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Summary 

Lithium-ion batteries are widely used as rechargeable energy and power storage system in smart devices and 
electric vehicles because of their high specific energy, high power densities, etc. The state of charge (SOC) serves 
as a vital feature that is monitored by the battery management system to optimize the performance, safety, and 
lifespan of lithium-ion batteries. In this paper, a strong tracking adaptive fading-extended Kalman filter (STAF-
EKF) based on the second-order resistor–capacitor equivalent circuit model (2RC-ECM) is proposed for accurate 
SOC estimation of lithium-ion batteries under different working conditions and ambient temperatures. The 
characteristic parameters of the established 2RC-ECM for the lithium-ion battery are identified offline using the 
least-squares curve fitting method with an average R-squared value of 0.99881. Experimental data from the 
hybrid pulse power characterization (HPPC) is used for the estimation and verification of the proposed STAF-EKF 
method under the complex Beijing bus dynamic stress test (BBDST) and the dynamic stress test (DST) working 
conditions at varying ambient temperatures. The results show that the established 2RC-ECM tracks the actual 
voltage of the battery with a maximum error of 28.44 mV under the BBDST working condition. For the SOC 
estimation, the results show that the proposed STAFEKF has a maximum mean absolute error (MAE) and root 
mean square error (RMSE) values of 1.7159% and 1.8507%, while the EKF has 6.7358% and 7.2564%, 
respectively, at an ambient temperature of -10C under the BBDST working condition. The proposed STAF-EKF 
delivers optimal performance improvement compared to the EKF under different working conditions and 
ambient temperatures, serving as a basis for an accurate and robust SOC estimation method with quick 
convergence for the real-time applications of lithium-ion batteries. 
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1 | INTRODUCTION 

As the world progresses from fossil fuels toward electrification, the transport sector is becoming increasingly 
reliant on the development, manufacture, and supply of rechargeable batteries to replace carbon propulsion 
systems.1 Rechargeable batteries, such as lithium-ion batteries, are gradually becoming the main power source 
and storage system.2 They are preferred compared to batteries with other chemistries such as nickel-cadmium 
(NiCad), nickel-metal hydride (NiMH), and lead-acid due to their high energy and power densities. Also, they 
have other advantages, such as high voltage capacity, high recharge rate, low self-discharge rate, long cycle life, 
wide working temperature range, zero-emission of hydrogen gas, lightweight with compact size, high 
recyclability, and low hysteresis.3-5 

The state of charge (SOC) is the ratio of the remaining useful capacity to the rated capacity of the lithium-ion 
battery, expressed as a percentage.6 Accurate SOC estimation is of great significance to prevent damage to the 
battery and user. Also, it prevents over-charge and over-discharge as it has a functional relationship with the 
open-circuit voltage to inform the user about the necessary action and ensure safe operation and acceptable 
durability of lithiumion batteries.7,8 The SOC indication in battery-powered vehicles works similarly to the fuel 
gauges in internal combustion engine-powered vehicles.9 Even though the SOC is essential, it cannot be directly 
measured due to challenges like internal and external working conditions, cell size differences, aging 
characteristics, etc., of the lithium-ion battery.10,11 

Currently, the frequently used methods for SOC estimation of lithium-ion batteries are classified into direct 
measurement-based such as the Ampere-hour (Ah) integral method12 and open-circuit voltage method,13 data-
driven methods such as gated recurrent unit and long short-term memory neural networks,14,15 and model-
based methods such as Kalman filtering (KF) methods.16 The circuit models commonly used in model-based 
estimation methods are the electrochemical model, the empirical model, the machine learning model, and the 
equivalent circuit model (ECM) to monitor its parameters and control the behavior of the lithium-ion battery.17,18 
The electrochemical model’s working principle is based on the electrochemistry of the lithium-ion battery. It 
uses partial differential equations (PDEs) to characterize the response of internal cell electrochemical variables 
to an input current signal.19,20 However, they are computationally complex due to the coupled PDEs and contain 
many influential model parameters.21 The empirical model is established using a large amount of experimental 
data. However, due to parameter mismatch and cell differences, they cannot be applied to all working conditions 
in real-time applications.22 

The ECM method trains the battery’s model to simulate the internal characteristics of the lithium-ion battery.23-

25 The traditional KF and its advanced methods used for SOC estimation are applied to all types of batteries, 
provided that accurate input features such as load current, voltage, and temperature values are used.26,27 
Considering the complex and dynamic operational conditions of lithium-ion batteries, the SOC is estimated 
accurately by the optimization of the traditional model-based methods like the KF,28 adaptive extended Kalman 
filter (AEKF),29 extended Kalman filter (EKF),5 particle filter (PF),30 unscented Kalman filter (UKF),8 H-infinity,15 
etc. These model-based methods are highly dependent on the ECM’s ability to characterize the parameters of 
the battery. They are widely used by researchers due to their ability to estimate with high accuracy, good 
convergence, and with a smaller amount of data.7,31 

The estimation methods that are easy to use and give optimal results compared to the KF are the EKF, UKF, and 
AEKF, which are the advanced methods for nonlinear systems such as lithium-ion batteries. The EKF is an 
optimized auto-recursive state estimation method that characterizes the internal dynamic states of the 
lithiumion battery.32 For accurate SOC estimation studies carried out to enhance the performance of the battery 
management system (BMS), He et al.32 established a fractional-order model using an adaptive genetic algorithm 
to characterize the dynamic responses of the lithium-ion battery based on a central difference KF to estimate 
the SOC at room temperature. It is observed that the fractional-order model works similarly to the second-order 
resistor– capacitor (2RC) ECM. Also, Wang et al.33 and Cong et al.34 used a composite ECM and the first-order 
Thevenin ECM to estimate the SOC of the lithium-ion battery using a spliced KF and an adaptive square root EKF, 
respectively. Yang et al.35 used an improved EKF for the SOC estimation based on the first-order simulated 
annealing-particle swarm optimized ECM. Xu et al.36 estimated the SOC and capacity based on the variation of 



the model parameters and capacity of the battery using the AEKF method. A similar method of estimation is also 
found in Zhang et al.37 using a one-way transmitted estimation of capacity and SOC with two different AEKF in 
succession using a first-order Thevenin ECM, which cannot fully characterize the polarization characteristics of 
lithium-ion batteries. The use of double estimation methods increases the computational complexity, and the 
adaptivity of the EKF is not robust enough to ensure accurate estimation. Yi et al.38 combined the EKF with the 
Ah integral method based on the second-order Thevenin ECM for SOC estimation, which is prone to error 
accumulation even though it is easy to design and simple to use with the EKF, which also has its disadvantages. 
Also, a comparative study of the AEKF and UKF is conducted by Zhang et al.39 for SOC estimation. Meanwhile, 
Zhao et al.40 combined it with the AEKF only under the hybrid pulse power characterization (HPPC) working 
condition. 

Due to the high nonlinearities of lithium-ion batteries, other state parameters such as state of health (SOH), 
state of energy (SOE), are state of power (SOP) are studied. Yang et al.41 proposed a novel fuzzy adaptive 
cubature KF method for the co-estimation of the SOC and SOE. However, the inaccuracies and instabilities 
associated with the KF and EKF methods are not eliminated. Ma et al.42 co-estimated the SOC and SOH based on 
a computationally complex fractional-order model with the multi-innovations UKF method. Xu et al.43 proposed 
a fractional-order calculus for the co-estimation of the SOC and SOH based on a fractional-order ECM using a 
hybrid genetic algorithm/particle swarm optimization method. Wu et al.44 estimate the SOP, which shows the 
peak power released or absorbed by the battery during its operation based on a Rint model. She et al.45 based 
on the incremental capacity analysis method for the real-world estimation of the SOH for EV operation. Wang 
et al.46 proposed a tree-based regression model for battery charging capacity diagnosis using charging rate, 
temperature, SOC, and accumulated driving mileage as the input data. However, among these state parameters, 
the SOC is the most significant function of the BMS. By accurately estimating it, the user can intuitively determine 
the critical condition of the battery by observing the changing rate of the SOC during the charge and discharge 
period. Also, the optimization accuracy of the proposed methods by these studies is not optimally obvious and 
has higher computational complexities. Furthermore, the robustness is not verified under complex working 
schemes and at varying ambient temperatures. 

Due to technological advancement, artificial intelligence networks are prominently used for SOC estimation. 
Wang et al.47 used an improved gated recurrent unit (GRU)-based transfer learning for small target sample sets 
for SOC estimation at high temperatures. Also, Huan et al.48 proposed an improved whale optimization-
AdaBoost-Elman algorithm, which solves the low generalization, local miniaturization, low prediction accuracy, 
and insufficient dynamics in the prediction process of a single feedforward neural network for SOC estimation 
at room temperature training and testing. Jia et al.49 used a GRURNN-based momentum gradient method to 
optimize the weight of the network to estimate the SOC. However, the data learning process is complex, time-
consuming, and requires high power and high-speed microprocessors to train the experimental data. Also, the 
human factors involved in the training process alter the certainty of the learning process and estimation 
accuracy. Due to these challenges, they are seldom used in engineering applications.50 Studying the influence of 
temperatures in the operation of lithium-ion batteries, Wang et al.51 developed a parameter identification 
method with the particle swarm optimization based on the constant current discharge test and estimated the 
SOC using the EKF at temperatures of 5 and 25C. The verification of their proposed method is carried out only 
at different discharge rates but not with different test conditions and low temperatures (0C and -10C), which 
highly influences the performance of lithium-ion batteries to show the robustness of the proposed method. 
Zhang et al.52 estimated the SOC based on EKF and a regularized extreme learning machine (EKF-RELM) method 
that models the relationship between the lithium-ion battery’s parameters and temperature. However, the 
study is conducted based on a time-varying temperature range, and their proposed methods were not verified 
under different working conditions. 

In this paper, a strong tracking adaptive fading extended Kalman filter (STAF-EKF) method is proposed for SOC 
estimation based on the 2RC-ECM under varying ambient temperatures and working conditions. The 
characteristic parameters of the established 2RC-ECM are identified offline using the least-squares curve fitting 
method with high accuracy, 95% confidence bounds, and an average R-squared value of 0.99881. Then, the STAF 
factor is introduced into the recursive update of the posteriori error covariance matrix of the EKF to iteratively 
minimize the system’s uncertainties and noise for an accurate and robust SOC estimation. Because temperature 
highly influences the performance of lithium-ion batteries, the SOC estimations of the STAF-EKF method are 



conducted under the HPPC and the complex Beijing bus dynamic stress test (BBDST) working conditions at 
varying temperatures of 25C and -10C. Furthermore, the SOC estimation is carried out under the complex 
dynamic stress test (DST) working condition under varying ambient temperatures of 25C, 15C, 0C, and -10C to 
further verify the accuracy and robustness of the proposed method. The proposed STAF-EKF method effectively 
corrects the uncertainties and noise characterized by the nonlinearities in the SOC estimation of lithium ion 
batteries under different working conditions and ambient temperatures to improve the accuracy and robustness 
of the existing methods for real-time lithium-ion battery applications. 

The rest of the paper is organized as follows: Section 2 introduces the mathematical analysis: the 2RC-ECM and 
its electrical behavior, the offline parameter identification method, the working principle of the proposed 
STAFEKF method, and the SOC performance evaluation metrics calculation. Section 3 describes the experimental 
analysis: the experimental test platform, the HPPC, BBDST, and DST experiment procedures, and the 
experimental verification of the 2RC-ECM. Then, the SOC estimation results for the STAF-EKF and the EKF 
methods are presented and evaluated using the maximum error (ME), mean absolute error (MAE), and root 
mean square error (RMSE) to show the performance improvement of the proposed method under different 
working conditions and ambient temperatures. Section 4 is the conclusion of this paper. 

2 | MATHEMATICAL ANALYSIS 

2.1 | The second-order resistor–capacitor equivalent circuit model 

Compared to other types of rechargeable batteries, the lithium-ion battery has four primary components: 
positive and negative electrodes, an electrolyte, and a separator. The ECM has the advantages of simple 
calculation and characterization ability; therefore, it is the most widely used.53 Some of the commonly proposed 
ECMs for lithium-ion batteries in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and 
battery electric vehicles (BEVs) studies are the Rint, Thevenin, Partnership for a New Generation of Vehicles 
(PNGV), general nonlinear (GNL), and resistor–capacitor (RC) circuit models. 

The RC-ECM stands out because it is more capable of registering and monitoring the static and nonlinear 
characteristics of the battery.50 The 1RC-ECM provides sufficient accuracy, easy implementation, and fast 
computation. However, it cannot fully simulate the dynamic characteristics of the lithium-ion battery 
accurately.34,54 Therefore, an additional RC circuit can further simulate the charged and discharged states of the 
battery’s nonlinearities with its dual-polarization making it a 2RC-ECM, for better dynamic performance and 
parameter characterization. The established 2RC-ECM of the lithium-ion battery used for this study is presented 
in Figure 1. 

 

 

FIGURE 1 Second-order resistor–capacitor equivalent circuit model. 

 

By analyzing the 2RC-ECM in Figure 1, its electrical behavior for the terminal voltage and load current is obtained 
based on Kirchhoff’s circuit law as expressed in Equation (1). 



 

In Equation (1), Uoc is the open-circuit voltage of the battery, which has a functional relationship with the SOC. 
UT is the battery terminal voltage, and IL is the load current flowing through the 2RC-ECM. R0 is the internal 
ohmic resistance, and Rp1 and Rp2 are the internal electrochemical and concentration polarization resistances, 
respectively. Cp1 and Cp2 are the internal electrochemical and concentration polarization capacitances, 
respectively, of the lithium-ion battery. Up1 and Up2 are the resultant voltages drops across the electrochemical 
and concentration factors of the polarized resistors and capacitors, respectively. In this paper, it is assumed that 
the sign of the battery load current is negative when the battery is charging, and positive when it is discharging. 

2.2 | Parameter identification of the 2RC-ECM 

The offline identification method is used to identify the model parameters and reduce the  computational time 
while ensuring the accurate calculation of the internal parameters of the battery. The parameter identification 
is carried out using the experimental results from the HPPC test. When the lithium-ion battery is at rest, there is 
no load current flowing through the battery. Then, aside from the electrochemical and concentration 
polarization effects, the voltage difference caused by the voltage drop at each time step is due to the ohmic 
resistance R0, which is calculated as presented in Equation (2). 

 

In Equation (2), IL is the load current, U1 is the opencircuit voltage Uoc, and U2, U3, U4, and U5 are the closed-
circuit voltages used to calculate the R0 value at each SOC level. 

To express the voltage variation and polarization characteristics, the Uoc and closed-circuit voltages for SOC = 
0.6 are presented, as presented in Figure 2. 

 

 

FIGURE 2 Characteristic time-varying charge-discharge voltage curve at SOC = 0.6. 

 

Using the least-squares curve fitting method in MATLAB, the model’s polynomial coefficients b, c, τ1, and τ2 are 
identified for each SOC variation (1.0, 0.9, 0.8, … 0.1) with 95% confidence bounds, and an average R-squared 
value of 0.99881. Then, the values of the electrochemical and concentration polarization parameters Rp1, Rp2, 
Cp1, and Cp2 of the 2RC-ECM are calculated using their respective mathematical expressions presented in 
Equation (3). 

 



A seventh-order polynomial function is selected to eliminate the fluctuation with easy implementation and 
computation. The established seventh-order polynomial function of the 2RC-ECM parameters has an average R-
squared value of 0.98996. The polynomial expression for the Uoc-SOC functional relationship for the simulation 
of the 2RC-ECM and SOC estimation is obtained, as presented in Equation (4). 

 

In Equation (4), k0, k1, k2, k3, k4, k5, k6, and k7 are the respective constant values for the seventh-order Uoc-SOC 
functional relationship with an R-squared accuracy of 0.9999. 

 

2.3 | The strong tracking adaptive fading-extended Kalman filter (STAF-EKF) for SOC estimation 

The ratio of the remaining useful capacity of the lithiumion battery to the maximum capacity is characterized 
as the SOC by the BMS. The expression of the SOC is presented in Equation (5). 

 

In Equation (5), SOCk is the current SOC estimated, and DODk is the depth of discharge at time step k. Qmax is 
the current available capacity measured, which may vary from the rated capacity of the battery due to aging 
and cyclic effects, and Qn is the rated capacity of the battery given by the manufacturer. SOC0 is the initial SOC 
estimated value, η is the Coulombic efficiency coefficient defined as 1 in this study, and IL (k) is the load current 
at time step k, assuming charging is negative and discharge is positive. 

The EKF applies partial derivative and the first-order Taylor series expansion to the system’s state-space 
equation to linearize the nonlinearities of lithium-ion batteries for SOC estimation.37 It is an optimal regression 
data processing method over the traditional KF but possesses the limitation of estimating with a first-order 
accuracy at a high level of uncertainty and noise.32 It estimates the state value of the next time step k + 1 using 
the measurements of the previous k – 1 and present time step k. The state-space equation of the EKF method 
is presented in Equation (6).  

 

The matrices of Ak, Bk, Ck, and uk for the state-space equation are expressed in Equation (7). 

 



In Equation (7), xk is the state equation, and yk is the output measurement equation at present step k. Ak is the 
state-transition matrix, which is applied to the state xk-1. Bk is the control-input matrix, which is applied to the 
control-input vector uk, and Ck is the measurement matrix at present time step k, which maps the state-space 
into the measured space. IL is the load current of the lithium-ion battery and Δk is the sampling time interval. wk 
and vk are the system noise and measurement noise, which are assumed to be zero-mean Gaussian white 
noises with covariance matrices Qk and Rk, respectively. 

The traditional EKF used for SOC estimation is inherently affected by uncertainties and system noise. The STAF 
filter is introduced to reduce these effects to achieve accurate and robust estimates in the posteriori error 
covariance matrix calculation during the measurement update. The flowchart of the proposed STAF-EKF for 
the SOC estimation is presented in Figure 3. 

FIGURE 3 Flowchart of the proposed STAF-EKF method. 

Firstly, an adjustment factor αk (0 ≤ αk ≤ 1) is introduced to eliminate the uncertainty effects in the posteriori 
error covariance matrix in the measurement update step. Secondly, Mk is the adjustment matrix for the 
system’s noise covariance matrix. Its mathematical expressions are presented in Equation (8). 



In Equation (8), Tk is the residual covariance matrix, ρ is the forgetting factor, which is optimally tuned within 0 
< ρ ≤ 1, and β is the weakening factor, which is optimally tuned as β ≥ 1 based on the extent of mismatch and 
current outcome of the estimated SOC compared to the actual SOC. Γk and γk are the noise adjustment and 
posteriori distribution matrices, respectively. 

The iterative calculation of the STAF-EKF uses the adjustment factor αk and matrix Mk in Equation (8) to adjust 
the uncertainties and the system noise, respectively, to robustly characterize the nonlinearities of the lithium-
ion battery for accurate real-time SOC estimation. Meanwhile, all other parameters of the traditional EKF, such 
as the values of the system noise, and measurement noise remain the same. 

2.4 | Performance evaluation of the EKF and STAF-EKF methods for SOC estimation 

In this paper, to critically evaluate the performance of both methods for SOC estimation, error metrics are 
employed. The error metrics used in this paper are the maximum error (ME), the MAE, and the RMSE. Their 
mathematical expressions of these metrics are presented in Equation (9). 

In Equation (9), yk is the actual SOC of the battery system, ŷk is the estimated SOC by both methods, Ek is the 
error value between the estimated and the actual SOC at time step k, and n is the total number of the data 
sequence. The ME is the maximum divergence or error value in the error data sequence. The RMSE is the root 
mean square error, which shows how dispersed the error is away from the mean. 

3 | EXPERIMENTAL ANALYSIS 

3.1 | Experimental test platform 

The NMC70Ah (nickel manganese cobalt oxide) lithiumion battery used for the experiment has a rated voltage 
of 4.2 V and a capacity of 70 Ah. It has nickel manganese cobalt as the cathode electrode and natural graphitic 
carbon with metallic backing as the anode electrode. The basic technical information of the lithium-ion battery 
is presented in Table 1. 



TABLE 1 Basic technical information of the lithium-ion battery (NMC70Ah). 

The battery test equipment is a Neware battery test system (BTS-4000), which has a maximum load current of 
100 A, a range of charge and discharge voltage of 25⁓100 V, and a maximum charge and discharge power of 12 
kW. The temperature test equipment is a DGBELL BTT-331C. The experimental test platform is presented in 
Figure 4. 

FIGURE 4 Experimental text platform 

Figure 4 shows the charging and discharging experimental test platform established to obtain the parameters 
such as the battery terminal voltage and load current for both working conditions. It mainly consists of the 
charge-discharge control circuit, signal detector, circuit measurement system, electronic load, temperature test 
equipment, direct load current power supply to the lithium-ion battery, and a computer for setting and 
monitoring working steps. The main function of this experimental platform is to obtain the time-varying charge-
discharge characteristics (load current, voltage, capacity, energy, etc.) of the lithium-ion battery for the 
proposed working condition. The battery data for each programmed working time step is stored during the 
experimental test. Firstly, the computer is used to input and send steps commands of the working condition 
through the electronic load of the serial port, which are the charging, discharging, and resting time steps. During 
an experimental test, the predefined steps are switched between the charging, discharging, and rest states with 
time, which can be monitored to know the status and performance of the test. Meanwhile, the experimental 
test results, such as the time-varying current, voltage, capacity, energy, and temperature of the lithium-ion 
battery for different temperatures and working conditions are graphically displayed and stored on the monitor 
of the general-purpose computer for each test. Finally, the experimental data is retrieved using the peripheral 
inter-connected data acquisition cable and processed. The charged and discharged state current, voltage, and 
temperature data values are used for the state estimation. 



3.2 | The experimental procedure for the HPPC, BBDST, and DST working conditions 

3.2.1 | HPPC working condition 

The HPPC test is used to measure the pulse capability of lithium-ion batteries under varying sequential DOD 
levels for different time intervals. It is conducted to obtain its dynamic characteristics, and then the battery 
model parameters are calculated. For the HPPC test, first, the battery is charged with a 1 C/70 A constant load 
current and constant voltage. Then, the battery is rested for 40 min to ensure electrochemical and thermal 
equilibrium before the next test profile. A 10 s discharge pulse is conducted using a 1 C load current rate. After 
that, it rested for 40 s. A 10 s charge pulse is initiated at a 1 C load current rate and rested afterward for 40 s. 
The next cyclic HPPC is conducted on the lithium-ion battery after a 6 h rest period. The ten (10) SOC levels are 
selected from 0.1 to 1.0 at an interval of 0.1. The corresponding Uoc value for each SOC level is accurately 
measured before the start of the next HPPC test profile by the test system. The corresponding time-varying 
terminal voltages and load current characteristics of the HPPC test obtained for temperatures of 25C and -10C 
are presented in Figure 5. 

FIGURE 5 Time-varying load current and terminal voltage curves under the HPPC working condition at varying 
ambient temperatures. 

3.2.2 | BBDST working condition 

The complex BBDST working condition is conducted and obtained by processing the data collected from the 
start, acceleration, slide, brake, rapid acceleration, and stop of the Beijing bus. In a real-time application, the 
power at each step is reduced to simulate the Beijing bus’s working condition. The complex working steps of the 
Beijing bus are presented in Table 2. 

TABLE 2 Complex working steps of the Beijing bus. 

Step Pc(W) Step time(s) Total time(s) Working Status 
1 37.5 21 21 Start 
2 72.5 12 33 Acceleration 
3 4.5 16 49 Slide 
4 -15 6 55 Brake 
5 37.5 21 76 Acceleration 
6 4.5 16 92 Slide 
7 -15 6 98 Brake 
8 72.5 9 107 Acceleration 



9 92.5 6 113 Rapid acceleration 
10 37.5 21 134 Acceleration 
11 4.5 16 150 Slide 
12 -15 6 156 Brake 
13 72.5 9 165 Acceleration 
14 92.5 6 171 Rapid acceleration 
15 37.5 21 192 Acceleration 
16 4.5 16 208 Slide 
17 -35 9 217 Brake 
18 -15 6 229 Brake 
19 4.5 71 300 Stop 

The time-varying load current and terminal voltage curves under the complex BBDST working condition for 
temperatures of 25C and -10C are presented in Figure 6. 

FIGURE 6 Time-varying load current and terminal voltage curves under the BBDST working condition at varying 
ambient temperatures. 

3.2.3 | DST working condition 

As a complex working condition, the DST is self-defined. The test procedures for conducting the DST under 
varying temperatures to obtain the experimental data, including the load current and voltage, for each 
temperature variation used for SOC estimation, are described as follows: 

(i) The battery is charged to a maximum terminal voltage of 4.20 V with a constant current (CC) of 1 C for 30 min.
Then, it is charged with a constant voltage (CV) until the current rate drops to 0.5 C for 4 min.

(ii) After charging is completed, the battery is rested to ensure electrochemical and thermal equilibrium before
the next test cycle for 30 s, where the battery’s voltage is equivalent to open-circuit voltage.

(iii) A CC discharge is carried out at a rate of 0.5 C for another 2 min. Then, the battery is rested for 30 s.

(iv) The battery is discharged at a CC rate of 1 C for another 4 min.

Steps (ii) to (iv) are repeated until the minimum cut-off terminal voltage is reached, which is mainly dependent 
on the temperature of the test. The load current and voltage variation curves for varying temperatures of 25C, 
15C, 0C, and -10C are presented in Figure 7. 



FIGURE 7 Time-varying load current and terminal voltage curves under the DST working condition at varying 
ambient temperatures. 

3.3 | Experimental verification of the 2RC-ECM 

From the experimental results of the BBDST experiment, the time-varying current and terminal voltage values 
obtained are used to verify the effectiveness and accuracy of the established 2RC-ECM in robustly simulating 
the dynamic characteristics of lithium-ion batteries in Simulink/MATLAB for real-time application. The model’s 
time-varying output voltage is compared with the actual terminal voltage under the BBDST working condition, 
as presented in Figure 8. 

FIGURE 8 Time-varying voltage traction result of the 2RC-ECM under the BBDST working condition. 



Figure 8 shows the experimental verification result for the comparison between the simulated voltage by the 
2RC-ECM and the actual battery terminal voltage under the BBDST working condition. In Figure 8A, U1 is the 
actual battery terminal voltage, and U2 is the simulated voltage output by the established 2RC-ECM. Figure 8B 
shows the time-varying traction error of the simulated voltage by the 2RC-ECM (U2) from the actual battery 
terminal voltage (U1). From the result, the simulated voltage is observed to have a good track of the actual 
terminal voltage, resulting in an absolute ME value of 28.44 mV and an MAE value of 13.93 mV. By analyzing 
the error between the two voltages, a low margin error is observed at the early stage, and in the mid-stage, it 
increases due to the drift of the load current during the discharge cycles. However, it potentially converges at 
the later stage of the traction process with increasing time to adequately characterize lithium-ion batteries in 
real-time applications toward the end of the full discharge cycles. 

3.4 | The STAF-EKF and EKF methods for SOC estimation 

The proposed STAF-EKF is used for the SOC estimation and compared with the EKF under the HPPC working 
condition at temperatures of 25C and -10C. The SOC estimation results for both methods are presented in 
Figure 9. 

FIGURE 9 SOC estimation results using the STAF-EKF methods under the HPPC working condition at varying 
temperatures. 

Figures 9A,C show the estimated SOCs by the STAFEKF and EKF in comparison with the actual SOC of the lithium-
ion battery under the HPPC working condition at varying temperatures of 25C and -10C. Figures 9B, D show the 
SOC estimation error for both methods at a temperature variation of 25C and -10C, respectively, which is 
calculated independently by subtracting the estimated SOC from the actual SOC at each time step. The results 
show that at temperatures of 25C and -10C, the STAF-EKF has optimal accuracy with ME values of 0.651% and 
1.322%, respectively. Meanwhile, the accuracy of the EKF is low, with ME values of 2.601% and 6.862% at 25C 
and -10C, respectively. For both temperature variations, it can be observed that the STAF-EKF has a quicker 
initial convergence to the actual SOC compared to the EKF. Also, its adaptability to the actual SOC for the entire 
estimation process is more robust and optimal than the EKF, which diverges, especially under the temperature 
of -10C due to its instability and high-capacity discharge of the lithium-ion battery. 

A verification study of the proposed STAF-EKF with the EKF is conducted and analyzed under the complex BBDST 
working condition at varying temperatures of 25C and -10C. The SOC estimation results for both methods are 
presented in Figure 10. 



 

FIGURE 10 SOC estimation results using the STAF-EKF and EKF methods under the complex BBDST working 
condition at varying temperatures. 

 

Under the complex BBDST working condition, both methods in Figures 10A,D show similar differences in 
estimation accuracy and robustness for both temperature variations. In Figures 10B,D, the STAF-EKF has optimal 
accuracy with ME values of 0.541% and 2.965% at temperatures of 25C and -10C, respectively. Meanwhile, at 
temperatures of 25C and -10C, the EKF estimations have high ME values of 3.163% and 10.282%, respectively. 
These error results show that the STAF-EKF  converges faster at the initial estimation due to strong trackability 
and ensures robust SOC estimations for the entire process. Meanwhile, the convergence of the EKF is slow at 
the initial stage. It has divergence at the end of the estimation process due to the high level of capacity discharge 
of the lithium-ion battery under both temperature variations. 

Because of the temperature effect on lithium-ion batteries, further verification studies of the proposed STAF-
EKF compared with the EKF are conducted and analyzed under the complex DST working condition at varying 
temperatures of 25C, 15C, 0C, and -10C. The SOC estimation results for both methods at these varying 
temperatures are presented in Figure 11. 

 



 

FIGURE 11 SOC estimation results for using the STAF-EKF and EKF methods under the complex DST working 
condition at varying temperatures. 

 

In Figure 11, it can be observed that the STAF-EKF has better estimation accuracy compared to the EKF under 
the complex DST working condition and all temperature variations. The STAF-EKF optimally estimates with ME 
values of 1.239%, 0.894%, 2.560%, and 2.853% at temperatures of 25C, 15C, 0C, and -10C, respectively. 
Meanwhile, at the same temperature variations, the EKF estimates the SOC with ME values of 5.767%, 3.272%, 
7.242%, and 6.562% while lagging with high noise and divergence from the actual SOC. Furthermore, the STAF-
EKF possesses quick convergence to the actual SOC compared to the estimations using the EKF method. These 
estimation results show the strong trackability of the proposed method to the actual SOC of the lithium-ion 
battery. 

The SOC estimation performance for the STAF-EKF and EKF methods is evaluated using the MAE and RMSE 
metrics under the three working conditions and temperature variations, as presented in Table 3. 

 

 

 

 

 



TABLE 3 Performance evaluation using the STAF-EKF and EKF methods for SOC estimation. 

Working 
conditions 

Estimation 
temperatures 

Evaluation 
metrics 

STAF-EKF EKF Performance 
improvement 

HPPC 25°C MAE 0.2460% 1.1369% 78.36% 
RMSE 0.2812% 1.6672% 83.13% 
Estimation time 33.56 s 34.01 s 1.32% 

-10°C MAE 0.4928% 3.0146% 83.65% 
RMSE 0.6389 3.7215% 82.83% 
Estimation time 33.24 s 35.18 s 5.51% 

BBDST 25°C MAE 0.2984% 0.8755% 65.92% 
RMSE 0.3332% 1.0465% 68.16% 
Estimation time 19.89 s 21.09 s 5.69% 

-10°C MAE 1.7159% 6.7358% 74.53% 
RMSE 1.8507% 7.2564% 74.50% 
Estimation time 25.57 s 25.70 s 0.51% 

DST 25°C MAE 0.3910% 3.1689% 87.66% 
RMSE 0.4917% 3.5172% 86.02& 
Estimation time 21.02s 22.86 s 8.05% 

15°C MAE 0.3193% 0.9857% 67.61% 
RMSE 0.4173% 1.2282% 66.02% 
Estimation time 16.89 s 17.63 s 4.20% 

0°C MAE 0.9546% 2.2199% 57.00% 
RMSE 1.2274% 2.8304% 56.64% 
Estimation time 13.58 s 14.30 s 5.03% 

-10°C MAE 0.7073% 1.6013% 55.83% 
RMSE 0.8776% 2.1793% 59.73% 
Estimation time 16.90 s 15.65 s -7.99% 

 

In Table 3, it can be observed that the STAF-EKF has optimal performance compared to the EKF, with lower error 
values and a high percentage of performance improvement, showing its robustness and accuracy. 

But not compared to the complex BBDST working condition, the STAF-EKF is observed to estimate more 
accurately and has a better performance improvement under the HPPC. Also, it can be observed that the 
maximum MAE and RMSE values of 1.7159% and 1.8507% for the STAF-EKF and 6.7358% and 7.2564% for the 
EKF, respectively, occurred under the BBDST working condition at a temperature of -10C. It means the BBDST 
working conditions tend to be challenging because of the ambient temperature effect on the lithium-ion battery, 
but the STAF-EKF estimates with satisfactory accuracy. Even though the STAF-EKF is highly robust, under the DST 
working condition, its performance improvement of the SOC estimation by the EKF tends to reduce with 
decreasing temperature using the MAE metric. Also, under this working condition, the least overall performance 
improvement for both MAE and RMSE occurs at a temperature of 0C. However, it tracks and adapts to the 
nonlinear characteristics, enhances the certainty, and minimizes the noise effect, which causes inaccuracies in 
the SOC estimation of the EKF for the BMS of lithiumion batteries in real-time applications under various working 
conditions and temperatures. It can be observed that the STAF-EKF has an overall better performance compared 
to the EKF employing the estimation time due to its ability to recursively estimate the optimal SOC values with 
minimized computational requirements using the forgetting and weakening factors. However, at a temperature 
of -10C under the complex DST working condition, it can be observed that the estimation time of the STAF-EKF 
is higher than the EKF, which may be due to other nonlinearities. 

4 | CONCLUSION 

In this paper, a STAF is proposed in the EKF method to correct the effects of the uncertainties introduced by the 
posteriori error covariance and system noise to improve the SOC estimation accuracy based on the 2RC-ECM. 
The characteristic parameters of the established 2RC-ECM are identified offline using the least-squares curve 
fitting method with 95% confidence bounds and an average R-squared value of 0.99881. The accuracy and 



robustness of the proposed STAF-EKF for SOC estimation are verified under the HPPC, the complex BBDST, and 
DST working conditions at varying ambient temperatures and compared with the EKF. The time-varying voltage 
traction results show that the 2RC-ECM accurately simulates the dynamic characteristics of the lithium-ion 
battery with a ME value of 28.44 mV under the complex BBDST working condition. For the SOC estimation, the 
results show that the proposed STAF-EKF has a maximum MAE and RMSE values of 1.7159% and 1.8507%, and 
the EKF has 6.7358% and 7.2564%, respectively, at an ambient temperature of -10C under the BBDST working 
condition. Also, it can be observed that the STAF-EKF has quick convergence and estimation time compared to 
the EKF. The STAF-EKF method has a strong correction of the uncertainty and system noise to prevent filter 
divergence to effectively estimate the SOC of lithium-ion battery for accurate SOC estimation in real-time 
applications in BMSs of EVs. It can be observed that the accuracy of the established 2RC-ECM is over 20 mV due 
to the lack of hysteretic characterization, which will be the focus of our future research work. Also, using the 
proposed STAF-EKF for the SOH estimation of lithium-ion batteries based on the hysteresis-compensated 2RC-
ECM. 
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