed for urban 

land cover classification in HSIs. Although ELM has achieved 

good performance in classification of HSI to some extent, three 

major deficiencies of ELM can be depicted as follows: i) 

Ineffective feature extraction due to its architecture of a single 

hidden layer feedforward neuron network; ii) the ill-posed 

problem of ELM caused by the random input weight and bias of 

ELM; and iii) lack of capability of extracting the rich spatial 
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information of HSIs. To tackle these three problems, we 

propose a multilayer sparse ELM (MSELM) and a further 

extended local block MSELM (LBMSELM) for effective 

feature extraction and classification of HSIs. Fig. 1 shows the 

workflows of the original ELM, and the proposed MSELM and 

LBMSELM algorithms for comparison. 

First, feature extraction is crucial for effective classification 

of HSIs. To this end, we aim to design a multilayer ELM to 

extract the efficient feature in order to realize the high 

classification accuracies. For the ill-posed problem caused by 

the random weights and bias, we impose the sparse 

representation to ELM. We construct the optimization function 

to realize the multilayer sparse ELM (MSELM) which can be 

solved by the alternative direction method of multiplier 

(ADMM) [33]. Details will be discussed in Section III-A.  

Second, due to the homogenous regions in HSIs where the 

neighborhood pixels within the regions consist of the same 

class materials or share similar spectral characteristics [34], 

neighboring pixels in spatial domain more likely belong to the 

same class [31]. In view of this, we further introduce the spatial 

information to the proposed MSELM to reduce the 

classification error. A local block area for each training pixel of 

HSIs is constructed and imposed to the optimization problem of 

the proposed MSELM in order to incorporate the spectral and 

spatial information in HSIs, namely local block MSELM 

(LBMSELM). More details can be found in Section III-B. 

The main contributions of this paper can be summarized as 

follows. First, we design a new ELM-based algorithm, called 

MSELM, for efficient feature extraction of HSIs and solving 

the ill-posed problem of ELM caused by random weights and 

bias. Second, we develop the proposed MSELM in order to 

reveal the local neighboring information in HSIs, namely 

LBMSELM. Comprehensive experiments have fully 

demonstrated the efficacy of the proposed methodologies. 

The rest of this paper is organized as follows. Section II 

describes the background of ELM. In Section III, the proposed 

frameworks are presented. The experiment results and analysis 

are given in Section IV. Section V concludes this paper with 

some remarks and suggestions.  

II. EXTREME LEARNING MACHINE (ELM) 

ELM is a generalized single layer feedforward neural 

network, where the weight vector and bias are randomly 

generated at the beginning of the learning process [32, 35]. 

Given N training samples 𝑋 ≡ (𝑥1;  𝑥2;   … ; 𝑥𝑁) ∈ 𝑅𝑁×𝑑  of a 

HSI, where d denotes the number of spectral bands, the 

corresponding labels of the given N training samples are 

denoted by 𝑌 = (𝑦1; 𝑦2;  … ; 𝑦𝑁) ∈ 𝑅𝑁×𝑀 , where M is the 

number of classes in the HSI that needs to be classified. If the 

i-th training sample belongs to the m-th class, we have  

𝑦𝑖,𝑗 = {
1,          𝑗 = 𝑚,

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                  (1) 

The ELM model with L hidden neurons and the activation 

function 𝐻(𝑥) [29] can be expressed as follows: 

∑ 𝛽𝑗𝐻(𝑤𝑗
𝑇 ∗ 𝑥𝑖 + 𝑏𝑗) = 𝑦𝑖

𝐿
𝑗=1 ,  i=1,2,…,N        (2) 

where 𝑤𝑗  and 𝑏𝑗 represent the weight vector and bias between 

input layer and hidden layer of ELM, respectively, and 𝛽𝑗 is the 

weight vector from the hidden layer to the output 

layer.  𝐻(𝑤𝑗𝑥𝑖 + 𝑏𝑗)  is the output of the j-th hidden neuron 

corresponding to the input sample 𝑥𝑖.  

The solution of 𝛽 in Eq. (2) can be directly obtained by: 

𝛽 = 𝐻†𝑌                                                (3)  

   
(a)                                                             (b)                                                                     (c) 

Fig. 1. Comparison of frameworks of the ELM (a), the proposed MSELM (b) and the proposed LBMSELM (c). 
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where 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑀] ∈ 𝑅𝐿×𝑀 , and 𝐻†  is the 

Moore-Penrose generalized inverse of matrix 𝐻 [36]. That is 

𝐻† = 𝐻𝑇(𝐻𝐻𝑇)−1 or 𝐻† = (𝐻𝑇𝐻)−1𝐻𝑇  and  

𝐻 = [
ℎ(𝑤1, 𝑏1, 𝑥1) ⋯ ℎ(𝑤1, 𝑏1, 𝑥𝑁)

⋮ ⋱ ⋮
ℎ(𝑤𝐿 , 𝑏𝐿 , 𝑥1) ⋯ ℎ(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁)

]            (4) 

Although ELM has many merits, it still has three main 

drawbacks: 1) As a single hidden layer feedforward neural 

network, ELM can’t effectively extract the features for 

classification of HSIs; 2) The random weights and bias of ELM 

will cause the ill-posed problem; and 3) The ELM can’t extract 

the useful spatial information for HSI classification hence the 

performance is constrained. To tackle these drawbacks, we 

propose the local block multilayer sparse extreme learning 

machine (LBMSELM) as detailed in the next section. 

III. THE PROPOSED FRAMEWORK 

A. Multilayer Sparse Extreme Learning Machine (MSELM)    

Given N training samples 𝑋 ≡ (𝑥1;  𝑥2;   … ; 𝑥𝑁  ) ∈ 𝑅𝑁×𝑑 

and the corresponding labels 𝑌 = (𝑦1; 𝑦2;  … ; 𝑦𝑁) ∈ 𝑅𝑁×𝑀 , 

the feature extraction problem can be formulated as: 

𝑋 = 𝑋∗ + 𝜓                                            (5) 

where 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ) ∈ 𝑅𝑁×𝑑  is the features extracted 

from X, and ψ is the redundancy feature of X. Then we can 

rewrite Eq. (5) as follows: 

   𝑋 = 𝑋𝛽∗ + 𝜓                                         (6) 

where 𝛽∗ = (𝛽1
∗, 𝛽2

∗, … , 𝛽𝑑
∗) ∈ 𝑅𝑑×𝑑. From Eq. (6), we can see 

that we aim to find a term β
∗
to extract features from X, i.e. 

X∗ = Xβ
∗
. Based on ELM, an optimization problem can be 

constructed to minimize the redundancy feature and 

classification error for improved classification as defined by: 

  𝑚𝑖𝑛
𝛽,𝛽∗

∥ 𝑋 − 𝑋𝛽∗ ∥𝐹
2 +∥ 𝑌 − 𝐻∗𝑇𝛽 ∥𝐹

2                (7) 

𝐻∗ = [𝐻∗(𝑥1
∗), 𝐻∗(𝑥2

∗), … , 𝐻∗(𝑥𝑁
∗ )] = 

[
ℎ∗(𝑤1, 𝑏1, 𝑥1

∗) ⋯ ℎ∗(𝑤1, 𝑏1, 𝑥𝑁
∗ )

⋮ ⋱ ⋮
ℎ∗(𝑤𝐿 , 𝑏𝐿 , 𝑥1

∗) ⋯ ℎ∗(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁
∗ )

]              (8) 

where T is the matrix transpose; 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑀) ∈ 𝑅𝐿×𝑀.  

Our aim is to construct a multilayer sparse extreme learning 

machine (MSELM) to extract effective features and solve the 

ill-posed problem of ELM that may lead to relatively low 

classification accuracy. According to Bartlett’s generalization 

theory [37], the smaller weight will result in less training error 

of the training model. To this end, the optimization model of 

MSELM is rewritten as: 

𝑚𝑖𝑛
(𝛽,𝛽∗)

1

2
∥ 𝛽∗ ∥𝐹

2+ 𝐶
2⁄ ∥ 𝜓𝑖 ∥2

2 +
1

2
∥ 𝑌 − 𝐻∗𝑇𝛽 ∥𝐹

2+ 𝜆 ∥ 𝛽 ∥1 

𝑠. 𝑡. 𝑥𝑖 − 𝑥𝑖𝛽∗ = 𝜓𝑖; i=1,2,..N                           (9) 

where 𝜓 = (𝜓1;  𝜓2; … ; 𝜓𝑁) ∈ 𝑅𝑁×𝑑. As seen in Eq. (9), the 

sparse representation is imposed to ELM, and the variable 

splitting principle [38] is adopted which consists a procedure to 

create new variables. The model in Eq. (9) is equal to 

𝑚𝑖𝑛
(𝛽,𝛽∗,𝑣)

1

2
∥ 𝛽∗ ∥𝐹

2+ 𝐶
2⁄ ∥ 𝜓𝑖 ∥2

2 +
1

2
∥ 𝑌 − 𝐻∗𝑇𝛽 ∥𝐹

2 + 𝜆 ∥ 𝑣 ∥1 

 𝑠. 𝑡.  𝑥𝑖
∗ − 𝑥𝑖𝛽∗ = 𝜓𝑖; 𝑣= 𝛽; i=1,2,..N                 (10) 

Applying the augmented Lagrangian [39] to Eq. (10), the 

above MSELM model can be solved by ADMM algorithms 

[33] as follows. 

        𝛽∗ = 𝑎𝑟𝑔 min
𝛽∗

{
1

2
∥ 𝛽∗ ∥𝐹

2 + 𝐶
2⁄ ∑ ∥ 𝜓𝑖 ∥2

2+𝑁
𝑖=1

          ∑ ∑ 𝛾𝑖,𝑚(𝑥𝑖 − 𝑥𝑖𝛽∗ − 𝜓𝑖)}𝑑
𝑚=1

𝑁
𝑖=1                                        (11) 

𝛽𝑡+1 = 𝑎𝑟𝑔 min
𝛽

{
1

2
∥ 𝑌 − 𝐻∗𝑇𝛽 ∥𝐹

2 +
𝜆∗

2
∥ 𝛽 − 𝑣𝑡 − 𝑑𝑡 ∥𝐹

2 }    

(12) 

𝑣𝑡+1 = 𝑎𝑟𝑔 min
𝑣

{ 𝜆 ∥ 𝑣 ∥1 +
𝜆∗

2
∥ 𝛽𝑡+1 − 𝑣 − 𝑑𝑡 ∥𝐹

2}        (13) 

𝑑𝑡+1 = 𝑑𝑡 − (𝛽𝑡+1 − 𝑣𝑡+1)                   (14) 

where 𝛾 = [𝛾1; 𝛾2;  … ; 𝛾𝑁] ∈ 𝑅𝑁×𝑑 is the Lagrange multiplies. 

𝛽∗ can be obtained by the Karush-Kuhn-Tucker (KKT) theory 

[40], that is to say: 

𝛽∗ = 𝑋𝑇(
𝐼2

𝐶
+ 𝑋𝑋𝑇)−1𝑋                              (15) 

𝛽𝑡+1 can be solved by the first-order derivation:  

 𝛽𝑡+1 = (𝐻∗𝐻∗𝑇 + 𝜆∗𝐼)
−1

(𝐻∗𝑌 + 𝜆∗(𝑣𝑡 + 𝑑𝑡))                (16) 

The 𝑣𝑡+1 can be solved by a simple soft-threshold [38] as: 

  𝑣𝑡+1 = 𝑠𝑜𝑓𝑡(𝛽𝑡+1 − 𝑑𝑡 ,
𝜆

𝜆∗)                         (17) 

where 𝑡  is the index of iterations;  𝜆  and 𝜆∗  are all positive 

values; 𝐼  is an identity matrix, whose dimension is 

corresponding to the dimension of H∗H∗𝑇
. We set 𝜆∗ = 10𝜆 for 

easy implementation and parameter tuning.  

Let �̂� = (�̂�1, �̂�2, … , �̂�𝑛) ∈ 𝑅𝑛×𝑑  be the two-dimensional 

(2-D) representation of n testing samples in a given HSI, the 

test process of the proposed MSELM can be achieved by: 

𝑓(�̂�𝑖) = 𝐻∗(�̂�𝑖
∗)𝛽 = 𝐻∗(�̂�𝑖

∗)𝑇(𝐻∗𝐻∗𝑇 + 𝜆∗𝐼)
−1

 

(𝐻∗𝑌 + 𝜆∗(𝑣 + 𝑑))      i=1,2,..,n,          (18) 

where 𝐻∗(�̂�𝑖
∗) = [ℎ∗(𝑤1 , 𝑏1, �̂�𝑖𝛽∗), … , ℎ∗(𝑤L, 𝑏L, �̂�𝑖𝛽∗)]𝑇 and  

�̂�𝑖
∗ = �̂�𝑖𝛽∗ .The pseudocodes for MSELM are given in 

Algorithm 1. 

B. Local Block MSELM (LBMSELM)  

For the 2-D representation of an HSI �̂� = (�̂�1, �̂�2, … , �̂�𝑛) ∈

𝑅𝑛×𝑑, the features extracted from �̂� can be represented by:   

      �̂�∗ = �̂�𝛽∗ = (�̂�1
∗;  �̂�2

∗; … ; �̂�𝑛
∗ ) ∈ 𝑅𝑛×𝑑                     (19) 

Let  𝑋∗ = (𝑥1
∗;  𝑥2

∗; … ; 𝑥𝑁
∗ ) ∈ 𝑅𝑁×𝑑 be the N training samples 

from �̂�∗  and 𝑌 = (𝑦1; 𝑦2;  … ; 𝑦𝑁) ∈ 𝑅𝑁×𝑀  denote their 

corresponding labels. As the spatially neighboring pixels more 

likely belong to the same class [41-44], we construct the spatial 

local block area of the training samples as 𝑋𝑆𝑆
∗ =
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𝑥1
∗;  𝑥2

∗; … ; 𝑥𝑁
∗ ; 𝑥11

∗ ;  𝑥21
∗ ; … ; 𝑥𝑁1

∗ ; … ; 𝑥1𝑝
∗ ;  𝑥2𝑝

∗ ; … ; 𝑥𝑁𝑝
∗  ) ∈

𝑅(𝑝+1)𝑁×𝑑, where p denotes the number of the pixels used in the 

neighborhoods of each training pixel. As such, the training 

model of LBMSELM can be defined by:  

𝛽𝑆𝑆
𝑡+1 = (𝐻𝑆𝑆

∗ 𝐻𝑆𝑆
∗ 𝑇 + 𝜆∗𝐼)

−1
(𝐻𝑆𝑆

∗ 𝑌∗ + 𝜆∗(𝑣𝑆𝑆
𝑡 + 𝑑𝑆𝑆

𝑡 ))      (20) 

𝑣𝑆𝑆
𝑡+1 = soft(𝛽𝑆𝑆

𝑡+1 − 𝑑𝑆𝑆
𝑡 ,

𝜆

𝜆∗)                            (21) 

𝑑𝑆𝑆
𝑡+1 = 𝑑𝑆𝑆

𝑡 − (𝛽𝑆𝑆
𝑡+1 − 𝑣𝑆𝑆

𝑡+1)                       (22) 

where 𝐼 is an identity matrix and its dimension depends on the 

dimension of 𝐻𝑆𝑆
∗ 𝐻𝑆𝑆

∗ 𝑇
, 𝑌∗ = (𝑌, 𝑌, . . , 𝑌) ∈ 𝑅(𝑝+1)𝑁×𝑀 , and 

𝐻𝑆𝑆
∗ ∈ 𝑅𝐿×(𝑝+1)𝑁 is given by 

𝐻𝑆𝑆
∗ = [

ℎ∗(𝑤1, 𝑏1, 𝑥1
∗) ⋯ ℎ∗(𝑤1 , 𝑏1, 𝑥𝑁𝑝

∗ ) 

⋮ ⋱ ⋮
ℎ∗(𝑤L, 𝑏L, 𝑥1

∗) ⋯ ℎ∗(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁𝑝
∗ )

]   (23) 

The testing process of the proposed LBMSELM is given by: 

𝑓(�̂�𝑖) = 𝐻𝑆𝑆
∗ (�̂�𝑖

∗)𝑇𝛽𝑆𝑆 = 𝐻𝑆𝑆
∗ (�̂�𝑖

∗)𝑇(𝐻𝑆𝑆
∗ 𝐻𝑆𝑆

∗ 𝑇 + 𝜆∗𝐼)
−1

 

(𝐻𝑆𝑆
∗ 𝑌∗ + 𝜆∗(𝑣𝑆𝑆 + 𝑑𝑆𝑆)),   i=1,2,..,n,          (24) 

where 𝐻𝑆𝑆
∗ (�̂�𝑖

∗) = [ℎ∗(𝑤1, 𝑏1, �̂�𝑖
∗), … , ℎ∗(𝑤L, 𝑏L, �̂�𝑖

∗)]𝑇. 

Two cases are considered, i.e. p = 4  and p = 8 , 

corresponding to 4-neighbors and 8-neighbors used in a 3x3 

spatial window, respectively. The derived LBMSELM 

approaches are namely LBMSELM4 and LBMSELM8, where 

the pseudocodes of the LBMSELM algorithm are given in 

Algorithm 2. 

 
  Algorithm 1: The MSELM 

Input: The training sample pairs 𝑋 ≡ (𝑥1;  𝑥2;   … ; 𝑥𝑁   ) ∈ 𝑅𝑁×𝑑 and 𝑌 = (𝑦1; 𝑦2;  … ; 𝑦𝑁) ∈ 𝑅𝑁×𝑀, where 

N is the number of training samples;  the parameters 𝜆, 𝐿, 𝐶, 𝑑 = 0. 

Training phase: 

𝐻(): The sigmoid function. 

𝛽: The output weight from the third layer to output layer. 

1: Solve optimization problem to obtain the feature extraction parameter: 

𝛽∗ = 𝑎𝑟𝑔 min
𝛽∗

{
1

2
∥ 𝛽∗ ∥𝐹

2+ 𝐶
2⁄ ∑ ∥ 𝜓𝑖 ∥2

2+ ∑ ∑ 𝛾𝑖,𝑚(𝑥𝑖 − 𝑥𝑖𝛽∗ − 𝜓𝑖)}
𝑑

𝑚=1

𝑁

𝑖=1

𝑁

𝑖=1
 

⟹ 𝛽∗ ← 𝑋𝑇(
𝐼2

𝐶
+ 𝑋𝑋𝑇)−1𝑋 

2: Obtain the effective feature: 𝑋∗ ← 𝑋𝛽∗; 

3: Randomly generate input weights {𝑤1, … 𝑤𝐿} and bias {𝑏1, … , 𝑏𝐿}, then calculate the third layer matrix 

H(𝑥𝑖
∗) = [𝐻1(𝑤1 ∗ 𝑥𝑖

∗ + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝑥𝑖
∗ + 𝑏𝐿)]𝐿×1

𝑇  

4: Calculate the preliminary weight for 𝛽 from third layer to output layer: 𝛽 = (𝐻∗)†𝑌𝑇   

5: Based on the sparse representation via variable splitting and augmented Lagrangian. 

5.1  Set t=0. 

5.2 𝛽𝑡+1 = 𝑎𝑟𝑔 min
𝛽

{
1

2
∥ 𝑌 − 𝐻∗𝑇𝛽 ∥𝐹

2 +
𝜆∗

2
∥ 𝛽 − 𝑣𝑡 − 𝑑𝑡 ∥𝐹

2 } 

          ⟹ 𝛽𝑡+1 ← (𝐻∗𝐻∗𝑇 + 𝜆∗𝐼)
−1

(𝐻∗𝑌 + 𝜆∗(𝑣𝑡 + 𝑑𝑡)) 

5.2 𝑣𝑡+1 = 𝑎𝑟𝑔 min
𝑣

{ 𝜆 ∥ 𝑣 ∥1 +
𝜆∗

2
∥ 𝛽𝑡+1 − 𝑣 − 𝑑𝑡 ∥𝐹

2 } 

⟹ 𝑣𝑡+1 ← 𝑠𝑜𝑓𝑡(𝛽𝑡+1 − 𝑑𝑡 ,
𝜆

𝜆∗
)  

5.3 𝑑𝑡+1 ← 𝑑𝑡 − (𝛽𝑡+1 − 𝑣𝑡+1) 

5.4 Increase t to t+1; 

5.5 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 5.2. 

Prediction phase: 

Input: �̂� = (�̂�1, �̂�2, … , �̂�𝑛) ∈ 𝑅𝑛×𝑑   
1: Extract the effective features:         �̂�𝑖

∗ = �̂�𝑖𝛽∗ 

2: Calculate the output layer matrix： 

𝐻∗(�̂�𝑖
∗) = [ℎ∗(𝑤1�̂�𝑖

∗ + 𝑏1), … , ℎ∗(𝑤𝐿�̂�𝑖
∗ + 𝑏𝐿)]𝐿×1

𝑇 ;  i=1,…,n. 

3: 𝑓(�̂�𝑖) = 𝐻∗(�̂�𝑖
∗)𝛽 = 𝐻∗(�̂�𝑖

∗)𝑇(𝐻∗𝐻∗𝑇 + 𝜆∗𝐼)
−1

(𝐻∗𝑌 + 𝜆∗(𝑣 + 𝑑)),  i=1,2,..,n 

 
  Algorithm 2:The LBMSELM 

Input: The training sample pairs 𝑋 ≡ (𝑥1;  𝑥2;   … ; 𝑥𝑁   ) ∈ 𝑅𝑁×𝑑 and 𝑌 = (𝑦1; 𝑦2;  … ; 𝑦𝑁) ∈ 𝑅𝑁×𝑀, where 

N is the number of training samples; the parameters 𝜆, 𝐿, 𝐶, 𝑑𝑆𝑆 = 0. 

Training phase: 

𝐻(): The sigmoid function. 
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𝛽: The output weight from the third layer to output layer. 

1: Solve optimization problem to obtain the feature extraction parameter: 

𝛽∗ = 𝑎𝑟𝑔 min
𝛽∗

{
1

2
∥ 𝛽∗ ∥𝐹

2+ 𝐶
2⁄ ∑ ∥ 𝜓𝑖 ∥2

2+ ∑ ∑ 𝛾𝑖,𝑚(𝑥𝑖 − 𝑥𝑖𝛽∗ − 𝜓𝑖)}
𝑑

𝑚=1

𝑁

𝑖=1

𝑁

𝑖=1
 

⟹ 𝛽∗ ← 𝑋𝑇(
𝐼2

𝐶
+ 𝑋𝑋𝑇)−1𝑋 

2: Obtain the effective feature: X∗ ← 𝑋𝛽∗; 

3. Construct the local block to obtain the spectral-spatial (SS) information. 

𝑋𝑆𝑆
∗ = (𝑥1

∗;  𝑥2
∗; … ; 𝑥𝑁

∗ ; 𝑥11
∗ ;  𝑥21

∗ ; … ; 𝑥𝑁1
∗ ; … ; 𝑥1𝑝

∗ ;  𝑥2𝑝
∗ ; … ; 𝑥𝑁𝑝

∗  ) ∈ 𝑅(𝑝+1)𝑁×𝑑 

𝑌∗ = (𝑌, 𝑌, . . , 𝑌) ∈ 𝑅(𝑝+1)𝑁×𝑀 

4: Randomly generate input weights {𝑤1, … 𝑤𝐿} and bias {𝑏1, … , 𝑏𝐿}, then calculate the fourth layer matrix 

𝐻𝑆𝑆
∗ = [

ℎ∗(𝑤1, 𝑏1, 𝑥1
∗) ⋯ ℎ∗(𝑤1, 𝑏1, 𝑥𝑁𝑝

∗ ) 

⋮ ⋱ ⋮
ℎ∗(𝑤L, 𝑏L, 𝑥1

∗) ⋯ ℎ∗(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁𝑝
∗ )

] ∈ 𝑅𝐿×(𝑝+1)𝑁 

5: Calculate the preliminary weight for 𝛽 from fourth layer to output layer:  

𝛽𝑆𝑆 = (𝐻𝑆𝑆
∗ )†𝑌∗𝑇

  
6: Based on the sparse representation via variable splitting and augmented Lagrangian. 

6.1  Set t=0. 

6.2 𝛽𝑆𝑆
𝑡+1 = 𝑎𝑟𝑔 min

𝛽
{

1

2
∥ 𝑌 − 𝐻𝑆𝑆

∗ 𝑇𝛽𝑆𝑆 ∥𝐹
2 +

𝜆∗

2
∥ 𝛽𝑆𝑆 − 𝑣𝑆𝑆

𝑡 − 𝑑𝑆𝑆
𝑡 ∥𝐹

2} 

          ⟹ 𝛽𝑆𝑆
𝑡+1 ← (𝐻𝑆𝑆

∗ 𝐻𝑆𝑆
∗ 𝑇 + 𝜆∗𝐼)

−1
(𝐻𝑆𝑆

∗ 𝑌∗ + 𝜆∗(𝑣𝑆𝑆
𝑡 + 𝑑𝑆𝑆

𝑡 )) 

6.2 𝑣𝑆𝑆
𝑡+1 = 𝑎𝑟𝑔 min

𝑣
{ 𝜆 ∥ 𝑣 ∥1 +

𝜆∗

2
∥ 𝛽𝑆𝑆

𝑡+1 − 𝑣 − 𝑑𝑆𝑆
𝑡 ∥𝐹

2}    

⟹ 𝑣𝑆𝑆
𝑡+1 ← 𝑠𝑜𝑓𝑡(𝛽𝑆𝑆

𝑡+1 − 𝑑𝑆𝑆
𝑡 ,

𝜆

𝜆∗
)  

6.3 𝑑𝑆𝑆
𝑡+1 ← 𝑑𝑆𝑆

𝑡 − (𝛽𝑆𝑆
𝑡+1 − 𝑣𝑆𝑆

𝑡+1)   

6.4 Increase t to t+1; 

6.5 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 6.2. 

Prediction phase:       

Input: �̂� = (�̂�1, �̂�2, … , �̂�𝑛) ∈ 𝑅𝑛×𝑑   
1: Feature extraction:        �̂�𝑖

∗ = �̂�𝑖𝛽∗ 

2: Calculate the output layer matrix 

        𝐻𝑆𝑆
∗ (�̂�𝑖

∗) = [ℎ∗(𝑤1�̂�𝑖
∗ + 𝑏1), … , ℎ∗(𝑤𝐿�̂�𝑖

∗ + 𝑏𝐿)]𝐿×1
𝑇   i=1,…,n. 

3: 𝑓(�̂�𝑖) = 𝐻𝑆𝑆
∗ (�̂�𝑖

∗)𝑇𝛽𝑆𝑆 = 𝐻𝑆𝑆
∗ (�̂�𝑖

∗)𝑇(𝐻𝑆𝑆
∗ 𝐻𝑆𝑆

∗ 𝑇 + 𝜆∗𝐼)
−1

(𝐻𝑆𝑆
∗ 𝑌∗ + 𝜆∗(𝑣𝑆𝑆 + 𝑑𝑆𝑆)) 

C. Extending LBMSELM with Loopy Belief Propagation: 

LBMSELM-LBP 

The proposed LBMSELM can efficiently extract the features 

and spatial information in HSIs, as well as solve the ill-posed 

problem of ELM caused by random weights and biases. 

Although LBMSELM can improve the classification accuracy 

of conventional ELM, the classification results can be further 

refined by utilizing the spectral and spatial information [45] of 

HSIs. Given the output of the proposed LBMSELM, we 

transform it to the following equation: 

𝑝𝐿𝐵𝑀𝑆𝐸𝐿𝑀(𝑓(�̂�𝑖) = 𝑚 �̂�𝑖 , 𝛽𝑆𝑆⁄ ) =
𝑒𝑥𝑝 (𝑓𝑚(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑓𝑚(𝑥𝑖))𝑀
𝑚=1

         (25) 

LBP [46-47] aims to compute the maximum a posterior 

(MAP) [: 

min
𝑓(𝑥𝑖)

∑ − log 𝑝𝐿𝐵𝑀𝑆𝐸𝐿𝑀(𝑓(�̂�𝑖) �̂�𝑖 , 𝛽𝑆𝑆⁄ )𝑖∈�̂� −  

                            𝜇 ∑ 𝛿(𝑓(�̂�𝑖) − 𝑓(�̂�𝑗))(𝑖,𝑗)∈𝐶𝑙                    (26) 

where 𝜇  is a tunable parameter to control the degree of 

smoothness, 𝐶𝑙 is a set of labels which are neighbors of each 

other, 𝑍 is a normalizing constant and 𝛿  is the unit impulse 

function [41, 48]. 

Since computing the marginal density of Eq. (26) is very 

difficult [41], we adopt the LBP to estimate the MPM solution. 

LBP introduces messages between hidden nodes in the MRF 

model [41]. Fig. 2 shows the MRF model, where each node i 

represents a random variable. In the graphical example of MRF, 

𝜓𝑖𝑗 (𝑓(�̂�𝑖), 𝑓(�̂�𝑗)) = 𝑝𝐿𝐵𝑀𝑆𝐸𝐿𝑀 (𝑓(�̂�𝑖), 𝑓(�̂�𝑗)) denotes the 

interaction potential that penalizes every dissimilar pair of 

neighboring labels, and φi(𝑓(�̂�𝑖), �̂�𝑖) = 𝑝𝐿𝐵𝑀𝑆𝐸𝐿𝑀(𝑓(�̂�𝑖) �̂�𝑖⁄ ) 

is the association potential of 𝑓(�̂�𝑖) given evidence of �̂�𝑖. Fig. 3 

illustrates a graphical example of LBP. The message sent from 

the node i to its neighboring node 𝑗 ∈ 𝑁(𝑖), can be given by: 

𝑚𝑖𝑗
𝑡 (𝑓(�̂�𝑗)) =

1

𝑍
∑ 𝜓 (𝑓(�̂�𝑖), 𝑓(�̂�𝑗))𝑓(𝑥𝑖) φ(𝑓(�̂�𝑖), �̂�𝑖)  

∏ 𝑚𝑘𝑖
𝑡−1(𝑓(�̂�𝑖))𝑘∈N(i)\{j}                   (27) 

where 𝑍 is another normalization constant, 𝑘 ∈ N(i)\{j} means 

that the node k belongs to 𝑁(𝑖) but it is not j. For LBP, the 

belief is estimated at each node by using all the incoming 
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messages [41]. Let 𝑏𝑖
𝑡(𝑦𝑖) represent the belief of the node i at 

the iteration t,  𝑏𝑖
𝑡(𝑦𝑖) can be given by: 

𝑏𝑖
𝑡(𝑦𝑖 = 𝑚) = 

𝑞(𝑓(�̂�𝑖) �̂�⁄ ) = φ(𝑓(�̂�𝑖) = m) ∏ 𝑚𝑗𝑖
𝑡 (𝑓(�̂�𝑗) = 𝑚)𝑗∈N(i)      (28) 

Finally, the solution of MAM for the node i is estimated as: 

y�̂� = 𝑎𝑟𝑔 max
𝑓(𝑥𝑖)

𝑞(𝑓(�̂�𝑖) �̂�𝑖⁄ ) = arg max
𝑓(𝑥𝑖)

𝑏𝑖
𝑡(𝑦𝑖)     (29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                    (a)                                                                                  (b)                                                                                    (c) 

 

 

 

 

 

 

 

 

 
 

 

 

                                     (d)                                                                                   (e)                                                                                   (f) 

Fig. 4. The effect of key parameters of 𝜆/a (a), C (b), L (c), 𝜆/a (d), C (e) and L (f) on the Indian Pines dataset (up) and Pavia University (down) dataset .  

IV. EXPERIMENTS AND ANALYSIS 

A. Datasets Used 

The following two publicly available HSI datasets are used 

in our experiments for performance evaluation, where 

additional dataset used for extended discussions is introduced 

in subsection IV-H.  

(1) Indian Pines: Captured by the Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS) sensor in June 1992, this 

dataset has a size of 145×145 pixels. It contains 220 spectral 

bands covering 400nm-2450nm, i.e. from visible to infrared 

spectrum range. The spatial resolution of Indian Pines is 20m. 

After removing 20 water absorptions, there are 200 bands 

remained [2]. The image has 10366 labeled pixels in 16 classes 

of different vegetation categories for classification. 

(2) Pavia University: This dataset was recorded by the 

Reflective Optics System Imaging Spectrometer (ROSIS) over 

the area surrounding the University of Pavia, Italy [2]. The 

spatial dimension of the dataset is 610×340, and there are 103 

bands after removing 12 noisy and water absorption bands. 

Nine reference classes for 42776 labelled samples are available 

for classification in this dataset. 

B. Benchmarking Approaches 

Some state-of-the-art methods are used for comparison, 

which include the logistic regression via variable splitting and 

augmented Lagrangian algorithm [49] with weighted MRF 

                           
 

Fig. 2. Graphical example of MRF                                                                            Fig. 3. Graphical example of LBP at iteration t 
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(LORSAL-SpATV) [50], LORSAL-LBP [41] and multiscale 

adaptive sparse representation (MASR) [51], where the default 

parameter settings are used. The code of LORSAL-SpATV, 

MASR and LORSAL-LBP can be obtained from 

https://github.com/search?q=Weight+markov+random+field, 

http://www.escience.cn/people/LeyuanFang/index.html and 

http://www.lx.it.pt/~jun/demos.html respectively. In addition, 

the original ELM code can be downloaded from 

http://www.ntu.edu.sg/home/egbhuang/elm_codes.html. 

All the experiments are conducted with the Matlab R2015a 

and tested on a computer with 2.9GHz i7 7820HQ CPU with 

32G RAM. All the experiments are repeated 10 times with the 

average results in terms of classification accuracy and 

computation time, including training time (Tr) and testing time 

(Ts), reported for performance assessment. 

C. Parameter Analysis 

The key parameter for ELM is the number of hidden neurons 

𝐿, and additional parameters for the proposed MSELM and 

LBMSELM include the parameters 𝐶 in Eq. (15) and 𝜆 in Eq. 

(17). Three experiments are carried out to evaluate the 

parameters of 𝜆, 𝐶 and 𝐿 , respectively, using 30 samples (up to 

50% for classes with limited number of samples) per class for 

training and the remaining for testing. In Experiment #1 and #2, 

𝐿  is set to 350 for MSELM and LBMSELM, including both 

LBMSELM4 and LBMSELM8 for the Indian Pines and Pavia 

University datasets. 

Experiment #1: In this experiment, the effect of parameter 𝜆 

(𝜆 = 2𝑎) on the proposed methods is evaluated, where 𝐶 of Eq. 

(15) is set to 10 and 100 for Indian Pines and Pavia University, 

respectively. Fig. 4 (a) and (d) show the effect of the parameter 

a in the MSELM and LBMSELM methods at Indian Pines and 

Pavia University, respectively. As seen, the proposed methods 

are very robust under varying a. In the following experiment, 

we will set a to be -12 if no special mentioned. 

Experiment #2: In this experiment, the effect of 𝐶 is evaluated 

by setting 𝐶 = [5, 10, … ,200]. Fig. 4 (b) and (e) plot the effect 

of 𝐶 on the Indian Pines and Pavia University datasets in terms 

of the overall classification accuracy (OA), respectively. As 

seen, OA is slightly decreasing in Indian Pines but quite stable 

in Pavia University when C is increasing. As a result, we set 𝐶 

to 10 and 200 for Indian Pines and Pavia University 

respectively. 

Experiment #3: In this experiment, the effect of the number of 

the hidden neurons 𝐿 on Indian Pines and Pavia University is 

assessed and illustrated in Fig. 4 (c) and (f) respectively. where 

𝐿 is adjusted within [100, 150, … ,950, 1000]. As seen, 𝐿 has 

big impact on the ELM. Fortunately, the proposed MSELM and 

LBMSELM can overcome this problem. In the following 

experiments, we set L to be 1000 for both ELM and MSELM, 

and 250 for LBMSELM if no special mentioned. 

D. Contribution Analysis 

Compared with ELM, the proposed MSELM features two 

contributions points, the feature extraction (FE) and sparse 

representation (SR). The LBMSELM are the improvement of 

MSELM incorporating the spectral information and spatial 

information. Hence, we will show the impact of each 

contribution point in this subsection. We will use 10 samples 

per class (up to 50%) for training and the remaining for testing. 

Tables 1 and 2 show the classification accuracies in Indian 

Pines and Pavia University datasets, respectively, where OA, 

AA and k refer to the overall accuracy, average accuracy and 

the Kappa coefficient, respectively [50]. As seen from these 

tables, each contribution point has its improvement on ELM. 

Hence, we can conclude that the proposed MSELM and 

LBMSELM methods have outperformed ELM. 
 

TABLE 1. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 

10 TRAINING SAMPLES PER CLASS FOR INDIAN PINES DATASET (BEST RESULTS 

IN BOLD). 

 

TABLE 2. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 

10 TRAINING SAMPLES PER CLASS IN PAVIA UNIVERSITY DATASET (BEST 

RESULTS IN BOLD). 

 

E. Effect of different numbers of training samples 

 

In this subsection, we will compare the original ELM with 

the proposed MSELM and LBMSELM methods. We also apply 

the proposed local block method to ELM for comparison, i.e. 

local block ELMs including LBELM4 and LBELM8. We vary 

the number of the training samples Q randomly selected from 

each class, where Q=10, 15, 20, 25, 30 and capped to 50% of 

total pixels in each class in our experiments.  

From the results in Tables 3 and 4, we can see an interesting 

phenomenon. With an increasing Q, the classification accuracy 

of ELM is decreasing for the Indian Pines dataset yet increasing 

at the beginning and then decreasing for the Pavia University 

dataset. This is caused by the ill-posed problem of ELM which 

can be seen from Fig. 4 (c) and (f), i.e., different numbers of 

hidden neurons are needed under varying number of training 

samples in order to achieve the optimal testing results. 

Fortunately, the proposed MSELM and LBMSELM methods 

alleviate this problem and can always produce significantly 

improved results. Fig. 5 shows the classification maps for the 

Indian Pines and Pavia University datasets with 30 training 

samples per class. 
 

TABLE 3. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 

DIFFERENT NUMBERS OF TRAINING SAMPLES IN INDIAN PINES DATASET (BEST 

RESULTS IN BOLD) 

 

Q Index ELM MSELM LB- 

ELM4 

LB- 

ELM8 

LBMS- 

ELM4 

LBMS- 

ELM8 

10 OA 50.1±1.2 63.1±3.1 66.8±2.5 70.0±2.3 75.2±3.0 77.2±2.6 

 ELM 
MSELM LBMS_ 

ELM4 
LBMS- 
ELM8 FE SR FE+SR 

OA 50.1±1.2 61.7±4.0 51.1±2.2 63.1±3.1 75.2±3.0 77.22±2.6 

AA 62.2±1.6 70.5±3.4 63.6±2.7 71.9±2.1 84.8±1.3 86.43±1.0 

k 44.4±1.5 56.9±4.3 45.5±2.6 58.4±3.5 72.1±3.3 74.36±2.9 

 ELM 
MSELM LBMS- 

ELM4 

LBMS- 

ELM8 FE SR FE+SR 

OA 56.0±5.2 58.1±4.6 58.0±3.5 62.1±4.5 72.5±2.9 77.8±3.8 

AA 65.3±3.4 62.2±3.3 66.9±1.8 67.6±2.7 78.1±1.6 84.8±1.3 

k 46.2±5.0 48.4±4.7 48.6±3.6 53.1±4.7 65.5±3.3 72.0±4.3 

https://github.com/search?q=Weight+markov+random+field
http://www.escience.cn/people/LeyuanFang/index.html
http://www.lx.it.pt/~jun/demos.html
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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AA 62.2±1.6 71.9±2.1 79.4±1.0 82.0±1.0 84.8±1.3 86.4±1.0 

k 44.4±1.5 58.4±3.5 62.8±2.7 66.4±2.5 72.1±3.3 74.3±2.9 

15 OA 48.6±1.8 62.7±2.4 71.0±1.6 73.4±1.5 78.7±0.9 79.8±0.6 

AA 59.7±2.0 71.8±1.6 83.2±0.9 84.8±0.9 87.5±0.6 88.7±0.6 

k 42.6±2.1 58.0±2.7 67.6±1.8 70.2±1.7 76.0±1.0 77.2±0.6 

20 OA 46.0±2.1 61.8±2.1 72.1±1.1 73.7±1.2 79.7±1.3 80.4±1.2 

AA 56.8±2.3 70.8±1.5 84.8±0.7 85.9±0.6 89.0±0.4 89.5±0.2 

k 39.8±2.5 56.8±2.5 68.8±1.1 70.5±1.3 77.2±1.3 77.9±1.3 

25 OA 45.8±2.0 60.1±2.8 74.7±1.0 75.4±0.9 80.4±1.1 81.3±0.8 

AA 55.4±1.6 68.3±2.1 86.4±0.7 87.1±0.6 89.5±0.7 90.1±0.6 

k 39.4±2.0 55.0±3.1 71.6±1.1 72.3±1.0 77.9±1.2 78.8±0.9 

30 OA 42.1±2.4 55.2±1.8 73.9±1.7 74.7±1.7 80.2±1.7 80.7±1.6 

AA 50.5±2.7 63.4±2.8 86.3±1.0 87.1±0.9 89.7±0.9 90.1±0.8 

k 35.0±2.6 49.3±2.1 70.7±1.8 71.6±1.8 77.7±1.8 78.3±1.7 

 

TABLE 4. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 

DIFFERENT NUMBERS OF TRAINING SAMPLES IN PAVIA UNIVERSITY DATASET 

(BEST RESULTS IN BOLD). 

 

Q Index ELM MSELM LB- 

ELM4 

LB- 

ELM8 

LBMS- 

ELM4 

LBMS- 

ELM8 

10 OA 56.0±5.2 62.1±4.5 70.4±2.9 75.4±3.5 72.5±2.9 77.8±3.8 

AA 65.3±3.4 67.6±2.7 76.9±1.8 83.1±1.1 78.1±1.6 84.8±1.3 

k 46.2±5.0 53.1±4.7 62.9±3.1 69.1±4.0 65.5±3.3 72.0±4.3 

15 OA 60.1±3.1 62.8±3.5 79.3±2.7 81.0±2.1 81.3±3.1 82.7±1.8 

AA 63.9±1.9 64.9±3.9 83.9±0.7 85.9±0.7 85.4±1.2 87.2±0.7 

k 50.3±3.1 53.7±4.0 73.6±3.1 75.7±2.4 76.0±3.7 77.8±2.1 

20 OA 57.9±4.1 60.8±4.7 80.3±2.0 81.0±2.7 82.2±2.2 83.0±2.4 

AA 61.5±3.6 62.0±4.2 85.3±0.5 86.5±0.6 87.0±0.5 87.8±0.5 

k 48.0±4.5 51.4±5.2 74.8±2.2 75.8±3.0 77.3±2.5 78.3±2.8 

25 OA 58.4±3.0 60.6±3.4 82.4±1.4 83.6±1.5 83.6±2.0 85.1±0.9 

AA 61.0±2.4 61.9±2.7 87.0±0.5 87.8±0.7 88.1±0.6 88.9±0.4 

k 48.7±3.3 51.3±3.8 77.5±1.6 78.9±1.8 78.9±2.3 80.8±1.1 

30 OA 59.4±2.8 62.2±3.4 84.1±1.3 84.6±1.2 85.6±1.3 85.8±1.0 

AA 59.2±3.6 60.4±4.0 87.7±0.6 88.3±0.3 88.8±0.4 89.1±0.4 

k 49.4±3.2 52.7±3.9 79.4±1.5 80.1±1.4 81.4±1.6 81.6±1.2 

F. Comparison with state-of-the-art approaches 

In this subsection, we compare the proposed MSELM-LBP, 

LBMSELM4-LBP and LBMSELM8-LBP with state-of-the-art 

spectral and spatial methods, including LORSAL-SpATV [50], 

MASR [51] and LORSAL-LBP [41]. We also apply the LBP 

method to the original ELM for comparison. According to [41], 

we set the smooth parameter of LBP in Eq. (26) to 2. When 

applying the LBP to these methods, we only consider the 

labelled samples. About 1% of the total samples are used for 

training, and the remaining are used for testing. The details of 

training and testing samples in the Indian Pines and Pavia 

University datasets are summarized in Table 5. 

 
TABLE 5. THE TRAINING/TESTING SAMPLES IN THE TWO DATASETS 

 

Indian Pines Pavia University 

Index/category Train Test Index/Category Train Test 

1 Alfalfa   3 51 1 Asphalt 66 6565 

2 Corn-no till 14 1420 2 Meadows 186 18463 

3 Corn-min till 8 826 3 Gravel 20 2079 

4 Corn 4 230 4 Trees 30 3034 

5 Grass/pasture 5 492 5 Metal sheets 13 1332 

6 Grass/tree 8 739 6 Bare soil 50 4979 

7 Grass/pasture-mowed 3 23 7 Bitumen 13 1317 

8 Hay-windrowed 5 484 8 Bricks 37 3645 

9 Oats 2 18 9 Shadows 10 937 

10 Soybeans-no till 10 958    

11 Soybeans-min till 24 2444    

12 Soybeans-clean till 7 607    

13 Wheat 4 208    

14 Woods 13 1281    

15 Bldg-grass-tree-drives 5 375    

16 Stone-steel towers 4 91    

 

Tables 6 and 7 show the classification results for the Indian 

Pines and Pavia University datasets, respectively, from which 

some useful conclusions can be summarized as follows. 

1) Compared with ELM, the proposed MSELM, LBMSELM4 

and LBMSELM8 all achieved better classification results, 

which have shown good performance of the proposed methods; 

2) When applying LBP to ELM, MSELM and LBMSELM, the 

classification results can be further improved in terms of OA, 

AA and k. MSELM-LBP has similar classification results 

compared with ELM-LBP, but the combination of LBP with 

LBMSELM, i.e. LBMSELM4-LBP and LBMSELM8-LBP, 

have much better classification results than ELM-LBP. This 

verifies the merit of the proposed LBMSELM approach; 

3) In comparison to other state-of-the-art methods, both 

LBMSELM4-LBP and LBMSELM8-LBP have achieved better 

classification results than LORSAL-SpATV, MASR and 

LORSAL-LBP. Figs. 6 and 7 show the classification maps of 

these methods with 1% samples used for training. 

In the last row of Tables 6 and 7, we also give the running 

time of these methods for comparison. Tr and Ts denote the 

training time and testing time, respectively, measured in 

seconds (‘s’). Note that although the proposed LBMSELM is 

the development of MSELM, the former has less computation 

time than the latter in these tables. This is caused by different 

numbers of the hidden neurons L used for these two methods, 

where L is set to 250 and 1000 for LBMSELM and MSELM, 

respectively. As seen from Eqs. (16) and (20), both of the 

proposed MSELM and LBMSELM are iteration algorithms, 

which need the inverse operation with a size of L×L. With a 

much larger L used in MSELM than LBMSELM, the 

computational complexity of LBMSELM becomes less than 

that of MSELM.  

In addition, LBP-based methods have similar computational 

complexity, including LORSAL-LBP, ELM-LBP and our 

LBMSELM4-LBP, LBMSELM8-LBP and MSELM-LBP 

methods. This is because LBP is an iteration algorithm which 

takes much time to compute the marginal probability for each 

sample in HSIs. This has covered the computational complexity 
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of these individual methods. In Table 7, the proposed 

LBMSELM4-LBP, LBMSELM8-LBP and MSELM-LBP have 

much more computation time than LRSAL-SpATV and 

MASR. In Table 6, LBMSELM4-LBP, LBMSELM8-LBP and 

MSELM-LBP methods have more computation time than 

LORSAL-SpATV, but slightly less computation time than 

MASR. These have again validated the good performance of 

the proposed approaches. 

As a spatial-spectral classifier, LBMSELM seems to be 

sensitive to the spatial neighborhood used. We further evaluate 

the performance in terms of OA and computation time under 

varying size of neighborhoods. Tables 8 and 9 show the results 

from the Indian Pines and Pavia University datasets, again 

using 10 labeled samples per class for training and the 

remaining for testing. As seen, the classification accuracy first 

increases, and soon saturates and even decreases with the 

enlarged neighborhood. That is because the spatial correction 

of pixels only holds within a small local area, and a too large 

neighborhood will inevitably degrade the results. Moreover, a 

larger neighborhood will naturally lead to more computation 

time in both training and testing. As a good tradeoff, we 

recommended 8 or 24 neighbors for a window size of 3×3 or 

5×5 respectively for the proposed LBMSELM approaches. 

 

 

 

 

 

 

 

 

 

(a)                                (b)                             (c)                               (d)                               (e)                              (f) 
 

 

 

 

 

 

 

 

 

(g)                               (h)                             (i)                                (j)                                (k)                             (l) 
Fig. 5. Results for the Indian Pines (up) and Pavia University dataset (down) (with 30 training samples per class) in terms of OA for (a) ELM (42.18±2.43); (b) 

MSELM (55.20±1.83); (c) LBELM4 (73.90±1.71); (d) LBELM8 (74.74±1.71); (e) LBMSELM4 (80.22±1.72); (f) LBMSELM8 (80.74±1.60); (g) ELM 

(59.44±2.82); (h) MSELM (62.27±3.41); (i) LBELM4 (84.13±1.32); (j) LBELM8 (84.66±1.20); (k) LBMSELM4 (85.65±1.37); and (l) LBMSELM8 (85.80±1.09).  

 

 

 

 

 

  
 

 

 

 

(a)                                 (b)                             (c)                                 (d)                              (e)                              (f)  

 

 

 

 

 

 

 

 

 

(g)                                (h)                               (i)                                 (j)                                (k)                             (l)  
Fig. 6. Results for the Indian Pines dataset (~1% training), and the OAs are (a) LORSAL-SpATV (81.50±2.66); (b) MASR (84.74±2.49); (c) LORSAL-LBP 
(69.93±1.82); (d) ELM (54.19±1.49); (e) ELM-LBP (77.16±2.43); (f) MSELM (59.24±2.17); (g) MSELM-LBP (77.27±2.94); (h) LBMSELM4 (75.98±1.39); (i) 

LBMSELM4-LBP (87.90±1.93); (j) LBMSELM8 (78.75±1.05) (k) LBMSELM8-LBP (87.47±1.37); and (l) ground truth. 

 
TABLE 6. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 1% TRAINING SAMPLES FOR INDIAN PINES DATASET (BEST RESULTS IN BOLD).  

NO LORSAL-  MASR LORSAL- ELM ELM-LBP MSELM MSELM- LBMS LBMS LBMS LBMS 
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SpATV LBP LBP ELM4 ELM4-LBP ELM8 ELM8-LBP 

1 83.52±16.79 98.62±1.32 70.58±17.97 44.50±19.93 71.37±37.46 61.37±11.09 92.35±7.42 86.27±8.62 97.84±2.84 86.47±5.73 98.03±2.92 

2 81.85±10.75 75.47±6.28 66.90±9.76 51.73±4.98 79.80±11.20 56.74±8.94 75.67±5.84 75.60±4.24 90.05±5.45 78.69±3.57 89.97±5.08 

3 55.73±13.30 72.89±10.90 37.65±12.47 26.33±5.85 35.41±17.66 42.91±12.27 54.87±16.62 55.85±5.73 67.86±9.36 58.88±5.68 65.73±4.43 

4 62.39±31.57 83.82±6.92 48.60±16.71 24.82±4.88 48.21±14.33 36.69±8.16 66.56±22.89 56.00±13.22 81.34±15.53 61.47±15.13 82.82±17.87 

5 76.74±9.96 79.45±9.57 67.74±17.65 56.11±15.52 73.78±19.48 56.09±15.98 73.55±20.42 77.90±7.79 82.11±10.36 79.71±9.01 81.89±9.97 

6 97.65±1.45 97.29±1.86 89.37±5.21 74.45±5.89 97.83±3.22 73.92±10.74 93.01±5.48 90.36±3.75 98.57±2.35 93.57±1.88 98.20±3.44 

7 87.39±15.93 99.13±2.74 95.65±4.09 46.08±16.42 100±0 83.47±9.12 99.13±2.74 99.13±1.83 100±0 100±0 100±0 

8 99.89±0.20 94.97±7.65 86.44±17.26 71.79±15.68 96.63±8.17 73.65±17.78 86.36±20.61 93.51±4.96 98.28±3.62 94.87±3.85 99.69±0.90 

9 47.22±39.21 90.55±17.57 96.66±10.54 46.66±15.97 100±0 77.77±17.37 100±0 98.33±3.74 100±0 100±0 100±0 

10 69.13±17.48 80.96±5.59 55.01±10.73 36.28±6.58 56.49±13.24 50.68±12.26 67.49±17.66 62.34±10.27 76.58±14.51 63.96±10.36 74.49±13.32 

11 87.72±6.98 87.69±5.81 79.59±5.44 55.20±5.53 84.40±6.45 67.16±6.27 86.00±7.65 80.16±4.33 92.36±3.81 81.45±4.17 92.38±3.83 

12 63.95±14.77 72.52±18.81 48.18±8.78 36.29±7.85 59.45±14.55 40.93±9.72 56.91±12.67 61.74±7.95 81.81±12.71 67.67±8.16 81.86±13.11 

13 100±0 99.42±0.70 99.08±0.73 91.53±4.16 100±0 92.45±6.94 99.95±0.15 97.69±1.61 99.85±0.45 98.99±0.57 100±0 

14 99.17±0.70 98.66±1.67 90.10±7.64 81.15±7.32 97.08±3.34 68.90±8.53 88.77±10.94 88.79±6.37 94.89±8.36 91.85±7.26 93.80±8.61 

15 46.80±20.78 63.97±8.79 32.61±10.57 33.52±10.56 62.64±18.08 30.48±8.24 58.13±24.39 56.85±10.34 78.34±11.03 61.54±9.63 76.10±12.21 

16 91.42±7.64 97.36±2.08 64.28±14.90 61.20±12.63 96.70±3.87 19.34±12.38 27.47±24.91 53.62±9.13 84.61±12.91 76.37±7.68 94.94±6.71 

OA 81.50±2.66 84.74±2.49 69.93±1.82 54.19±1.49 77.16±2.43 59.24±2.17 77.27±2.94 75.98±1.39 87.90±1.93 78.75±1.05 87.47±1.37 

AA 78.16±4.76 82.55±2.86 70.53±2.82 52.35±3.48 78.73±2.92 58.29±2.18 76.64±3.35 77.13±1.66 89.03±1.96 80.97±1.01 89.37±1.33 

k 78.76±3.03 87.05±2.81 65.84±1.92 47.38±1.71 73.57±2.76 52.93±2.46 73.78±3.45 72.40±1.61 86.10±2.24 75.63±1.20 85.61±1.58 

Tr (s) 0.14 93.90 0.15 0.03 0.04 8.27 8.30 0.48 0.50 0.63 0.68 

Ts(s) 34.43 234.48 137.65  0.30 139.75 0.29 138.94 0.07 138.65 0.07 139.44 

 

 

 

 

 

 

 
 

 

(a)                              (b)                                (c)                                 (d)                                  (e)                                 (f) 

 

 

 

 

 

 

 

 

 

            (g)                                (h)                                   (i)                                (j)                                  (k)                               (l)  
Fig. 7. Results for the Pavia University dataset (~1% training), and the OAs are (a) LORSAL-SpATV (93.19±1.58); (b) MASR (90.29±0.67); (c) LORSAL-LBP 

(93.02±0.60); (d) ELM (67.97±2.81); (e) ELM-LBP (89.71±1.81); (f) MSELM (70.16±2.54); (g) MSELM-LBP (89.74±1.62); (h) LBMSELM4 (89.68±0.46); (i) 

LBMSELM4-LBP (93.85±1.04); (j) LBMSELM8 (89.63±0.30) (k) LBMSELM8-LBP (93.60±0.89); and (l) ground truth. 

TABLE 7. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION WITH 1% TRAINING SAMPLES FOR PAVIA UNIVERSITY DATASET (BEST RESULTS IN BOLD).   

No. 
LORSAL- 

SpATV 
MASR 

LORSAL- 
LBP 

ELM ELM-LBP MSELM 
MSELM- 

LBP 
LBMS- 
ELM4 

LBMSELM4-
LBP 

LBMS 
ELM8 

LBMSELM8-
LBP 

1 77.58±3.74 78.29±2.20 93.04±2.16 67.49±4.32 95.13±2.00 70.85±3.09 95.39±1.73 92.85±1.33 98.24±0.96 93.73±1.40 99.06±0.93 

2 94.74±1.71 98.70±0.18 99.49±0.23 83.74±3.26 99.51±0.45 86.65±2.89 99.54±0.44 98.79±0.30 99.99±0.01 98.96±0.28 99.99±0.01 

3 61.81±5.15 81.63±7.64 69.10±7.85 48.56±7.03 71.48±13.1 53.33±7.80 72.73±13.23 58.05±4.30 62.27±7.31 58.23±4.29 61.15±7.98 

4 86.53±4.06 82.36±1.29 89.66±2.29 49.04±4.66 73.57±8.85 47.94±4.59 72.56±8.79 89.85±1.19 95.70±1.02 90.80±0.97 95.71±1.01 

5 97.58±0.93 100±0 97.74±1.66 3.01±1.39 2.72±6.11 1.18±0.25 0.40±0.32 98.34±0.66 100±0 99.13±0.29 100±0 

6 63.41±2.93 87.01±3.97 82.56±5.75 63.94±4.87 89.99±7.59 63.85±3.77 89.34±6.04 73.13±3.12 87.61±7.35 73.02±2.91 86.54±6.29 

7 65.77±5.63 97.69±1.59 84.27±5.63 57.33±5.57 92.33±6.83 64.03±5.49 96.75±1.78 39.91±5.12 33.47±5.47 30.77±4.74 28.69±5.82 

8 73.30±4.99 92.68±5.36 90.70±3.52 58.41±4.62 89.70±5.10 62.90±4.61 92.73±3.49 90.62±1.17 97.85±0.99 89.88±1.34 97.29±0.99 

9 63.35±26.58 37.37±5.06 99.51±0.35 30.55±10.34 70.17±16.5 17.97±4.84 58.29±19.72 99.41±0.45 99.85±0.05 99.72±0.11 99.87±0.04 

OA 93.19±1.58 90.29±0.67 93.02±0.60 67.97±2.81 89.71±1.81 70.16±2.54 89.74±1.62 89.68±0.46 93.85±1.04 89.63±0.30 93.60±0.89 

AA 86.28±4.85 87.01±0.90 89.56±1.24 51.34±2.97 76.06±3.69 52.08±2.47 75.30±3.03 82.33±1.02 86.11±1.72 81.58±0.76 85.37±1.56 

k 90.84±2.18 83.97±1.08 90.64±0.83 57.32±3.62 86.08±2.54 60.11±3.30 86.14±2.24 86.07±0.64 91.75±1.43 86.00±0.42 91.41±1.22 
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Tr (s) 0.37 472.70 0.56 0.16 0.16 9.30 9.30 0.85 0.85 1.25 1.25 

Ts (s) 198.55 860.87 3748.4 1.02 3747.3 1.02 3759.2 0.25 3749.4 0.26 3749.9 

 
TABLE 8. THE EFFECT OF THE SIZES OF THE NEIGHBORHOOD USED IN 

LBMSELM FOR THE INDIAN PINES DATASET 

 

 

TABLE 9. THE EFFECT OF THE SIZES OF THE NEIGHBORHOOD USED IN 

LBMSELM FOR THE PAVIA UNIVERSITY DATASET 

 

G. Comparing with Other Spatial Features and Deep Learning  

In Table 10, we compare the proposed LBMSELM 

(LBMSELM8 and LBMSELM 24) with the well-known 

spatial-aware collaborative representation (SaCR) approach 

[52] with 10 training samples per class, where the default 

parameters are adopted. For the Indian Pines dataset, SaCR has 

outperformed LBMSELM8 and LBMSELM24 in terms of 

classification accuracy. For the Pavia University dataset, SaCR 

has higher classification accuracy than LBMSELM8 yet lower 

than LBMSELM24. In both datasets, SaCR consumes much 

higher computational time that the proposed LBMSELM8 and 

LBMSELM24 approaches.  

In addition, other spatial features including local binary 

pattern (LBPn) [28] and attribute profile (AP) [11] are 

compared with the proposed LBMSELM, where the default 

settings of parameters are used for these two approaches. With 

1% labeled samples for training and the remaining for testing, 

the experimental results are reported in Tables 11 and 12 for 

comparison. When applying the AP to the proposed MSELM, 

the number of hidden neurons L is set to 1000 and 250 for the 

Indian Pines and Pavia University datasets, respectively. As 

seen from Tables 11 and 12, applying LBPn and AP to the 

proposed MSELM can further improve the classification 

accuracy. However, both LBPn-MSELM and AP-MSELM are 

still inferior than the proposed LBMSELM8, which indicates 

the efficacy of the spatial features extracted from LBMSELM8 

than that of LBPn and AP.  

In Table 13, we further compare the proposed MSLEM and 

LBMSELM8 with deep-learning based methods, including the 

convolutional neural networks (CNN) [53], CNN-pixel-pair 

features (CNN-PPF) [54] and Contextual Deep CNN 

(CD-CNN) [55]. Following the settings in [56], we set the 

training samples to 50 per class in both Indian Pines and Pavia 

University datasets and the remaining for testing. For 

consistency, only the 8 largest classes in Indian Pines dataset 

are used [55], corresponding to the 2nd, 3rd, 5th, 8th, 10th 11th, 12th 

and 14th classes as shown in Table 5. The classification results 

of CNN, CNN-PPF and CD-CNN are directly taken from [56]. 

We set the numbers of hidden neurons L to 100 and 900 for 

MSELM and LBMSELM8, respectively. For the Indian Pines 

dataset, LBMSELM8 outperforms all three deep-learning 

based approaches, although they have better results than the 

proposed MSELM approach. For the Pavia University Dataset, 

CD-CNN produces the best result, yet our proposed 

LBMSELM8 outperforms two other deep-learning based 

approaches, i.e. CNN and CNN-PPF. This has again validated 

the good performance of the proposed LBMSELM8 method. 

 
TABLE 10. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR 

INDIAN PINES AND PAVIA UNIVERSITY DATASETS (10 TRAINING SAMPLES PER 

CLASS, BEST RESULTS IN BOLD). 

Dataset Index SaCR  LBMSELM
8 

LBMSELM24 

Indian 

Pines 

 

OA 85.21±1.20 77.02±2.20 78.69±2.10 

AA 91.14±0.69 86.40±0.82 87.56±0.89 

k 83.29±1.34 74.15±2.41 75.99±2.29 

Tr (s) 11.26 0.65 1.25 

Ts (s) 5.03 0.07 0.07 

Pavia 

University 

OA 79.15±4.31 78.29±2.84 80.10±2.76 

AA 84.51±2.99 85.44±0.96 87.05±0.85 

k 73.73±5.00 72.62±3.23 74.86±3.17 

Tr (s) 23.36 0.50 0.83 

Ts (s) 17.24 0.25 0.25 

 

H. Extended Experiments on the Salinas Dataset and Full 

Scene Classification Maps for the Three Datasets 

In this subsection, we conduct more experiments to show the 

good performance of the proposed MSELM and LBMSELM 

on the Salinas dataset. Besides, we show the full scene 

classification maps for the three HSIs datasets used in our 

experiments. Salinas was also recorded by the AVIRIS sensor 

over the area surrounding the Salinas Valley, California. The 

spatial dimension of this dataset is 512×217 with 204 bands 

after removing 20 water absorption spectral bands [9]. 

Seventeen reference classes for 54129 labelled samples are 

available for classification in this dataset.  

For the Salinas dataset, we select 10 samples per class for 

training and the remaining for testing, and the experimental 

results are compared in Table 14. The numbers of the hidden 

neurons L are set to 1000 for ELM and MSELM, and 250 for 

LBMSELM4 and LBMSELM8. Also, the parameter 𝐶 in Eq. 

(11) is set to 1000 for MSLEM, LBMSELM4 and LBMSELM8 

As seen from Table 14, MSELM has better classification 

accuracy than ELM, whilst LBMSELM4 and LBMSELM8 

have even better results than MSELM. 

In Fig. 8, we show the full scene classification maps of ELM, 

MSELM and LBMSELM8 with 10 training samples per class 

for the three datasets, i.e. Indian Pines, Pavia University and 

Salinas. As seen from Fig. 8, the proposed MSELM and 

LBMSELM8 have much better classification results than ELM. 

Hence, the proposed methods have good performance. 

V. CONCLUSION 

In this paper, a novel framework based on multilayer 

optimization for ELM, MSELM, has been proposed to extract 

effective features and classify HSIs. By constructing the 

multilayer sparse ELM which extracts the effective feature and 

solves the ill-posed problem of ELM, the proposed MSELM 

Index 4 8 24 48 80 

OA 75.48±2.75 77.33± 2.34 78.90±2.18 78.75±1.81 78.18±1.77 

Tr (s) 0.56 0.76 1.34 2.40 3.64 

Ts (s) 0.07 0.08 0.07 0.08 0.07 

Index 4 8 24 48 80 

OA 72.58±2.09 78.08±3.10 80.02± 2.70 79.63±2.60 79.08±2.54 

Tr (s) 0.41 0.52 0.83 1.43 2.08 

Ts (s) 0.25 0.25 0.25 0.29 0.25 
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can greatly improve the classification results of ELM. 

Furthermore, a local block method that can reveal the 

neighboring information has been proposed to further improve 

the classification results of the MSELM. Finally, we apply the 

LBP to the proposed MSELM and LBMSELM, which can 

utilize the rich spectral and spatial information of HSIs. 

Compared with other state-of-the-art methods, the proposed 

methods obtain the good performances. 

In addition, the proposed methods can also be extended to 

many other HSIs applications such as target detection and 

anomaly detection. This is because these two applications can 

both be easily converted to a classification problem, where the 

proposed feature extraction and classification scheme can be 

applied. For the future work, we will resort to some 

mathematical methods, such as inverse free [57] to improve the 

computational efficiency of the proposed MSELM, 

LBMSELM method and LBP. Besides, we will also further 

improve the classification accuracy by using gravitational 

search [58] and saliency detection [59] approaches. 

 
TABLE 11. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR 

THE INDIAN PINES DATASET (1% TRAINING, BEST RESULTS IN BOLD). 

Index MSELM MSELM-LBPn MSELM-AP LBMSELM8 

OA 58.87±3.24 69.34±3.38 69.90±5.12 78.71±1.10 

AA 57.51±3.41 72.07±2.67 69.38±5.60 80.88±0.97 

k 52.52±3.65 65.04±3.78 65.33±6.01 75.58±1.24 

 
TABLE 12. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR 

THE PAVIA UNIVERSITY DATASET (1% TRAINING, BEST RESULTS IN BOLD). 

Index MSELM LBPa-MSELM AP-MSELM LBMSELM8 

OA 70.26±2.70 75.83±2.26 83.51±0.97 89.69±0.32 

AA 52.67±2.59 61.90±3.92 68.03±1.49 81.74±0.64 

k 60.27±3.52 67.72±2.96 77.87±1.29 86.07±0.44 

 
TABLE 13. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR 

INDIAN PINES AND PAVIA UNIVERSITY DATASETS (50 TRAINING SAMPLES, 

BEST RESULTS IN BOLD). 
Dataset Index CNN  CNN-PPF CD-CNN MSELM  LBMSELM8  

Indian Pines OA 80.43 88.34 84.43 79.18 ±0.62 89.31 ±0.51 

Pavia University OA 86.39 88.14 92.19 81.69±1.70 89.47±0.80 

 

TABLE 14. CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION FOR 

THE SALINAS DATASET (10 TRAINING SAMPLES, BEST RESULTS IN BOLD). 

 

 

 

 

 

 

 

 

 

            (a1)                               (b1)                          (c1)                            (d1)                              (e1)                            (f1) 

 

 

 

 

 

 

 

 

        (a2)                               (b2)                           (c2)                            (d2)                             (e2)                            (f2) 

 

 

 

 

 

 

 

 

(a3)                              (b3)                            (c3)                             (d3)                             (e3)                            (f3) 
Fig. 8. Results for the three datasets of Indian Pines (up), Pavia University (middle) and Salinas (bottom) with 10 training samples per class. In each row, a-b are for 

results from ELM, c-d are from MSELM, and e-f are from LBMSELM8. In addition, a, c and e are classification maps and b, d and f are full scene classification 
maps.  
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