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Abstract—This study proposes a new multi-criteria decision-
making model to determine the best smart charging scheduling
that meets electric vehicle (EV) user considerations at work-
places. An optimal charging station model is incorporated into
the decision-making for a quantitative evaluation. The proposed
model is based on a hybrid Power Heronian functions in which
the linear normalization method is improved by applying the
inverse sorting algorithm for rational and objective decision-
making. This enables EV users to specify and evaluate multi-
criteria for considering their aspects at workplaces. Five different
charging scheduling algorithms with AC dual port L2 and DC
fast charging electric vehicle supply equipment (EVSE) are
investigated. Based on EV users from the field, the required
charging time, EVSE occupancy, the number of EVSE units,
and user flexibility are found to have the highest importance
degree, while charging cost has the lowest importance degree.
The experimental results show that, in terms of meeting EV
users’ considerations at workplaces, scheduling EVs based on
their charging energy needs performs better as compared to
scheduling them by their arrival and departure times. While
the scheduling alternatives display similar ranking behavior for
both EVSE types, the best alternative may differ for the EVSE
type. To validate the proposed model, a comparison against three
traditional models is performed. It is demonstrated that the
proposed model yields the same ranking order as the alternative
approaches. Sensitivity analysis validates the best and worst
scheduling alternatives.

Index Terms—EVSE, multi-criteria decision making, plug-in
electric vehicles, smart charging scheduling, workplace charging.

I. INTRODUCTION

EXPANDING the charging infrastructure is crucial in
transitioning to electric mobility [1]. Accordingly, the

global number of chargers, also known as electric vehicle
supply equipment (EVSE), continues to increase rapidly. The
number of global private chargers has reached almost 10
million in 2020 with a total installed capacity of 55 GW
[2]. Workplace EVSEs accommodate over 15 GW of the
installed capacity. In this respect, workplace charging stations
can play an important role in ensuring the smooth integration
of electric vehicle (EV) charging loads into power systems.
Thanks to their relatively longer dwell times and predictable
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mobility, EVs at workplaces can provide ancillary services to
the grid and aid in the integration of variable renewable energy
sources for electricity generation [3]. However, smart charging
strategies and scheduling are required to develop in order for
EVs to provide such services.

For smooth EV grid integration (EVGI), smart charging
has been the research focus for many recent studies [4]–
[10]. Most studies formulate the EVGI as a single objective
optimization problem, which is expressed using deterministic
models such as linear, convex, or meta-heuristic [11]. The
objective function can include several elements to represent
technical and economic aspects such as charging costs, peak
power, and so on from the perspective of the station owner,
EV user, or utility [4]. In [5], a real-time controller is proposed
to minimize the cost associated with EVGI at the workplace.
For EV users, the cost is defined as the sum of charging
and battery degradation costs. In [6], an optimal charging
algorithm is implemented to minimize charging costs while
adhering to the grid limits set by the utility. Moghaddam
et al. [7], combine the objectives of minimizing EV travel
distance, charging time, and charging cost with the weighted
sum method to find the optimal option among EVSE types
in an urban network, including battery swapping. Technical
aspects such as energy losses, active and reactive loading of
the transformer are included in the cost function for the EVGI
in [8]. Furthermore, smart charging strategies are employed
to help integrate renewable energy systems in distribution [9]
and upstream networks [10]. In [9], a two-stage scheduling
algorithm is proposed to reduce charging costs by increasing
use of the photovoltaic system. The ancillary services provided
by EVs to power systems such as congestion management,
local voltage support, and spinning reserve are validated in a
real distribution system in [12].

To maximize the benefits of smart charging, EVs can be
scheduled both online and offline. For a given set of charging
requests from EV users, scheduling EVs defines the order in
which such requests are assigned to available EVSEs based on
a heuristic assignment policy. Binetti et al. in [13] introduced
several scheduling policies and evaluated their performance
from a grid perspective. It was demonstrated that scheduling
EVs by their charging flexibility with assigning the smallest
slack time first performs the best grid performance. Ferguson
et al. in [14] show that different scheduling methods result
in different optimal workplace charging infrastructures, which
affect the cost-benefit analysis. The use of smart charging
for two scheduling algorithms was compared in [15]. When
compared to sorting EVs based on their arrival times, sorting
EVs by their flexibility resulted in improved peak reduction
and increased cost savings as compared to sorting by their
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arrival times. In [16], a model predictive charging control
is proposed to minimize charging costs based on clustering
EVs by their state-of-charges (SOCs) and day-ahead market
prices. Frendo et al. in [17] proposed a charging scheduling
to maximize the fair use of the grid capacity among EVs
based on their battery SOCs. The scheduling algorithms rely
on the prediction of EVs’ mobility. Liu et al. [18] introduced
the urgency first charging policy. This policy ensures that
the EVs with higher charging demand and shorter parking
times are charged first. The charging urgency of EVs is
calculated as the difference between the remaining time and
the charging time estimation. Results show that the charging
efficiency and charging convenience in terms of waiting and
trip times have improved. Elghitani et al. [19] proposed a user-
oriented method with a queueing model for the assignment
of EVs to charging stations. It considers the average time
spent by the EV user from requesting the charging service to
accessing it as the performance indicator. The queueing model
is used to facilitate the management of EV populations, and a
Lyapunov optimization-based smart charging algorithm is then
performed. Although the study focuses on queueing mainly
after the request is received, it considers first-come, first-
served scheduling for a dynamic population of EVs. A queuing
network-based model is proposed in [20] for EV platoon
charging processes in industrial transportation using renewable
energy-aided charging stations. A contract theoretic approach
for resource management is introduced for optimum charging
policy. A Poisson process is assumed for EV platoon arrivals,
and the EVs are served only based on a first-come-first-served
policy. The proposed approach achieves optimal utility of
the charging station with quality of service and regulates the
peak demand on the grid. While these studies provide optimal
solutions to the single objective problems expressed as the
sum of several cost functions with technical constraints, EVGI
can involve many objectives with technical, economic, and
other social aspects that have been disregarded from an EV
user perspective. As EV driving experience increases, many
workplace considerations from EV users’ perspectives such
as EV user flexibility, charger occupancy time, and so on
are becoming more prominent than charging cost. Therefore,
there is a need to explore the best smart charging scheduling
that meets all EV user considerations from a multi-criteria
perspective.

Multi-objective problems have been regarded as multi-
criteria decision-making (MCDM) problems which can involve
both quantitative and qualitative parameters from various per-
spectives [21]–[23]. In these, various optimization algorithms
can be included in the decision-making process. The MCDM
method presents a selection framework for the best performing
solution among optimal solutions, allowing the user to evaluate
and weight multi-criteria decision-making variables into the
decision [22]. As such, various MCDM models have been
applied to many planning studies requiring critical decisions
with potential technical, economic, and social consequences
[21], [22], [24]. Liu et al. in [21] proposed a hybrid MCDM
model by combining a grey decision-making trial and evalua-
tion laboratory (DEMATEL) and uncertain linguistic multi-
objective optimization by ratio analysis plus a full multi-
plicative form (UL-MULTIMOORA) for determining the most
suitable public charging station location. In [22], an improved
weighted aggregated sum product assessment-based MCDM

is proposed to select the best performing Pareto solution from
a charging station owner perspective. Ma et al. in [23] utilize
an MCDM scheme for selecting a voltage control solution that
is supported by an evolutionary multi-objective optimization
algorithm. In [24], the analytical hierarchy process (AHP)
among MCDM methods is proposed to find the optimum
parking slot in EV parking lots that weights the EV users’
preferences. Tanaka et al. [25] apply the AHP method for
substation maintenance and upgrade planning. Jiang et al.
[26] investigated an MCDM approach for selecting the best
access network in connected vehicle applications. In [27], a
new MCDM method is proposed to determine the optimal
combination of renewable sources for a microgrid. Some
studies applied the Power or Heronian averaging operators to
MCDM problems [28]–[31]. An interval-valued intuitionistic
fuzzy Heronian mean operator is proposed in [28] for sup-
plier selection in the supply chain. The generalized Heronian
mean and geometric Heronian mean operators under the q-
rung orthopair fuzzy sets are aggregated in [29] to evaluate
the resource planning systems. Some operators are derived
from the normal neutrosophic generalized weighted power
averaging operator in [30]. Based on neutrosophic numbers,
some aggregation operators are developed in [31] to solve
multiple attribute group decision-making problems.

With the motivations stated above, this study proposes
an improved MCDM model to determine the optimal EV
scheduling at workplaces that perform the best from the EV
user perspective. An optimal EVSE cost model is first devel-
oped from which EV user-related quantitative decision-making
variables are calculated for various charging scheduling. The
optimal model outputs are then integrated into the decision-
making process. Using linguistic scores, the latter enables
EV users to evaluate and weight the optimal decision-making
variables. A new MCDM model is proposed by integrating
Heronian averaging (HA) [32] and Power averaging (PA) [33]
operators. The salient features of the proposed model can be
highlighted as follows: (i) facilitating understanding of inter-
actions between decision attributes, (ii) consideration is given
to the interrelationships among the decision-making variables,
(iii) the influence of extreme and unreasonable arguments in
the initial matrix is eliminated, and (iv) taking into account
the degree of support between the input arguments. In addition
to these benefits of the hybrid Power Heronian function, the
linear normalization technique is improved in this study by
applying the inverse sorting algorithm [34]. The proposed ap-
proach for normalization of the cost attributed criteria defines
two basic principles of normalization of multidimensional
data: 1) preservation of the disposition of normalized values
on the measurement scale and 2) absence of shifts in the
areas of normalized values. Thus, a powerful MCDM tool
for rational and objective evaluation of the performance of
alternatives is obtained. To the best of the authors’ knowledge,
no research has considered the integration of hybrid Power
Heronian functions and the inverse sorting algorithm into a
single MCDM framework to date.

Five EV charging scheduling policies are defined as alter-
natives that can be implemented in workplaces. Using the
optimal EVSE cost model, the performance of the schedul-
ing policies are calculated for each decision-making variable
considered. The decision-making variables are specified with
the experts from the field based on EV user considerations at
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workplaces. In terms of EVSE configuration, dual port AC L2
/ Mode 3 at a charging rate of 22 kW and DC Fast Charging
(DCFC) at 50 kW are considered. These EVSE types have
gained popularity at workplaces [35]. According to a recent
NREL report, the number of AC L2 and DCFC EVSE units for
public and workplace charging stations is expected to increase
by approximately 7 and 2 folds, respectively, by 2030. The
hybrid Power Heronian function-based MCDM model is used
to evaluate the performance of each scheduling alternative with
the AC L2 and DCFC EVSE types. Hence, the best-performing
scheduling from the EV user perspective is determined. The
rest of this paper is organized as follows. In Section II,
an optimal EVSE cost model for workplaces is developed
and the solution to the model is discussed through smart
charging scheduling. Section III presents the decision-making
variables from the EV user perspective and the development
of the hybrid MCDM model. Experimental results, including
a sensitivity analysis, are presented and evaluated in Section
IV. Finally, Section V provides concluding remarks.

II. AN OPTIMAL WORKPLACE CHARGING STATION
MODEL WITH SMART CHARGING STRATEGY

A. Workplace Charging Behavior Model
The workplace EV charging characteristic has stochastic be-

havior that makes modeling challenging. Charging behaviour,
such as charging energy and start time, may not be well
represented by simple probability models such as the normal
distribution. Some probability density functions (pdf) have
been used to model charging behavior, including the kernel
distribution [36]–[39], Gaussian Mixture Modeling (GMM)
[40], [41], and Weibull distribution [42], [43]. The density
estimation method can be different depending on the data set.
In this study, the charging behavior at a business premise
is modeled. The data was collected over a 6 month period
from dual-port, AC L2 type (3-phase, 22 kW) EVSE units.
To find the best representation, the data was modelled by the
kernel distribution and GMM, and their characteristics were
compared. For all charging behaviours (e.g., charging energy,
charging start and end times), the goodness-of-fit of the kernel
distribution is found to be superior to the GMM model. Based
on the sample data, the kernel distribution is a non-parametric
estimate of the pdf of the random variable [36]. Kernel density
estimation can be formulated as:

f(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (1)

where x1, x2,..., xn are random samples, n is the sample
size, K(·) is the kernel smoothing function, and h is the
bandwidth. In kernel estimation, the Gaussian (normal) kernel
is commonly used [39] and formulated as:

K(x) =
1√
2π
e−x2/2. (2)

The kernel bandwidth, h, needs to be optimized for the
smoothness of the estimation. Matlab Statistics and Machine
Learning Toolbox™ [44] is used to model the frequency
distributions of charging energy, charging start and end times.
Fig. 1 shows the histogram and kernel distribution of the
charging start time of the collected data. These models are
used to generate workplace charging behavior data for 100
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Fig. 1. Workplace EV charging start time and its Kernel distribution.

EVs to be used in the cost optimization model explained in
Section II-B.

B. Cost Optimization Model for Workplace Charging Station
The EV charging procedure at the workplace EVSE can be

formulated as an optimization problem whose objective is to
minimize the daily levelized cost of charging [45]. The cost
comprises three elements as follows: (i) daily charging energy
cost, Cop, (ii) demand charge as a result of EV charging
loads contributing to workplace peak demand, Cdc, iii) daily
levelized EVSE infrastructure cost, CLIC , which includes
EVSE unit hardware (Cunit), installation, and maintenance
(Cins) costs. Hence, the model can be constructed by a linear
optimization problem as follows:

min
Pch,1...Pch,n,Sj

(
Cop(Pch,i) + Cdc(Pch,i) + CLIC(Sj)

)
, (3)

with,

Cop =

sj∑
sj=1

n∑
i=1

T∑
t=1

(
F (t)× (Pch,i,sj (t) ·

∆t

60
)
)
, (4)

Cdc = Cdrate·(max(

96∑
k=1

15∑
t=1

mean(

sj∑
1

n∑
1

Pch,i,sj ((k−1)·15+t)))),

(5)
CLIC = sj ·AF ·

(
Cunit + Cins

)
, (6)

subject to
T∑

t=1

Pch,i(t) · ηi ·
∆t

60
= Erequired,i, (7)

{
0 ≤ Pch,i(t) ≤ min

(
ηiP

rated
i , ηJP

rated
J

)
, if L2

0 ≤ Pch,i(t) ≤ ηj · P rated
j , if DCFC

(8)

T∑
t=1

(
Pbase(t) +

sj∑
sj=1

n∑
i=1

Pch,i,sj (t)
)
≤ Plim, (9)

(3)-(6) minimize the daily levelized cost of charging with
optimal charging rates while the EV user requirements are
satisfied by constraint (7). (8) imposes EV charging rates in
compliance with the standards IEC 61851/ SAE J1772s [11].
(9) ensures that the total power demand of the workplace,
including the EV charging load, is always lower than the
limit (Plim =500 kW) set in the tariff as a requirement for
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Fig. 2. Flow Chart of the smart charging algorithm.

medium power customers. N = {1, 2, ...n} is set of EVs,
Pch,i = {Pch, i(1)...P ch, i(T )} and Erequired,i are charging
rates and energy need of the ith EV, respectively. Cdrate is the
demand charge rate per kW. T is the number of time slots,
S = {1, 2, ...s} is the number of charging units. P rated

i and
ηi are the on-board charger power rating and its efficiency of
ith EV , respectively. P rated

j and ηj are the power rating and
the efficiency of the EVSE unit, respectively. Pbase is the base
load of the workplace in which the charging data is collected.
F = {f(1)...f(T )} is the daily energy cost offered by a utility
company as a general demand time-of-use (ToU) tariff with
three different rates [46]. To account for the time value of
money, the annuity factor [47], AF , is set to 9.63% for a 5%
discount rate and a 15-year lifetime of the EVSE units. The
sum of Cunitand Cins costs for AC L2 and DCFC are assumed
to be 6,000 $ and 58,000 $, respectively.

A heuristic smart charging algorithm has been developed to
solve the optimization problem (Fig. 2). Herein, the objective
is set to maximize the use of EVSE units. As such, the number
of EVSEs required is minimized. The proposed algorithm
employs an interrupted charging profile [48] in which an
EV is charged at optimum discrete time slots between its
arrival and departure times. This charging scheme can be
realized by an octopus type EVSE [15] in which only a
single EV can be charged at a time while multiple EVs are
connected to the EVSE. The algorithm assigns EVs to an
EVSE sequentially based on the scheduling presented in the
next subsection. When the EVSE can no longer accommodate

EVSE
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Fig. 3. The proposed framework of the integrated optimal workplace EVSE
model with the charging scheduling for MCDM.

any EVs, an EVSE is added and the subsequent EVs continue
to be assigned to the new EVSE until it cannot accommodate
any EV. This algorithm is bidirectional in the sense that once
a new EVSE is added, the previous EVSEs can also be
used for subsequent EVs, which can be accommodated. This
requires knowing the order in which EVs arrive. However,
this is rational for a workplace charging station in which
employees’ mobility is more predictable. Furthermore, EV
users are typically required to provide information about their
mobility, such as daily commute, dwell times, and charging
energy needs, in accordance with a policy developed by their
employer.

C. Description of Charging Scheduling Alternatives

Because of their longer dwell times and predictable mobility
patterns, EVs enable smart charging practices in the work-
place. The smart charging algorithm involves decision-making
about EV scheduling in order for both the charging station
operator and the EV user to fully benefit from smart charging
[49]. The proposed framework is illustrated in Fig. 3. It
integrates the optimal EVSE model with an offline scheduling
phase. While the smart charging algorithm determines optimal
charging power rates in real-time for EVs at which optimal
time slots and at which EVSE unit, the offline charging
scheduling defines the order in which EVs have to be charged.
This study addresses the practical applicability of scheduling
at workplaces and therefore defines five scheduling policies as
alternatives in ordering charging requests for a set of EVs. The
two alternatives are based on time, while the three alternatives
consider energy needs of EVS (e.g., their battery SOCs).

The first alternative (A1) is the first-come, first-served basis,
which is the current charging practice at workplaces. The EVs
are sorted based on their arrival times, and the EV with the
earliest arrival time is assigned first by

A1 = argmin
i∈N

(tarr,i) , (10)

where N is the set of available EVs to schedule and tarr,i
is the arrival time of ith EV. The second alternative (A2) is
the earliest deadline first policy [13]. It sorts EVs based on
their departure times and assigns the first EV with the earliest
departure time as

A2 = argmin
i∈N

(tdept,i) , (11)

where tdept,i is the departure time of ith EV. The third alterna-
tive (A3) sorts EVs by their flexibility ratios. It considers the
ratio of dwell time to required charging time and sorts EVs
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TABLE I
THE DECISION-MAKING VARIABLES.

Criterion Code Criterion Name Unit Attribute Type
C1 Peak power kW Cost
C2 Energy charge $/kWh Cost
C3 Demand charge $/kW Cost
C4 EVSE cost $ Cost
C5 EVSE occupancy % Cost
C6 Required charging time min Cost
C7 Site factors - Cost
C8 Number of EVSE units - Benefit
C9 EVSE hosting capacity % Benefit
C10 User flexibility % Benefit

with respect to their flexibility ratios. The EV with the least
flexibility is scheduled first by

A3 = argmin
i∈N

(
tdept,i − tarr,i

treq,i

)
, (12)

where treq,i is the required charging time of ith EV. The fourth
(A4) and fifth (A5) alternatives sort EVs according to their
battery SOC levels. In (A4), the EV with the highest required
charging energy is scheduled first, while A5 schedules the first
EV with the lowest required charging energy as follows:

A4 = argmax
i∈N

(Erequired,i) , (13)

A5 = argmin
i∈N

(Erequired,i) , (14)

where Erequired,i is the required charging energy of ith EV.

III. DEVELOPMENT OF THE HYBRID POWER HERONIAN
FUNCTION-BASED MCDM MODEL

A. Description of Decision-making Variables
Based on EV user considerations at workplaces from dis-

cussions with a workplace charging station operator and
users in the field, this study specifies ten variables for a
quantitative evaluation. As reported in Table I, the decision-
making variables are attributed as either cost or benefit to
allow the evaluation. Criteria weighting is not pre-supposed,
but the degree of importance for each criterion is evaluated
individually by the EV users from several workplaces. The
EV driving experience of the users ranges from 1 year to 5
years.

The first variable is peak power, which is the commercial
and industrial customers’ highest electrical power demand
(kW). When customers adopt large-scale EVs at workplaces,
peak power has become one of the key considerations due
to the higher peaks of their charging loads. Herein, C1,
refers to the peak of the highest average charging power
in 15-min intervals as in (5). From the optimization model
run, the distribution of peak average charging demand for a
group of 100 EVs for the charging schedulings considered
is calculated for AC L2 and DCFC EVSEs as in Fig. 4 (a)
and (b), respectively. It is shown that charging scheduling
has a considerable effect on peak power. The lowest peak is
achieved by the fourth alternative scheduling, while scheduling
A2 results in the highest peak. It is observed that scheduling
by SOC level performs reduced peak power performance as
compared to scheduling by arrival and departure times. While
similar peak power behavior is observed when AC L2 EVSE
is changed to DCFC, the lowest peak is achieved by A4 in
this case, as in Fig. 4 (b).
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Fig. 4. Distribution of the decision-making variable C1 for 100 EVs with
respect to the charging scheduling alternatives, (a) AC L2, (b) DCFC.

The next three variables form all the cost elements of
charging at workplaces, which are considered in the objective
function in (3). C2 is the energy charge, representing the daily
electricity consumption cost to charge all EVs as in (4). C3
is the demand charge that covers the utility’s cost for being
able to meet the highest peak of average usage in 15 minutes,
as in (5). C4 refers to the daily levelized EVSE cost, which
covers the cost of unit hardware, installation, and maintenance
over its life cycle as in (6). The demand charge and the
EVSE cost are of interest to EV users since they might be
reflected in the charging cost at workplaces. The distribution
of C2, C3, and C4 for 100 EVs with AC L2 EVSE from the
optimal model run is shown in Fig. 5. Scheduling by departure
time achieves the lowest energy charge while they display the
lowest performance in terms of demand charge and EVSE
cost. Scheduling by SOC level demonstrates similar behavior
and better performance for all cost elements as compared to
scheduling by arrival time. In terms of deviations in cost
figures, the scheduling type has the greatest impact on the
demand charge. Similar behaviors are obtained for the DCFC
EVSE type as well. Due to page limitations, the distributions
for DCFC are not included in the paper. However, the average
values over 100 random trials of the variables are reported in
Table II.

EV users give a lot of consideration to the required charging
time, C6, along with their dependency on being connected to
the EVSE. While the required charging time is the time taken
to achieve the desired SOC, EVSE occupancy, C5, is defined
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Fig. 5. Distribution of the decision-making variables with respect to AC L2 EVSE for 100 EVs with scheduling alternatives, (a) C2, (b) C3, (c) C4.
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Fig. 6. Optimal results for the decision-making variables C5, C6, and C10 for 100 EVs with AC L2 with respect to charging scheduling: (a) A1, (b) A2,
(c) A3, (d) A4, (e) A5. (Values are averaged over 100 random trials.)

by how much longer (%) an EV needs to remain connected to
the EVSE unit than the required charging time. It is expressed
as percentages by

EVSEocp(%) = mean
( tplug−off,i − tplug−in,i

treq,i

)
·100 (15)

where tplug−in,i and tplug−off,i are the plug-in and plug off of
ith EV. In this respect, EV user flexibility, C10, is defined
as considering how sooner EV users can leave than their
anticipated departure time with the desired SOC. Hence, it
is expressed by

EVflex(%) = mean
( tdept,i − tplug−off,i

tdept,i − tarr,i

)
·100 (16)

The optimal model results for C5, C6, and C10 for a group of
100 EVs with the AC L2 option for the charging schedulings
considered are shown in Fig. 6. While the percentages are
used in calculations, for convenience, the time values of the
occupancy C5 and the user flexibility C10 as illustrated in
Fig. 3 are shown in Fig. 6. The average required charging time
is calculated to be 116 min, which is constant for all charging
alternatives. To make use of off-peak times in the ToU tariff,
the smart charging algorithm increases EVSE occupancy time

by more than three fold, which differs with respect to the
charging alternatives. A1 displays the best performance with
the lowest average occupancy time of 309 minutes, while
A2 results in the highest occupancy time of 380 minutes.
However, A2 gives the most flexibility with an average time
of 58 minutes. This is because, in the scheduling by departure
time (A2), the charging start times occur earlier. As such, the
plug-off times with A2 happen at an average of 20 minutes. In
this respect, scheduling by SOC level displays similar EVSE
occupancy performance with an average occupancy time of
340 minutes. Accordingly, they provide more flexibility by
approximately 15 minutes with respect to A1. As the required
charging time depends on the EVSE type rather than the
scheduling algorithm, the average required charging time with
DCFC EVSE is decreased by six fold with respect to the AC
L2 type. In terms of EVSE occupancy and flexibility for the
charging alternatives, a similar trend is obtained with DCFC
EVSE as well. Due to page limitations, the figures for DCFC
EVSE are not included in the paper.

In current practice, EVs usually need to be connected to
EVSE units for longer than their required time. EV users can
benefit from a higher number of EVSEs, C8, as it increases
accessibility. However, the higher number of EVSE units can
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be limited by various site factors, C7, including visibility
and aesthetics. They may require electrical upgrades that will
increase EVSE installation costs as well. Thus, the number
of EVSE units at workplaces is considered as C7 and C8
variables from cost and benefit perspectives, respectively. The
optimal values of the decision-making variables C7 and C8
for the charging alternatives are reported in Table II. In terms
of EVSE unit number, for both EVSE types, A2 requires
the highest number of EVSE while the charging process is
completed with the lowest EVSE numbers in A4. Another EV
user consideration is EVSE hosting capacity (HC), C9. It is
a measure of the efficient use of EVSE. While the AC EVSE
power capacity is limited by the EVs whose onboard charger
capacities are lower than that of the EVSE unit, C9 indicates
how available time slots are efficiently used. It is expressed
by

HC =

n∑
i

Erequired(i)

Sj(i) ·
max(tplug−off(1:n))∫
min(tplug−in(1:n))

(P rated
j · ηj) dt

. (17)

The optimal HC values of the alternatives for dual-port AC L2
and DCFC EVSE are calculated as in Table II. The behavior
of the alternatives displays similarities to both EVSE types.
Scheduling by SOC level provides higher hosting capacity
values as compared to scheduling by arrival or departure times.
As such, A4 was found to have the best hosting capacity
with average values of 45.1% and 49.9%, while A1 shows
the lowest hosting capacity performance with average values
of 30.5% and 32.6% for AC L2 and DCFC, respectively.

B. Preliminaries

The proposed MCDM model is based on the integration of
HA and PA nonlinear functions. The definitions of weighted
geometric HA and PA operators in the MCDM model are first
given below. Then, the steps for implementing the proposed
method are described.

Definition 1: [50]: Let ϕ, φ ≥ 0 and (∂1, ∂2, . . . , ∂χ) rep-
resent a set of non-negative numbers. The weighted Heronian
operator (WHM) can be defined by.

WHMϕ,φ(∂1, ∂2, . . . , ∂χ) =

1

ϕ+ φ

(
2

χ(χ+ 1)

χ∑
x=1

(
χwi∂

(x)
i

)ϕ χ∑
y=x

(
χwj∂

(y)
j

)φ) 1
ϕ+φ

.
(18)

Definition 2: [50]: Let ϕ, φ ≥ 0 and (∂1, ∂2, . . . , ∂χ)
represent a set of non-negative numbers, then the weighted
geometric Heronian operator (WGHM) can be defined by

WGHMϕ,φ(∂1, ∂2, . . . , ∂χ) =

1

ϕ+ φ

(
χ∏

x=1,y=x

(
ϕ∂

(x)χwi

i + φ∂
(y)χwj

j

) 2
χ(χ+1)

)
.

(19)

Definition 3: [33]: Let (∂1, ∂2, . . . , ∂χ) represent a set of
non-negative numbers, the PA operator can be expressed by

PA(∂1, ∂2, . . . , ∂χ) =

χ∑
i=1

∂i

∑χ
i=1

(
1 + T

(
f(∂i)

))
f(∂i)∑χ

i=1

(
1 + T

(
f(∂i)

)) ,

(20)

where f(∂i) = ∂i/
∑n

i=1 ∂i, while T
(
f(∂i)

)
=∑χ

j=1,j ̸=i Sup
(
f(∂i), f(∂j)

)
and Sup

(
f(∂i), f(∂j)

)
denotes

the degree of support that ∂i receives from ∂j .

C. Hybrid Power Heronion Function-Based MCDM Frame-
work

Suppose that the MCDM framework is defined to evaluate
m alternatives represented by the set Ai(i = 1, 2, . . . ,m),
through χ criteria denoted by Cj(j = 1, 2, . . . , χ). The steps
for implementing the proposed hybrid MCDM are as follows:

Step 1. Form a home matrix. The home matrix elements
ℵ =

[
wpij

]
mxχ

are defined based on research into the
characteristics of m alternatives in relation to the χ criteria,
where wpij represents an estimate of the value of an ith

alternative in relation to the jth criterion.
Step 2. Normalize the home matrix elements. Since the

elements of the home matrix ℵ =
[
℘ij

]
mxχ

are represented
by different units of measurement, the elements ℘ij are
standardized by normalization, i.e., transformed into values
that are in the interval [0,1]. By applying (21), the normalized
matrix is obtained. ℵN =

[
℘̂ij

]
mxχ

.

℘̂ij =

 ℘̂ij =
℘ij

℘+
ij

if j ∈ B

℘̂ij = −℘ij

℘+
ij

+max
(

℘ij

℘+
ij

)
+min

(
℘ij

℘+
ij

)
if j ∈ C,

(21)
where ℘+

ij = max(℘ij), 1 ≤ i ≤ m, 1 ≤ i ≤ χ, B and C
represent the benefit and cost attributes of criteria, respectively.

Step 3. Determine the weighting coefficients of the criteria.
The weighting coefficients of the criteria are defined using a
nonlinear model defined based on a full consistency compari-
son of the criteria according to the authors’ previous study in
[51], [52]. Experts E =

{
E1, E2 . . . , Ee

}
evaluate the criteria

using a predefined scale.
Step 3.1. Based on expert comparisons ϖt

j(1 ≤ t ≤ e; j =
1, 2, . . . , χ), the comparative significance of the criteria is de-
termined. The value ϖt

j represents an expert assessment of the
degree of importance for jth criterion. Arithmetic averaging
for each criterion yields a unique value ϖj(j = 1, 2, . . . , χ)
which is used to define the vector of the comparative signifi-
cance of criteria as follows:

Ω =
(
ψ1, ψ2, . . . , ψχ

)
, (22)

where the elements of the vector, Ω is obtained by applying
the expression ψj = max

(
ϖj

)
/ϖj , 1 ≤ j ≤ χ. Based on the

vector of comparative significance, the ranking of the criteria
is defined. As such, if the criterion has a higher value of ψj ,
then it is said to have greater significance and therefore have
a better ranking.

Step 3.2. Calculate final values of weighting coefficients
of criteria wj =

(
w1, w2, . . . , wn

)T
. The final values of the

coefficients should satisfy two groups of constraints, which
are defined in the model (23).
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min ε s.t. ∣∣∣∣∣ wj(k)

wj(k+1)
− ψk+1

∣∣∣∣∣ ≤ ε, ∀j ,∣∣∣∣∣ wj(k)

wj(k+2)
− ψk+1 ⊗ ψk+2

∣∣∣∣∣ ≤ ε, ∀j ,

χ∑
j=1

wj = 1, wj ≥ 0, ∀j ,

(23)

where k represents the ranking of the criterion defined based
on the vector of the comparative significance of criteria.

Step 4. Calculate the significance of alternatives. Based
on Definitions 1, 2, and 3, we define two hybrid functions
for calculating the significance of alternatives as: (i) hybrid
weighted Power Heronian function

(
Q(1),ϕ,φ

i

)
and (ii) hy-

brid weighted geometric Power Heronian function
(
Q(2),ϕ,φ

i

)
,

which are expressed by (24) and (25), respectively.
Theorem 1: Let ℘̂ij(j = 1, 2, . . . , n) be a set of matrix

elements ℵN =
[
℘̂ij

]
mxχ

and let ϕ, φ ≥ 0. If we denote
the vector of weighting coefficients of the criteria by wj =(
w1, w2, . . . , wn

)T
, then the hybrid weighted averaging Power

Heronian function, Q(1),ϕ,φ
i , can be represented by

Q(1),ϕ,φ
i =

(
2

χ(χ+ 1)

χ∑
x=1

(
χ

nŵiwi∑n
t=1 ŵtwt

℘̂
(x)
i

)ϕ

χ∑
y=x

(
χ

nŵiwj∑n
t=1 ŵtwt

℘̂
(y)
i

)φ) 1
ϕ+φ

.

(24)

The proof for Theorem 1 is provided in Appendix A.
Theorem 2: Let ℘̂ij(j = 1, 2, . . . , n) be a set of matrix

elements ℵN =
[
℘̂ij

]
mxχ

and let ϕ, φ ≥ 0. If we denote
the vector of weighting coefficients of the criteria by wj =(
w1, w2, . . . , wn

)T
, then the hybrid weighted geometric Power

Heronian function, Q(2),ϕ,φ
i can be represented by

Q(2),ϕ,φ
i =

1

ϕ+ φ

(
χ∏

x=1,y=x

(
ϕ℘̂

(x)χ
nŵiwi∑n
t=1 ŵtwt

i +

φ℘̂
(y)χ

nŵiwj∑n
t=1 ŵtwt

j

) 2
χ(χ+1)

)
.

(25)

The proof for Theorem 2 is provided in Appendix A.

Where in (24) and (25), ŵt =

(
1+T (℘̂i)

)
∑χ

i=1

(
1+T (℘̂i)

) , while

T (℘̂i) =
∑χ

x=1,y ̸=x Sup(℘̂
(x)
i , ℘̂

(y)
j ),

∑χ
i=1 ŵi = 1, and

Sup(℘̂i, ℘̂j) represents the degree of support that element
℘̂i receives from element ℘̂j . Also, Sup(℘̂i, ℘̂j) satisfies the
following three axioms:

1) Sup
(
f(℘̂i), f(℘̂j)

)
= Sup

(
f(℘̂j), f(℘̂i)

)
2) Sup

(
f(℘̂i), f(℘̂j)

)
= [0, 1]

3) Sup
(
f(℘̂i), f(℘̂j)

)
> Sup

(
f(℘̂i), f(℘̂)

)
, if

d(℘̂i), d(℘̂j) > d(℘̂i), d(℘̂), where d(℘̂i), d(℘̂j) represents a
distance between ℘̂i and ℘̂j .

Step 5. Calculate the integrated value of the Power Heronian
function as follow:

Ri =
ζQϕ,φ

1 + (1− ζ)Qϕ,φ
2∑m

i=1

(
ζQϕ,φ

1 + (1− ζ)Qϕ,φ
2

) ; ζ ∈ [0, 1] (26)

TABLE II
HOME MATRICES.

Dual port AC L2 EVSE
Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
A1 201.3 317.9 64.25 24.43 3.40 116.98 10.99 10.99 0.39 5.04
A2 236.0 305.8 79.62 31.11 4.61 116.98 14.00 14.00 0.31 11.11
A3 185.7 311.9 57.36 21.00 3.79 116.98 9.45 9.45 0.45 6.96
A4 182.4 312.3 55.93 20.03 3.62 116.98 9.02 9.02 0.47 8.17
A5 184.3 311.9 56.77 22.71 3.52 116.98 10.22 10.22 0.42 10.27

DCFC EVSE
Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
A1 188.5 314.6 58.63 95.81 13.78 18.98 4.46 4.46 0.46 11.96
A2 224.2 300.6 74.39 131.04 23.70 18.98 6.10 6.10 0.33 19.39
A3 174.6 306.7 52.45 87.00 13.64 18.98 4.05 4.05 0.49 15.38
A4 174.8 306.5 52.54 85.50 12.75 18.98 3.98 3.98 0.49 17.63
A5 169.2 307.1 50.07 87.22 16.53 18.98 4.06 4.06 0.49 18.11

TABLE III
NORMALIZED MATRICES.

Dual port AC L2 EVSE
Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
A1 0.920 0.962 0.895 0.859 1.000 1.0 0.859 0.785 0.824 0.454
A2 0.773 1.000 0.702 0.644 0.738 1.0 0.644 1.000 0.645 1.000
A3 0.986 0.981 0.982 0.969 0.916 1.0 0.969 0.675 0.954 0.627
A4 1.000 0.979 1.000 1.000 0.951 1.0 1.000 0.644 1.000 0.735
A5 0.992 0.981 0.989 0.914 0.974 1.0 0.914 0.730 0.883 0.924

DCFC EVSE
Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
A1 0.914 0.956 0.885 0.921 0.957 1.0 0.921 0.731 0.912 0.617
A2 0.755 1.000 0.673 0.652 0.538 1.0 0.652 1.000 0.652 1.000
A3 0.976 0.981 0.968 0.989 0.962 1.0 0.989 0.664 0.985 0.794
A4 0.975 0.981 0.967 1.000 1.000 1.0 1.000 0.652 1.000 0.909
A5 1.000 0.979 1.000 0.987 0.840 1.0 0.987 0.666 0.981 0.934

Where ζ is the coefficient used to define the intensity of the
influence of Qϕ,φ

1 and Qϕ,φ
2 functions on the final decision. As

a general practice, a value of 0.5 was adapted. This ensures
equal intensity of influence of both Power Heronian functions
on the final decision.

Step 6. Finally, alternatives are ranked based on their values
of Ri. The higher Ri, is, the better the alternative is.

IV. EXPERIMENTAL RESULTS

A. Results for Alternatives
The proposed MCDM methodology was applied to deter-

mine the best performing charging alternatives for two EVSE
types, namely, dual-port AC L2 and DCFC. A set of five
alternatives and ten criteria were formed within each EVSE
type. The implementation of the methodology is presented as
follows:

Step 1: In the first step, a home matrix was formed for each
EVSE type, as in Table II where the values of the criteria were
obtained from the optimal model run. The home matrices are
defined for AC L2 and DCFC as follows: ℵL2MP =

[
℘̂ij

]
5x10

and ℵDCFC =
[
℘̂ij

]
5x10

.
Step 2: Following forming the home matrix, the elements of

the home matrices ℵL2MP and ℵDCFC were transformed into
standardized values from the interval ℘̂ij ∈ [0, 1] by using
(21) . Thus, the standardized values of home matrices were
obtained as in Table III.

Step 3: The weighting coefficients of the criteria were
defined by a group of EV users, E =

{
E1, E2 . . . , Ee

}
,

from different workplaces. The experts evaluated the criteria
as reported in Table IV using a nine-point scale: 1– Extremely
Low, 2 – Medium Low, 3 – Low, 4 – Medium. 5 – Medium
High, 6 – High, 7 – Very High, 8 – Extremely High, 9 –
Perfect.
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TABLE IV
EV USERS’ EVALUATION OF CRITERIA.

Experts Criteria
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

E1 8 4 5 7 4 5 5 5 5 7
E2 5 6 5 6 5 6 6 5 5 5
E3 1 5 3 6 9 9 7 9 7 6
E4 2 2 2 7 6 7 6 7 5 6
E5 6 6 7 4 6 6 6 6 6 6
E6 5 3 5 5 6 6 5 4 6 6
E7 7 5 8 5 8 8 8 7 5 7
Average 4.86 4.43 5.00 5.71 6.29 6.71 6.14 6.14 5.57 6.14

Step 3.1: Based on the EV users’ evaluation in Table IV,
using the expression ψj = max

(
ϖj

)
/ϖj , the vector of the

comparative significance of the criteria, (22), was formed by

Ω =
(0.0437, 0.0288, 0.0604, 0.0978, 0.1501,

0.1603, 0.1373, 0.1256, 0.0811, 0.1149)

The rank of criteria in Ω displays the significance of the
criteria in which (C6) was found to be the most important
criterion while the least significant criterion was (C2).

Step 3.2: The vector of final values of the weighting
coefficients wj =

(
w1, w2, . . . , wn

)T
was calculated using the

model given in (23).
min ε

s.t.∣∣∣w6

w5
− 1.068

∣∣∣ ≤ ε;
∣∣∣w5

w7
− 1.093

∣∣∣ ≤ ε;
∣∣∣w7

w8
− 1.093

∣∣∣ ≤

ε;
∣∣∣ w8

w10
− 1.093

∣∣∣ ≤ ε;∣∣∣w10

w4
− 1.175

∣∣∣ ≤ ε;
∣∣∣w4

w9
− 1.205

∣∣∣ ≤ ε;
∣∣∣w9

w3
− 1.343

∣∣∣ ≤

ε;
∣∣∣w3

w1
− 1.382

∣∣∣ ≤ ε;∣∣∣w1

w2
− 1.516

∣∣∣ ≤ ε;
∣∣∣w6

w7
− 1.168

∣∣∣ ≤ ε;
∣∣∣w5

w8
− 1.195

∣∣∣ ≤

ε;
∣∣∣ w7

w10
− 1.195

∣∣∣ ≤ ε;∣∣∣w8

w4
− 1.284

∣∣∣ ≤ ε;
∣∣∣w10

w9
− 1.416

∣∣∣ ≤ ε;
∣∣∣w4

w3
− 1.618

∣∣∣ ≤

ε;
∣∣∣w9

w1
− 1.856

∣∣∣ ≤ ε;∣∣∣w3

w2
− 2.096

∣∣∣ ≤ ε;
∑10

j=1 wj = 1, wj ≥ 0, ∀j .
Lingo 19.0 software was used to solve the model, and the
weighting coefficients of the criteria were obtained as follows:
w1 = 0.0437, w2 = 0.0288, w3 = 0.0604, w4 = 0.0978, w5 =
0.1501, w6 = 0.1603, w7 = 0.1373, w8 = 0.1256, w9 =
0.0811, w10 = 0.1149.

Step 4: Using (24) and (25) defines the significance of
alternatives within AC L2 and DCFC as follows:

(i) for dual-port AC L2: Q(1)ϕ=φ=1
i =

A1

A2

A3

A4

A5


0.8496
0.8322
0.8884
0.9147
0.9270

 ;

Q(2)ϕ=φ=1
i =

A1

A2

A3

A4

A5


0.8354
0.8149
0.8774
0.9040
0.9179



(ii) for DCFC: Q(1)ϕ=φ=1
i =

A1

A2

A3

A4

A5


0.8801
0.8012
0.9111
0.9417
0.9253

 ;

Q(2)ϕ=φ=1
i =

A1

A2

A3

A4

A5


0.8687
0.7840
0.9010
0.9316
0.9163


For the calculation of the functions Q(1)ϕ,φ

i and Q(2)ϕ,φ
i ,

the values of the parameters ϕ = φ = 1 were adapted.
Step 5: The integrated values of the Power Heronian func-

tion of the alternatives with AC L2, RL2MP
i , and DCFC,

RDCFC
i , were obtained by applying (26) as follows:

RL2MP
i =

A1

A2

A3

A4

A5


0.1923
0.1880
0.2015
0.2076
0.2106

 ; RDCFC
i =

A1

A2

A3

A4

A5


0.1974
0.1789
0.2045
0.2114
0.2078


When calculating the integrated values of the alternatives

by (26), the coefficient ζ = 0.5 was adapted. This allows both
functions

(
Q(1)ϕ,φ

i and Q(2)ϕ,φ
i

)
to have the same influence

on the definition of the integrated values of the alternatives.
Step 6: The alternatives were ranked with respect to their

integrated values, Ri as follows: (i) for dual port AC L2; A5 >
A4 > A3 > A1 > A2, and (ii) for DCFC; A4 > A5 > A3 >
A1 > A2.

Regarding the EV users’ ranking of criteria, the results in
Table II reveal that required charging time, EVSE occupancy,
number of EVSE units, and user flexibility were found to
have the highest importance degree, while energy charge had
the lowest importance degree. A5 and A4 were found to be
the best performing charging alternatives for both AC L2 and
DCFC EVSEs, while A1 was the least feasible option for
both EVSE types. While the optimal model yielded similar
results for most of the criteria considered for A4, A5, and
A3 with AC L2 EVSE, A5 emerged as the most prominent
option due to providing less EVSE occupancy and greater
user flexibility. The primary reason for A2 being the worst
alternative is that it has the highest EVSE occupancy, the
lowest hosting capacity, the highest demand charge, and the
highest EVSE cost. It is observed that scheduling by SOC
levels demonstrates superiority when considering all aspects of
EV users at workplaces as their charging alternatives always
remain in the top three. Similar behavior of the alternatives
was observed for the DCFC unit as well. As being the best
alternative, A4 performs the lowest EVSE occupancy, number
of EVSE units, demand charge, and highest hosting capacity.
Similar to the performance with AC L2, scheduling by arrival
and departure time with the DCFC unit displays the lowest
performance for all aspects of EV users.

B. Sensitivity Analysis

In this section, the sensitivity analysis was performed to
test the robustness of the obtained ranking solution. There are
numerous approaches in the literature to analyze the robustness
of MCDM models [52]–[56]. However, all approaches agree
that robustness analysis depends on the specifics of the math-
ematical apparatus used in the MCDM model. Also, several
authors [33], [57], [58] state that it is necessary to analyze the
impact of subjectively defined input parameters on the initial
results of the model. In the proposed MCDM framework,
three parameters, ϕ, φ, ζ are defined based on the subjective
preferences of experts. Subjectively defined parameters depend
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on the conditions under which the system is modeled and the
decision maker’s perception. However, changing subjectively
defined parameters can disrupt the stability of the initial
solution. Therefore, it is recommended to perform a sensitivity
and stability analysis of the solution. Sensitivity analysis is a
simulation of the change of these parameters in the corre-
sponding interval. Such an analysis enables the perception of
the influence of subjective parameters on the final results of
the model, i.e., it enables the verification of the stability of
the initial results. Therefore, in this study, the strength of the
initial solution depending on the variation of the parameters
ϕ, φ, and ζ is analyzed.

a) Influence of parameters ϕ and φ on the ranking results:
The expressions (24) and (25) show that the parameters, ϕ,
φ, play an important role in defining the significance of
alternatives and thus indirectly influence the final decision.
An experiment was conducted by simulating the change of
the parameters ϕ and φ in the interval 1 ≤ ϕ, φ ≤ 50. The
effect of the ϕ and φ parameters on the change of values of
the Power Heronian functions Q(1)ϕ,φ

i and Q(2)ϕ,φ
i for A1 and

A2 alternatives is shown in Fig. 7. Similar changes happened
in other alternatives within the two EVSE types considered.

The simulation was performed through 50 scenarios. In the
first scenario, the value ϕ = φ = 1 was adapted, while
in each subsequent scenario, the value of parameters was
increased by one. The results in Fig. 8 show that the change
in parameter values significantly affects the values of the
integrated functions for the alternatives. It is observed that
such changes can also shift the initial rank. An increase in
the value of parameters within 1 ≤ ϕ, φ ≤ 50 decreases the
integrated function scores of the top three ranked alternatives
while increasing the integrated function scores of the last two
ranked alternatives. Changing the parameters also reduces the
difference in integrated function scores between alternatives
A1, A2, A3, and A4 shown in Fig. 8(a) and A1, A3, A4, and
A5 shown in Fig. 8(b). The values of the parameters 11 ≤ ϕ,
φ ≤ 16, and 21 ≤ ϕ, φ ≤ 50 for AC L2 EVSE altered
the rankings of the last three alternatives (A1, A2, and A3).
However, the rankings of the top two alternatives (A5 and A4)
were confirmed. In order to analyze the statistical significance
of these changes, the Spearman correlation coefficient (δ) was
used. Using δ, a statistical correlation among rank changes was
determined through 50 scenarios. Fig. 9 depicts the Spearman
coefficient values.

The results show that the correlation ranges from 0.633 ≤
δ ≤ 1, which indicates a high correlation between the initial
solution and the solutions in the scenarios. As a result of
the analysis presented, it is possible to conclude that A4 is
the most dominant solution and that the initial ranking for
the alternatives with the AC L2 EVSE unit is correct. The
influence of varying parameters ϕ and φ on the values of
the Power Heronian functions displays similar behavior for
the alternatives to the DCFC EVSE. In this case, however,
this does not change the rankings of alternatives as in Fig.
8(b). Therefore, this analysis can conclude that A4 is the most
dominant solution among the alternatives for the DCFC EVSE
unit as well.

b) Influence of parameter ζ on the ranking results The
ζ parameter was used to define the integrated values of the
Power Heronian functions. In the initial calculation, the value
of 0.5 was taken for ζ. The sensitivity analysis included 50
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Fig. 7. Behavior of the integrated function scores with respect to varying
parameters ϕ and φ for (a) A1 with AC L2 , (b) A2 with AC L2, (c) A1 with
DCFC, and (d) A2 with DCFC.

scenarios. The value ζ = 1.0 was adapted in the first scenario,
but in each subsequent scenario, the value of ζ was defined
using the expression ζs = ζs−1 + 0.02, where s represents
the ordinal number of the scenario. The dependence of the
integrated values of the alternatives with respect to varying
ζ values is shown in Fig. 10. It is observed that changing ζ
does not change the rankings of the alternatives for both EVSE
types.

c) Comparative analysis

To test and validate the proposed MCDM model, it has
been compared with traditional MCDM models. The MCDM
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Fig. 8. Behavior of the integrated function scores of the alternatives with
respect to varying parameters ϕ and φ, (a) L2MP, and (b) DCFC.
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Fig. 9. Statistical correlation of the rankings.

methods that apply weighted linear functions for aggregation
of information in the home matrix were selected for compari-
son. These are WASPAS (Weighted Aggregated Sum Product
Assessment) method [59], RAFIS (Ranking of Alternatives
through Functional mapping of criterion sub-intervals into a
Single Interval) method [60] and VIKOR (VIekriterijumsko
KOmpromisno Rangiranje) method [61]. After implementing
these models, the ranking results are reported in Table V.
In general, each MCDM model used yielded similar ranking
results for each of the alternatives. The only difference found
between the models is how the VIKOR approach ranked the
alternatives A3 and A4 for AC L2 EVSE or A5 for DCFC.
This results from a consequence of applying a compromise
pessimistic/optimistic index used to prioritize alternatives in
the VIKOR method. However, all methods confirmed the
credibility of the dominant alternatives, yielding the same best
and worst alternatives. This indicates the robustness of the
Power-Heronian functions methodology and the credibility of
the proposed model. Table VI compares the features of the
MCDM methods implemented along with the proposed model.

No restrictions are imposed on all MCDM methods used for
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Fig. 10. Behavior of the integrated function scores of the alternatives with
respect to varying parameter ζ values , (a) dual port AC L2, and (b) DCFC.

TABLE V
COMPARISON OF THE RANKINGS WITH VARIOUS MCDM METHODS.

Dual port AC L2 EVSE DCFC EVSE
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Proposed 4 5 3 2 1 4 5 3 1 2
WASPAS 4 5 3 2 1 4 5 3 1 2
RAFIS 4 5 3 2 1 4 5 3 1 2
VIKOR 4 5 2 3 1 4 5 2 1 3

comparison regarding the number of alternatives or criteria.
The choice of method depends on the conditions under which
the decision is made. There are certain real-world situations in
which decision-making requires considering the interrelation-
ships between the criteria. In such situations, the advantages
of the proposed model can be emphasized, which enables
the recognition of mutual relations between the attributes
and their fusion into a unique criterion function. Moreover,
the aggregation functions in the traditional MCDM methods
are linear, while hybrid nonlinear functions with stabilization
parameters are used in the proposed model. The stabilization
parameters of the proposed model enable flexible decision-
making. As a result, the Power-Heronian methodology can
be said to be more general and more flexible. In addition,
one of the significant advantages of the proposed model is
the elimination of extreme parameters from the home matrix.
When the evaluation data has extreme values, the sorting
results may be distorted with the traditional MCDM methods.
However, the proposed method remains relatively stable in
such situations because it can eliminate the influence of
extreme values from prejudiced decision-makers based on
power operators. Because of this characteristic, the proposed
method may be used more broadly and is more suited for
handling real-world decision-making problems. The inclusion
of uncertainty theories into MCDM models complicates their
mathematical formulation. The proposed method involves the
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TABLE VI
THE COMPARISON OF THE MCDM METHODS IMPLEMENTED.

Features
Methods WASPAS [59] RAFSI [60] VIKOR [61] Proposed

Allows the input parameters
to support each other No No No Yes

Flexible decision-making due to
decision makers’ risk attitude No No No Yes

Flexibility in real-world applications Partially No No Yes
Eliminate the influence of extreme
values from the decision matrix No No No Yes

iterative assessment of interactions between criteria, which
further increases the mathematical complexity of the Power-
Heronian approach if a request for processing complex infor-
mation is made. However, the higher mathematical complexity
of the proposed method has no effect on its overall efficiency
and can be effectively eliminated by developing user-friendly
software that significantly speeds up information processing.

V. CONCLUSION

In this study, a new MCDM model has been presented for
selecting the best performing charging scheduling algorithm at
workplaces from an EV user’s multi-criteria perspective. The
proposed model is based on integrating Power and Heronian
averaging nonlinear functions, in which the linear normal-
ization method is improved by applying the inverse sorting
algorithm. For a quantitative evaluation, an optimal EVSE cost
model was also incorporated into the decision-making. The
model enabled EV users to specify and evaluate multi-criteria
for considering their aspects at workplaces. Five different
charging scheduling algorithms with AC dual port L2 and
DCFC EVSE units have been studied.

EV users’ considerations revealed that required charging
time, EVSE occupancy, the number of EVSE units, and user
flexibility were found to have the highest importance degree,
while energy charge had the lowest importance degree. While
the current literature has predominantly focused on minimizing
charging costs, this study has shown that there are various
parameters that should be taken into account rather than the
charging cost. Considering ten quantitative criteria from dif-
ferent aspects of EV users at workplaces, the model found A5

and A4 as the best charging scheduling for AC L2 and DCFC,
respectively, while A2 displayed the lowest performance for
both EVSE types. Moreover, the comparison analysis revealed
a consistency among the results of the implemented MCDM
models. The sensitivity analysis confirmed the validity of the
best and worst alternatives. As a result, in terms of meeting
EV users’ considerations at workplaces, it was found that
scheduling EVs by their charging energy needs (e.g.s SOC
levels) performs better than scheduling by their arrival and
departure times for both AC L2 and DCFC EVSE cases.

While the proposed MCDM model has yielded rational and
objective evaluation performance, one of the limitations is
the hybrid Power Heronian model’s mathematical complexity.
This feature might be a limiting factor in applying to other
MCDM problems as well. Therefore, future work will be
directed towards developing a user-oriented decision support
system based on a rough Power Heronian methodology.

APPENDIX A
The proof of Theorem 1:
(18) is gradually decomposed into segments to derive (24).
From (18) and (20), we can write that:

χwi℘̂i = χ nŵiwi∑χ
t=1 ŵtwt

℘̂i ; χwj℘̂j = χ
nŵiwj∑χ
t=1 ŵtwt

℘̂j ;
Next, the multiplication of these two terms can be expressed

by(
χwi℘̂i

)ϕ
·
(
χwj℘̂j

)φ
=

(
χ nŵiwi∑n

t=1 ŵtwt
℘̂i

)ϕ

·(
χ

nŵiwj∑n
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℘̂j

)φ

,
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((
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Finally, we get the function Qϕ,φ
1 as follow:

Qϕ,φ
1 =

(
2

χ(χ+1)
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(
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The proof of Theorem 2:
(19) is gradually decomposed into segments to derive (25).
From (19) and (20), we have

ϕ℘̂χwi

i = ϕ℘̂
χiwi∑n

t=1 ŵtwt

i ; φ℘̂χwi

j = φ℘̂

χiŵiwj∑n
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i
Next, the summation of these two terms can be expressed

by
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t=1 ŵtwt

j

) 2
χ(χ+1)

)

ACKNOWLEDGMENT

The authors would like to thank EV users who participated
in this study and Pat Mehigan for collecting charging data,
sharing his experience with operating a workplace charging
station, and his insightful suggestions.

REFERENCES

[1] E. Ucer, I. Koyuncu, M. C. Kisacikoglu, M. Yavuz, A. Meintz, and
C. Rames, “Modeling and analysis of a fast charging station and eval-
uation of service quality for electric vehicles,” IEEE Trans. Transport.
Electrific., vol. 5, no. 1, pp. 215–225, 2019.

[2] (2021) Global EV outlook: Accelerating ambitions despite the pandemic.
https://www.iea.org/reports/global-ev-outlook-2021. [Online; accessed
01-Dec-2021].

[3] N. Erdogan, S. Kucuksari, and U. Cali, “Co-simulation of optimal EVSE
and techno-economic system design models for electrified fleets,” IEEE
Access, vol. 10, pp. 18 988–18 997, 2022.

[4] R. Mehta, D. Srinivasan, A. M. Khambadkone, J. Yang, and A. Trivedi,
“Smart charging strategies for optimal integration of plug-in electric
vehicles within existing distribution system infrastructure,” IEEE Trans.
Smart Grid, vol. 9, no. 1, pp. 299–312, 2016.

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3186659

https://www.iea.org/reports/global-ev-outlook-2021


13

[5] V. Lakshminarayanan, V. G. S. Chemudupati, S. K. Pramanick, and
K. Rajashekara, “Real-time optimal energy management controller for
electric vehicle integration in workplace microgrid,” IEEE Trans. Trans-
port. Electrific., vol. 5, no. 1, pp. 174–185, 2018.

[6] R. Abousleiman and R. Scholer, “Smart charging: System design and
implementation for interaction between plug-in electric vehicles and the
power grid,” IEEE Trans. Transport. Electrific., vol. 1, no. 1, pp. 18–25,
2015.

[7] Z. Moghaddam, I. Ahmad, D. Habibi, and Q. V. Phung, “Smart charging
strategy for electric vehicle charging stations,” IEEE Trans. Transport.
Electrific., vol. 4, no. 1, pp. 76–88, 2017.

[8] S. S. K. Madahi, H. Nafisi, H. A. Abyaneh, and M. Marzband, “Co-
optimization of energy losses and transformer operating costs based on
smart charging algorithm for plug-in electric vehicle parking lots,” IEEE
Trans. Transport. Electrific., vol. 7, no. 2, pp. 527–541, 2020.

[9] D. Wu, H. Zeng, C. Lu, and B. Boulet, “Two-stage energy management
for office buildings with workplace ev charging and renewable energy,”
IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 225–237, 2017.

[10] H. N. Nguyen, C. Zhang, and J. Zhang, “Dynamic demand control of
electric vehicles to support power grid with high penetration level of
renewable energy,” IEEE Trans. Transport. Electrific., vol. 2, no. 1, pp.
66–75, 2016.

[11] M. Kisacikoglu, F. Erden, and N. Erdogan, “Distributed control of PEV
charging based on energy demand forecast,” IEEE Trans. Ind. Informat.,
vol. 14, no. 1, pp. 332–341, Jan 2018.
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