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Abstract: Accurate state of charge (SOC) estimation of lithium-ion batteries by the battery management 

system (BMS) plays a prominent role in ensuring their reliability, safe operation, and acceptable 

durability in smart devices, electric vehicles, etc. In this paper, the effect of the training and testing 

working conditions on the accuracy of the SOC using a long short-term memory (LSTM) network is 

studied through transfer learning. Secondly, a relevant attention mechanism is introduced as a data 

optimizer for faster training of the LSTM network to establish a relevant LSTM (RLSTM). Finally, the 

SOCs estimated by the RLSTM are independently input with the working current to an extended Kalman 

filter (EKF) and a proposed squared gain EKF (SGEKF) method to iteratively denoise and optimize the 

accuracy of the final SOC under the three complex working conditions. The results show that the SOC 

estimation accuracy is influenced by the training and testing working conditions using the LSTM network, 

which provides a technique for accurate SOC estimation. Also, the established RLSTM network is 

computationally efficient for accurate SOC estimation. Moreover, the proposed hybrid RLSTM-SGEKF 

model has an overall maximum mean absolute error, mean squared error, root mean squared error, and 

mean absolute percentage error values of 0.35299%, 0.0017448%, 0.41765%, and 2.34403%, respectively, 

under the three complex working conditions. The proposed hybrid RLSTM-SGEKF model is optimal, 

robust, and computationally efficient for accurate SOC estimation of lithium-ion batteries for real-time 

BMS applications. 
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Nomenclature 

ADAM Adaptive moment estimate  

AEKF Adaptive extended Kalman filter 

Ah Ampere-hour integral method 

BBDST Beijing bus dynamic stress test 

BMS Battery management system 

CC Constant current 

CNN Convolutional neural network 

CPU  Central processing unit 

CV Constant voltage 

DEKF Dual extended Kalman filter 
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DST Dynamic stress test 

ECM Equivalent circuit model 

EKF Extended Kalman filter 

EM Electrochemical model 

EV Electric vehicle 

HPPC Hybrid pulse power characterization 

MAE Mean absolute error 

LSTM Long short-term memory 

MAPE Mean absolute percentage error 

ME Maximum error 

MSE Mean squared error 

NMC Nickel manganese cobalt 

NN Neural network 

OCV Open-circuit voltage 

PF Particle filter 

PSO Particle swarm optimization 

RLSTM Relevant long short-term memory 

RMSE Root mean squared error 

RNN Recurrent neural network 

SGEKF Squared gain extended Kalman filter 

SOC State of charge 

UKF Unscented Kalman filter 

1. Introduction

Lithium-ion batteries have gradually become the most promising energy storage for smart devices, e-

bikes, electric tools, hoverboards, electric vehicles (EVs), etc., compared to other secondary batteries 

(nickel-cadmium, nickel-metal hydride, and lead-acid batteries) [1–3]. It is due to their appreciable 

advantages, such as high specific energy, high power densities, high charging rates, low memory effect, 

low self-discharge rate, longevity, etc. [4, 5]. However, due to the effects of the complex physical, 

nonlinear electrochemistry, and environmental changes (temperature, humidity, pressure, etc.) during 

their operations, lithium-ion batteries of the same chemistry have different useful lives in real-time. 

Therefore, accurate state of charge (SOC) estimation methods that are robust under various working 

conditions have become essential [6, 7]. 

The SOC is defined as the ratio of the maximum capacity available for use to the rated capacity of the 

battery, which is usually expressed as a percentage. The SOC indicators in EVs work similarly to the fuel 

gauges in internal combustion engine vehicles [8]. With the loss of active materials and lithium-ion 

inventory, the ability to store energy and provide an optimal power supply degrades, which nonlinearly 

reflects the decrease in the capacity and increase in internal impedance (resistance and reactance) of the 

battery [9–11]. Therefore, it is an essential function of the battery management system (BMS) to 

accurately estimate the SOC of the battery [12, 13]. The BMS is embedded to monitor the working 

conditions, such as current, voltage, ambient temperatures, self-discharge rates, aging, etc., to accurately 

determine the SOC, which is critical to ensure the safe, reliable, and stable operation of the lithium-ion 

battery in real-time applications [14, 15]. An accurate SOC estimation is of great significance because it 

prevents unexpected system interruptions, over-charge, over-discharge, and ensures the safety of the 
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battery and its users [16]. Furthermore, it guides users to intuitively determine the state of health and 

remaining useful life by observing the rate of SOC variations during the charge and discharge states. Due 

to the high nonlinearities, the SOC value of the battery cannot be measured directly but can be estimated 

by utilizing measurable battery parameters, such as current, voltage, temperature, etc., due to their strong 

correlation with the SOC [17]. 

Charge and discharge control, state estimations, thermal management, fault diagnostics, and safety of 

lithium-ion batteries have been thoroughly researched [18, 19]. SOC estimation methods can be divided 

into three categories: direct measurement, model-based, and data-driven methods. The direct 

measurement methods, such as open-circuit voltage (OCV) [20] and Ampere-hour (Ah) integral [21] 

methods, are simple and easy to implement for SOC estimation but vulnerable to the battery’s state and 

working conditions. In particular, the Ah integral method significantly accumulates errors during the 

integration due to variations in the load current measurement. Also, it is highly dependent on the initial 

SOC value, which might result in large errors [22]. Therefore, this method needs high-precision sensors to 

obtain an accurate current measurement to overcome this challenge, which is expensive to employ in real-

time applications. The OCV method requires a long shelf time for the recovery and accurate measurement 

of the OCV value of the battery. Also, it strongly relies on accurate voltage measurement, and any error 

leads to an inaccurate SOC estimation, which makes it practically challenging to apply [23]. 

For the model-based method, also known as the closed-loop method [24], battery models are 

established, which are categorized into three kinds: an electrochemical model (EM), an empirical 

(simplified electrochemical) model, and an equivalent circuit model (ECM), to monitor and simulate the 

dynamic electrochemistry of the battery [25, 26]. These models measure the operational or real-time 

parameters of the battery using inputs such as the current, voltage, temperature, etc. [27–29]. For this 

SOC estimation method, the battery model is usually constructed and expressed as a state-space model for 

a state observer [30]. Some state observers commonly established are the Kalman filter (KF) [31–33] and 

its advanced models: extended, adaptive, and dual Kalman filter (EKF/AEKF/DEKF) [34–40], and 

unscented Kalman filter (UKF) [41–43], particle filter (PF) [44, 45], sliding mode observer [46, 47], and 

H-infinity observer [48]. Despite their potential, they are highly dependent on the accuracy of the battery

model, which is difficult to establish. Also, the accuracy and stability of this method are affected by

operational and environmental conditions, which cause the modeling of the voltage characterization to

become complicated and result in inaccurate SOC estimation [49, 50]. Furthermore, the high cost and

laborious measurement of the internal parameters of the battery with their complex aging characteristics

make them difficult to implement in real-time applications [51]. From a theoretical perspective, this

estimation method is exclusively based on an understanding of the battery’s electrochemical reactions,

which have several complex mathematical equations, resulting in difficulties in the construction of the

battery model and parameter computation [19].

In recent years, several data-driven methods have served as the most promising methods to overcome 

the limitations of the other existing methods and have been extensively utilized. Due to their excellent 

self-adaptation, self-learning, and high performance, neural networks (NNs) have been utilized to 

estimate the SOC of lithium-ion batteries. This estimation method is model-free, and its performance is 

highly dependent on the quality and quantity of the input data coupled with proper training skills and the 

appropriate definition of the hyperparameters [52]. For this method, the battery is considered a “black box” 

rather than a practical mathematical model, which means fewer computational complexities and variables. 

It directly models the nonlinear relationships by feature extraction, including the electrochemical reaction, 

aging processes, self-discharge rates, aging, etc., between its states and the measured variables through an 
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adequate amount of training and testing data [53–56] without prior knowledge of the system. It seeks to 

estimate the SOC after learning from a nonlinear battery’s data by considering factors such as the ohmic 

resistance, polarization effects, self-discharge, etc., to achieve high accuracy, which is more reliable than 

other estimation methods. It is unlike the model-based method, where these factors have to be particularly 

considered in the established battery model and state observer for the estimation.  

Commonly used NNs for SOC estimation include artificial, backpropagation, recurrent neural 

network (RNN) [57–59], gated recurrent units [60], long short-term memory (LSTM), and nonlinear 

autoregressive with exogenous input networks [61, 62], etc. Bian et al. [63] established a stacked 

bidirectional LSTM network for SOC estimation of lithium-ion batteries. However, its computational 

complexity and structure add up to the long training time of the LSTM network. Also, the estimation 

results have noise, and the accuracy needs to be improved. Almaita et al. [64] used the LSTM for SOC 

estimation and compared its performance with that of the feed-forward neural network (FFNN) and a 

deep FFNN. The estimation results show that LSTM is more optimal compared to the other networks by 

having a root mean square error (RMSE) of 6.9539%, which needs to be improved. Xi et al. [65] 

constructed a SOC estimation method using a time-delayed RNN and LSTM through the identification of 

the root cause of unexpected poor performances using overexcited neurons. The estimation results show 

that both networks do not have a good track of the actual SOC but have high noise effects.  

In the above studies, only the LSTM network was employed, which has limitations that affect its 

accuracy, robustness, and training time. When it comes to the LSTM network, when it is not optimized 

during its training, a hybrid method is employed instead, which has proven to give optimal estimation 

performance. The SOC estimation method using data-driven and model-based methods can be classified 

as a hybrid method. This method has proven to have optimal accuracy compared to the traditional 

network to overcome the inherent limitations of the LSTM for better SOC estimation performance of 

lithium-ion batteries [66, 67]. Song et al. [68] proposed a hybrid convolutional neural network (CNN)-

LSTM network to estimate the battery SOC. The estimation results show that the RMSE and mean 

absolute error (MAE) values are 1.31% and 0.92%, respectively. Yang et al. [69] proposed a slow-trained 

LSTM-RNN network for the sophisticated battery behaviors and used the traditional UKF as the noise 

filter and optimization method. Fasahat et al. [70] proposed a hybrid autoencoder neural network and an 

LSTM network for the SOC estimation of lithium-ion batteries. It is observed that their method estimates 

MAE and RMSE values of 0.63% and 0.90%, respectively. Shin et al. [71] estimated SOC based on the 

EKF is proposed in which the errors are compensated using the slow-trained LSTM network, which 

estimates an average error value of 0.80%. Ren et al. [72] proposed a hybrid particle swarm optimization 

(PSO)-LSTM network for the SOC estimation under noise characterization. The estimation results show 

that the hybrid PSO-LSTM network has maximum error (ME) values of 2.49% and 3.14%, while the 

LSTM network estimates an ME value of 3.92% and 1.76% with and without noise, respectively. 

Generally, the results estimated by these hybrid models need improvement for a more satisfactory and 

accurate characterization of the SOC of lithium-ion batteries in terms of robustness, optimal adaptability 

to training and testing conditions, and multiple model choices. Working conditions such as the Beijing 

bus dynamic stress test (BBDST), dynamic stress test (DST), hybrid pulse power characterization (HPPC), 

etc., used for training and testing of the SOC exhibit different current, voltage, temperature, energy, etc., 

characteristics for the charge and discharge states. The characteristic effects of these working conditions 

on the training and testing using the traditional LSTM network to determine the influence of the SOC 

estimation accuracy have not been investigated. Therefore, understanding the effect of working conditions 
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(dataset profiles) on the SOC estimation accuracy of lithium-ion batteries can play a significant role in the 

optimal design, training, and testing using networks. 

In this paper, the effect of training and testing an LSTM network using different complex working 

condition profiles on the accuracy of the SOC is studied through a transfer learning technique. The 

training and testing are conducted under the BBDST, DST, and HPPC working conditions using different 

experimental datasets and characteristic time cycles to reflect various phenomena. The major 

contributions of this paper are in five folds:  

(1) An LSTM network is trained and tested based on working conditions with different charging and

discharging characteristics to study their effects on the accuracy of the SOC estimation. The training and 

testing are conducted based on an established sequence presented in this paper. 

(2) A relevant attention mechanism is introduced as a data optimizer to establish a relevant LSTM

(RLSTM). It extracts the relevant features from the training dataset to train the network with highly 

reduced training time and computation iterations to achieve accurate and efficient SOC. The LSTM and 

RLSTM networks are trained using an adaptive moment estimate (ADAM), which is computationally 

efficient and requires low memory. 

(3) The SOCs estimated by the RLSTM are independently input with the working current to the EKF

and a proposed squared gain EKF (SGEKF) method to denoise and further optimize the accuracy of the 

final SOC. 

(4) The performance evaluation and verification of the working condition-based trained and tested

LSTM network, the proposed RLSTM, RLSTM-EKF, and RLSTM-SGEKF models are evaluated using 

the MAE, RMSE, mean square error (MSE), and mean absolute percentage error (MAPE) metrics to 

show their accuracy and robustness for SOC estimation compared to other existing methods. 

(5) Finally, the final results show that the proposed working condition-based training and testing

technique provides a criterion for accurate SOC estimation. Furthermore, the proposed hybrid RLSTM-

EKF and RLSTM-SGEKF models have more accurate SOC estimation performance than the LSTM and 

RLSTM networks. However, the optimized hybrid model, RLSTM-SGEKF, has three (3) times faster 

estimation speed and better initialization than the RLSTM-EKF model. It solves the convergence and 

speed issues essential in the SOC estimation of lithium-ion batteries to show its suitability, robustness, 

and efficacy for the real-time BMS application due to its low computational requirements. 

The remaining sections of this paper are organized as follows: Section 2 introduces the mathematical 

analysis: the architecture of the LSTM network; the working principle of the relevant attention 

mechanism and hyperparameter selection for the LSTM and RLSTM networks; the working principle of 

the EKF and SGEKF methods; the flowchart of the models for SOC estimation; and the performance 

evaluation metrics. Section 3 describes the experimental analysis: the experimental test platform and 

procedures, the SOC estimation results, and the performance evaluation of the models. Section 4 is the 

conclusion of this paper. 

2. Mathematical analysis

2.1 The architecture of the LSTM network 

The extension of the FFNN is the RNN. However, the RNN has a short-term memory problem and 

cannot solve long-term dependencies for time-series predictions. Also, due to the weight effect of the 

transition matrix associated with the neurons during the backpropagation through time and layers, the 

gradient either explodes (tends to infinity) or vanishes (tends to zero) during its training process [73, 74]. 

Through a gating mechanism called the memory cell, the LSTM precisely models chronological 

sequences and long-term dependencies with its encoder connections. The memory cell and forgetting 
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modes enable the LSTM network to achieve more accurate SOC estimation and other prediction studies 

by flexibly adapting to arbitrary timing features during the training of the network [75]. The three gates of 

the LSTM network are a forget gate 𝑓𝑡, an input gate 𝑖𝑡, and an output gate 𝑜𝑡 to protect and control the

memory cell. 

The forget gate 𝑓𝑡 determines which information from the current input data 𝑥𝑡 and hidden state ℎ𝑡–1
of the previous LSTM cell should be stored or discarded through the sigmoid layer by directing each 

information input to either 1 or 0, respectively. The mathematical expression for the forget gate is 

presented in Eq. (1). 

𝑓𝑡 = 𝜎𝑠 ∗ (𝑤𝑓 ∗ [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑓) (1) 

The input gate 𝑖𝑡 (cell status update) decides which new information should be stored in the memory

cell. It receives the information from the current input data 𝑥𝑡  and the previous hidden state ℎ𝑡−1 and

passes it through the sigmoid and tanh layers. Firstly, the sigmoid layer decides which new information is 

contained in the current input 𝑥𝑡 that should be used to update the cell. Secondly, the tanh layer creates a

cell state vector 𝐶̃𝑡 for new information, which is added to the cell state. These two layers work together 

to decide the information that should be stored in the cell state, as presented in Eq. (2). 

{
𝑖𝑡 = 𝜎𝑠 ∗ (𝑤𝑖 ∗ [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑖)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ ∗ (𝑤𝑐 ∗ [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑐)
(2) 

Then, an addition to the point-wise multiplication of the input gate 𝑖𝑡 and the cell state vector 𝐶̃𝑡 is

established to update the memory cell for a current cell state 𝐶𝑡. The output information of the forget gate

𝑓𝑡 and the previous cell state 𝐶𝑡−1 are multiplied, as presented in Eq. (3).

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (3)

The output gate 𝑜𝑡  determines the information for the next hidden state ℎ𝑡+1  based on filtered

information from the current cell state 𝐶𝑡. Firstly, the sigmoid layer determines which information in the

memory cell state to output. Secondly, the tanh layer controls the information from the current cell state 

𝐶𝑡 between –1 and 1. Then, it is multiplied by the output 𝑜𝑡 of the sigmoid layer to get the current hidden

state ℎ𝑡. The mathematical expression for the output gate 𝑜𝑡. The new hidden state ℎ𝑡 is presented in Eq.

(4). 

{
𝑜𝑡 = 𝜎𝑠 ∗ (𝑤𝑜 ∗ [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ ∗ (𝐶𝑡)
(4) 

From the output gate, the new hidden state ℎ𝑡+1in the current time step is either carried on to be the

previous hidden state in the next time step ℎ𝑡–1 or used for the estimation.

In Eqs. (1)–(4), 𝜎𝑠 is the sigmoid layer, which helps the LSTM network to either discard or update

information by closely directing it to 0 and 1, respectively. Also, 𝑥𝑡 is the input in the current time step 𝑡,

and ℎ𝑡–1 is the hidden state or output from the previous time step 𝑡– 1. The tanh is the hyperbolic tangent

function that controls the information flowing through the network between –1 and 1 to avoid fading. 

Each gate of the network has a weight 𝑤𝑓, 𝑤𝑖, 𝑤𝑐, and 𝑤𝑜 and bias vector 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜 for the forget

gate, input gate, memory cell, and output gate, respectively, to enhance the flexibility it to strongly adapt 

to the training data. 

2.2 The working principle of the relevant attention mechanism and hyperparameter selection 

This paper employs the relevant attention mechanism as a data optimizer to select the relevant 

inherent features from a piece of information to overcome the inherent overfitting and long training time 
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of the traditional LSTM network. It optimizes the training of the LSTM network to adaptively select the 

relevant inherent features from the dataset based on the attention weight attached to the input 𝑥𝑡 . It 

merges the new features based on attention weights [7, 76] to train the traditional LSTM as the RLSTM 

network with a minimized number of iterations.  

The relevant attention mechanism is integrated into the encoder and decoder layers for space and time 

dimensions. It acquires the context dependency to select relevant features while seeking to eliminate over-

reliance on the long-term sequence dependency. The attention mechanism for the n-dimensional feature 

sequence 𝑥𝑡
𝑛 in the input sequence 𝑥𝑡 is established based on the hidden state ℎ𝑡–1. The cell state of the 

encoder layer’s attention weight 𝑎𝑡 at time step 𝑡 is expressed in Eq. (5). 

𝑎𝑡
𝑛 = 𝐿𝑒

𝑇 ∗ 𝑡𝑎𝑛ℎ ∗ (𝑤𝑒 ∗ [ℎ𝑡−1, 𝐶𝑡−1] + 𝑧𝑒 ∗ 𝑥
𝑛 + 𝑏𝑒) 

𝑒𝑡
𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑡

𝑛) =
exp (𝛼𝑡

𝑛)

∑ exp (𝛼𝑡
𝑛)𝑛

𝑡=1

 
(5) 

In Eq. (5), 𝐿𝑒, 𝑏𝑒 ∈ ℝ𝑇, 𝑤𝑒 ∈ ℝ𝑇×2ℎ, and 𝑧𝑒 ∈ ℝ𝑇×𝑇 are the features of the input that are learned by 

the model. The hidden states and cell states of the encoder layer are ℎ𝑡–1 ∈ ℝℎ and 𝐶𝑡 ∈ ℝℎ, respectively. 

H is the size of the hidden layer, and n is the number of sequences in the input data. 

After the feedforward propagation is completed, the features with different levels of significance are 

extracted during the training process. The significance level is reflected by the different weights of 𝑍𝑒 

obtained after each feature of the training data. Since the hidden state ℎ𝑡–1 and cell state 𝐶𝑡−1  of the 

previous time step are input into the relevant attention mechanism, the features also have timing 

dependence. After obtaining 𝑎𝑡
𝑛, it is normalized by the sigmoid layer to ensure that the sum of attention 

weights is 1 in this paper. For the input 𝑥𝑡 at each time step, a certain attention weight 𝑒𝑡
𝑛 is assigned to 

each of the features to measure the significance of the n-dimensional feature at each time step. The output 

of the first stage attention-weighted 𝑥̃𝑡 is expressed, as presented in Eq. (6). 

𝑥̃𝑡 = (𝑒𝑡
1𝑥𝑡

1, 𝑒𝑡
2𝑥𝑡

2, … , 𝑒𝑡
𝑛𝑥𝑡

𝑛)𝑇 (6) 

Therefore, 𝑥̃𝑡  is used instead of 𝑥𝑡  and entered into the encoder layer for the LSTM network, as 

presented in Eq. (7). 

ℎ𝑡 = 𝑓1 ∗ (ℎ𝑡−1, 𝑥̃𝑡) (7) 

The encoder layer focuses on the relevant features instead of treating all the input data features 

equally. The second attention layer selectively focuses on the timing difference between the input features. 

In a model that produces a hidden state ℎ𝑡, it evaluates a weight vector 𝑚t as the weighted mean, as 

presented in Eq. (8). 

𝑚𝑡 = 𝑡𝑎𝑛ℎ ∗ (𝑤𝑑 ∗ [ℎ𝑡 , 𝑠𝑡−1] + 𝑏𝑑) (8) 

In Eq. (8), 𝑤𝑑 and 𝑏𝑑 are the weight and bias vectors, respectively. The attention probability 𝛽t of the 

input sequence at each time is obtained, as presented in Eq. (9). 

𝛽t =
exp (𝑚𝑡

𝑛)

∑ exp (𝑚𝑡
𝑛)𝑛

𝑡=1

 (9) 

The assigned weight by the hidden state at different time steps results in the context vector 𝑥𝑡 . 

Therefore, the 𝑥𝑡 at time step 𝑡 is weighted and summed, as presented in Eq. (10). 

𝑥𝑡 =∑𝛽𝑡ℎ𝑡

𝑛

𝑡=1

 (10) 
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The attention mechanism is implemented in the decoder layer, where the inherent time dependencies 

between hidden states at different time steps are learned. The information weighted by the optimizer is 

used for the SOC estimation. It enables the RLSTM network to train at reduced computation iterations 

with short path length and time for more accurate SOC estimates than the traditional LSTM network. 

Furthermore, in this paper, a stochastic gradient optimizer, the ADAM, is used as a default training 

optimizer due to its computational efficiency with little tuning and low memory requirements. It is also 

invariant to gradient diagonal rescaling and is appropriate for SOC estimation with large datasets and 

nonlinear systems. The ADAM optimizer is used to train both the LSTM and RLSTM networks to 

minimize the total loss, which updates the network’s weights and biases based on the gradient of the loss 

function in the forward and backward passes until a convergence criterion is achieved [77, 78]. The 

gradient (𝛽1) and squared gradient (𝛽2) decay rates are defined as 0.9 and 0.999, respectively, with a 

learning rate of 0.01 and a gradient threshold of 1. 

2.3 The EKF and SGEKF methods 

The traditional EKF method applies partial derivatives and first-order Taylor series expansion to the 

system’s inputs to estimate the nonlinearities in the SOC estimation [79, 80]. It estimates the next state 

𝑡 + 1 based on the measurement of the previous time step 𝑡 − 1 and the current time step 𝑡 of the weight 

adjustment factor provided by the Kalman gain. The Kalman gain determines how much of the previous 

and current state measurements (residual) contribute to updating the posteriori state estimate. 

In this paper, the Kalman gain is squared to recursively optimize its weight adjustment during the 

posteriori state estimate of the measurement update step to ensure a more accurate, denoised, and stable 

SOC estimation, as presented in Eq. (11). 

𝑥̂𝑡
+ = 𝑥̂𝑡

− + 𝐾𝑡
2 ∗ (𝑦𝑡 − 𝑦̂𝑡) (11) 

In Eq. (11), 𝑥̂𝑡
+ and 𝑥̂𝑡

− are the posteriori and priori state estimates, respectively.  𝑦𝑡 and 𝑦̂𝑡 are the 

priori and posteriori state measurements, respectively. 𝐾𝑡  is the Kalman gain, which is the weight 

adjustment factor for the two measurements is squared in this paper to establish the SGEKF method. 

Meanwhile, all the other working steps of the traditional EKF remain unchanged. 

The SOC is the ratio of the remaining capacity or energy to the rated capacity of the lithium-ion 

battery, which is usually expressed in terms of percentage, as presented in Eq. (12). 

{
 
 

 
 𝑆𝑂𝐶𝑡 = 1 − 𝐷𝑂𝐷𝑡 =

𝑄

𝑄𝑛
× 100%

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶0 −
∫ 𝜂𝐼(𝑡)𝑑𝑡
𝑡

0

𝑄𝑛

 (12) 

In Eq. (12), 𝑆𝑂𝐶𝑡 is the current SOC estimated, and 𝐷𝑂𝐷𝑡 is the depth of discharge at time step 𝑡, 

where Coulombic efficiency and self-discharge are neglected. 𝑄  is the remaining capacity or energy 

measured and 𝑄𝑛 is the rated capacity of the battery, which may vary from the actual capacity of the 

battery due to aging and cyclic effects. 𝑆𝑂𝐶0 is the initial SOC when the estimation process begins, 𝜂 is 

the Coulombic efficiency, which is defined as 1, and 𝐼(𝑡) is the working current at time step 𝑡. 

2.4 The LSTM network and the proposed RLSTM, RLSTM-EKF, and RLSTM-SGEKF models for SOC 

estimation 

For the SOC estimation, the input vectors are 𝑆𝑂𝐶𝑡 = [𝐼𝑡;  𝑉𝑡], where 𝐼𝑡  and 𝑉𝑡 are the current and 

voltage values of the lithium-ion battery measured at each time step, respectively. When estimating SOC, 
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two features are essential: dimensional and transient features. The dimensional feature is related to the 

current input of the battery data. The transient feature corresponds to the relationship between the 

previous and current SOC inputs of the battery [68].  

The LSTM and RLSTM networks extract the relevant features from the input of the training dataset. 

Then, the SOC estimated by the RLSTM is input into the EKF and SGEKF models independently with 

the testing and working current datasets, which denoise the nonlinearities and optimize them for the final 

SOC. The flowchart for the LSTM, RLSTM, RLSTM-EKF, and RLSTM-SGEKF models for SOC 

estimation is presented in Fig. 1. 
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Fig. 1. The flowchart of the LSTM, RLSTM, RLSTM-EKF, and RLSTM-SGEKF models 

2.5 Performance evaluation metrics for the LSTM, RLSTM, RLSTM-EKF, and RLSTM-SGEKF models  

In this paper, to critically study the effect of the working condition-based training and testing on the 

SOC estimation accuracy of the LSTM network, the error metrics are employed, which are the MAE, 

RMSE, MSE, and MAPE. These metrics are also used to evaluate the performance of the proposed 

RLSTM, RLSTM-EKF, and RLSTM-SGEKF models. The mathematical expressions for the metrics are 

presented in Eq. (13). 
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 (13) 

In Eq. (13), 𝑡 is the number of non-missing data steps, n is the total number of data points in the 

sample, and 𝐸𝑡 is the estimated SOC error at time step 𝑘. 𝑦𝑡  is the actual SOC of the battery system and 𝑦̂𝑡  

is the estimated SOC value using the proposed models. The ME is the absolute maximum error value 

error in the data sequence. The MAE means that all the individual differences (positive and negative 

values) are weighted equally in the average value. The MSE is the average of the square of each error 

value at the time step 𝑡. The RMSE shows how dispersed the error is away from the mean. The MAPE is 

the mean absolute percentage error of the estimated SOC from the actual SOC.  

3. Experimental analysis 

3.1 Experimental test platform and procedures 

An NMC70Ah (nickel manganese cobalt oxide) lithium-ion battery is used for the experiments. It has 

a rated voltage of 4.4 V and a rated capacity of 70 Ah. It has nickel manganese cobalt as the cathode 

electrode and natural graphitic carbon with metallic backing as the anode electrode. The basic technical 

specifications of the battery are presented in Table 1. 

Table 1. Basic technical specifications of the lithium-ion battery (NMC70Ah) 

Parameter Value Parameter Value 

Nominal 

capacity 
70 Ah 

Standard 

current 
70 A 

Nominal 

voltage 
3.7 V 

Maximum 

cut-off 

current 

100 A 

Maximum 

cut-off 

voltage 

4.5±0.05 V 

Minimum 

cut-off 

current 

100 A 

Minimum 

cut-off 

voltage 

2.5±0.05 V 
Dimensions: 

l×w×h 

148×33×93 

(mm) 

For the battery test, a Neware battery test system (CT-4016) is used. It has a maximum current of 100 

A, a range of charge and discharge voltage of 25⁓100 V, and a maximum charge and discharge power of 
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12 kW. The temperature testing equipment is a DGBELL BTT-331C model, which keeps an ambient 

temperature of 25 °C throughout the tests. The experimental test platform is presented in Fig. 2. 
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tester for power batteries
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Working condition setting 

interface

Experimental testing monitor

Lithium-ion battery
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Temperature test chamber 

(DGBELL BTT-331C) 

TCP/IP

 
Fig. 2. Experimental test platform 

Fig. 2 shows the experimental testing platform established to obtain the charge-discharge 

characteristics of the lithium-ion battery, such as the current and terminal voltage, for all working 

conditions. The platform mainly consists of a charge-discharge control circuit, a circuit measurement 

system, a signal detector, electronic load, temperature test equipment, a direct current power supply to the 

battery, and a computer for the setting and monitoring of the test steps. The essence of this experimental 

platform is to obtain the charge-discharge characteristics (current, voltage, capacity, energy, etc.) of the 

lithium-ion battery for the defined working condition. The battery data for each programmed working 

condition is stored during the experiment. Firstly, the computer is used to input and send working step 

commands for the selected working condition through the electronic load of the serial port, which are the 

charging, discharging, and rest time steps. During the test, the defined steps are switched between the 

charging, discharging, and resting stages at the predefined step time and can be monitored to know the 

status and performance of the test. Meanwhile, the current, voltage, and other data are retrieved in real-

time using the peripheral inter-connected data acquisition cable. Finally, the current and voltage data are 

processed, and the charged and discharged state results are graphically displayed by the general-purpose 

computer and stored. 

3.2 BBDST, DST, and HPPC working conditions  

(a) BBDST working condition 

The experimental data of the BBDST working condition is obtained by processing the data retrieved 

from the start, acceleration, slide, brake, rapid acceleration, and stop of the Beijing bus for the lithium-ion 

battery. In a real-time application, the power of each step is reduced to simulate the Beijing bus’s working 

condition. The complex working steps of the Beijing bus are presented in Table 2.  
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Table 2. The complex working steps of the Beijing bus 

Step Pc (W) Step time (s) Total time (s) Working status 

1 37.5 21 21 Start 

2 72.5 12 33 Acceleration 

3 4.5 16 49 Slide 

4 -15 6 55 Brake 

5 37.5 21 76 Acceleration 

6 4.5 16 92 Slide 

7 -15 6 98 Brake 

8 72.5 9 107 Acceleration 

9 92.5 6 113 Rapid acceleration 

10 37.5 21 134 Acceleration 

11 4.5 16 150 Slide 

12 -15 6 156 Brake 

13 72.5 9 165 Acceleration 

14 92.5 6 171 Rapid acceleration 

15 37.5 21 192 Acceleration 

16 4.5 16 208 Slide 

17 -35 9 217 Brake 

18 -15 6 229 Brake 

19 4.5 71 300 Stop 

Assuming the charging is negative and the discharging is positive, the current and terminal voltage 

curves under the BBDST working condition used for testing the networks are presented in Fig. 3. 
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(a) Current variation curve (b) Voltage variation curve 

Fig. 3. The current and voltage variation curves under the BBDST working condition 

(b) DST working condition 

As a complex working condition, the DST is self-defined. The experimental data (current and voltage) 

from the DST is used to test the network for SOC estimation of lithium-ion batteries. The experimental 

test procedures of the DST are described as follows:  

(i) The battery is charged to a maximum terminal voltage of 4.20 V with a constant current (CC) of 1 

C. Then, it is charged with a constant voltage (CV) until the current rate drops to 0.5 C. 

(ii) After charging is completed, the battery is rested to ensure thermal and electrochemical 

equilibrium before the next test profile for 30 minutes. 
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(iii) A CC discharge is carried out at a rate of 0.5 C for 4 minutes. Then, the battery is rested for 30 

seconds after the discharge. 

(iv) The lithium-ion battery is charged at a CC rate of 0.5 C for 2 minutes and rested for 30 seconds. 

(v) A CC discharge is performed at a rate of 1 C for 4 minutes. 

Steps (iv) and (v) are repeated until the minimum discharge terminal voltage is reached. 

Assuming the charging is negative and the discharging is positive, the current and voltage variation 

curves under the DST working condition used for testing the networks are presented in Fig. 4.  
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(a) Current variation curve (b) Voltage variation curve 

Fig. 4. The current and voltage variation curves under the DST working condition 

(c) HPPC working condition 

The HPPC test measures the pulse capability of lithium-ion batteries under varying sequential DOD 

levels at different time intervals. During the test, the battery is first charged with a 1 C/70, a CC and CV. 

Then the battery is rested for 40 minutes to ensure electrochemical and thermal equilibrium before the 

next test profile. A 10-second discharge pulse is applied using a 1 C current rate and rested for 40 seconds. 

A 10-second charge pulse is initiated at a 1 C current rate and rested afterward for 40 seconds. The next 

cyclic HPPC is conducted on the lithium-ion battery after a 6-hour rest period. The ten (10) SOC levels 

are obtained from 0.1 to 1.0 at an interval of 0.1. The corresponding open-circuit voltage for each SOC 

level is accurately measured before the start of the next HPPC test profile by the test system.  

Assuming the charging is negative and the discharging is positive, the corresponding current and 

terminal voltage curves under the HPPC working condition used for testing the networks are presented in 

Fig. 5. 
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(a) Current variation curve (b) Voltage variation curve 

Fig. 5. The current and voltage variation curves under the HPPC working condition 
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3.3 SOC estimation and performance evaluation for working condition-based training and testing using 

the LSTM, RLSTM, RLSTM-EKF, and RLSTM-SGEKF models  

In this paper, a relevant attention mechanism is used as a data optimizer to ensure faster training times 

and fewer iterations than the traditional LSTM network for SOC estimation. Using a system with a 

processor: Intel (R) Core (TM) i5-3230M CPU @ 2.60GHz and a system type of 64-bit OS (x64-based 

processor), the training time (min and sec) for the SOC estimation by the LSTM and RLSTM networks 

under all three working conditions is presented based on the training and testing sequence. Due to the 

processing speed of the system with a single CPU, an epoch of 300 is selected. The sequence and time for 

the training and testing based on working conditions for both LSTM and RLSTM networks are presented 

in Table 3. 

Table 3. The sequence and time for training and testing on a working condition basis for both LSTM and 

RLSTM networks for SOC estimation 

Training 

working 

conditions 

BBDST DST HPPC BBDST DST HPPC BBDST DST HPPC 

Testing 

working 

conditions 

BBDST BBDST BBDST DST DST DST HPPC HPPC HPPC 

LSTM  

(min:ss) 
216:35 338:26 678:11 210:21 425:08 769:40 217:29 421:79 854.19 

RLSTM  

(min:ss) 
27:48 54:49 44:19 31:52 70:14 35:42 24:49 49:18 32:45 

In Table 3, the training working conditions row shows the working conditions from which the dataset 

is used to train the LSTM and RLSTM networks independently. Also, the testing working conditions row 

shows the working conditions from which the dataset is used for the SOC estimation. The training and 

testing times of the LSTM and RLSTM networks are presented in minutes. It can be observed that the 

RLSTM trains and tests much faster than the LSTM due to the proposed attention weights using the same 

hyperparameters.  

In this study, the training times show that the LSTM network trains faster with datasets from the 

BBDST than with other working conditions, which is due to the size of the dataset. However, due to the 

working principle of the RLSTM network to select the relevant data during the training process, its 

training times do not depend on the size of the dataset, but they are subjective to the relevant attention 

mechanism. It can also be observed that the RLSTM trains the network faster than the traditional LSTM 

network, depending on the size and noise of the dataset encountered during the training process. Also, the 

RLSTM network does not depend on the processor speed of the training system or computer.  

The validation and training state performances that initialize the training of the LSTM network and 

the training progress for the working condition-based SOC estimation are presented in Fig. 6. 
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(a) Validation and training state performance curves 

  
(b) Training progress RMSE and loss curves 

Fig. 6. The LSTM-SOC network validation and training progress curves 

Fig. 6 (a) shows the validation and training state performances of the parallel training pool. It shows 

the total number of epoch iterations and time taken to initiate the training with the performance using the 

LSTM network. Fig. 6 (b) shows the training RMSE and loss with the total iterations for the training of 

the LSTM network. 

(a) SOC estimation and performance evaluation of the working condition trained and tested LSTM 

network 

In this paper, tests are conducted to study the effects of the working conditions used for training and 

testing on the SOC estimation accuracy of the traditional LSTM network. This training and testing 

sequence is verified using three different experimental tests, namely BBDST, DST, and HPPC working 

conditions. The SOC estimation results using the LSTM network based on the training and testing 

sequence in Table 3 for the BBDST, DST, and HPPC working conditions are presented in Fig. 7. 
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(a) SOC estimation tested under the BBDST and trained under the three working conditions 

  
(i) SOC estimation curves (ii) Error curves 

(b) SOC estimation tested under the DST and trained under the three working conditions 

  
(i) SOC estimation curves (ii) Error curves 

(c) SOC estimation tested under the HPPC and trained under the three working conditions 

Fig. 7. SOC estimation tested under the BBDST, DST, and HPPC working conditions of the working 

condition trained and tested LSTM network 

Fig. 7 shows the SOC estimation conducted based on the proposed training and testing technique 

under the BBDST, DST, and HPPC working conditions using the LSTM network. In the subfigures, 

SOCa is the actual SOC of the battery system. The BBDST, DST, and HPPC are the SOC estimation 

results for the respective working conditions under which they are estimated or tested by the LSTM 

network. 

In Fig. 7 (a), the SOC is estimated using a dataset from the BBDST working condition and trained 

using datasets from the BBDST, DST, and HPPC working conditions, respectively. For the respective 

training-testing sequence, the test results show that the ME for the BBDST-BBDST is 0.0312 (3.12%), 

the DST-BBDST is 0.0574 (5.74%), and the HPPC-BBDST is 0.0374 (3.74%). Also, it can be observed 

that the BBDST trained and tested result with an ME of 3.12% has the least noise fluctuations and has 

more stability than when it is trained under the DST and HPPC working conditions. 

Also, in Fig. 7 (b), the SOC is estimated using a testing dataset from the DST working condition and 

trained using datasets from BBDST, DST, and HPPC working conditions, respectively. For this training 

and testing sequence, the DST has the second-lowest ME of 2.10%. The test results show that the ME for 

the BBDST-DST is 0.0138 (1.38%), the DST-DST is 0.0210 (2.10%), and the HPPC-DST is 0.0233 

(2.33%). Under the DST working condition, it can be observed that all the estimation error results have 

the same noise effects, which is an inherent working condition effect. 
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Finally, Fig. 7 (c) shows the SOC estimated using a testing dataset from the HPPC working condition 

and trained using datasets from the BBDST, DST, and HPPC working conditions. The test results show 

that the ME for the BBDST-HPPC is 0.0128 (1.28%), the DST-HPPC is 0.0210 (2.10%), and the HPPC-

HPPC is 0.0107 (1.07%). Also, it can be observed that the HPPC trained and tested result has more 

stability and less noise effect than when it is trained under the other working conditions with an ME of 

1.07%. 

Moreover, it can be observed that the LSTM network has a more optimal performance due to the 

accurate selection of the hyperparameter and also the training and testing technique proposed for this 

study. A summary of the MEs for the SOC estimation of the working condition-based training and testing 

technique using the LSTM network is presented in Table 4. 

Table 4. The maximum error values of the working condition trained and tested LSTM network 

Model 
BBDST-

BBDST 

DST-

BBDST 

HPPC-

BBDST 

BBDST

-DST 

DST-

DST 

HPPC-

DST 

BBDST

-HPPC 

DST-

HPPC 

HPPC-

HPPC 

LSTM 3.12% 5.74% 3.74% 1.38% 2.10% 2.33% 1.28% 2.10% 1.07% 

The performance evaluation of the SOC estimation results of the working condition-based training 

and testing technique using the LSTM network under the BBDST, DST, and HPPC working conditions 

are presented in Fig. 8. 
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(c) Performance evaluation under the HPPC working condition 

Fig. 8. Performance evaluation of the working condition trained and tested LSTM network 

In Fig. 8 (a), the error results for the SOC estimation under the BBDST show that the BBDST-trained 

optimally performed more than when compared to the ones trained under the DST and HPPC working 

conditions. Also, the HPPC working condition-based SOC estimation has the optimal performance when 

trained and tested under the HPPC better than under the BBDST and DST working conditions, as 

presented in Fig. 8 (c). As presented in Fig. 8 (b), even though the performance of the network trained and 

tested under the DST is not optimal, its estimation error is closer to the minimum, which is the BBDST, 

than the HPPC working condition with the least accuracy. 

These results verify that the accuracy of SOC estimation using the LSTM network is influenced by 

the working conditions under which it is trained and tested. Also, these estimation results show that the 

LSTM network used for this study performs better under the BBDST than under the other working 

conditions. 

(b) SOC estimation and performance evaluation of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF 

models 

(i) SOC estimation of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models 

The SOC estimation results of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models with the 

same training and testing sequence under the BBDST, DST, and HPPC working conditions are presented 

in Fig. 9. 
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(a) SOC estimation results under the BBDST working condition 
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(i) BBDST-DST  (ii) DST-DST  (iii) HPPC-DST 

(b) SOC estimation results under the DST working condition 

   

(i) BBDST-HPPC  (ii) DST-HPPC  (iii) HPPC-HPPC  

(c) SOC estimation results under the HPPC working condition 

Fig. 9. SOC estimation results of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models under the 

BBDST, DST, and HPPC working conditions 

Fig. 9 shows the SOC estimation results of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models 

under the BBDST, DST, and HPPC working conditions based on the training and testing sequence to 

show the accuracy and robust performance for each enhanced model. It can be observed that the RLSTM-

SGEKF model has better SOC initialization and adapts more quickly to the actual SOC with optimal 

accuracy than both the RLSTM network and the RLSTM-EKF model. Also, it further denoised the 

estimates of the previous models to ensure a steady-state SOC estimation with minimized MEs. During 

the estimation, it is observed that the RLSTM-SGEKF model has three (3) times faster convergence than 

the RLSTM-EKF model, which solves the convergence and speed issues essential in the SOC estimation 

of lithium-ion batteries to show its robustness, efficiency, and suitability for the online BMS application 

in real-time. 

The ME values for the SOC estimation under the BBDST, DST, and HPPC working conditions using 

the same training and testing sequence are presented in Table 5. 
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Table 5. The maximum error values of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models 

Models 
BBDST-

BBDST 

DST-

BBDST 

HPPC-

BBDST 

BBDST-

DST 

DST-

DST 

HPPC-

DST 

BBDST-

HPPC 

DST-

HPPC 

HPPC-

HPPC 

RLSTM 2.52% 5.57% 2.04% 1.52% 2.11% 1.58% 1.26% 1.28% 1.02% 

RLSTM-

EKF 
1.34% 3.32% 1.15% 0.71% 0.67% 0.44% 0.89% 0.98% 0.84% 

RLSTM-

SGEKF 
0.47% 0.63% 0.79% 0.60% 0.42% 0.31% 0.66% 0.77% 0.78% 

From Table 5, it can be observed that the RLSTM-SGEKF model has the optimal SOC estimation 

performance with the least ME values and enhanced robustness compared to the previous models under 

all the three working conditions.  

(ii) Performance evaluation of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models 

The error metrics are calculated to evaluate the performance of the RLSTM, RLSTM-EKF, and 

RLSTM-SGEKF models using the same training and testing sequence for the SOC estimation. The values 

of the MAE, MSE, RMSE, and MAPE of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models are 

graphically presented in Fig. 10. 
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(c) Performance evaluation under the HPPC working condition 

Fig. 10. Performance evaluation of the RLSTM, RLSTM-EKF, and RLSTM-SGEKF models under the 

BBDST, DST, and HPPC working conditions  

In Fig. 10, the performance for each enhanced model is presented according to the working condition-

based training and testing sequence. It can be observed that the RLSTM-SGEKF model has the least 

errors, while the errors of the RLSTM-EKF model and the RLSTM network increase accordingly. These 

error results show and verify the robustness and accuracy of the proposed hybrid models, the RLSTM-

EKF and RLSTM-SGEKF models, over the data-driven models, the LSTM and RLSTM networks.  

However, these results for these models are not evaluated based on the working condition training 

and testing technique to study their effect on the accuracy of the SOC estimation due to the infiltration by 

the data optimizer in the RLSTM network and the EKF method in the RLSTM-EKF and RLSTM-SGEKF 

models. 

The maximum MAE, MSE, RMSE, and MAPE values for the LSTM, RLSTM, RLSTM-EKF, and 

RLSTM-SGEKF models under the BBDST, DST, and HPPC working conditions are calculated and 

presented in Table 6. 

Table 6. The maximum MAE, MSE, RMSE, and MAPE values for the LSTM, RLSTM, RLSTM-EKF, 

and RLSTM-SGEKF models 

Testing working 

condition 
Models MAE (%) MSE (%) RMSE (%) MAPE (%) 

BBDST 

LSTM 0.36618 0.0021431 0.46225 12.85541 

RLSTM 0.41633 0.0027345 0.52284 3.13910 

RLSTM-EKF 0.40678 0.0025455 0.50464 2.92659 

RLSTM-SGEKF 0.34281 0.0017344 0.41639 2.34403 

DST 

LSTM 0.50279 0.0031110 0.55766 1.32640 

RLSTM 0.25202 0.0011302 0.33609 0.52113 

RLSTM-EKF 0.23047 0.0009856 0.31386 0.45274 

RLSTM-SGEKF 0.22016 0.0009346 0.30566 0.42178 

HPPC 
LSTM 0.38102 0.0023244 0.48175 1.30038 

RLSTM 0.39718 0.0021132 0.45970 1.41025 
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RLSTM-EKF 0.39665 0.0021074 0.45903 1.40918 

RLSTM-SGEKF 0.35299 0.0017448 0.41765 1.27365 

The results in Table 6 show that the RLSTM-SGEKF model has the optimal performance with 

minimum MAE, MSE, RMSE, and MAPE values under the three working conditions compared to the 

previous models. These results show the robustness, adaptability, and proficiency of the proposed hybrid 

model for the estimation of online SOC by the BMS for real-time EV applications. 

4. Conclusion 

In this paper, an LSTM network is established based on a working condition training and testing 

technique to study its effect on the accuracy of the SOC through a transfer learning technique. Three 

complex working conditions are used for the study based on the power and dynamic performance profiles 

of the lithium-ion battery, which are BBDST, DST, and HPPC. Secondly, a relevant attention mechanism 

is introduced as a data optimizer into the LSTM network for faster training to establish an RLSTM 

network. Thirdly, the SOC estimated by the RLSTM is input with the working current into the EKF and 

SGEKF methods to iteratively denoise and optimize the accuracy of the final SOC under the BBDST, 

DST, and HPPC working conditions. The results show that the working condition-based training and 

testing technique provides a criterion for accurate SOC estimation. Furthermore, the proposed RLSTM 

network has a more computationally efficient training time compared to the traditional LSTM network 

due to its attention weight. Finally, the SOC estimated results of the RLSTM-EKF and RLSTM-SGEKF 

models show that they are denoised and optimized to produce highly accurate estimates compared to the 

previous models. Moreover, the RLSTM-SGEKF model is optimal with maximum MAE, MSE, RMSE, 

and MAPE values of 0.34281%, 0.0017344%, 0.41639%, and 2.34403%, respectively, under the BBDST 

working condition. Under the DST working condition, the maximum MAE, MSE, RMSE, and MAPE 

values are 0.22016%, 0.0009346%, 0.30566%, and 0.42178%, respectively. Finally, under the HPPC 

working condition, the maximum MAE, MSE, RMSE, and MAPE values are 0.35299%, 0.0017448%, 

0.41765%, and 1.27365%, respectively. These results show the suitability, robustness, and efficacy of the 

proposed hybrid models for the online SOC estimation of lithium-ion batteries by the BMS for real-time 

EV applications. 

In our future work, we will focus on estimating the SOC and other state parameters using the 

RLSTM-SGEKF model under different temperatures and battery aging status to study their effects on the 

accuracy of the SOC of lithium-ion batteries. 
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