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Abstract: State of health evaluation of lithium-ion batteries has become a significant research 

direction in related fields attributed to the crucial impact on the reliability and safety of 

electric vehicles. In this research, a dynamic adaptive cuckoo search optimized long 

short-term memory neural network algorithm is proposed. The aging mechanism of the 

battery is described effectively by extracting and selecting high correlation health indicators 

including voltage, current, charging time, etc. A dynamic adaptive strategy is introduced to 

the cuckoo search algorithm to stabilize the step size and improve the global search ability. 

The hyperparameter optimization and noise filtering problems of the long short-term memory 

model are solved and the accuracy of the algorithm is improved by taking advantage of the 
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Highlights 

 A dynamic adaptive cuckoo search optimized long short-term memory neural

network is proposed for the state of health estimation.

 Nine features highly divided into measured and calculated health indicators are

extracted.

 The proposed method is validated with seven groups of data from CALCE and

NASA.



established dynamic adaptive cuckoo search algorithm. The accuracy and effectiveness of the 

proposed method are verified based on the seven groups of battery aging datasets from the 

National Aeronautics and Space Administration and the University of Maryland. Compared 

with the long short-term memory and convolutional neural network long short-term memory, 

the mean absolute error of the results obtained by the proposed algorithm is kept under 2%, 

the root mean square error is less than 3%, and the average absolute percentage error is less 

than 3%. The results indicate the algorithm has better fitting performance, stronger robustness, 

and generality. 
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1. Introduction 

The development of new energy vehicle 

technology is a strategic measure to 

alleviate the world energy crisis and achieve 

the goal of carbon neutrality [1-3]. 

Lithium-ion battery (LIB) gradually turns 

into the most popular type of power battery 

for new energy vehicles due to its high 

energy density [4], long cycle life [5], and 

low self-discharge rate [6]. However, the 

performance of lithium-ion batteries may 

decrease with the irreversible degradation of 

the internal electrochemical components 

during the application, which is known as 

battery aging [7]. Battery aging brings the 

safety and reliability problems of batteries, 

leading to the degradation of electrical 

equipment performance or system failure, 

and even causing fire or explosion problems, 

greatly affecting the further industrial 

application of lithium-ion batteries [8]. In 

order to ensure the safety and reliability of 

batteries, the health management technology 

of lithium-ion batteries has been developed 

continuously [9]. The state of health (SOH) 

of a battery is an important evaluation index 

of battery health management, which 

reflects the health status of the battery 

during operation [10]. It is of great 

significance to accurately evaluate the SOH 

of power batteries for new energy vehicles 

in terms of energy refinement management, 

maintenance [11], safety warning, and 

residual value evaluation of successive 

utilization of power batteries. 

SOH is originally proposed to evaluate the 

degree of aging of batteries relative to new 

ones [12]. The aging of the battery is 

attributed to the complex electrochemical 

reaction inside the battery, and its direct 

impact on the battery performance is the 

decrease of the capacity and the increase of 



the internal resistance [13]. Therefore, the 

industry generally takes advantage of 

capacity and internal resistance to define the 

SOH of a battery [14]. Under normal 

circumstances, when the actual capacity of 

the electric vehicle battery drops to 80% of 

the rated capacity or the internal resistance 

increases to 2 times the original, it is 

deemed to enter the end-of-life (EOL) state 

[15]. For hybrid electric vehicles (HEVs), 

battery SOH is primarily measured by 

internal resistance, as power capability is 

more significant in this application. In 

contrast, for pure electric vehicles (PEVs), 

battery SOH is usually evaluated based on 

actual capacity due to the importance of 

energy capability in this application [16]. 

Compared with the internal resistance of the 

battery that can be directly calculated 

through the pulse condition, the degradation 

process of the battery capacity is very 

complex and is greatly affected by many 

factors such as temperature, current rate, 

historical aging path, etc., and in the case of 

incomplete discharge or charge cycles, the 

capacity cannot be measured online at all 

[17]. Therefore, how to use artificial 

intelligence technology to develop an 

effective prediction model or method theory 

so as to achieve an accurate prediction of 

capacity degradation trend, so as to achieve 

early failure detection of lithium-ion 

batteries, is more challenging and attracts 

the attention of many researchers in this 

field [18]. Hence, this paper focuses on 

capacity-based SOH estimation to conduct a 

series of studies. 

At present, based on differences in 

principles and structures, SOH estimation 

methods are mainly divided into three 

categories: experimental analysis, 

model-based, and data-driven [19]. The 

experimental analysis method evaluates 

battery SOH by directly measuring battery 

capacity, internal resistance, impedance 

spectrum, and other characteristic 

parameters [20], or on the basis of direct 

measurement, some characteristic quantities 

that can reflect battery capacity or internal 

resistance decline are selected, and battery 

aging status is indirectly reflected through 

the change of characteristic parameters [21], 

so as to evaluate battery SOH. The 

experimental analysis method includes the 

Coulomb counting method, open circuit 

voltage method, impedance spectroscopy 

[22], etc. Huang et al. [23] propose a 

comprehensive optimization framework for 

Li-ion battery SOH estimation with the 

Local Coulomb Counting Curve (LCCC). 

Bian et al. [8] develop a novel OCV model 

to extract the OCV curve and the features of 



interest (FOIs) associated with SOH. 

Ouyang et al. [24] establish the Gaussian 

linear models based on parameters of six 

commonly used open-circuit-voltage models 

to estimate SOH. Jiang et al. [25] 

investigate a systematic comparative study 

of three categories of features extracted 

from battery electrochemical impedance 

spectroscopy (EIS) in SOH estimation. 

However, the experimental conditions of the 

experimental method are greatly affected by 

the external environment, and experimental 

measurement errors are unavoidable [26], 

which makes it difficult to apply in practical 

applications. The model-based method 

extracts corresponding models according to 

various electrochemical reactions in the 

battery and the prior knowledge of the life 

cycle and physical and chemical reaction 

laws are taken advantage of to realize the 

evaluation of SOH [27]. Electrochemical 

models (EMs) or equivalent circuit models 

(ECMs) are the most commonly used 

models [28]. Xu et al. [29] propose a 

minimalist electrochemical model to relate 

SOH to capacity fading due to the 

irreversible loss of Li. Gao et al. [15] 

develop a scheme using the reduced-order 

electrochemical model and the dual 

nonlinear filters for the reliable 

co-estimations of cell SOC and SOH. Liu et 

al. [30] propose an autoregressive 

equivalent circuit model (AR-ECM) to 

realize the joint estimation method for the 

SOH, state of charge (SOC), and state of 

power (SOP) of batteries. Sakile et al. [31] 

propose an adaptive nonlinear observer 

(ANO) for SOH estimation based on a 

first-order resistor-capacitor (RC) electrical 

equivalent circuit model. However, the EMs 

need to solve complex partial differential 

equations, which increases the burden of the 

battery management system [32], and the 

ECMs are difficult to accurately reflect the 

battery decay process attributed to the 

influence of objective factors [33], and the 

robustness and accuracy of the models lack. 

In contrast, data-driven methods gain 

increasing attention from academia and 

industry [34], and when sufficient data are 

available, models for SOH estimation with 

high accuracy for specific applications can 

be easily built. 

The data-driven method does not require 

physical insight into aging dynamics by 

using large amounts of historical battery 

measurements but takes advantage of 

machine learning methods to establish 

relevant models [35]. Therefore, the method 

is more flexible and diverse and has better 

application prospects. The core of the 

data-driven method lies in the selection and 



processing of data [36], and the key reflects 

in extracting features that are highly 

correlated with the target output and 

establishing the relationship between feature 

parameters and SOH [37]. In recent years, 

data processing methods are enriched 

continuously, and algorithms such as neural 

network (NN), support vector regression 

(SVR), relevance vector machine (RVM), 

Gaussian process regression (GPR), 

Bayesian model (BM), random forest (RF), 

and autoencoder (AE) have appeared [38], 

which show the excellent effect in the 

evaluation of SOH. Lin et al. [39] propose a 

novel SOH estimation method based on the 

fusion of the simulated annealing (SA) 

algorithm and SVR. Wu et al. [40] establish 

a synergetic method with the help of the 

genetic algorithm (GA) and the support 

vector regression (SVR) for SOH estimation. 

Lyu et al. [41] develop a hybrid kernel 

function relevance vector machine 

(HKRVM) optimized model for battery 

prognostics and health management. Sun et 

al. [42] present an optimized multiple kernel 

relevance vector machine (MKRVM). Deng 

et al. [43] propose a method based on the 

random partial charging process and sparse 

Gaussian process regression. Li et al. [44] 

build a closed-loop battery capacity 

estimation framework, Gaussian process 

regression, and multi-output Gaussian 

process regression for constructing battery 

dynamic state-space function. Dong et al. 

[45] present a probabilistic method for the

battery degradation modeling and health 

prognosis based on the features extracted 

from the charging process using the 

dynamic Bayesian network (DBN). Haris et 

al. [46] propose a novel combination of 

deep learning algorithm-Deep Belief 

Network (DBN) with Bayesian 

Optimization and HyperBand (BOHB) to 

predict the RUL. Mawonou et al. [47] 

propose a data-driven battery aging 

prediction using the random forest (RF) 

algorithm based on actual users' behavior 

and ambient conditions. Xu et al. [48] 

design a novel physics-informed machine 

learning prognostic model named PIDDA 

based on an autoencoder. Among them, the 

neural network algorithm has achieved the 

most outstanding results and has become the 

most common data-driven algorithm. 

A neural network algorithm is to simulate 

the thinking process of the human brain in 

mathematical form, the network formed by 

connecting neurons in a certain way through 

a large number of data to train the threshold 

and weight between neurons to get the 

prediction model [49]. Attribute to its high 

applicability in complex nonlinear modeling 



problems with multi-correlated features, 

strong self-learning ability, and high 

prediction accuracy, the NN algorithm has 

become a mainstream data-driven 

technology and has achieved extensive 

results in the field of lithium-ion battery 

health management [50]. According to the 

differences in structure and working 

principle, common neural networks can be 

divided into three kinds including 

feedforward neural networks (FNN), 

convolutional neural networks (CNN), and 

recurrent neural networks (RNN) [51]. Yang 

et al. [52] utilize the convolutional neural 

network (CNN) to extract indicators for 

both SOH and changes in SOH (Delta SOH) 

between two successive charge/discharge 

cycles. Ma et al. [53] propose a transfer 

learning-based method for personalized 

SOH estimation of a new battery. A CNN 

combined with an improved domain 

adaptation method was used to construct a 

SOH estimation model, where the CNN was 

taken advantage of to automatically extract 

features from raw charging voltage 

trajectories. Che et al. [54] establish an 

improved dynamic recurrent neural network 

(DRNN) with the ability of dynamic 

mapping was established, which was more 

suitable than the static network for 

estimating the batteries' state with strongly 

nonlinear and dynamic behaviors. Chen et al. 

[55] develop a hybrid data science model

based on empirical mode decomposition 

(EMD), grey relational analysis (GRA), and 

deep recurrent neural networks for the RUL 

prediction of lithium-ion batteries. As an 

improved type of RNN not only considering 

the influence of the historical aging path on 

battery health, but also the long short-term 

memory (LSTM) neural network overcomes 

the problem of gradient disappearance or 

explosion in the common RNN, and 

discards redundant information while 

memorizing long-term useful information 

[56]. This kind of algorithm and the 

improved forms become an important 

research direction in the field of neural 

network algorithms in recent years. 

SOH estimation can be defined as time 

series processing problems, and LSTM 

neural network has obvious advantages in 

processing time series data [57]. Therefore, 

it is logical to use LSTM NN to monitor the 

health status of lithium-ion batteries. In 

recent years, a large number of related 

research results also proves the advantages 

of LSTM in dealing with the health 

management of lithium-ion batteries [19, 

58]. Shu et al. [59] incorporate the LSTM 

network and transfer learning (TL) with the 

fine-tuning strategy for SOH prediction with 



partial training data. Gong et al. [60] 

propose a data-driven estimation method 

based on the improved LSTM, where the 

network topology was estimated by the 

particle swarm optimization (PSO) 

algorithm. Wang et al. [61] establish a 

bidirectional long short-term memory with 

attention mechanism (Bi-LSTM-AM) model 

to predict online RUL by continuously 

updating the model parameters. Ma et al. 

[62] propose a novel differential evolution

grey wolf optimization long short-term 

memory (DEGWO-LSTM) and health 

indicators (HIs) extraction from the 

charging-discharging process, and the 

method was verified based on the dataset of 

the battery from the National Aeronautics 

and Space Administration (NASA) and 

Massachusetts Institute of Technology 

(MIT). Heinrich et al. [63] present a 

LSTM-based neural network that learned 

the electrical behavior of an automotive 

battery cell based on in-vehicle driving data. 

This LSTM model was then taken 

advantage of to simulate the electric 

response during capacity testing, 

incremental capacity analysis, and 

peak-power testing. These studies show that 

LSTM does have great potential and 

application prospects in battery state of 

health estimation. However, although the 

LSTM neural network algorithm can be well 

utilized for the health monitoring of 

lithium-ion batteries, there are still three 

issues worth considering. 

(1) Since a single LSTM algorithm cannot

guarantee the accuracy, existing data-driven 

models often combine the LSTM algorithm 

with other neural networks or strategies to 

obtain better prediction results. However, 

this increases the complexity of the system, 

and there is no corresponding denoising 

method combined with the neural network 

model, resulting in a large deviation of the 

results. 

(2) In the process of extracting

characteristic variables of lithium-ion 

batteries, most studies often only consider 

one type of information system [57]. There 

is a certain internal relationship between 

variables, which may affect each other. At 

the same time, there is also a lack of direct 

description of the degree to which health 

characteristics are related to the state of 

health by mathematical index, but focus on 

direct selection based on experience. This 

leads to the limitation of aging information 

mining, which in turn affects the accuracy 

of later modeling. 

(3) When a SOH estimation model based

on the LSTM neural network algorithm is 

established, the selection of some 



hyperparameters needs to be considered. 

The number of hidden neurons and the 

initial learning rate are the core 

hyperparameters, and the adaptive control of 

the two parameters is the important content 

to avoid overfitting, strengthen the 

convergence speed and improve the 

accuracy of the LSTM model. However, 

most current research ignores this important 

problem, resulting in a large error in the 

final estimation result. 

This study attempts to address the above 

questions. The contributions are 

summarized accordingly as follows. Firstly, 

a SOH estimation strategy based on 

dynamic adaptive cuckoo search long 

short-term memory (DACS_LSTM) neural 

network algorithm is proposed by 

combining filtering algorithm and neural 

network methods. The combination of the 

LSTM algorithm and DACS algorithm has 

low overall complexity, and the effect of 

noise can be effectively reduced after 

filtering by the DACS algorithm. Secondly, 

multi-dimensional measured and calculated 

HIs are taken advantage of to describe the 

aging process of the battery, and the 

association between selected HIs and SOH 

is evaluated at the mathematical levels. The 

factors affecting the battery SOH are taken 

into account comprehensively. Thirdly, the 

improved DACS algorithm can effectively 

improve the search performance and the 

global optimization ability of the algorithm, 

which optimize the hyperparameters 

including the number of hidden neurons and 

the initial learning rate of the established 

prediction model built by long short-term 

neural network algorithm for the state of 

health estimation effectively. And the effect 

of SOH estimation of the DACS_LSTM 

algorithm is verified in seven groups of data 

from NASA and Computer Aided Life 

Cycle Engineering Center (CALCE). 

The overall structure of this paper is as 

follows. Section 2 introduces the estimation 

theory of SOH and the establishment 

process of the DACS_LSTM algorithm. 

Section 3 presents the quantitative analysis 

of datasets, the extraction of HIs, and the 

overall framework of the state of health 

estimation. Section 4 describes the results of 

SOH estimation under four datasets and the 

comparison of algorithm performance. And 

the conclusions are given in Section 5. 

2. SOH estimation theory and algorithm

establishment

2.1 SOH estimation analysis

Attributed to the reason exposited in 

Section 1, this paper characterizes the state 

of health from the perspective of capacity 

decay. SOH can be defined as the ratio of 



the actual capacity to the rated capacity of 

the battery [64], as shown in Eq. (1). 

𝑆𝑂𝐻 =
𝐶𝑎𝑐𝑡

𝐶𝑟𝑎𝑡
∗ 100%  (1)

Wherein, Cact stands for the actual 

capacity of the battery at the current time, 

and Crat represents the rated capacity of the 

battery. The rated capacity of the battery 

tested on the dataset used in this paper is 

known, hence the ultimate goal of this 

research is to obtain the actual capacity. 

2.2 LSTM neural network algorithm 

dissection 

There is an obvious iterative relationship 

in the process of complete charge and 

discharge of the lithium-ion battery, that is, 

the data of this cycle is not only related to 

the current experimental conditions but also 

affected by the last cycle. To clarify this 

kind of relationship between the current and 

past cycles, it is necessary to extract 

important indicators to reflect the change in 

battery capacity during the aging process. 

LSTM algorithm overcomes the gradient 

instability problem that common CNN may 

have, and the prediction accuracy in the 

long-term case is effectively improved [65], 

hence it should be more suitable for battery 

capacity estimation under the long-term 

experiments. 
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Fig. 1 Overall structure of LSTM 

Fig. 1 shows the overall architecture of the 

LSTM algorithm. The algorithm contains a 

storage unit with three nonlinear extra gates, 

including a forgetting gate, input gate, and 

output gate. In addition, there are four 

inputs with one output. 

{

𝑓𝑘 = 𝑓(𝑄𝑓 . 𝑥𝑘 + 𝑏𝑓)

𝑖𝑘 = 𝑓(𝑃𝑖 . 𝑥𝑘 + 𝑏𝑖)

𝐶
~

𝑘 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . 𝑥𝑘 + 𝑏𝐶)

𝐶𝑘 = 𝐶
~

𝑘 ∗ 𝑖𝑘 + 𝐶𝑘−1 ∗ 𝑓𝑘
𝑜𝑘 = 𝑓(𝑅𝑜. 𝑥𝑘 + 𝑏𝑜)

ℎ𝑘 = 𝑡𝑎𝑛ℎ(𝐶𝑘) ∗ 𝑜𝑘

 (2) 

Eq. (2) lists the calculation formula of 

each gate and the status update process in 

the LSTM unit. Wherein, xk denotes the 

input data at the current time, f represents 

the sigmoid function of variable parameters, 

and g and h are the expressions of 

hyperbolic activation functions. R, P, W, and 

Q are weights, b is offset, and k refers to the 

time step. fk, ik, 𝐶
~

𝑘 and 𝑜𝑘 are the output

of the forget gate, input gate, input node and 

output gate. 

2.3 SOH estimation by DACS_LSTM 

algorithm 

The traditional LSTM algorithm has an 



obvious problem. In modeling, the 

uncertainty of hyperparameter selection is 

very strong, and it is easy to produce 

overfitting. The number of hidden neurons 

and the initial learning rate are important 

hyperparameters. The former is a linear 

partition of the input features, the higher the 

number, the higher the model accuracy 

theoretically. However, the more linearly 

divided categories, the more distorted the 

decision boundary, then the appearance of 

overfitting happened, which reduces the 

estimation accuracy of the algorithm. The 

learning rate refers to the rate in the training 

process of the algorithm. The higher the 

learning rate is, the faster the training speed 

is, but the phenomenon of data shock and 

high loss value is easy occur. The lower the 

learning rate, the higher the data utilization, 

but the phenomenon of overfitting is easy to 

occur, and the low learning rate will also 

cause the convergence speed of the 

algorithm to decline. Therefore, for the 

selection of hyperparameters, a new 

DACS_LSTM algorithm is designed in this 

paper to solve this problem effectively. 

In this research, the dynamic adaptive 

cuckoo search algorithm is taken advantage 

of to optimize the hyperparameters and 

realize the noise reduction, which 

effectively improves the modeling accuracy. 
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Fig. 2 Flowchart of DACS_LSTM algorithm 

Fig. 2 shows the flowchart of the 

DACS_LSTM algorithm proposed in this 

paper. It mainly includes data import, data 

normalization, DACS algorithm iteration, 

model training, SOH estimation, and 

estimation error analysis. The specific steps 

are as follows. 

Step 1 Training dataset and test dataset 

sample are imported. The amount of training 

dataset is selected according to the actual 

situation. In general, the larger the training 

dataset, the higher the accuracy, however, 

the problem of running time can not be 

ignored. At the same time, the test dataset 

decreases with the increase of the training 

dataset, which further reduces the reliability 

of the test and results. In this paper, three 

scales including 30%, 50%, and 70% of the 



dataset are selected as the training dataset. 

Step 2 Data normalization. The purpose of 

this step is to change the imported data of 

different orders of magnitude into the same 

order of magnitude and eliminate the 

influence of the order of magnitude. The 

imported data from the training dataset and 

test dataset are processed respectively, and 

all data are normalized to the range [0, 1]. 

The calculation method is shown in Eq. (3). 

{
𝑥1 =

𝑥𝑘
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

−𝑥𝑚𝑖𝑛
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑥𝑚𝑎𝑥
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

−𝑥𝑚𝑖𝑛
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑥2 =
𝑥𝑖
𝑡𝑒𝑠𝑡−𝑥𝑚𝑖𝑛

𝑡𝑒𝑠𝑡

𝑥𝑚𝑎𝑥
𝑡𝑒𝑠𝑡 −𝑥𝑚𝑖𝑛

𝑡𝑒𝑠𝑡

(3) 

Wherein, 𝑥𝑘
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

 and x1 represent the

original data and normalized data of the 

training dataset at time k, respectively. 

𝑥𝑚𝑖𝑛
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

and 𝑥𝑚𝑎𝑥
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

represent the 

minimum and maximum values of the 

training dataset, respectively. 𝑥𝑖
𝑡𝑒𝑠𝑡 and x2

represent the original data and normalized 

data of the test dataset at the time i, 

respectively. 𝑥𝑚𝑖𝑛
𝑡𝑒𝑠𝑡 and 𝑥𝑚𝑎𝑥

𝑡𝑒𝑠𝑡  represent the

minimum and maximum values of the test 

dataset, respectively. 

Step 3 DACS algorithm iteration. DACS 

algorithm optimizes the hyperparameters of 

the LSTM neural network. In this research, 

the number of eggs in each nest is 100, and 

the maximum number of iterations is 500. 

Step 3.1 Initialization. m nests are 

randomly generated, and the position vector 

pk of each nest is composed of two 

components, including the number of 

hidden neurons αk and the initial learning 

rate βk of the LSTM algorithm. The step size 

control vector S is initialized and the fitness 

fk of all m nests is calculated. According to 

the hyperparameters αk and βk of the LSTM 

model contained in the position vector pk of 

each nest, the LSTM model is trained 

according to the training dataset, and the 

training model LSTMk is obtained. The 

training results were compared with 

reference values. In this paper, the mean 

square error (MSE) is taken advantage of 

like the fitness, and the calculation method 

is shown in Eq. (4). 

𝑓𝑘 =
1

𝐷
∑ (𝑂𝑘 − 𝐿𝑆𝑇𝑀𝑘(𝐼𝑘))

2𝐷
𝑘=1 (4) 

Wherein, D is the number of training 

samples, 𝐼𝑘 and 𝑂𝑘 refer to the input and

output of the training samples respectively. 

𝐿𝑆𝑇𝑀𝑘(𝐼𝑘)  refers to the final training

results. 

Step 3.2 Step size dynamic adjustment 

strategy. According to the fitness of all nests 

obtained, the maximum fitness fm, the mean 

value fq of all fitness, and the mean value fv 

of all fitness exceeding fq are determined. 

All the nests are then divided into three 

categories. 

(1) The first group. Nests with more

fitness than fv belong to the first category. 



This kind of nest has high fitness and is 

closest to the global optimal solution, hence 

the step size control vector is reduced to 

improve the local search ability. As shown 

in Eq. (5). 

𝑆𝑘+1 = 𝑆𝑘 − (𝑆𝑘 − 𝑆𝑚𝑖𝑛 |
𝑓𝑞−𝑓𝑣

𝑓𝑚
|) (5) 

(2) The second group. Nests with

fitness between fq and fv are included in the 

second category. This part of the nest has 

moderate fitness, hence there is no need to 

adjust the step size control vector. 

(3) The third group. Nests with lower

fitness than fq are included in the third 

category. This part of the nests have low 

fitness, and strong local search ability but 

poor global optimization ability, hence the 

composition of the step control vector and 

adaptive control is improved. 

𝑆𝑘 = 1 −
0.8

1+ℎ1∗𝑒
−ℎ2𝛥

(6) 

Wherein, h1, h2, and 𝛥 are the parameters. 

When the algorithm stalls, if individuals are 

distributed and scattered, then 𝛥 is large. 

The local optimization capability is 

enhanced by reducing the component 

corresponding to the step size in the control 

vector. The reduction of the component may 

enhance the global search ability and jump 

out of the local extremum. 

Step 3.3 Levy flight. The new fitness 

value of the nest is recalculated and 

compared with the optimal fitness value of 

the last iteration. 

{
𝑝𝑘+1 = 𝑝𝑘 + 𝑆𝑘⊕𝐿𝑒𝑣𝑦(𝜉)

𝐿𝑒𝑣𝑦(𝜉) ∼ 𝑢 = 𝑡−𝜉 , 1 < 𝜉 ≤ 3
(7) 

Wherein, ⊕  represents the entry-wise 

multiplications, 𝜉 is the Law exponent. The 

direction of the Levy flight used in this 

paper obeys a uniform distribution. 

Step 3.4 Determination of the optimal 

solution at the current time. By comparing 

the fitness of all nests, the one with the 

highest fitness is found. 

Step 3.5 Random walk. According to 

the initial discovery probability Pd, some 

nests are randomly abandoned, and the 

abandoned nests are replaced again. 

𝑝𝑘. = 𝑝𝑘 + 𝑞1⊕𝐹(𝑞2 − 𝑃𝑑) ⊕ (𝑝𝑘1 − 𝑝𝑘2)  (8)

Wherein, q1 and q2 are random numbers 

that obey uniformly distributed on [0, 1], 

𝑝𝑘1  and 𝑝𝑘2  refer to randomly selected

nests, and 𝐹(. ) represents the step function. 

Step 3.6 Determine the optimal 

solution at the current time. As shown in Eq. 

(9). 

𝑝∗ = (𝛼∗, 𝛽∗)  (9) 

Step 3.7 Determination of whether the 

upper limit of the number of iterations is 

reached. If so, the loop is ended; otherwise, 

the operation returns to Step 3.2 to start the 

iteration again. 

Step 4 LSTM model is trained based on 

optimal hyperparameters. The position 



vector with the highest fitness p* is selected 

as the hyperparameter of the LSTM model 

to construct the optimal LSTM model 

named LSTMbest. 

Step 5 LSTM model is tested based on the 

test dataset. The LSTM optimization model 

is trained based on the training dataset, and 

the number of LSTM neurons and the initial 

learning rate are optimized by the DACS 

method. The test dataset is taken advantage 

of to estimate the trained optimal model to 

normalize the final prediction results. 

Step 6 SOH estimation. The output of the 

LSTM algorithm is the SOH of the battery, 

which is calculated through the fully 

connected layer, as shown in Eq. (10). 

𝑆𝑂𝐻 = 𝑓(𝑊𝑓𝑜 ∗ ℎ𝑘 + 𝑏𝑓𝑜)  (10)

Wherein, Wfo is the expression of the 

weight matrix between the fully connected 

layer and the output layer, bfo represents the 

offset of the layer, and hk denotes the output 

of the hidden layer. 

3. Dataset characteristics analysis and

health indicators acquisition

3.1 Dataset description and analysis 

Two groups of public datasets are selected 

in this research, dataset A includes CS_35, 

CS_36, CS_37, CS_38 in CALCE, and 

dataset B includes B0005, B0006, and 

B0007 in the NASA dataset. The battery 

version in CALCE taken advantage of in the 

experiment is a columnar lithium cobalt 

oxide battery with a rated capacity of 1.1Ah 

and a rated voltage of 4.2V. The test battery 

in NASA dataset is the second generation of 

18650-LiCoO2 with a rated capacity of 2Ah 

and a rated voltage of 4.2V. The four groups 

of data from dataset A are renamed as B1, B2, 

B3, and B4, and the three groups of data 

from dataset B are renamed as B5, B6, and 

B7 for narrative convenience. 

Table 1 Cycle conditions of the datasets A and B 

Datasets 
Battery 

Number 

Charging 

cut-off 

voltage(V) 

Discharging 

cut-off 

voltage(V) 

Charging 

constant 

current(A) 

Discharging 

constant 

current(A) 

Temperature(℃) 

A 

B1 4.2 2.7 0.55 1.1 25 

B2 4.2 2.7 0.55 1.1 25 

B3 4.2 2.7 0.55 1.1 25 

B4 4.2 2.7 0.55 1.1 25 

B 

B5 4.2 2.7 1.5 2.0 24 

B6 4.2 2.5 1.5 2.0 24 

B7 4.2 2.2 1.5 2.0 24 

Table 1 shows the aging test cycle conditions of seven groups of batteries 



belonging to two datasets. For dataset A, a 

complete charge and discharge test 

consisted of a constant current and constant 

voltage (CC-CV) charging process at 0.55 A 

and a constant current (CC) discharge stage 

at 1.1 A. The cycle is repeated until the 

experiment is stopped when the battery 

capacity decreased by 30%. It can be seen 

that the experimental conditions are the 

same, which is conducive to the extraction 

of health indicators in the next step. For 

dataset B, the discharge cut-off voltages of 

the three groups of batteries are different, 

which are 2.7V, 2.5V, and 2.2V respectively, 

which may affect the aging process of the 

batteries. 

(i) Charging-discharging curves of B1 (ii) Capacity degradation curves of B1~B4

(iii) Charging-discharging curves of B5 (iv) Capacity degradation curves of B5~B7

Fig. 3 Complete charging-discharging cycle and capacity degradation curves of B1~B4 and B5~B7 

Fig. 3 (i) shows the current and voltage 

change process under a charge-discharge 

cycle of B1. The battery is first charged at a 

constant current of 0.55 A (0.5 C) until the 

voltage rises to 4.2 V. A very short shelving 

period is followed immediately by constant 

voltage charging at 4.2 V until the current 

drops to 0.05 A. The charging stage is 

constant discharge at 1.1 A (1C) until the 

voltage drops to 2.7 V. Fig. 3 (ii) shows the 



capacity degradation curves of four datasets 

from B1 to B4 in the whole life cycle. Even 

under the same experimental conditions and 

with the same type of battery, the aging 

processes of capacity are not the same. 

Compared with B1 and B2, the aging speed 

of B3 and B4 is significantly slower. This 

shows that even batteries of the same 

version can exhibit very different 

attenuation patterns when tested under the 

same conditions. Fig. 3 (iii) shows the 

current and voltage in a complete 

charge-discharge cycle of B5. After a CC 

charge at 1.5A, the battery voltage rises to 

4.2V, and then a CV charge is carried out 

until the battery current drops to 0.05A. 

Next, a CC charge of 2.0A is applied until 

the voltage drops to 2.7V. Fig. 3 (iv) shows 

the capacity degradation curves of B5~B7. 

Similarly, the aging rate of the three 

batteries is also quite different. Therefore, it 

is necessary to analyze the SOH estimation 

results of seven groups of data 

simultaneously. 

3.2 Health indicators selection and 

acquisition 

The current, voltage, charging time, and 

some other variables can effectively reflect 

the aging of the battery. In this paper, nine 

variables are selected as HIs by analyzing 

the changing laws of each parameter during 

the experiment. Seven are measured factors 

and two are calculated. Measured HIs could 

more easily get directly from the dataset, 

mainly including three categories, 

respectively are associated with the current, 

voltage, and charging time. 

(i) Current curves in different cycles of B1 (ii) Voltage curves in different cycles of B1



(iii) Current curves in different cycles of B5 (iv) Voltage curves in different cycles of B5

Fig. 4 Current and voltage curves of B1 and B5 

1) Current-related HIs. The current of the

battery in the charging phase changed 

obviously with the continuous charging and 

discharging cycle. As shown in Fig. 4 (i) 

and (iii), as the number of cycles increased, 

the current curve at the charging stage 

moved to the left, indicating that the 

duration of the constant current stage 

gradually decreased. Based on this situation, 

three types of HIs were selected, including 

Ch, Cc, and CV, which were the area of the 

current curve of the whole charging stage, 

the constant current charging stage, and the 

constant voltage stage. 

2) Voltage-related HIs. Fig. 4 (ii) and (iv)

show that the voltage curve changes. As the 

battery ages, the capacity decreases, while 

the charging current did not change, hence 

the voltage rises faster and showed the same 

trend as the current. The voltage increase 

△U at the same time during the charging

stage became the option of the related HI. 

3) Charging time-related HIs. According

to HIs related to current and voltage, the 

total charging and discharging time of the 

battery would gradually shorten with the 

aging process. Here, the duration of constant 

current phase tc, duration of constant voltage 

stage tv, and the ratio of the constant current 

time to total charging time rc are selected as 

HIs. 

HIs obtained by measurement often cannot 

further show the deeper battery health 

change characteristics. Hence, the other HIs 

are obtained other through calculation. 

Incremental capacity (IC) curves are 

obtained by analyzing the variation of 

battery capacity with voltage over a short 

period. In this research, the IC curve is 

further obtained through the voltage curve 

of the battery, as shown in Eq. (11). 

𝑑𝑄

𝑑𝑉
= 𝐼 ⋅

𝑑𝑡

𝑑𝑉
=

𝐼
𝑑𝑉

𝑑𝑡

(11)



(i) IC curves of B1 (ii) IC curves of B5

Fig. 5 IC curves of different cycles of B1 and B5 

Fig. 5 shows the IC curve of the B1 and B5 

batteries. Following the cycle continues, IC 

curve peak PIC gradually decreases, and the 

peak position PICP shifts to the left, both of 

which has obvious and regular changes. 

Therefore, these two indexes are selected as 

HIs. 

Health indicators acquisition and selection

Health indicators acquisition

Measured health indicators

Current related

Ch, Cc and CV

Voltage related

�U

Calculated health indicators

IC related

PIC, PICP

Charging time related

tc, tv, rc

Health indicators selection

PCCs calculationCh, Cc , CV   

PCCs > 0.90

HIs are selected

Fig. 6 Health indicators acquisition and selection 

Fig. 6 shows the extraction process of HIs 

used. In summary, a total of nine indicators 

related to current, voltage, charging time, 

and IC curve is selected as HIs of the battery. 

The Pearson correlation coefficient (PCC) is 

selected to measure the linear correlation 

between HIs and SOH reference, as shown 

in Eq. (12). 

𝑃𝐶𝐶𝑠 =
∑ (𝑧𝑖−𝑧)(𝑞𝑖−𝑞)
𝑛
𝑖=1

√∑ (𝑧𝑖−𝑧)
2𝑛

𝑖=1 √∑ (𝑞𝑖−𝑞)
2𝑛

𝑖=1

(12) 

Wherein, z represents HIs, and q is the 

reference value of SOH. The value range of 

this coefficient is [-1, 1]. When PCCs are 1 

or -1, it indicates that there is a complete 

positive linear correlation or negative linear 



correlation between two variables. 0 means 

there is no linear correlation at all. 

Fig. 7 PCCs results for each group data in 

datasets A and B 

The calculation results of PCCs of seven 

groups of data are shown in Error! 

Reference source not found., indicating 

that most of the related parameters could 

well reflect the aging mechanism of the 

battery. HIs with a correlation over 0.9 are 

selected for model training in this paper. 

3.3 SOH evaluation framework 

On account of the DACS_LSTM 

algorithm proposed in Section 2.3, the total 

SOH estimation network is proposed, as 

shown in Fig. 8. The overall structure of the 

proposed method includes data processing, 

offline model training, and online SOH 

estimation. 

Battery module

Voltage

Battery datasets

Current

Capacity

Voltage

Current

Capacity

Model train

HIs 

extraction

LSTM LSTM...

SOH 

estimation 

model
1

kV 2
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4
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estimation model

C1

C2

C3

...

Ck

SOH 
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...

Normalization
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30%, 50%, 70%
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Fig. 8 Framework of SOH estimation 

Data processing includes data analysis, 

HIs extraction, and selection. Firstly, 30%, 

50%, or 70% of the total dataset is selected 

as the training dataset to carry out HIs 

extraction, and the rest of the data is used as 

a test dataset. Then, the scale of the current, 

voltage, and capacity in the training dataset 

and test dataset is normalized respectively. 

After the HIs extraction, PCC is used to 

evaluate the linear correlation between 

health indicators and state of health. Then, 

HIs are taken advantage of as the input of 

the proposed DACS_LSTM algorithm. 

Through offline model training, the optimal 
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hyperparameters of the model are obtained 

by using the training dataset based on the 

DACS algorithm. Finally, based on the 

trained model, the SOH estimation of the 

battery is realized in the online test dataset 

and the performance of the model proposed 

is evaluated. 

4. SOH estimation results

4.1 Evaluation indexes for SOH 

estimation 

To evaluate the performance of the 

proposed algorithm effectively, several 

kinds of error indexes are selected, 

including mean absolute error (MAE), root 

mean square error (RMSE), mean absolute 

percentage error (MAPE), and R_square 

(R2). MAE refers to the average of the 

absolute value of the deviation from the 

arithmetic mean of all individual 

observations, which better reflects the 

prediction error. RMSE represents the 

square root of the ratio of the square of the 

deviation between the observed value and 

the true value and the number of 

observations n, which is used to measure the 

deviation between the observed value and 

the true value. MAPE is taken advantage of 

to measure the relative percentage error 

between the estimate and the actual value. 

R2 is the determination coefficient, which is 

utilized to judge model quality. The 

calculation methods of all parameters are 

shown in Eq. (13). 

{

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑆𝑂𝐻

∧

𝑘 − 𝑆𝑂𝐻𝑘|
𝑛
𝑘=1

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑂𝐻

∧

𝑘 − 𝑆𝑂𝐻𝑘)
2

𝑛
𝑘=1

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑆𝑂𝐻
∧

𝑘−𝑆𝑂𝐻𝑘

𝑆𝑂𝐻𝑘
| × 100%𝑛

𝑘=1

𝑅2 = 1 −
∑ (𝑆𝑂𝐻

∧

𝑘−𝑆𝑂𝐻𝑘)
2

𝑘

∑ (𝑆𝑂𝐻
−

𝑘−𝑆𝑂𝐻𝑘)
2

𝑘

(13) 

Wherein, 𝑆𝑂𝐻
∧

𝑘 , 𝑆𝑂𝐻𝑘  and 𝑆𝑂𝐻
−

𝑘  refer

to the estimates, reference values, and 

averages of the state of health, respectively. 

n denotes the number of test samples. The 

smaller MAE, RMSE, and MAPE are, the 

higher the estimation accuracy of SOH is, 

and the larger R2 is, the better the model 

fitting degree is. 

4.2 Capacity estimation effect under 

different hyperparameter Settings 

In order to prove the influence of 

hyperparameter settings on the prediction 

results of battery degradation trend, B5 of 

NASA dataset and B1 data of CALCE 

dataset are taken as the training set, the data 

accounting for 50% of the total is taken as 

the training dataset, and the different 

number of hidden neurons and the initial 

learning rate is selected based on LSTM 

algorithm to carry out SOH estimation. The 

results are shown in Fig. 9. 
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Fig. 9 SOH estimation results B5 and B1 based 

on LSTM algorithm with different numbers of 

hidden nerves and initial learning rate 

In Fig. 9 (i), with the increase in the initial 

learning rate, the prediction results have a 

significant change. When the number of 

hidden neurons and the initial learning rate 

are 2 and 0.005, respectively, the estimation 

results at the beginning are more consistent 

with the changing trend of the training 

dataset, while the deviation from the test 

dataset is large, indicating the occurrence of 

overfitting. However, when the number of 

hidden nerves and the initial learning rate 

are 2 and 0.001 respectively, the estimation 

results are relatively good, and the 

attenuation trend of the test dataset can be 

roughly predicted. When the number of 

hidden neurons and the initial learning rate 

are 0 and 0.0005 respectively, the 

degradation tendency of the training dataset 

or test dataset cannot be fitted effectively 

and show serious divergence, attribute to the 

initial learning rate being too large, which 

causes serious losses and data shocks. 

In Fig. 9 (iii), when the number of hidden 

nerves selected and the initial learning rate 

are both 2 and 0.001, the estimation effect is 

much worse, which indicates that there are 

also great differences in the selection of 

hyperparameters under different battery 

types. Therefore, the selection of these two 

hyperparameters based on experience alone 

is unreliable and inefficient. 

4.3 Health evaluation results under 

multiple training-scales 

In this paper, three different training scales 

of 30%, 50%, and 70% were selected. Four 

groups of aging datasets including B1, B2, 

B3, and B4 are chosen to verify the 

performance of the algorithm, and the most 

common LSTM and convolutional neural 

network long short-term memory 

(CNN_LSTM) algorithms established by 

Toughzaoui et al. [66], is taken advantage of 

as the reference, and the results of the SOH 

are obtained. 
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Fig. 10 SOH estimation results of B1~B4 under multiple training-scales 

Fig. 10 SOH estimation results of B1~B4 

(i)~(iv) shows the SOH estimation results, 

error range, and performance evaluation 

results of three methods under four datasets 

in three training scales. It can be seen that 

after the addition of the optimization 

algorithm, the accuracy and convergence of 

the algorithm are improved obviously after 

the optimization of the hyperparameters α 

and β. Under the three training scales, 

compared with the comparison algorithm, 

the proposed DACS_LSTM algorithm 

shows the highest accuracy, the estimation 

results are closest to the actual SOH and the 

true value of the SOH is all included within 

the 95% confidence interval of the estimated 

result of the algorithm in each cycle. For B1, 

when the training scale is 70%, the 

estimation error of the method proposed in 

this paper can be controlled by 2% in each 

cycle. In the same case, the maximum error 

of LSTM is over 7%, while that of 

CNN_LSTM is close to 4%. At the same 

time, the performance evaluation results 

indicate that the estimated model 

established by DACS_LSTM also has 

obvious advantages in the stability of 

estimation results over the comparison 

algorithm, and showing the best 

performance. The SOH estimation results of 

the other three datasets also show that the 

estimation results of the proposed algorithm 

are highly consistent with the reference 

values. In addition, the SOH estimation for 

B0005~B0007 datasets is shown in Fig. 11. 
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Fig. 11 SOH estimation results of B5~B7 under 50% training-scales 

In Fig. 11, the DACS_LSTM algorithm 

proposed in this paper still maintains high 

accuracy when predicting the aging trend of 

different types of batteries and different 

operating conditions. The error can be kept 

within 2%, MAPE and RMSE within 0.5%, 

MAE within 1%, and R2 above 0.95. The 

result indicates that the algorithm has 

generalization applications for different 

batteries. 

4.4 Accuracy and robustness analysis 

of the algorithm 

According to the indexes for SOH 

estimation accuracy given in Section 4.1, 

the estimation performance of the 

DACS_LSTM algorithm under different 

training scales and different battery datasets 

is quantitatively evaluated, and the results 

are obtained. 

Table 2 Comparison of estimation results between DACS_LSTM and other methods 

Batteries Training scales Methods MAE (%) RMSE (%) MAPE (%) R2 

B1 

30% 

DACS_LSTM 0.78 1.01 0.85 0.95 

LSTM 5.62 7.17 6.14 0.44 

CNN_LSTM 3.82 4.59 4.17 0.68 

50% 

DACS_LSTM 0.64 0.98 0.63 0.98 

LSTM 4.78 5.88 4.99 0.63 

CNN_LSTM 2.30 3.25 2.47 0.92 

70% 

DACS_LSTM 0.37 0.84 0.48 1.00 

LSTM 3.04 4.16 3.27 0.79 

CNN_LSTM 1.50 2.17 1.69 0.94 

B2 

30% 

DACS_LSTM 1.72 1.52 0.94 0.96 

LSTM 4.81 8.14 5.34 0.60 

CNN_LSTM 4.11 5.11 4.56 0.91 

50% 
DACS_LSTM 0.95 1.17 0.82 0.97 

LSTM 4.12 6.54 3.67 0.66 



CNN_LSTM 3.05 3.13 2.94 0.94 

70% 

DACS_LSTM 0.74 0.93 0.62 0.99 

LSTM 3.02 4.81 2.16 0.79 

CNN_LSTM 2.36 2.13 1.94 0.96 

B3 

30% 

DACS_LSTM 2.05 1.06 1.30 0.95 

LSTM 4.47 5.30 5.83 0.60 

CNN_LSTM 3.71 2.54 2.60 0.91 

50% 

DACS_LSTM 1.59 0.91 1.00 0.96 

LSTM 4.10 5.01 5.40 0.72 

CNN_LSTM 3.10 2.15 2.13 0.92 

70% 

DACS_LSTM 0.67 0.88 0.96 1.00 

LSTM 2.77 4.60 5.17 0.86 

CNN_LSTM 2.35 1.99 1.90 0.97 

B4 

30% 

DACS_LSTM 1.82 2.97 2.95 0.95 

LSTM 4.67 7.12 8.12 0.59 

CNN_LSTM 4.33 4.62 4.27 0.92 

50% 

DACS_LSTM 1.06 1.97 2.01 0.98 

LSTM 4.25 5.89 6.48 0.78 

CNN_LSTM 3.02 3.59 3.16 0.95 

70% 

DACS_LSTM 0.63 1.00 1.11 0.99 

LSTM 3.59 4.22 5.07 0.85 

CNN_LSTM 2.25 2.70 2.23 0.96 

Table 2 shows the estimation errors and 

fitting performance results of the three 

algorithms in the four groups of data 

including B1~B4 under three training scales. 

The MAE of the algorithms proposed in this 

paper is basically below 2%, and R2 

exceeds 0.95. As can be seen from Section 

3.1, the decay rates of B1, B2, and B3, B4 are 

quite different. Therefore, the results show 

that the algorithm maintains an excellent 

SOH estimation effect for different decay 

conditions. In contrast, the estimation 

accuracy of LSTM and CNN_LSTM varies 

greatly under different datasets, and the 

application breadth is not wide. No matter 

RMSE or MAPE, the DACS_LSTM 

algorithm has obvious improvement 

compared with the other two algorithms. 

Experimental results show that the 

DACS_LSTM method has good validity, 

accuracy, and convergence in the SOH 

estimation of lithium-ion batteries. 

Based on the B5~B7 from the NASA 

dataset, the latest several algorithms 

including random forest convolutional 

neural network (RF-CNN) proposed by 

Yang et al. [67], backpropagation long 

short-term memory (B_LSTM) proposes by 



Gong et al. [65], particle swarm 

optimization long short-term memory 

(PSO_LSTM) algorithm and differential 

evolution grey wolf optimizer long 

short-term memory (DEGWO-LSTM) 

presents by Ma et al. [61], and simplified 

pseudo-two-dimensional (S_P2D) raises by 

Liu et al. [68], are utilized as the 

comparison, as shown in Table 3. 

Table 3 Comparison of estimation results between DACS_LSTM and other latest reference 

Methods MAE (%) RMSE (%) MAPE (%) R2 

DACS_LSTM 0.82 0.45 0.49 0.96 

GA-PSO-SVR - 3.52 3.72 - 

RF-CNN 1.51 - - - 

S_P2D 1.62 - - - 

PSO_LSTM 3.35 3.95 4.95 0.83 

DEGWO-LSTM 2.08 2.43 3.02 0.93 

B_LSTM - 2.6 - - 

In Table 3, MAE, RMSE, and MAPE are 

the maximum values in the SOH estimation 

in each method, and R2 is the minimum 

value. Compared with the two optimization 

algorithm including PSO and DEGWO, the 

MAE of LSTM based on the DACS 

algorithm is 75.52% and 60.58% lower, 

RMSE is 88.61% and 81.48% lower, MAPE 

is 90.10% and 83.77% lower, and R2 is 

15.67% and 3.23% higher, respectively. 

Meanwhile, compared with the latest 

proposed machine learning methods such as 

GA-PSO-SVR, RF-CNN, S_P2D, and 

B_LSTM, the algorithm proposed by the 

research also shows the best performance. 

From the experimental tests, it can be 

observed that the DACS_LSTM-based SOH 

estimation result has the optimal accuracy 

with the least uncertainty, which verifies its 

accuracy and robustness. 

5. Conclusions and future work

In this paper, the state of health 

assessment issues of lithium-ion batteries 

based on the improved long short-term 

memory neural network model with 

multi-training scales and multi-dimensional 

health indicators is studied. After the high 

degree of correlation with the state of health 

is verified, nine health indicators are 

obtained through measurement and 

calculation, therefore, a large number of 

factors can exert influence on the state of 

health of batteries that are mined effectively. 

Meanwhile, a dynamic adaptive cuckoo 

search long short-term memory neural 

network algorithm is proposed by 

combining the improved cuckoo search 

strategy with the long short-term memory 



neural network to realize an accurate 

estimation of the state of health of four 

aging datasets under three training scales. 

The results show that the maximum mean 

absolute error of the proposed algorithm 

compared with the comparison algorithm 

including long short-term memory neural 

network and convolutional neural network 

long short-term memory algorithms 

decrease by 63.5% and 52.7%, respectively, 

the maximum root mean square error is 

reduced by 63.5% and 41.9%, respectively, 

the maximum mean absolute percentage 

error decreases by 63.7% and 35.3%, 

respectively, and the minimum R_square 

increases by 115.9% and 39.7%, 

respectively. At the same time, compared 

with other optimization algorithms and the 

latest machine learning algorithms, the 

proposed method also shows the highest 

accuracy and strongest convergence. The 

results indicate the performance of the 

proposed algorithm has a significant 

advantage. 

In summary, this research establishes a 

class of effective lithium-ion battery state of 

health evaluation methods based on the 

combination of filtering algorithm and 

neural network methods, which provides 

effective assessment and health 

management strategy for a battery 

management system with high accuracy. To 

further improve this research, the next work 

mainly includes the following. Firstly, the 

estimation method of the state of health can 

be further enriched, and the state of health 

estimation from the perspectives of battery 

capacity and internal resistance can be 

comprehensively considered. Secondly, the 

different operating environments of the 

battery can be subdivided, and the health 

management under various conditions such 

as temperature and humidity, and high and 

low pressure can be considered. Finally, the 

complexity of the algorithm can be reduced 

to further improve practicability. 
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