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Haolin Zhang, Wattana Viriyasitavat, Senior Member, IEEE, and G. P. S. Varma

Abstract— Edge infrastructure and Industry 4.0 required
services are offered by edge-servers (ESs) with different com-
putation capabilities to run social application’s workload based
on a leased-price method. The usage of Social Internet of
Things (SIoT) applications increases day-to-day, which makes
social platforms very popular and simultaneously requires an
effective computation system to achieve high service reliability.
In this regard, offloading high required computational social
service requests (SRs) in a time slot based on directed acyclic
graph (DAG) is an N P-complete problem. Most state-of-art
methods concentrate on the energy preservation of networks
but neglect the resource sharing cost and dynamic subservice
execution time (SET) during the computation and resource
sharing. This article proposes a two-step deep reinforcement
learning (DRL)-based service offloading (DSO) approach to
diminish edge server costs through a DRL influenced resource
and SET analysis (RSA) model. In the first level, the service
and edge server cost is considered during service offloading.
In the second level, the R-retaliation method evaluates resource
factors to optimize resource sharing and SET fluctuations.
The simulation results show that the proposed DSO approach
achieves low execution costs by streamlining dynamic service
completion and transmission time, server cost, and deadline vio-
lation rate attributes. Compared to the state-of-art approaches,
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our proposed method has achieved high resource usage with low
energy consumption.

Index Terms— Adaptive quality-of-service (QoS), deep rein-
forcement learning (DRL) method, edge computing, optimal
measurement analysis, service offloading (SO) and scheduling.

I. INTRODUCTION

SOCIAL edge service (SES) is an emerging service mech-
anism in the Social Internet of Things (SIoT) orchestra-

tion for user-centric reliable communication and computation.
Natural Resources Defense Council (NRDC) report confess
that an increased quantity of data centers release 100 million
metric tons of carbon dioxide (CO2) by 2022 [1], [2] and
in future, it increases due to 5G network implementation
with futuristic visions of 6G. Usually, data centers share
Petabytes (PB) of data per day, impacting the bandwidth cost
of internet service providers (ISPs). However, state-of-the-art
approaches neglect heterogeneity of service request while mea-
suring bandwidth cost of service provider and server energy
usage cost also differ because of geometric-interconnection
among data centers [3]. If the service execution rate (SER)
is increased, then the resource usage rate (RUR) increases
certainly (SER ∝ RUR). Service queue length (SQL) and
current resource capacity of edge-servers (ESs) have not been
examined during service offloading (SO) [4] since the service
request device may move out of range of the responding server.
Therefore, to avoid service delay the design of SO strategy
is certainly essential. In our work, the R-retaliation method
is designed to optimize SO by reducing offloading time,
execution cost, adaptive resource utilization, and the waiting
queue length. The deep reinforcement learning (DRL)-based
SO (DSO) approach measures the resource provision (RP) rate
of the arrived services through the ES current status based
on prognosticate service execution time (PSET) method. The
article contributions in this article are as follows.

1) Develop a DSO approach to reduce subservice execution
time (SET) cost, transmission time and optimize energy
usage rate.

2) Develop an R-retaliation analysis model to optimize the
RP rate, service deadline violation rate, and SET fluctu-
ations based on prognostic big-data evaluation factors.

3) Develop prognosticate execution cost method to regulate
the service execution time fluctuations.

4) Develop adaptive methods to evaluate.

a) Service request transmission time.
b) SER.
c) Energy preservation method.
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The rest of the article is organized as follows. Section II
briefly explains research gaps and problems of extant
approaches. Sections III and IV describes the proposed system
and its mathematical models. Section V describes our proposed
algorithm in detail.

II. RELATED WORK

The service allocation issue is treated as a N P-complete
problem because the tasks are recursively assigned more than
one time to machines. In Wang [5] and Mekala et al. [6], the
authors have concentrated on the same issue with proof of
comprehensive research method, and it is a delicate mech-
anism because of the substantial number of services with
various resources. In [7], intelligent offloading method (IOM)
has been designed for effective service scheduling. The authors
initially evaluated the SET and RUR values which are not
optimal. In [8], the quality-of-service (QoS)-aware cloud
framework enables a task scheduling (TS) method called the
QoS-Min-Min approach, and it estimates the resources for
SO based on requests, but it has an inadequate execution
time than traditional approaches. In [9], multiservice task
computing offload algorithm (MTCOA) has been designed
based on an evaluation of system cost to minimize offloading
decisions of mobile edge computing (MEC). Still, the lengthy
services have miss-mapped to low resource capacity ESs
that influence the system’s execution makespan (MS) and
cost. In [10], Randomized Online Stack-centric Scheduling
algorithm (ROSA) designed for effective service allocation
based on cost-effective resource usage analysis. In [11],
task-graph template has been designed for TS called
Nondominated Sorting Genetic Algorithm (NSGA). However,
the static system influence the system performance, and It
would consider as further research—this drawback is stream-
lined by considering network device computation stability to
meet QoS. In [12] and [13], the service deadline and cost
attributes are considered to select the ES for effective service
scheduling. In [14]–[16], a new scheduling approach called
Preference-Inspired Coevolutionary Algorithms (PICEA-g) is
designed based on graph theory, where cost and length of
the service queue are considered. However, this approach did
not allow the resubmission of failed tasks. In [17] and [18],
the workload scheduling streamlines the issues caused by
uncertain machine availability.

In [19], the service allocation method subtracts the duplicate
services that influence the SO ratio and system performance.
Our articles main objective is to develop an adaptive SO policy
by considering SET, energy utilization rate (EUR), and RUR
with a balanced workload.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 exhibits a task mapping system with multidimensional
coordinates. Offloading the service to the suitable server plays
an important role to meet the QoS, which can observe in
Fig. 1(a). The service arrival rate from various platforms may
require several computing resources for its execution to meet
the deadline as mentioned in Fig. 1(b). For instance, t j,L

i refers
the service from workLoad (L), has to assign j th ES for its
effective execution.

Fig. 1. 3-D underlying objective analytic mechanism. (a) Multidimensional
objective analysis mechanism. (b) Core objective mechanism.

Fig. 2. DAG graph model.

A. DAG Model

The leased ES represented as Q = Vj | j ∈ [1, 2, . . .]. Here,
Vj refers to the j th ES. The server cost and its resource
capacity rate C(ES j ) ∝ � j are proportionally dependent on
each other. During the evaluation of cost, the service provider
applies the charges for storage service, but the storage instance
has not been considered since our resource consolidation
scheme concentrates on SO. Therefore, the storage space
cost has been neglected in our mechanism. The cost of
communication to transfer the data is considered during ES
resource consolidation. Scheduling high-rank ES might reduce
the response time of the system, but it causes high tenant
costs. To formulate this issue, the below computation model
considers ES rank and its overall weight rate. The weight
factor diminishes the execution period of ES as given in the
following equation:

μ
(

t j
ic

)
= t j

ic

/
Min

(
t j
ic

)
. (1)

Application workload or Program workloads (PLs) requires
different computation resource sizes and different ranking
ES to execute the service to meet QoS and service level
agreement (SLA) bounded range. We epitomize the PL as
ℵ = (F1, F2, . . . , FL ). Each PL enabled with three factors,
which are FL = {ATL , DL , GL } . Where ATL , DL refers
arrival period, deadline period of individual PL. Now, GL

refers directed acyclic graph (DAG) graph, it enables four
constructive parameters GL = {TL , EL , �L , WL }, where TL =
{t1,L , t2,L , t3,L , . . . , tn,L} number of services, EL denote edges
between two services, �L refers constructive time for service
execution with normalized packing policy such as δ

j
i,c ∈ �L

and WL refers adaptive weight time to transfer the data in
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between two integrated services (w j
i,̂i

) such as i, î and w
j
i,̂i
∈

WL . In case, if two services are assigned to single ES, then the
adaptive data transfer time weight factor is zero, i.e., w

j
i,̂i
= 0.

Fig. 2 shows 11−service DAG graph, here V L
1 refers entry

service request and V L
11 is exist service request. E L

1,3 refers
weight of data transfer time. Pr(t j

L ,i ) = V L
1 and Su(t j

L ,i) = V L
7

are the service request successors and predecessors or vertex
V L

2 .

B. Problem Formulation

The proposed system regulates the PL cost while accom-
plishing the targeted deadlines of SLA. Initially, the PL MS
estimates with (2) by subtracting the PL arrival time from the
maximum SET of among all service requests

MSL = max
t j
i,L∈TL

{
α
(

t j
ic

)}
− ATL (2)

Min
FL∑

L=1

ES j∑
j=1

Ti∑
i=1

Q× PC ×�
j

i,L (3)

where we define arrival time ATL of services, �
j

i,L refers
weight value, ample of service completion time α(t j

ic,L),
respectively. During the consolidation process, the below-
mentioned conditions are essential considerations to accom-
plish the target. Note that, in this example, each ES assign
receives on service request for effective execution, which
evaluates with (4) and summation of all edge device (ED)
capacity should not violate the capacity of its server; it
estimates with the following equation:
∪ES j∈hm ESr

j (hm) = ESr
j,m

ESr
i=1,m=1 ∩ ESr

j=1,m=2 = ∅
}
∀1 ≤ i, j &i 
= j (4)

FVTX
j,m ≤

ES j∑
j=1

ESr
j,m(rc) ≤ hm(rc) ∀ 1 ≤ j ≤ m. (5)

The summation of MS MSL and arrival time ATL of PL
should be less than the deadline of the respective PL and is
calculated as MSL + ATL � DL . �

j
i,L refers weight value,

which ensures the service request status. It should be less than
or equal to 1 as

∑ES j

j=1 �
j

i,L � 1. The service request executed

by ES with ample of completion time α(t j
ic,L ) and starting

time β(t j
is,L ). Here, the summation of SET and its data transfer

time w
j,L
i,̂i

are must be less than or equal to the starting time.
It estimates with the following equation:

α
(

t j
ic,L

)
+w

j,L
i,̂i

� β
(

t j
is,L

)
(6)

�
j

i,L =
{

1, if the Errand remain assign to j th ES.

0, Otherwise.
(7)

IV. DSO APPROACH

A. PL Allocation Framework

The DSO approach concentrates on provisioning the entail
resources to ES for executing the PL which can be observed
in Fig. 3. A user allows submitting the service requests with
various deadlines, while the other existing PL is under the
execution process. The proposed framework enables workload,
resource, service manager, and PL pool sections. The work-
load analyzer concentrates on dependency relations among

Fig. 3. PL allocation framework.

service request entities. The program workflow pool section
accommodates unassigned service requests. The resource man-
ager (RM) concentrates on regulating the computing resources
dynamically toward the RP of liberating machines over the
workload duty cycle. The service request manager is responsi-
ble for making offloading policy between service requests and
ES with the coordination of the RM through the cost analysis
model.

The SO process has been classified into three steps, namely
RP, Workload analysis, R-retaliation method. The PL were
initiated with two signals (service-request/PL arrival, service
request completion signal). If the arrival signal has triggered,
then the preestimation step starts to estimate priority through
arrival time. The subworkload deadlines (s-deadlines) are eval-
uated based on previous outcomes, that should not violate the
PL deadline. The m/m/1 model assigns the service requests
to the suitable Es based on the resource usage analyzed by
the RM. The rest of the unallocated service request (SR) are
stored in the program workflow pool. The RP analysis step
finalizes the suitable ES with the RM recommendation. This
process impacts on reducing SET fluctuations of ES, except
request waiting time on the same ES; because a single service
request has been allocated at each time because the ES waiting
time cost is less than the SET fluctuations cost of ES. The R-
retaliation method estimates the priority of service requests as
per the s-deadlines based on resource entail rate, RUR. This
step plays an essential role in mitigating the SET.

B. Service Request Resource Measurement Method

The SR are listed in ascending order in a queue through
the m/m/1 method. The below definitions streamline the SO
process by assigning to a suitable ES.

Inference 1: If the service request is ready for execution,
then initial service requests are executed or maybe it is the
initial service request. Two essential steps have to satisfy
before service request allocation.

1) Assessing the tentative SET (at what time the service
request starts, its execution on the assigned ES).

2) Estimating whether the suitable ES is ready to accom-
modate the service requests at the specific time.

Thus, prognosticated starting time ϕ(t j
i,L) calculates

with (8), as a maximum value among current system time,
prognosticated completion time, and maximum completion
time of the service request

ϕ
(

t j
i,L

)
= Max

{
λ̄, α̂

(
t j
ic,L

)
, max

t j
i,L∈TL

{
α
(

t j
ic,L

)
, w

j,L
i,̂i

}}
(8)
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where λ̄ and α̂(t j
ic,L ) refers current system time, prognosticated

completion time, respectively. α(t j
ic,L ) refers finish time of the

service request on j th ES.
Theorem 1: The prognosticated execution time (ϕ̂(t j

i,L)) of
service request on ES is equal to the product of two factors
(weight of ES and weight of execution). Such that, ϕ̂(t j

i,L ) =
μ(t j

ic)× φ(δ
j
i,c).

Proof: If sophisticated resources are available, then the
service request execution time is δ

j
i,c
∼= �(χ

j
ic, (∂

j
ic)

2). Where,
φ(δ

j
i,c) is an approximate weight estimated with the following

equation:

φ(δ
j
i,c) =

⎧⎪⎨⎪⎩
χ

j
ic +

√
∂

j
ic,

∂
j

ic

/
χ

j
ic

� 1

χ
j

ic ×
(

1+ 1
/√

∂
j

ic

)
, Otherwise

(9)

where χ
j

ic expected value and ∂
j

ic is its variance with normal
offloading policy �(χ, ∂2). This normalized equation is mul-
tiplied with constant variable.

Hence, �× δ
j
i,c
∼= �(�× χ

j
ic, ��� × (∂

j
ic)

2). The resultant

value is μ(t j
ic) × δ

j
i,c
∼= �(μ(t j

ic)× χ
j

ic, μ(t j
ic)× (∂

j
ic)

2
). Thus,

μ(t j
ic)× δ

j
i,c + μ(t j

ic)× ∂
j

ic = μ(t j
ic)(δ

j
i,c + ∂

j
ic).

Since, ∴ φ(δ
j
i,c) = δ

j
i,c + ∂

j
ic. Therefore, = μ(t j

ic) × φ(δ
j
i,c).

Hence, L .H.S = R.H.S, (ϕ̂(t j
i,L ) = μ(t j

ic)× φ(δ
j
i,c) ).

Subsequently, the prognosticated execution time α̂(t j
ic,L ) is

equal to summation of prognosticated start time ϕ(t j
i,L ) and

prognosticated completion time ϕ̂(t j
i,L ).

Such that, α̂(t j
ic,L ) = ϕ(t j

i,L)+ ϕ̂(t j
i,L ).

Inference 2: Eligible ES should satisfies the below-listed
conditions, i.e., which ES can successfully execute the assign
service request to meet its deadline.

1) For service request execution, the augmented ES cost
must be less, to meet SLA constraints. It estimates with
ϕ̂(t j

i,L ) = μ(t j
ic)× φ(δ

j
i,c) along with satisfying (4).

2) In case, more than one ES satisfies (9), then less idle
time of ES remain selects to balance the system RUR.

The feasible ES selection accomplishes through the heuristic
technique by limiting the ES execution cost with enhanced
RUR. As an indication of the service request deadline, the
RM starts assigning the resources to all active ESs, which
satisfies (9). In case, more than one ES satisfies (9), then the
RM initiates to select another ES. It does not mean a violation
of the individual service request deadline and it is equal to the
violation of the whole PL deadline.

C. Preestimation and R-Retaliation Mechanism

This section is firmly the heart of this framework because
primary attributes assessment is an essential step while making
a decision. This section concentrates on estimating individual
service request deadline called s-deadline, where starting
time, current completion time of each arrival PL has become
phenomenal parameters for the PL allocation process. The
listed parameters have been designed toward making a PL and
SO decision.

Let S-deadline of service request di,L , ∴ di,L ∈ DL can be
estimated by using the following equation:

di,L = ε(t j
ic)ost + 1

2

⎛⎝ ε
(

t j
ic

)
oft
− ε

(
t j
1c

)
ost

ε
(

t j
T c

)
oft
− ε

(
t j
1c

)
ost

⎞⎠
×

(
ε
(

t j
T c

)
lct
− ε

(
t j
1c

)
ost

)
∴ di,L ∈ DL (10)

where ε(t j
1c)ost, ε(t j

T c)oft refers initial and final service com-
pletion time, respectively. Now, original completion time is
ε(t j

ic)oft = ε(t j
ic)ost + φ(δ

j
i,c).

The original start time ε(t j
ic)ost of the service is estimated

by using the following equation:
ε(t j

ic)ost

=
{

atL , Where atL ∈ ATL , ∴ i = 1

Max
{
ε
(

t j
ic

)
ost
+ φ

(
δ

j
i,c

)
+ w

j,L
i,̂i

}
, Otherwise.

(11)

The current completion time ε(t j
ic)ost of the service is

estimated by using the following equation:

ε
(

t j
ic

)
lct
=

{
di,L , di,L ∈ DL , ∴ i = sn.

Min
{
ε
(

t j
ic

)
lct
+w

j,L
i,̂i
− φ

(
δ

j
i,c

)}
Otherwise.

(12)

Confence 1: Paying attention to identify the individual ser-
vice request deadline and which should be less than PL
deadline; such that, di,L � DL . Subsequently, the variance time
(∂̂

j
ic) between deadline time (di,L) of task and original start

time ε(t j
ic)ost. It remains an estimate as

∂̂
j

ic = di,L − ε
(

t j
ic

)
ost

. (13)

The variance of each service request S-deadline d̂i,L is calcu-
late with the following equation:

d̂i,L =

⎧⎪⎨⎪⎩
ε̂
(

t j
ic

)
ost
+ ∂̂

j
ic, If ε̂

(
t j
ic

)
ost
+ ∂̂

j
ic < ε

(
t j
ic

)
lct

ε
(

t j
ic

)
lct

, Otherwise.
(14)

Simultaneously, the variance in original start time ε̂(t j
ic)ost

and original finish time ε̂(t j
ic)oft is estimated using the follow-

ing equations:
ε̂
(

t j
ic

)
ost
= ε̂

(
t j
ic

)
oft
− φ

(
δ

j
i,c

)
−w

j,L
i,̂i

(15)

ε̂(tic)
j
oft = Max

{
α
(

t j
ic,L

)
+ φ

(
δ

j
i,c

)
+w

j,L
i,̂i

}
. (16)

D. Service Capacity Computational Methods

1) Service-Request Data Acquisition Time: While service
requests are executed, assessing both expected resource rate,
and SET are essential to reduce the cost. Asset assigning
factor requires each ES bandwidth and RAM capacity. The
data transfer time evaluates with the following equation:

ttt =
V∑

j=1

T∑
i=1

�
j

i × td
/

0.125×
(
vb

/
vr

)
(17)

where �
j

i alludes asset assigned weight, vb alludes ES band-
width, vr alludes ram capacity.
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2) Service-Request Evaluation Cost by Provider: The ser-
vice provider share the resources based on Pay− As−Y ou−
Go−Model. It estimates as tec =∑n

dc∈dc Pc × te. Here, te is a
predicted service request finish time, which remains assigned
to ES j . The service provider has an adaptive asset provision
scheme that functions with CPU usage/hour. The provider
cost evaluates by considering the service-request finish time of
each ES. The outcome multiplied with the cost price of each
CPU Pc.

3) Service-Request Evaluation Cost by ES: The SET
described as the rate of each service size and ES computing
potentiality; it considers the ES RAM, bandwidth capacity.
It evaluate as te = 0.0027 × ttt . Based on cost estimation
phenomena, the service provider estimates each ES cost as
C(P) =∑ti

i=1 t i
ec.

4) Service-Request Queuing Model: The queue length com-
putation method streamlines the SO process by controlling
the service-request queue time. It impacts on service-request
MS, and retort time; meanwhile, the package policy satisfied
service-requests are maintained in the queue set through wait
mode. It optimizes the waiting queue length

�w
i =

T∑
i=1

�
j

i ×
(

td
/(

v
j
rc × v

j
mc × v

j
bc

))
(18)

where �w
i refers to estimate the capacity of each ES after the

execution of all offloaded service-requests

v j
rc = A j

rc −
V∑

j=1

�
j

i × R j
rc. (19)

In (18), the condition of both equations (19) and (20) shows
the unavailability of assets to execute the service-request by
the respective ES, respectively. In this case, v

j
rc, v

j
mc esteem do

not have positive value, so −10−3 multiplied with it’s value.
We have to add 10−3 in case if it is equal to 0

v j
mc = A j

mc −
V∑

j=1

�
j

i × R j
mc (20)

v
j
bc = A j

bc −
V∑

j=1

�
j

i × R j
bc. (21)

The queue length value remain increases by multiplying
(v

j
rc, v

j
mc), whenever one of this value became 0 or −ve.

Therefore, it restricts the service requests to assign without
analyzing the resources. It also avoids initiating queues as with
wait mode. This step repeats till assigning the service request
to the ES, which is recorded for future forthcoming steps.

5) Bounded Threshold Factor: The service-request finish
time remains described as a mean rate of service-request
capacity and attached ES computing potentiality, and evaluated
as tc = ts

/
Vcp

. Here, ts is the service-request size and Vcp is
the ES execution capacity based on its resource availability at
the current moment. Each ES completion time is evaluates
based on the probability model. It considers the current
resource status rate and the amount of required resources to
execute all assigned service requests. It evaluate as Tserveri =∑n

i=1 tc
i . Where n is the total service-requests allocated to ES j .

Total completion time of all ESs are considered to estimate
maximum time for fixing upper limit of the system server.
It estimates with the following equation:

Stime
UBL = Max

(
Tserver1 , Tserver2 , Tserver3 , . . . , Tservern

)
. (22)

V. DSO ALGORITHM

Algorithm 1 estimates all preliminary parameters. Line 2,
initiates all sets when the PL does not equal to zero. Lines 4–9
have used to determine all service-request S-deadline, original
start time, and unique finish time and DAG elements. Lines
11–14 have used to assess the feasible service-request list set
based on satisfying the condition about the S-deadline, vari-
ance deadline time rate, and it should be less than the approx.
If deadline is violated, then the second algorithm became
active. Otherwise, the active service-request set updated by
service request delete and further not satisfied service-requests
forwarded to NFT[ti ] set.

Algorithm 1 PL Enabled Service-Request Sorting
Algorithm
input : 1. ES set: V = {v1 + v2 + v3 + . . . . . .+ vV },

2. SR set T = {t1 + t2 + t3 + . . . . . .+ tT }
3. R: Set of errand entail resources

output: Optimal Number of Feasible SRs
1 Let T = {t1 + t2 + t3 + . . . . . .+ tT };
2 int T, FT [ti ] = 0, N FT [ti ] = 0, W T [ti ] = 0;
3 if ℵ 
= 0 then
4 for each Fi = 1 to Fn do
5 Estimation of all PL parameters

FL = {ATL, DL , GL } ;
6 for each ti = 1 to T do
7 ti j ε T ;
8 Estimate di,L , ε(t j

ic)oft , ε(t j
ic)ost ;

9 end
10 end
11 if di,L ∈ DL ||di,L � DL ||∂̂ j

ic � DL then
12 Update FT [ti ] ← T ;
13 Trigger next algorithm;
14 end
15 else
16 Estimate ∂̂

j
ic = di,L − ε(t j

ic)ost;
17 RemoveFun from SR Set T[ti ];
18 U pdate T[ti ] = T[ti ]-1;
19 N FT [ti ] ← T ;
20 end
21 end
22 Return Feasible Service-requests

In Algorithm 2, lines 2–10 are used to popup the tasks
from the pool set since all the Pe errands have been
executed without time fluctuation. Line-12 is used to esti-
mate the capacity of the ES. Line-13 is condition �w

i �
MinBound{�w

i }||MC R{ε(t j
ic)ost , ε(t

j
ic)lct, di,L } which is used to

execute the list of service-requests and also used to execute the
waiting requests which have assigned to the ES based on the
starting and finishing time rate. Additionally, based on the ES



This article has been accepted for inclusion in a future issue of this journal. 

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Algorithm 2 R-Retaliation Algorithm
input : 1. Feasible SR set FT[t i ],

2. ES set: V = {v1 + v2 + v3 + . . . . . .+ vV },
3. NFT[t i ].

output: Feasible ES set and potential execution of all SRs.
1 int �w

i 
= 0;
2 for each ti = 1 to n do
3 for each tiεSu(t j

L ,i ) do
4 if Su(t j

L ,i ) = empty then
5 Estimate ε(t j

ic)oft, ε(t j
ic)ost ;

6 According outcomes, Update Queue FT[t i ];
7 FT[t i ] ← NFT[t i ];
8 end
9 end

10 end
11 for each V j = 1 to n do
12 Estimate �w

i ;
13 if

�w
i � MinBound{�w

i }||MC R{ε(t j
ic)ost , ε(t

j
ic)lct, di,L }

then
14 Estimate tec =∑n

dc∈dc Pc × te,
15 Estimate te = 0.0027× ttt , and C(P) =∑ti

i=1 t i
ec;

16 if vm
j ≥ 0 or v

p
j ≥ 0 then

17 v j ← ti ;
18 RemoveFun update NF[t i ];
19 Execute all WT[t i ] of ES;
20 end
21 end
22 else
23 Estimate Tserveri =

∑n
i=1 tc

i ;
24 RemoveFun update FVT[v j];
25 Update ES set ← vV

j=1 ≤ f (x);
26 end
27 end
28 Return Feasible ESs.

capacity, an arrival service request would be assigned. In case
the condition does not satisfy, then the respective ES will be
treated as not feasible using (13). The scheduling policy is
initiated using Algorithm 3.

Algorithm 3 schedules the service requests in the queue
based on ES capacity instances and outcomes of Algorithms 1
and 2, respectively. Line 3 is used to cross-check each service
request belongs to the same PL or not. If not: the service
request is allocated to a new ES based on its capacity and
service-request deadline. If yes: the fundamental steps are
carried out to accomplish the objective. Lines 10–13 have been
used to assign service-request to ES based on Line 12 when ES
is in an idle state. Otherwise, based on ES capacity, the service
requests are assigned based on the additional condition as per
line 18. Otherwise, the service request is moved to the PL
pool or assigned to another ES. Lines 25–28 have been used
to update the feasible ES set based on the task completion
(TC) with a time variance rate. In case, if ES does not belong
to the ES set, then ESs are ordered based on line 33. Line 40

Algorithm 3 SR and Asset Allocation Algorithm
input : 1. FVT[v j]

2. FT[ti ]
output: Optimal leased cost of ES by Fog

1 Let FV T [v j ] 
= 0, FT [ti ] 
= 0
2 �← Initial unit bill rate;
3 if t L

i i⊆L /∈ FL then
4 Assign a service-request to ES;
5 v j+1 ← t L

i ;
6 end
7 else
8 for each ti = 1 to n do
9 for each v j = 1 to n do

10 if v j i s Idle then
11 v j ← t i ;
12 Update ϕ(t j

i,L)←
Max{λ̄, α̂(t j

ic,L ), maxt j
i,L∈TL
{α(t j

ic,L ),w
j,L
i,̂i
}};

13 end
14 else
15 Estimate �w

i ;
16 if �w

i is moderate then
17 v j ← ti ;
18 Update ϕ(t j

i,L)←
Max{α̂(t j

ic,L ), maxt j
i,L∈TL
{α(t j

ic,L ),w
j,L
i,̂i
}};

19 end
20 else
21 Trigger new ES & update active set;
22 Update W T [ti ] ← ti ;
23 end
24 end
25 Estimate α̂(t j

ic,L ) and ϕ̂(t j
i,L );

26 if α̂(t j
ic,L ) � d̂i,L ||ϕ̂(t j

i,L ) � � then
27 Update Q← FV T [v j ];
28 �← ϕ̂(t j

i,L);
29 end
30 end
31 end
32 if v j /∈ Q then
33 if v j � {te, �w

i } then

34 Select

(
v j

Q

)
; v j ← ti ; and Select

(
t j

v j

)
;

35 end
36 end
37 else

38 if v j � ϕ̂(t j
i,L )||v j �

(
ϕ(t j

i,L ) � d̂i,L

)
then

39 Sort v j ← MinCost Set[v j,min ];
40 end
41 else
42 Sort v j ← Max RankSet[v j,mr ];
43 end
44 end
45 end

shows the procedure to select ES from the low leased cost ES
set; otherwise, have to choose from a high-ranked ES set to
accomplish the objective.
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Fig. 4. Impact of deadline discrepancy on cost and asset usage. (a) RUR analysis. (b) Impact of cost analysis and Average SET analysis of proposed and
existing systems. (c) Impact of data transfer time discrepancy rate. (d) Deadline discrepancy time impact analysis on response time.

VI. EXPERIMENTAL RESULTS

A. Performance Metrics

This section dives into all metrics to examine the proposed
algorithm’s accuracy compared to the benchmark existing
systems.

1) Average Response Time: It estimates ESs �
j

i response
time of fog �(h) as per the capacity and assigned
workload. It assess with the following equation:

�
j

i = Min

⎛⎝∑(
tost, j
i + toft, j

i

)
B j

⎞⎠ and �(h) =
ES j∑
j=1

�h
j .

(23)

2) Asset Usage: It uses to calculate usage rate of the ES ξh
j

on the fog node ξ(h) based total active B j and overall
processing time A j in the period. It assess with the
following equation:

ξh
j =

∑|ES j |
j=1 A j∑|ES j |
j=1 B j

and ξ(h) =
|ES j |∑
j=1

ξh
j . (24)

3) Deadline Violation Rate �: It uses to calculate the
average length deadline violation rate of each PL DV

from PL set ℵ. It assess with the following equation:

DV =
ℵ∑

L=1

ℵPr

ℵ , ℵPr = (MSL + ATL − DL )
/

DL − ATL

(25)

where ℵ̂ refers to a number of violated PLs among all
PLs ℵ. Therefore � = ℵ̂/ℵ × 100.

B. Simulation Details

To assess the accuracy of our proposed framework, we have
utilized the FogSim toolbox, PC with i5 processor Intel
center, 16 GB RAM, and 2.40 GHz CPU limit with a
versatile hard disk. The proposed approach designed a
DatacenterBroker, in which the service-request distri-
bution is carried out according to the computational workload
mechanism. The simulation has been iterated a few times, for
example, the simulation conducted 25 times, and the parameter
outcomes are recorded in Table I. The proposed approach is
simulated with a real-time workload data such as Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO), Montage
and Cybershake. The workloads with various sizes such
as 100, 150, and 250 errands with the DAG phenomenon.

TABLE I

FOG INSTANCES

TABLE II

VARIOUS PLS

3-Process workload (PL) of application: 4 different sizes:
100 various PL, which differs in computation entailment’s and
weight of edges and have listed in Table II. Total 1200 PL
has been taken into consideration to test the performance of
our proposed system. Also, the proposed algorithm has been
examined in a heterogeneous environment, and the results are
contrasted with standard benchmark state-of-art approaches on
Elastic Amazon Web Services (AWS) IaaS provider to analyze
unit leased cost.

Fig. 4 shows an accurate usage efficiency and average SET
analysis of DSO assets compared to three existing systems.
DSO regulates initial time attributes to avoid service-requests
execution delay. In the second step, DSO identifies suitable
machines to accommodate service requests for execution;
it gives an impact on ES idle time and low asset usage
utilization. Average finish time is the benchmark to test the
time efficiency of our proposed and the existing systems.

Subsequently, Fig. 4 also illustrates the response time con-
sistency of DSO compared to existing systems. The DSO
approach has achieved low response time (high performance)
than the remaining strategies because of S-deadline estimation.
Fig. 4(c) illustrates the response time of the proposed system,
which is better at the worst time discrepancy rate than other
approaches. Fig. 4(d) shows the same trend during the deadline
discrepancy rate, but the PICES-g releases a high number of
ES because of lack in asset usage, which confers a more
waiting time of service-request, and strives for suitable ES.

Fig. 5(a) illustrates asset usage efficiency at all extreme lev-
els because of a more significant amount of service requests.
Fig. 5(b) shows the individual errands deadline violation count
of DSO, which is comparatively low than the other three
approaches over adaptive PL allocation. Fig. 5(c) shows each
machine leased cost, and it is moderately too small than
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Fig. 5. Analysis of service-request execution time variance rate. (a) Impact of RUR. (b) Deadline discrepancy time impact analysis. (c) Cost analysis.

Fig. 6. Average execution time analyses of the proposed and existing systems. (a) Impact of migration time discrepancy. (b) Impact of RUR. (c) Impact of
processing cost.

TABLE III

OBJECTIVE RESULTS OF TEST EXPERIMENTS

different methods; because our proposed system appraises all
entail parameters before assigning the service request to a
suitable ES. Therefore, it makes a difference in billing leased
costs. Fig. 6(a), alludes individual service-request violation
rate. Here, the average SET is 1.5 and consider it as a
benchmark to analyze the service-request violation rate before
and after the DSO approach.

Fig. 6(b) illustrates assets usage analysis reports after and
before DSO. We noticed that the asset usage rate has been
increased tremendously after the DSO approach than before.
Fig. 6(c), illustrates that the leased cost is less after the
R-retaliation process since the process dramatically reduces
fluctuations, and asset wastage even at service-request execu-
tion rate is equal to zero. After the 1.5, the leased cost has
been diminished drastically.

Table III illustrates comparative outcome analysis among
extant approaches in terms of leased cost, average response
time, SLA violation rate with two scenarios, such as 16 ES
and 32 ES. The outcomes show that in all three aspects,
our proposed system has an accurate performance. The
experiments have illustrated that R-retaliation impacts on
DSO approach outcomes more than extant algorithms due

to prior estimation of service execution time, and respective
parameters.

VII. CONCLUSION

The designed two-step DSO approach has achieved strong
service reliability on the considered SIoT application workload
to meet the requirements of edge infrastructure and Industry
4.0 services. The DSO approach has optimized the haphazard
service allocations based on bindServiceToServer(·)
strategy using Datacenter-Brocker. The workload ana-
lyzer estimates the weight of PL to share the resources
with 87% accuracy based on S-deadline and prognosticated
completion time factors. The ES capacity weight factor selects
a suitable server to avoid execution hiccups, which reduces
the deadline violation rate of individual services and the
cost of a server. The R-retaliation model evaluates the most
favorable resource and service allocation policy to balance
the tradeoff between the execution of SO data, and workload
deadline violation rates. Our approach has achieved 85% QoS
as per service arrival rate based on the R-retaliation method.
Our method, in turn, offers service providers to upgrade the
selected target workload objectives to reduce the cost by at
least 46%, deadline violation rate by at least 79% than state-
of-art approaches, even at high workloads. In the future, design
a quantum integrated edge orchestration to achieve optimized
SO with high service reliability.

APPENDIX

Time complexity of the proposed algorithms are essential
to streamline the objective.
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Theorem A1: O(|�|2+|�| log(|�|)+|�|2×|�|) is the time
complexity of our initial algorithm, i.e.; Algorithm 1.

Proof: DAG graph (GL) enables 4-constructive parameters
GL = {TL , EL , �L , WL }, where TL = {t1,L , t2,L , t3,L , . . . , tn,L}
number of tasks, EL refers edges between two service tasks
and is evaluated with the following equation:

|EL | = |�| × (|�| − 2)

2
. (A.1)

The estimation of this parameters ε(t j
ic)ost , ε(t j

ic)lct, ℘ (t j
ic)

might required some time, which is labeled with O(|�|2).
Individual evaluation of service requests deadline would also
required some time, which is labeled with O(|�|).

Hence, our initial approach optimal complexity of time is
O(|�|2); by clubbing of O(|�|2) and O(|�|). Additionally, the
length of the queue is estimated with the following equation:

L(Q) = |�|. (A.2)

The process of service-requests sorting would require an ample
of time, which is denoted with O(|�| log(|�|)).

The server active time and their maintenance require
O(|�| × |�|). Because, the Pr(t j

L ,i ) = V L
1 requires an ample

of time O(|�|) to streamline the objective

= O(|�|) ∴ L(Q) = |�|
= O

(|�|2)
= O(|�| log(|�|))
= |�| × (O(|�| × |�|)+ O(log(|�|))+ O(|�|))
= O(|�|2 + |�| log(|�|)+ |�|2 × |�|).

As we stated earlier, the time complexity of the initial level
includes service length queue which helps to offload the
services to the suitable server to achieve low execution time
and complexity, which is defined with the following equation:

O(|�|2 + |�| log(|�|)+ |�|2 × |�|). (A.3)

Theorem A2: O(|∇| log(|∇|) + |�||∇| × |�|) is the time
complexity of our R-retaliation algorithm, i.e.; Algorithm 2.

Proof: Algorithm 2 primarily estimates the pre and post
service completion time, i.e., Pr(t j

L ,i ) = V L
1 Su(t j

L ,i ) = V L
7 and

it entails time complexity. It is estimated with the following
equation:

O(|∇|). (A2.1)

But repeatedly have to ensure about completion of Pr(t j
L ,i) =

V L
1 pre service completion status. Therefore, the complexity

of this process is the following equation:
O(|�|). (A2.2)

In such case, might have to do few adjustments, so the
complexity of this process is (A2.3) and it is carried out on
the respective server and the time complexity is the following
equation:

O(|�||∇|) (A2.3)

O(|�|)
O(|�||∇| × |�|). (A2.4)

Therefore, an optimal complexity remain accomplished by
adding these two process complexities

= O(|�||∇|)
= O(|�||∇| × |�|)
= O(|∇| log(|∇|))+ O(|�||∇| × |�|)
= O(|∇| log(|∇|)+ |�||∇| × |�|).
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