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Abstract—Due to the cubic structure of a hyperspectral image 

(HSI), how to characterize its spectral and spatial properties in 

three dimensions is challenging. Conventional spectral-spatial 

methods usually extract spectral and spatial information 

separately, ignoring their intrinsic correlations. Recently, some 3D 

feature extraction methods are developed for the extraction of 

spectral and spatial features simultaneously, although they rely on 

local spatial-spectral regions and thus ignore the global spectral 

similarity and spatial consistency. Meanwhile, some of these 

methods contain huge model parameters which require a large 

number of training samples. In this paper, a novel Tensor Singular 

Spectral Analysis (TensorSSA) method is proposed to extract 

global and low-rank features of HSI. In TensorSSA, an adaptive 

embedding operation is first proposed to construct a trajectory 

tensor corresponding to the entire HSI, which takes full advantage 

of the spatial similarity and improves the adequate representation 

of the global low-rank properties of the HSI. Moreover, the 

obtained trajectory tensor, which contains the global and local 

spatial and spectral information of the HSI, is decomposed by the 

Tensor singular value decomposition (t-SVD) to explore its low-

rank intrinsic features. Finally, the efficacy of the extracted 

features is evaluated using the accuracy of image classification 

with a support vector machine (SVM) classifier. Experimental 

results on three publicly available datasets have fully 

demonstrated the superiority of the proposed TensorSSA over a 

few state-of-the-art 2D/3D feature extraction and deep learning 

algorithms, even with a limited number of training samples.  

Index Terms—Hyperspectral image (HSI), 3D feature 

extraction, TensorSSA, adaptive embedding, trajectory tensor. 

I. INTRODUCTION

S a 3D hypercube, hyperspectral images (HSI) contain a

2D spatial scene and a rich 1D spectral profile, which has

enabled its ability to detect and identify the minute 

differences of objects and their changes. HSI is thus widely 

used in various applications and fields such as mineralogy [1], 

agriculture [2], load cover classification [3], and target 
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detection [4]. However, raw HSIs often suffer from spectral 

variations caused by sensor noise and environmental conditions, 

resulting in poor classification performance [5, 6]. Therefore, 

effective feature extraction is essential to enhance the 

separability between different categories in hyperspectral 

classification.  

In the past few decades, a series of feature extraction methods 

have been developed. Among them, linear transformation 

models, such as principal component analysis (PCA) [7] and 

linear discriminant analysis (LDA) [8], have been widely used 

for spectral feature extraction in HSI. Besides, some manifold 

learning methods are further developed to analyze the intrinsic 

features of HSI, improving the separability of the spectral pixels 

[9, 10]. However, these methods only consider spectral 

information while ignoring the potential role of spatial 

information. In recent years, joint spectral-spatial feature 

extraction methods have received much attention. In most 

spectral-spatial methods, spectral transform methods are used 

for spectral feature extraction and spatial methods further 

extract spatial features, generating the joint spectral-spatial 

features [11-13]. Besides, some two-branch networks [14-16] 

are also proposed, which perform feature extraction in the 

spectral and spatial domains separately, and fuse the features 

from both branches to improve the classification performance. 

Actually, the spectral and spatial processing of these methods 

is an independent process, with a simple fusion of features 

yielding the final spectral-spatial feature. Unfortunately, the 

joint dependence of spectral continuity and spatial similarity 

that is unique to HSI data is often ignored by these methods [17]. 

To tackle such insufficiency, some 3D spectral-spatial 

feature extraction methods have been developed due to their 

potential to extract intrinsic features in high-dimensional data 

[18]. They can be further divided into three categories: i.e. 3D 

filter-based methods, tensor-based methods, and deep learning-

based methods. 

3D filters or operators are usually used to extract spectral-

spatial features extraction simultaneously. For example, 3D 
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morphological profile (3DMP) [19] uses 3D erosion and 

dilation filters to extract the joint spectral-spatial morphological 

information of HSI. 3D local binary pattern (3DLBP) [20] 

characterizes spectral-spatial relationships by encoding a local 

3D regular octahedral. In [21], 3DGabor uses a set of 3D 

complex Gabor wavelet filters with multiple frequencies and 

orientations to extract joint spatial-spectral features [22], which 

is further developed in Jia et al [23] as a 3D Gabor phase-based 

coding (3DGPC) for improved efficiency and efficacy. In [24], 

Tsai et al. proposed a 3D gray-level co-occurrence matrix 

(3DGLCM) for high-order texture analysis. Although the afore-

mentioned 3D filter-based methods have achieved some 

success in exploring the 3D features of the HSIs, there are still 

some shortages. Firstly, the dimensionality of the obtained 3D 

features is usually huge, and the discriminability of each 

module varies from the other [25]. In addition, the processing 

unit of these methods is a small 3D block, which can only 

characterize the local structures of the HSI, ignoring the global 

relevance of the spectral and spatial information. 

Due to the inherent low-dimension distribution 

characteristics of HSI, tensors are used for data analysis as they 

can effectively explore its low rankness [26, 27]. Currently, 

tensor-based methods have been widely used in image 

reconstruction [28], super-resolution [29], and data 

classification [30] of HSI. Among them, tensor factorization 

[31], such as CANDECOMP/PARAFAC (CP), Tucker, and 

higher order singular value decomposition (HOSVD), have 

achieved superior performance in HSI processing [32-35]. 

These methods decompose the HSI into sub-tensors, such as 

rank-1 tensors or kernel tensors, to achieve effective data 

compression, and synthesis by partial sub-tensors can yield a 

low-rank approximation to the original HSI. Recently, the 

tensor singular value decomposition (t-SVD) has been proposed 

for image restoration [36] and denoising [37]. By defining the 

tensor tube rank through the Fourier transform, it can complete 

the operation and description of the entire tensor for a better 

representation of the low rankness of tensors. It can be inferred 

that t-SVD has great potential for the global processing of HSI, 

nevertheless, there are relatively few studies using it for 3D 

feature extraction.  

With the rapid advancement of deep learning [38, 39], they 

have been successfully applied for 3D feature extraction of HSI 

[40, 41], especially the deep structural and latent features. As a 

highly representative 3D deep network, 3D convolutional 

neural network (3DCNN) [42] applies the 3D convolutional 

blocks to operate on the original image blocks for extraction of 

both spectral and local spatial features [43, 44]. However, there 

is a serious problem associated with the CNN methods in 

feature representation, i.e. its limited capability in only 

extracting local spatial and spectral information rather than the 

global spatial structures of HSI. One of the strategies to 

overcome this problem is to use graph convolutional networks 

(GCNs), as GCNs are capable of modeling middle- and long-

range spatial relations between samples by means of their graph 

structure [45]. In [46], the tensor theory is further introduced to 

GCN to learn a tensor representation of the spatial-spectral 

features of HSI. Recently, some transformer-based networks 

have been proposed, capable of exploring global information 

while reinforcing useful features, such as attention 

transformation network (AATN) [47] and SpectralFormer [48]. 

Zhong et al. [49] proposed the spectral-spatial transformer 

network (SSTN) for exploring 3D features of HSI, achieving 

superior classification performance. Although the above 

methods have made some progress, they still face all the 

problems existing in deep learning, including required large 

training samples, a huge number of hyper-parameters, and a 

lack of interpretability of the models. 

Recently, Singular Spectral Analysis (SSA), a technique for 

time series analysis, has proven its capability in hyperspectral 

feature extraction [50]. SSA acts on the spectral domain and 

considers both local and global spectral features of pixels 

through embedding. Similarly, its two-dimensional version 

(2DSSA) [51, 52] can fuse local and global features of a given 

band image by 2D embedding windows, well maintaining the 

global correlation. This makes it feasible to perform global 

processing of hyperspectral cubes. However, neither SSA nor 

2DSSA can extract spectral and spatial features simultaneously. 

Although Fu et al. [53] further proposed a spectral-spatial SSA 

(1.5DSSA), it only considers local spectral and spatial 

information and is unable to characterize the global correlation 

of HSI. It is therefore necessary to explore a new SSA method 

that can not only extract both spectral and spatial features but 

also considers the global correlation of the cube. 

In this paper, a novel 3D Tensor SSA (TensorSSA) 

combining the idea of SSA and the advantages of tensors is 

proposed for characterizing the intrinsic characteristics of the 

HSI cube. In TensorSSA, the original HSI is adaptively 

embedded to obtain a trajectory tensor containing global and 

local spectral-spatial information. Through tensor 

decomposition and low-rank reconstruction of the trajectory 

tensor, the low-rank and intrinsic features of HSI can be 

extracted, which also shows good noise robustness. The major 

contributions of this approach can be summarized as follows. 

1) A novel SSA-based 3D feature extraction method, i.e.,

TensorSSA is proposed to characterize the global spectral-

spatial correlation of HSI. Through adaptive embedding and the 

t-SVD process, simultaneous extraction of spectral and spatial

features can be achieved. Experiments on three public datasets

demonstrated that TensorSSA outperforms conventional

2D/3D and deep learning methods even with limited training

samples.

2) A new form of HSI data sparsity enhancement, i.e.,

adaptive embedding operation is developed. It is able to exploit 

the spatial similarity feature of HSI to demonstrate low-rank 

properties in all three directions of the trajectory tensor, 

improving the effectiveness of tensor decomposition. It 

combined with the corresponding reprojection operation 

enhances the intra-class similarity while preserving the inter-

class differences of the objects. 

3) A trajectory tensor is constructed and combined with the

t-SVD to jointly characterize the global low-rank features of

HSI. The arrangement of similar pixels within the trajectory

tensor gives it a strong rank-1 property. The t-SVD

subsequently solves quickly for singular values in the Fourier
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transform domain and gives the best approximation of the 

trajectory tensor by truncation, resulting in low-rank features. 

The remainder of this article is organized as follows. The 

principles of the tensors and SSA are reviewed in Section II. 

Section III introduces the main steps of TensorSSA. The 

experimental results and analysis are presented in Section IV. 

Section V discusses the parameters and characteristics of 

TensorSSA. The concluding remarks are provided in Section 

VI. 

II. RELATED WORKS

A. Notations and Definitions of tensors

We use italic letters to denote scalars (e.g., x and X), boldface

lowercase letters for vectors (e.g., x), boldface capital letters for 

matrices (e.g., X), and calligraphic letters for tensors (e.g., X).

denotes the real number fields. A denotes a

third-order tensor, in which the MATLAB notation A(:, :, i),

A(:, i, :), and A(i, :, :) are used for its i-th frontal, lateral, and

horizontal slice. Each dimension (way) is called a mode. The 

definitions related to our work are as follows. 

Definition 1 (t-product [54]): For two third-order tensors A
and B . The t-product of A *B forms

a tensor C . 

C (i, j, :) =
2

1

n

k =

 A (i, k, :)* B (k, j, :)     (1) 

Definition 2 (Tensor transpose [54]): For tensor A
, transpose tensor AT  is obtained by

transposing each of the frontal slices and then reversing the 

order of transposed frontal slices 2 through n3. 

Definition 3 (Identity Tensor [54]): The identity tensor J 
 is a tensor whose first frontal slice is the n1×n1 

identity matrix and all other frontal slices are zero. 

Definition 4 (f-diagonal tensor [54]): A tensor is called f-

diagonal if each frontal slice of the tensor is a diagonal matrix. 

Definition 5 (Orthogonal Tensor [54]): A tensor A
is orthogonal if 

A T * A = A * A T = J  (2)

Definition 6 (t-SVD [54]): As one of high-order SVD, for the 

tensor A , the t-SVD of A is given by

A = U * S * V                          (3)

where S is a rectangular f-diagonal tensor. U
and V are orthogonal tensors, and * 

denotes the t-product. 

The tensor tubal rank of A, denoted as rtubal(A), is defined

as the number of nonzero singular tubes of S in the t-SVD

factorization, i.e., 

rtubal (A) = #{i, S (i, i, :)≠0}                     (4)

Note that t-SVD is achieved by computing the matrix SVD in 

the Fourier domain, which can enhance the mathematical 

solving efficiency [55]. 

The widely used CP and Tucker decompositions both have 

several disadvantages. Specifically, the rank-1 component of 

the CP decomposition is not easy to determine, and the 

computation of the approximation is numerically unstable for a 

fixed rank. Tucker decomposition can be seen as a 

generalization of the CP decomposition, where the truncated 

decomposition does not give the best fit to the original tensor. 

In contrast, t-SVD can be easily calculated by solving multiple 

singular values in the Fourier domain, and gives an optimal 

approximation of the tensor measured by the Frobenious norm 

of the difference, as stated in [56]. 

B. SSA and 2DSSA

Singular spectrum analysis (SSA) and its extensions have

been applied to hyperspectral feature extraction successfully, 

including SSA for spectral pixels and 2DSSA for spatial bands 

[50, 51]. Both of contain four stages, i.e., embedding, singular  

value decomposition (SVD), grouping, and reprojection. The 

detailed steps of SSA are given as follows. 

* *

* *

Stacking t-SVD

Reconsit

utionDividing

HSI X

Trajectory tensor

T
U S

V

U 
Feature data

Y

S 
V 

Low-rank 

trajectory tensor

Tr

1.Adaptive Embedding 2.t-SVD based decomposition

3.Low-rank representation4.Reprojection

Lateral slices

Lateral slices

Fig. 1 Illustration of TensorSSA. It contains four stages: 1) Adaptive embedding, 2) t-SVD based decomposition, 3) Low-rank representation, and 4) 
Reprojection. 
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1) Embedding: Given a spectral pixel p= [p1, p2, …, pn] , 

for a given embedding window of size l[1, n], the trajectory 

matrix X can be calculated as 

 (5) 

Note that the matrix X is a Hankel matrix with the same 

antiangular elements.  

2) SVD: In this step, SVD is applied to the matrix X to obtain

the left singular vectors and right singular vector

, as well as the singular values . 

From this X can be written as: 

  (6) 

3) Grouping: A subset composed of one or more matrices Xi

is selected to obtain the reconstructed matrix Xt . 

In general, these Xi correspond to large singular values because 

they usually contain more information.  

4) Reprojection: The reconstructed matrix Xt is reprojected

to a new spectral vector of n×1 again, i.e., enhanced pixel. The 

reprojection is the diagonal averaging in the matrix 

antidiagonals. More details can be found in [50].  

2DSSA has the same operation in SVD and grouping, while 

differs in embedding and reprojection steps. In 2D embedding 

stage, a two-dimensional embedding window is defined to 

construct the trajectory matrix corresponding to the input band 

image, the obtained trajectory matrix has a structure called HbH, 

i.e., Hankel by Hankel. Correspondingly, in the reprojection

stage, a two-step diagonal averaging process in the matrix

antidiagonals in both each block and between blocks is required

to reproject the reconstructed matrix to the image size [13, 52].

SSA-based methods, especially 2DSSA, usually utilize 

regular embedding windows (or extraction scales) to extract 

local information and cannot be adaptive to the irregular shapes 

and inconsistent sizes of the ground objects. This characteristic 

makes SVD less compressible, and the spatial features 

corresponding to the maximum singular value lose more details 

and edge information [57]. In addition, 2DSSA mainly acts on 

the spatial domain, ignoring the full use of spectral information 

to model the 3D structure of the HSI. However, considering the 

characteristic that SSA can model the global through the local, 

the current problem is expected to be solved if the SSA method 

is extended to 3D structures. 

III. THE PROPOSED TENSORSSA METHOD 

To extract 3D features of HSI, we designed a new SSA-based 

3D feature extraction framework, called TensorSSA. It contains 

four steps: 1) Adaptive embedding, 2) T-SVD based 

decomposition, 3) Low-rank representation, and 4) 

Reprojection. The overall architecture of our method is shown 

in Fig. 1. In TensorSSA, an input HSI data is denoted by a 3D 

tensor X , in which W, H, and B represent the wide, 

the height, and the number of bands, respectively. The detailed 

process of the proposed TensorSSA is given as follows. 

A. Adaptive Embedding

The first step in the construction of a 3D SSA model is to

embed spectral and spatial information jointly, where the use of 

spatial information is particularly important. Most spatial 

methods including 2DSSA usually use fixed rectangle windows 

for feature extraction as shown in Fig. 2(a). Obviously, this is 

not appropriate for various objects with irregular shapes and 

inconsistent sizes. In other words, the regions used for spatial 

feature extraction should be adaptive to individual spatial 

structures of the HSI [52]. Nevertheless, spatial self-similarity 

is common in HSI, and this similarity has been well 

characterized as low rankness in tensors [56, 58, 59]. Motivated 

by this, a novel spatial similarity-based adaptive embedding 

window is proposed in TensorSSA, which is more flexible than 

2DSSA as shown in Fig. 2(b).  

For a certain pixel xi to be processed, 

the w×w size search region centered on it is firstly determined. 

Then, we obtain an adaptive embedding window with L pixels 

(including xi), by searching the (L-1) pixels with high similarity 

to xi and then constructing a matrix Mi . The spectral 

similarity metric used here is the classical Normalized 

Euclidean distance (NED), which is a simple and effective 

measure of spectral similarity and is insensitive to the data scale 

[60]. Once the matrix Mi is twisted as a lateral slice T (:, i, :) of

the trajectory tensor, the entire HSI X can be transformed into

the trajectory tensor T as follows:

T =
1

WH

i=

 T (:, i, :) =    (7) 

The obtained trajectory tensor T has several characteristics:

Firstly, it contains both spectral and spatial information 

corresponding to the entire HSI. Secondly, its frontal slices are 

quasi-Hankel matrices [61], where only a part of the elements 

are the same in the matrix antidiagonals, which is completely 

different from the 2DSSA trajectory matrix. More importantly, 

the trajectory tensor T  has the property of low rank due to the

pixel similarity on mode-1and the high correlation among the 

spectral bands on mode-3. Note that the search region 

determines the size of the embedding spatial domain in this 

stage, and L can be set to any size smaller than w×w. Details of 

the parameters are analyzed in section V. A. 

B. T-SVD based decomposition

The obtained trajectory tensor T preserves and enhances the

low-rank characteristics of X, which reflects the main 3D

spectral-spatial characteristics of HSI. In this stage, t-SVD is 

used to decompose the trajectory tensor to obtain the intrinsic 

(a) (b)

Center pixel

Search region 

with size w×w

Similar pixel

Fig. 2 Comparison of embedding. (a) 2DSSA embedding. (b) adaptive 

embedding of TensorSSA. 
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characteristics of HSI. For the input tensor T, the Fourier

transform is firstly applied on mode-3, which is described in Eq. 

(8) as follows:

D = fft (T, [], 3)                              (8)

where fft (·, [], 3) denotes the discrete Fourier transformation 

(DFT) along the third mode of a 3-way tensor. D represents the

transformation tensor of T.

Then, SVD is applied on the frontal slice of tensor D to

obtain the singular vectors and singular values according to Eqs. 

(9) and (10) as follows:

[Ui, Si, Vi] = SVD (D(:, :, i) ). i=1, …, B (9) 

U (:, :, i) = Ui;  S (:, :, i) = Si;  V (:, :, i) = Vi (10) 

where Ui, Si, and Vi represent the left singular vector matrix, 

singular value matrix, and right singular vector matrix of D(:, :,

i), respectively. These matrices form the tensor U ,

S , and V , respectively. 

Finally, the obtained tensors are transformed to the real 

number domain from the Fourier domain by the fast inverse 

discrete Fourier transformation (IFFT), which is defined as Eq. 

(11). 

U = ifft(U , [], 3);  S = ifft(S , [], 3);  V = ifft(V , [], 3)  (11)

where ifft(·, [], 3) denotes the IFFT along the mode-3 of a tensor. 

The obtained U and V are orthogonal singular tensors and S is

the singular tuples. The t-SVD decomposition of the tensor T is

illustrated in Fig. 1(2).  

C. Low-rank representation

The feature tensors U, S and V obtained by t-SVD

decomposition are low rank in different modes, while they also 

contain some useless information. For effective low-rank 

representation, we further truncate these feature tensors to 

approximate the original trajectory tensor T optimally, i.e.,

truncated t-SVD [54]. To this end, the ideal tensor tube rank 

rtubal is defined, which satisfies Eq. (12) 

rtubal (T ) << min (L, WH)        (12)

Then, to further exploit the low-rank and sparse 

characteristic of the third-order tensor, the original U, S, and

V are simplified through the tubal rank interception as shown

in Eq. (13) as follows: 

U’ = U (: , 1: rtubal, : )

 S’ = S (1: rtubal, 1: rtubal, : )                      (13)

V’ = V (: , 1: rtubal, : )

After tubal rank simplification, the new trajectory tensor T r

is obtained according to Eq. (14):  

T r = U’ ∗ S’ ∗ V’ T      (14)

where ∗ denotes the t-product here. Tensor T r is a low-rank

tensor, and it can be regarded as the rank-r approximation of the 

original T. In this stage, the parameter rtubal determines the

amount of information used for tensor reconstruction.  

D. Reprojection

The obtained reconstruction tensor T r contains redundant

information in the mode-2 direction, and its frontal slice is no 

1

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Sce

nes 

longer the necessarily quasi-Hankel matrix. Therefore, it is 

necessary to reduce the tensor redundancy through averaging, 

essentially the same as the diagonal average of SSA. To this end, 

the low-rank trajectory tensor T r is reprojected to a new tensor

of size W×H×B, defined as the feature data of HSI.  

Each lateral slice of tensor T r is firstly squeezed into a matrix

and each matrix corresponds to a processed spectral pixel with 

its similar pixels. Then, these pixels are relocated to their 

original spatial positions. Considering that pixels in certain 

positions are selected multiple times during the embedding 

process, the average value of these pixels is taken as the final 

pixel value for multiple pixel values at the same position. It can 

be written as Eq. (13): 

Y ← Rp (T r )         (13)

where Rp(·) denotes the reprojection operation. Tensor Y
is the obtained feature data corresponding to X.

In HSI, the homogeneous area of the image usually has more 

similar pixels, while the non-homogeneous area, such as the 

edges, has fewer similar pixels. For TensorSSA, the number of 

selections of similar pixels in the homogeneous area is large 

while that of the heterogeneous area is small in TensorSSA. 

Therefore, the average degree of the homogeneous area is 

higher during the reprojection which improves the spectral 

consistency within the ground object, while heterogeneous 

regions are lower which preserves the differences between the 

classes of ground objects. The obtained feature data has several 

characteristics: in the spectral domain, the main spectral 

discrimination trends are retained and spectral oscillations 

(noise) are eliminated; in the spatial domain, intra-class 

variability is reduced and inter-class separability is improved 

while noise is eliminated. Section V. B gives more 

presentations and discussions. The code of this work is 

available at https://github.com/Hang-Fu/TensorSSA. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

Three hyperspectral datasets, including the Indian Pines (IP),

Pavia University (PU), and MUUFL Gulfport (MG) are used to 

evaluate the performance of our proposed method.  

1) IP 1: The well-known IP dataset covers Northwest Indiana,

USA, which was acquired by the AVIRIS sensor with a spectral 

range from 0.4 to 2.5μm. It has a scene with 145 × 145 pixels 

with a spatial resolution of 20 m per pixel and 220 spectral 

bands. In the experiment, the number of bands is reduced to 200 

by removing 20 water absorption bands.  

2) PU 1: The PU dataset was captured through a Reflective

Optics Spectrographic Imaging System (ROSIS), flying over 

the city of Pavia, Italy, with a spectral range from 0.43 to 

0.86μm. It contains 103 bands of size 610 × 340 pixels with a 

spatial resolution of 1.3 m per pixel.  

3) MG 2: It was acquired over the campus of the University

of Southern Mississippi Gulf Park, Long Beach, Mississippi. It 

originally contains 72 bands while due to noise, the first four 

and last four bands are omitted, bringing about an image with 

64 bands. The spatial resolution is 1 m per pixel. The 

2 https://zenodo.org/record/1186326 
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hyperspectral scene has 325 × 337 pixels, and the provided 

ground truth map includes 11 classes [62]. 

B. Experimental Setup

The classification tasks are used to validate the effectiveness

of TensorSSA. As to evaluation metrics, five objective quality 

indexes, i.e., the producer accuracy (PA) of each class, overall 

accuracy (OA), average accuracy (AA), kappa coefficient 

(Kappa), and running time (s), are utilized in the following 

experiments. To avoid systematic errors and biased estimation, 

all experiments were conducted five times independently, both 

the average values and standard deviations are listed in the 

experiments.  

In order to evaluate the proposed method, we compare it with 

9 state-of-the-art algorithms, including conventional 2DSSA 

[51], 3DGabor [63], two tensor methods, i.e., tensor robust 

principal component analysis (TRPCA) [64] and GTR [34], and 

four deep learning methods, i.e., 3DCNN [65], miniGCN [45], 

Morphological Convolutional Neural Networks (MorphCNN) 

[66], SpectralFormer [48] and SSTN [49]. The details of the 

compared methods are listed as follows. 

1) Support vector machine (SVM) classifier [67] with radial

basis function (RBF) kernel on raw HSI data as baseline 

spectral method, in which fivefold cross-validation is utilized 

to determine hyper-parameters.  

2) 2DSSA [51] as the spatial method, whose embedding

window and reconstruction parameters of 2DSSA are 5×5 and 

1, respectively.  

3) 3DGabor as the 3D operator method, KPCA is firstly used

for dimension reduction, and then a set of Gabor wavelets with 

parameters ρ = [0.5, 0.25, 0.125, 0.0625] and ϑ = 0, ϕ = 0 are 

used [63], and SVM used as classifier.  

4) TRPCA [64] as the tensor-based feature extraction method,

in which block size is set as 24×24 and the number of iterations 

is 500, SVM is utilized as the classifier. 

5) GTR as the tensor classification method and the optimal

parameters from [34] are used. 

6) 3DCNN, the 3D deep network consists of two 3D

convolution blocks (a 3D convolution layer, a batch re-

normalization layer, and a ReLU function) and two full 

connection layers [65]. 

7) miniGCN, this lightweight GCN uses the training

parameters of [45]. Note that PU data needs to be chunked to 

prevent out-of-memory. 

8) MorphCNN [66] combines morphological operators and

convolutional kernels, in which B/4 dilations, B/4 erosions and 

3 × 3 kernels are used for three datasets (B is the number of 

bands). 

9) SpectralFormer [48] as the first transformer network for

HSI, the patch-wise version is used and the patch size is 7×7. 

The batch size is 64 and epochs are 300 for three datasets. 

10) SSTN, the batch size is 32 and epochs are 100 for three

datasets. The other hyperparameters remain consistent with 

[49]. 

11) For the proposed TensorSSA, the optimal parameters are

given in section V. A for three datasets, and the SVM classifier 

is also used for classification. 

All conventional methods are implemented in MATLAB 

2021a, and the networks are implemented using the Tensorflow 

and Pytorch frameworks in PyCharm on Windows 10 machines 

with an NVIDIA GeForce RTX 3060 GPU. 

C. Classification Results with random Samples

It is important to analyze the classification performance

obtained using randomly selected and varying training sets. 

Accordingly, the classification results of TensorSSA and the 

other seven compared methods using random samples are 

presented for the IP, PU, and MG datasets. The details are given 

as follows. 

1) Performance with Different Training Percentages: Fig. 3

shows the OAs obtained by different methods for three datasets 

using different training percentages. Specifically, the randomly 

selected training samples vary within {1%, 2%, 3%, 4%, 5%} 

for IP and {0.5%, 1%, 2%, 3%, 5%} for PU and MG datasets, 

the remaining samples are used for testing. 

According to Fig. 3, with the increase of training samples, 

the accuracy of all comparison methods has been improved to a 

certain extent. Among them, the proposed TensorSSA method 

utterly outperforms all other 9 methods, even when the sample 

size is small, e.g., 1% from PU, and MG. The state-of-the-art 

SSTN achieved sub-optimal results on three datasets, 

outperforming TensorSSA in some cases. The performance of 

TensorSSA is comparable to that of the most advanced deep 

learning methods. In addition, the performance of the other 8 

methods on different data varies. For example, GTR has 

achieved accuracy second only to TensorSSA and SSTN on IP 

and PU datasets, while classification performance was poor on 

the MG dataset. This proves the robustness of the TensorSSA 

method again. 

2) Quantitative Evaluation: In order to detail evaluate the

superiority of the proposed method, the quantitative results of 

PA of each class, OA, AA, and Kappa are listed in Tables I–III. 

We can see that TensorSSA achieves the highest classification 

Fig. 3 OA obtained by different methods with different training percentages over (a) IP, (b) PU, and (c) MG datasets. 
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accuracy in terms of three metrics and most classes, especially 

in terms of IP and MG datasets. TensorSSA has the highest OA 

and Kappa but slightly lower AA than SSTN. Take Table I as 

an example for analysis, firstly, the OA of TensorSSA is 

improved by 24.25%, 7.86%, 5.67%, 13.28%, 6.33%, 23.3%, 

27.76%, 2.18%, 19.83%, and 0.72% compared with SVM, 

2DSSA, 3DGabor, TRPCA, GTR, 3DCNN, miniGCN, 

MorphCNN, SpectralFormer, and SSTN, which is unexpected 

accuracy improvements. Secondly, the PA of 14 of the 16 

classes exceeded 80%, and that of 9 classes exceeded 90%, 

especially for the classes with fewer samples, such as “Alfalfa”, 

“Grass-PM” and “Oats”. Besides, in Tables II and III, the 

proposed method also has the same superior performance. 

In terms of comparison methods, compared with the classic 

SVM, the two feature extraction methods 2DSSA and 3DGabor 

have higher classification accuracies due to the utilization of 

spatial context and texture features. Unfortunately, the accuracy 

of 3DGabor on PU and MG datasets is decreased, maybe 

because the texture features obtained by Gabor wavelets kernel 

neglect some small ground objects. 3DCNN, miniGCN, and 

SpectralFormer are weaker than SVM in some cases, mainly 

because of the small number of samples to train the network 

adequately. MorphCNN has better classification performance 

on PU and MG but poorer on IP datasets due to its ability to 

effectively identify irregular and broken features. SSTN has 

better performance because it fully exploits the deep spectral-

spatial features. Two tensor-based methods, TRPCA and GTR 

can both extract low-rank information, but their overall 

performance is limited. TensorSSA has optimal performance on 

all datasets due to the exploration and utilization of effective 3D 

spectral-spatial features. 

3) Qualitative Evaluation: The classification maps yielded

by all methods alongside false color images and GT on three 

datasets are shown in Figs. 4–6, respectively. Note that, in our 

TABLE I 

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE IP DATASET (2% TRAINING PERCENTAGE) 

Class Samples SVM 2DSSA 3DGabor TRPCA GTR 3DCNN miniGCN MorphCNN SpectralFormer SSTN TensorSSA 

Alfalfa 46 6.67(2.23) 38.52(1.28) 48.89(6.67) 57.04(11.4) 60.00(15.6) 4.44(2.22) 14.07(3.39) 12.59(5.59) 41.67(6.94) 50.00(20.3) 93.20(3.97) 

Corn-N 1428 58.54(10.1) 74.77(3.15) 79.51(3.45) 72.69(3.00) 75.98(1.18) 58.99(4.36) 66.26(8.43) 75.48(8.54) 64.52(4.96) 81.48(3.41) 86.16(0.74) 

Corn-M 830 45.47(7.59) 79.70(7.01) 78.64(7.56) 61.58(7.01) 82.37(1.33) 46.95(2.63) 41.16(12.6) 67.94(5.93) 56.23(9.89) 94.46(1.11) 89.68(1.60) 

Corn 237 16.09(4.81) 69.97(5.00) 63.36(9.63) 42.96(13.6) 72.27(10.7) 16.52(5.18) 23.56(7.62) 17.82(5.05) 30.42(6.91) 86.88(6.53) 74.22(3.09) 

Grass-P 483 67.58(1.05) 72.59(4.99) 75.62(7.31) 79.35(2.12) 88.94(2.32) 43.76(1.18) 62.16(1.52) 62.79(10.8) 71.15(2.06) 86.17(4.56) 84.73(2.50) 

Grass-T 730 88.16(5.73) 95.80(3.18) 84.80(2.41) 91.52(6.14) 86.62(4.89) 86.99(1.56) 89.42(3.61) 76.60(3.86) 80.46(1.27) 96.62(1.73) 95.82(1.28) 

Grass-PM 28 30.86(27.8) 96.30(3.70) 77.78(6.42) 80.25(8.55) 86.42(14.0) 16.05(13.0) 77.78(12.8) 69.14(7.71) 22.22(19.3) 48.71(10.3) 93.83(4.28) 

Hay-W 478 90.17(3.15) 90.10(9.00) 93.59(3.56) 97.44(1.11) 88.82(0.96) 98.01(1.50) 68.16(15.0) 73.86(6.55) 88.34(6.72) 85.97(1.47) 96.35(3.28) 

Oats 20 17.54(13.3) 43.86(8.04) 52.36(22.9) 33.33(8.04) 42.11(9.12) 14.04(10.9) 31.58(13.9) 33.33(10.9) 12.28(12.2) 50.00(30.6) 100.0(0.00) 

Soybean-N 972 57.25(11.5) 74.61(2.67) 78.29(2.41) 74.61(7.52) 74.30(3.53) 56.20(5.62) 63.48(2.92) 78.36(5.71) 72.82(2.96) 89.43(1.84) 81.27(10.8) 

Soybean-M 2455 71.02(9.94) 88.40(2.22) 91.60(3.21) 79.93(3.87) 84.88(5.68) 76.42(0.52) 50.98(5.31) 95.47(2.06) 74.91(4.16) 90.07(6.01) 90.01(2.04) 

Soybean-C 593 28.97(3.74) 49.51(4.84) 74.64(9.08) 48.14(3.930 69.65(7.25) 37.35(4.80) 40.16(7.76) 48.31(2.95) 35.42(5.59) 76.80(9.73) 80.18(8.14) 

Wheat 205 92.33(3.18) 96.00(2.65) 89.33(7.75) 93.83(3.01) 93.83(1.89) 71.83(19.6) 93.83(4.65) 87.83(4.25) 82.49(17.3) 98.30(1.69) 97.32(1.04) 

Woods 1265 94.49(1.53) 93.41(3.60) 90.66(4.11) 93.62(1.80) 96.15(1.42) 93.14(1.61) 88.65(7.55) 89.35(5.58) 87.37(2.91) 89.53(6.28) 98.95(1.12) 

Buildings 386 20.90(1.65) 63.84(13.5) 66.93(8.21) 41.45(4.80) 73.72(17.4) 35.71(5.16) 35.01(5.61) 58.55(8.41) 45.45(3.94) 85.49(6.65) 79.13(13.2) 

Stone 93 45.42(6.72) 90.48(6.25) 93.04(4.58) 41.03(17.6) 91.94(9.35) 44.32(6.34) 80.59(16.8) 7.69(3.96) 54.81(25.5) 93.34(2.44) 98.89(0.01) 

OA 64.86(1.11) 81.25(0.25) 83.44(0.82) 75.83(0.52) 82.78(1.62) 65.81(0.76) 61.35(0.35) 76.76(0.57) 69.28(1.05) 88.39(0.15) 89.11(0.66) 

AA 51.97(1.64) 76.12(1.00) 77.46(1.77) 68.05(2.02) 79.25(1.11) 50.05(3.11) 57.93(0.52) 59.69(1.61) 57.54(0.49) 85.45(7.86) 89.98(0.74) 

Kappa×100 59.59(0.92) 78.58(0.28) 81.06(0.94) 72.32(0.50) 80.32(1.81) 60.51(0.89) 56.31(0.44) 72.55(0.74) 64.89(1.20) 86.30(0.26) 87.60(0.74) 

time(s) 5.61 11.29 13.26 11.36 9.24 287.87 16.17 19.21 349.11 30.91 14.10 

TABLE II 

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE PU DATASET (1% TRAINING PERCENTAGE) 

Class Samples SVM 2DSSA 3DGabor TRPCA GTR 3DCNN miniGCN MorphCNN SpectralFormer SSTN TensorSSA 

Asphalt 6631 53.66(10.6) 71.23(11.4) 58.14(1.81) 68.22(5.04) 44.36(18.9) 27.13(12.3) 51.42(5.34) 95.60(0.95) 86.70(7.07) 98.42(0.07) 84.67(0.75) 

Meadows 18649 77.58(16.8) 96.97(5.25) 96.36(4.81) 80.00(14.3) 52.42(22.6) 70.91(33.2) 72.12(6.94) 98.35(0.97) 96.88(1.18) 95.09(0.71) 91.52(14.7) 

Gravel 2099 58.30(8.98) 65.58(2.94) 32.12(21.1) 68.12(19.3) 30.18(7.98) 38.30(20.2) 84.00(18.0) 72.44(6.29) 59.91(5.59) 97.62(0.64) 89.45(11.3) 

Trees 3064 83.57(13.1) 81.04(7.40) 21.33(6.22) 88.47(12.7) 90.68(11.6) 75.83(15.2) 87.84(3.95) 94.89(1.21) 91.53(7.00) 99.07(0.45) 97.31(2.19) 

Painted-MS 1345 27.85(16.2) 23.64(8.24) 19.41(2.92) 46.41(5.12) 84.81(21.9) 38.82(21.4) 99.58(0.73) 90.06(4.56) 98.54(0.43) 99.47(0.44) 67.51(0.73) 

Bare Soil 5029 94.49(2.07) 97.69(1.88) 97.93(0.35) 95.56(2.51) 99.93(0.09) 97.76(2.61) 92.23(2.44) 94.68(1.34) 68.15(7.08) 95.36(0.12) 99.77(0.17) 

Bitumen 1330 91.16(2.61) 93.52(2.46) 92.30(1.60) 95.06(0.61) 99.42(0.61) 93.44(0.65) 92.50(5.19) 73.51(5.45) 76.52(1.85) 96.53(0.86) 95.34(0.04) 

SB-Bricks 3682 81.99(15.8) 77.02(9.67) 76.68(13.7) 77.02(14.6) 91.80(2.16) 75.67(13.7) 72.31(5.50) 89.59(3.70) 84.70(1.30) 82.40(2.74) 83.40(11.8) 

Shadows 947 99.73(0.47) 95.66(5.84) 54.74(14.1) 99.32(0.23) 97.97(1.08) 97.02(2.24) 99.86(0.23) 76.81(7.06) 96.36(0.54) 98.01(1.13) 97.02(0.23) 

OA 87.23(0.44) 90.39(0.21) 84.13(1.05) 89.99(0.94) 91.08(0.95) 85.90(1.78) 87.62(1.32) 93.71(0.40) 88.09(3.30) 94.90(0.12) 95.89(0.33) 

AA 74.26(1.46) 78.04(1.75) 61.00(1.93) 79.80(4.09) 76.84(2.24) 68.22(2.77) 83.54(2.19) 87.32(0.24) 84.37(3.15) 95.78(0.16) 94.55(1.68) 

Kappa×100 81.73(0.55) 86.11(0.25) 75.81(1.70) 85.64(1.48) 87.09(1.40) 79.26(2.82) 82.52(1.85) 91.63(0.52) 84.03(4.45) 93.18(0.13) 93.65(0.30) 

time(s) 2.85 22.84 10.75 42.08 5.04 539.68 126.09 49.55 562.69 70.33 18.23 

TABLE III 

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE MG DATASET (1% TRAINING PERCENTAGE) 

Class Samples SVM 2DSSA 3DGabor TRPCA GTR 3DCNN miniGCN MorphCNN SpectralFormer SSTN TensorSSA 

Trees 23246 92.79(0.97) 94.69(1.01) 89.53(0.90) 93.79(1.08) 96.06(0.28) 94.12(1.06) 92.60(0.18) 95.37(1.12) 95.26(0.04) 95.40(0.03) 95.40(0.55) 

Grass 4270 62.86(3.09) 69.83(4.35) 68.73(1.76) 65.79(2.54) 75.59(2.14) 63.77(2.92) 70.74(0.66) 75.74(4.60) 67.15(0.23) 83.10(3.66) 83.10(4.75) 

MG-surface 6882 68.59(2.76) 76.65(5.37) 70.42(1.94) 73.59(3.90) 82.31(1.26) 73.02(4.88) 73.50(1.14) 78.22(3.12) 66.73(0.21) 80.18(0.02) 80.18(3.52) 

Dirt/sand 1826 74.27(11.3) 72.27(8.27) 74.76(6.63) 71.52(12.2) 67.37(2.92) 72.27(3.27) 67.48(2.97) 67.77(9.29) 78.12(0.06) 78.62(0.43) 78.62(3.78) 

Road 6687 87.66(2.60) 88.85(2.28) 73.26(0.98) 88.56(1.94) 81.14(0.38) 83.93(3.04) 81.60(1.00) 90.85(1.77) 88.98(0.08) 91.79(0.87) 91.79(2.03) 

Water 466 81.42(2.32) 81.78(5.08) 58.64(14.0) 83.08(3.37) 2.46(1.52) 31.16(10.5) 67.46(2.83) 55.53(17.3) 14.05(0.49) 82.36(3.83) 82.36(3.83) 

B-shadow 2233 67.60(7.48) 60.47(4.53) 58.02(3.42) 67.48(2.55) 7.80(1.09) 68.52(5.36) 78.56(1.32) 72.88(10.4) 72.43(0.23) 67.33(2.86) 67.33(2.86) 

Buildings 6240 79.82(2.44) 82.62(2.08) 84.38(2.40) 79.29(4.27) 82.40(1.71) 78.57(2.92) 74.23(0.18) 87.94(1.61) 66.54(0.24) 88.97(2.17) 88.97(2.17) 

Sidewalk 1385 38.17(10.0) 37.98(3.64) 24.43(2.79) 52.22(5.56) 5.52(5.23) 32.97(8.14) 51.39(2.82) 59.08(8.36) 46.04(0.44) 48.36(13.7) 48.36(13.7) 

Y-curb 183 21.36(8.01) 13.08(7.74) 3.13(1.69) 23.02(11.9) 12.33(0.23) 4.74(3.68) 19.11(3.47) 14.18(8.81) 7.21(0.95) 6.63(3.45) 6.63(3.45) 

Cloth-P 269 54.39(11.3) 67.29(15.7) 18.30(4.02) 48.25(7.83) 46.12(2.50) 27.07(8.14) 71.76(2.66) 29.20(6.82) 69.10(0.38) 80.95(14.5) 80.95(14.5) 

OA 81.54(0.52) 84.09(0.24) 78.39(0.50) 83.15(0.90) 80.85(0.32) 81.36(0.63) 81.84(0.27) 86.42(0.58) 81.31(0.13) 87.02(0.41) 87.85(0.27) 

AA 66.27(1.08) 67.77(2.20) 56.69(1.88) 67.87(1.62) 53.70(1.06) 57.29(1.43) 68.04(0.72) 66.07(2.60) 61.06(0.30) 82.88(1.26) 83.06(1.57) 

Kappa×100 75.53(0.69) 78.90(0.26) 70.94(0.70) 77.62(1.21) 76.96(0.49) 75.17(0.88) 75.59(0.37) 81.77(0.81) 75.13(0.18) 83.32(0.53) 83.86(0.38) 

time(s) 7.32 14.57 18.01 28.67 3.32 638.92 66.75 56.19 491.52 40.26 12.45 
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experiments, the background is not included in the 

classification map for 3DCNN and miniGCN methods for some 

reason. As shown in Figs. 4–6, SVM, as well as miniGCN, 

appear obvious classification noise inside the land covers. 

2DSSA, 3DGabor, and SpectralFormer can eliminate spot-like 

misclassification, but they cannot reasonably distinguish the 

boundaries of features and ignore some smaller features (such 

as Road). 3DCNN uses fixed patch blocks for feature extraction, 

and serious misclassification will occur in small or strip features. 

TRPCA has some misclassified plaques. As for GTR, it has lost 

many morphological features of ground features and 

misclassified seriously at the edges. The SSTN has curved 

feature edges. The proposed TensorSSA eliminates the internal 

noise and preserves the details of ground objects, tiny ground 

objects such as roads. In general, our method can obtain the 

classification map that is closest to the actual ground object 

distribution. 

3 http://dase.grss-ieee.org 

4) Analysis of Running Time: Tables I–III also give the

running time of all methods. As we can see, SVM and GTR 

have the highest running efficiency, while 2DCNN, 3DGabor, 

and TRPCA take more time due to feature extraction. 3DCNN 

mainly conducts model training based on patch blocks, which 

take the longest time. MiniGCN will take a long time on a larger 

dataset because it needs to calculate the adjacency matrix. 

Patch-wise SpectralFormer uses a large patch size to explore 

global features, leading to a long running time. The training 

time of SSTN is long and takes up a lot of time spent. On the 

contrary, TensorSSA is faster than most deep learning methods 

and two conventional Methods, i.e., 2DSSA, TRPCA, but 

slower than SVM, GTR and 3DGabor mainly because it takes 

more time to decompose the trajectory tensor, which is also 

what needs to be improved in the future.  

D. Classification Results over Disjoint Samples

To further verify the effectiveness of the proposed method,

the disjoint training samples have been considered. Compared 

with random sampling, disjoint samples usually acquire more 

realistic classification results and introduce certain challenges 

[13, 40]. In this section, two more challenging datasets that are 

publicly available from the GRSS DASE website 3, Disjoint IP 

(DIP) and Disjoint PU (DPU) are used for evaluation. The 

spatial disjoint training and testing samples for two datasets are 

shown in Fig. 7 and Fig. 8. Besides, some classical machine 

learning and representative deep learning methods available in 

[40] 4 are added as compared methods, including MLR, MLP,

RNN, LSTM, GRU, 2DCNN, state-of-the-art hybrid spectral

CNN (HybridSN) and morphological CNN (MorphCNN).

Accordingly, all compared methods are divided into two groups:

conventional methods and deep learning methods. The

quantitative results in terms of OA, AA, and Kappa are given

in Tables IV-V.

As seen in Tables IV-V, the proposed TensorSSA method 

outperforms all conventional and most deep learning methods, 

i.e., the highest OA and Kappa on DIP, second only to

MorphCNN on DUP, achieving satisfactory classification

accuracy. In the conventional methods group, three classifiers

SVM, MLR, and GTR are mainly based on spectral features for

classification, ignoring the potential role of spatial information,

leading to limited classification performance. While 2DSSA

4 https://github.com/AnkurDeria/HSI-Traditional-to-Deep-Models 

TABLE IV 

CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT METHODS ON 

THE DIP DATASET 

Methods OA AA Kappa×100 

Convention

al  
Methods 

SVM 82.68 80.49 80.14 

MLR 80.33 70.69 77.47 

2DSSA 87.12 79.45 85.38 

3DGabor 79.22 67.02 76.29 
TRPCA 88.34 80.57 86.76 

GTR 87.14 75.49 85.38 

Deep 

learning 

methods 

MLP 82.95 77.66 80.56 

RNN 79.07 71.16 76.12 

LSTM 83.55 79.16 81.27 

GRU 84.20 78.49 82.01 

2DCNN 87.25 75.48 85.48 

3DCNN 84.60 74.43 82.36 

miniGCN 80.86 72.08 77.05 
HybridSN 80.86 72.41 78.24 

MorphCNN 87.45 77.33 85.75 

SpectralFormer 75.61 68.03 72.10 

SSTN 89.95 83.88 88.57 

TensorSSA 90.72 81.37 89.47 

TABLE V 

CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT METHODS ON 

THE DPU DATASET 

Methods OA AA Kappa×100 

Convention

al Methods 

SVM 79.21 86.71 73.69 

MLR 72.23 82.47 65.44 

2DSSA 88.3 92.04 84.74 

3DGabor 72.52 84.88 64.41 
TRPCA 80.82 86.62 75.61 

GTR 79.5 83.2 73.37 

Deep 

learning 

methods 

MLP 82.05 87.43 76.89 

RNN 77.07 83.83 70.84 

LSTM 80.38 84.06 74.32 

GRU 80.7 83.63 74.76 

2DCNN 89.43 86.25 85.61 

3DCNN 88.43 85.26 84.52 

miniGCN 79.79 85.07 73.67 
HybridSN 84.18 88.16 79.13 

MorphCNN 95.51 93.95 93.95 

SpectralFormer 91.07 90.20 88.05 

SSTN 93.05 92.57 90.69 

TensorSSA 93.11 93.82 90.85 

(a) False color image (b) Ground Truth (c) SVM(64.86%) (d) 2DSSA(81.25%) (e) 3DGabor(83.44%)

(h) 3DCNN(65.81%) (i) miniGCN(61.35%)

(f) TRPCA(75.83%)

(g) GTR(82.78%) (l) TensorSSA(89.11%)(j)SpectralFormer(69.28%) (k) SSTN(88.39%)

Fig. 4 (a) False color image from IP dataset. (b) Ground truth. Classification maps 

obtained by (c) SVM, (d) 2DSSA, (e) 3DGabor, (f) TRPCA, (g) GTR, (h) 3DCNN, 

(i) miniGCN, (j) SpectralFormer, (k) SSTN, and (l) TensorSSA. 

(a) False color image (b) Ground Truth (c) SVM(88.24%) (d) 2DSSA(93.72%) (e) 3DGabor(91.00%) (f) TRPCA(90.85%)

(g) GTR(88.90%) (h) 3DCNN(90.03%) (i) miniGCN(89.64%) (j)SpectralFormer(88.09%) (k) SSTN(94.90%) (l) TensorSSA(95.50%)

Fig. 5 (a) False color image from PU dataset. (b) Ground truth. Classification maps 

obtained by (c) SVM, (d) 2DSSA, (e) 3DGabor, (f) TRPCA, (g) GTR, (h) 3DCNN, 

(i) miniGCN, (j) SpectralFormer, (k) SSTN, and (l) TensorSSA.

(a) False color image (b) Ground Truth (c) SVM(81.54%) (d) 2DSSA(84.09%) (e) 3DGabor(78.39%)

(h) 3DCNN(81.36%) (i) miniGCN(81.84%)

(f) TRPCA(83.15%)

(g) GTR(80.85%) (j) TensorSSA(87.85%)(j)SpectralFormer(81.31%) (k) SSTN(87.02%)

Fig. 6 (a) False color image from MG dataset. (b) Ground truth. Classification maps 

obtained by (c) SVM, (d) 2DSSA, (e) 3DGabor, (f) TRPCA, (g) GTR, (h) 3DCNN, 

(i) miniGCN, (j) SpectralFormer, (k) SSTN, and (l) TensorSSA.

(a) Disjoint Train (b) Disjoint Test

 Fig. 7 Spatially disjoint training and testing samples of DIP. 

(a) Disjoint Train (b) Disjoint Test

Fig. 8 Spatially disjoint training and testing samples of DPU. 
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and TRPCA have achieved higher accuracy mainly because the 

extracted spatial features make up for the lack of spectral 

information. A similar situation also appears in the deep 

learning method group. Compared with spectral deep models, 

including MLP, RNN, LSTM, GRU and miniGCN, 2DCNN, 

SpectralFormer and 3DCNN respectively extract spatial and 

spectral-spatial features of HSI for classification, achieving 

higher classification accuracy. Moreover, HybridSN, 

MorphCNN and SSTN exploit deep intrinsic features using a 

mixture of convolutional kernels, filter transforms and attention 

mechanisms to achieve the best classification performance in 

some cases. Generally, the performance of deep learning 

methods is superior to conventional methods mainly because 

their multi-layer network architecture can extract more deep 

semantic features for classification. TensorSSA effectively 

characterizes and extracts the spectral-spatial low-rank features 

of images based on spatial similarity and t-SVD. Compared 

with the deep model, our method can achieve better 

classification performance without training and construction of 

a multi-layer network. 

V. DISCUSSION

A. Parameter Analysis

There are mainly two parameters, i.e., the embedding

window size L and the low-rank component rtubal in TensorSSA. 

The sensitivity analysis of the two parameters is as follows. 

1) L: This parameter, as well as the search region determines

the degree of utilization of spatial information. Accordingly, we 

design the experiments to evaluate the L of TensorSSA on three 

datasets.  

First, we evaluated the L under a fixed search region (11×11 

as an example), and 2DSSA is added for comparison to 

reinforce the claim of superiority and robustness of TensorSSA 

at the same time. According to the experience [13, 51], four 

embedding window sizes are selected, i.e., {3×3, 5×5, 7×7, 9×9} 

for 2DSSA and {9, 25, 49, 81} for TensorSSA to facilitate 

comparison. The OAs obtained by the SVM classifier are 

shown in Fig. 9. We can find that TensorSSA is superior to 

2DSSA in all sizes of L, which testifies that compared with the 

local regular window of 2DSSA, the adaptive spatial similarity 

information used in TensorSSA are more effective. 

Simultaneously, the robustness and universality of L in 

TensorSSA are better. 2DSSA has different optimal windows 

for different datasets, while TensorSSA achieves almost the 

highest accuracy within a certain range window, namely L=25 

and 49. 

In addition, we further analyzed the effect of L in relation to 

the search region size on OAs and running time, with L taken 

as {9, 25, 49, 81} and w×w taken as {5×5, 7×7, 9×9, 11×11, 

13×13}. The results are listed in Table VI. As can be seen from 

Table VI, an increase in both w×w and L results in a significant 

increase in the calculation. Optimal classification accuracy is 

usually concentrated between w×w=7×7 to 11×11 and L = 25 

to 49. Due to the differences in spatial resolution and feature 

morphology of the different datasets, the corresponding optimal 

parameter combinations also differ. Therefore, considering the 

processing efficiency, the optimal parameter combinations 

w×w=11×11 and L = 49 for IP, w×w=5×5 and L = 9 for PU, 

w×w=7×7 and L = 25 for MG are set respectively.  

2) rtubal: It determines the amount of information used to

reconstruct the trajectory tensor. To select the optimal rtubal, 

another set of experiments was designed on three datasets, in 

which rtubal and r is set to vary within {1, 2, 5, 10, 25} for 

TensorSSA and 2DSSA, respectively. Fig. 10 shows the OA 

with different parameters. 

As can be seen in Fig. 10, TensorSSA achieves higher 

accuracy than 2DSSA under different low-rank components. In 

the case where all components are used for reconstruction, i.e., 

rtubal = 25, both have the same accuracy because it is equivalent 

to classifying the original image. Additionally, TensorSSA has 

the highest accuracy in the case of rank-1. As the rank of the 

reconstruction component increases, the accuracy decreases, 

which also testifies that its information is more concentrated in 

low rank. In contrast, 2DSSA has different optimal ranks for 

different data, indicating that its main information is relatively 

scattered, which may be caused by the difference of various 

features in a fixed window. Therefore, the parameters rtubal is 

fixed to 1 on all three datasets in the experiments. 

B. Feature map comparison

In this subsection, we display the extracted feature maps by

TensorSSA and its comparison with 2DSSA. In Fig. 9, two 

band images of IP including the normal image (band-20) and 

noise image (band-2) are selected for the performance 

comparison between TensorSSA and 2DSSA. The original 

image and ground truth image are also given as benchmarks. 

Spatial details are represented by different color boxes. 

As seen in Fig. 11, 2DSSA ignores most of the spatial 

structure of the ground objects, leading to a blurred image and 

degraded boundaries. It is mainly because the embedding of 

2DSSA has the same number of selections for each pixel, thus 

the average processing for each pixel in the reprojection step is 

the same, which usually ignores the difference in features in 

non-homogeneous areas. In contrast, TensorSSA can enhance 

Fig. 9 Accuracy comparison of L between TensorSSA and 2DSSA. OA obtained 
on (a) IP with 2% training, (b) PU with 1% training, (c) MG with 1% training. 

Fig. 10 Accuracy comparison of rtubal and r between TensorSSA (L=25) and 
2DSSA (5×5). OA obtained on (a) IP with 2% training, (b) PU with 1% training, 

(c) MG with 1% training.
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TABLE VI 

OA% (RUNNING TIME (S)) OF PARAMETERS L AND W × W ON THREE DATASETS 

w×w 
L of the IP dataset L of the PU dataset L of the MU dataset 

9 25 49 81 9 25 49 81 9 25 49 81 

5×5 80.11(3.32) — — — 95.52(18.42) — — — 86.75(4.45) — — — 

7×7 78.40(4.31) 86.03(8.19) — — 94.35(24.78) 96.34(54.91) — — 86.75(6.02) 87.69(11.48) — — 

9×9 78.49(5.77) 86.09(9.66) 86.75(11.87) — 94.38(34.55) 96.31(65.70) 96.10(98.37) — 86.38(8.48) 87.02(13.80) 86.21(18.30) — 

11×11 78.00(7.55) 83.57(11.28) 89.41(14.01) 87.52(18.41) 94.96(45.73) 95.95(77.02) 96.56(101.8) 96.33(290.8) 86.48(11.34) 86.60(16.81) 86.50(21.06) 85.69(27.61) 

13×13 77.17(9.51) 83.03(13.21) 88.60(15.83) 90.68(19.63) 94.23(59.80) 96.44(93.13) 96.40(114.8) — 86.56(15.16) 86.48(20.69) 86.21(26.22) 86.32(31.46) 
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the spatial structure of the image and extract effective spatial 

features even in the presence of severe noise, mainly thanks to 

the use of spatial similarity information and spectral 

information. Besides, based on the contrast of image details 

(different colored boxes), compared to the original image and 

2DSSA image, TensorSSA can preserve the edge and structural 

features of ground objects and enhance the interclass 

differences of different ground objects, which are consistent 

with the ground truth image. This has demonstrated again that 

the 3D spectral-spatial features extracted by TensorSSA are 

very effective. 

C. Ablation study

The proposed TensorSSA contains two critical parts for

boosting the classification performance compared to 2DSSA, 

i.e., the adaptive embedding based on spatial similarity, and t-

SVD based decomposition. Here, we used all three datasets to

verify the validity of these two operations. In the embedding

step, the no embedding, i.e., raw HSI, and 2D embedding mode

of 2DSSA was used for comparison, while in the decomposition

step, band-by-band SVD of 2DSSA and Tucker decomposition

with rank (r, r, r) = (15, 15, 15) corresponding to the highest

accuracy were used for comparison. 2%, 1%, and 1% training

samples were selected from the IP, PU, and MG datasets

respectively, and the SVM classifier is used for classification.

The corresponding classification results are shown in Table VII.

Note that each row represents the performance of a different

combination of embedding and decomposition methods.

As shown in Table I, the combination of adaptive embedding 

and t-SVD decomposition, i.e., TensorSSA, achieves optimal 

performance. Compared with raw data and 2D embedding, the 

adaptive embedding approach achieved higher classification 

accuracy on all three datasets, thanks to the spatial similarity 

boosting the low rank of the trajectory tensor. As for the 

decomposition step, from the accuracy in Table VII and the 

comparison of singular values in Fig. 4, we see that t-SVD has 

a better performance than SVD in terms of feature compression. 

While SVD acts mainly on the extraction of spatial domain 

information, t-SVD is based on a compact operation along three 

dimensions and therefore yields a very efficient feature 

representation. Tucker decomposition performs a matrix 

expansion of the 3D tensor in different directions via the Tucker 

rank. Although its decomposition in the trajectory tensor is 

better than the raw data, its overall classification accuracy is 

still limited (rows 2, 5, and 8 of Table VII). On the one hand, it 

has poor performance for data compression and reconstruction, 

i.e. most of the information is concentrated on the first ten or

twenty components; on the other hand, its decomposition

destroys the original spectral and spatial intrinsic features, and

the selection of more components in the reconstruction can

make larger size data face the problem of memory overflow (e.g.

MG dataset). Tucker is more suitable for the processing of raw

HSI than trajectory tensor. In contrast, t-SVD, with its fast

solving and approximation capabilities (described in section

II.A), can approximate the entire tensor under rank-1. This

advantage is further amplified by the adaptive embedding in

Tensor SSA, which collaboratively accomplishes the extraction

of low-rank spectral-spatial features for the entire HSI. Overall,

t-SVD is superior to Tucker decomposition in this task, and the

resulting Tensor SSA also achieves far better performance than 

2DSSA. 

D. Computational complexity Analysis

The computational complexity of the TensorSSA, including

computational cost and memory requirements, is further 

analyzed in this subsection. In terms of computational cost, the 

main computation of TensorSSA is the truncated t-SVD [68], 

which requires the calculation of a trajectory tensor of L×WH×B, 

and the complexity is O(LWHBlogB+L2WHB), compared with 

the complexity O[L2(W-L+1)(H-L+1)B+L3B] of 2DSSA. As 

for memory requirements, the complexity of TensorSSA is 

O(LWHB) while O[L(W-L+1)(H-L+1)] for 2DSSA. 

Nevertheless, with a smaller embedding window L (Table VI), 

TensorSSA spends less running time yet achieves higher 

classification accuracies than 2DSSA on PU and MG datasets 

according to Tables I-III. 

E. Analysis between TensorSSA and classification

The combination of TensorSSA plus classifier is used in this

paper to jointly accomplish the task of ground object 

classification. The 3D feature extraction of TensorSSA can 

enhance the performance of classification by improving intra-

class consistency and removing noise, etc. However, the feature 

extraction does not benefit from the prior knowledge of the 

samples in the classification task. TensorSSA is an 

unsupervised feature extraction method that performs feature 

enhancement on the entire HSI rather than the training samples 

with labels. This enhancement is effective for the differentiation 

of ground objects with large class differences, but also runs the 

risk of removing the differences between two similar ground 

objects, leading to the phenomenon of misclassification. 

Supervised feature extraction methods have been shown to 

further improve classification performance [69, 70], and the 
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inclusion of sample prior information in TensorSSA is also 

worth exploring.  

F. Analysis for search region size

Generally, it is difficult to determine the best search region

size for different datasets, because it usually varies depending 

on the spatial resolution of the images, the size and morphology 

of the ground objects. According to the OAs in Table VI, the IP 

dataset with a low spatial resolution (20 m) has an optimal 

window of 13×13, while the higher resolution PU (1.3 m) and 

MG (1 m) data have an optimal window between 7×7 and 9×9. 

The search region needs to be embedded with abundant 

information about the neighbor pixels and thus increases with 

decreasing spatial resolution. Furthermore, larger sizes and 

regularly shaped features also require larger search regions (e.g. 

IP) for multiple similarity information extraction, whereas 

irregularly striped and smaller features (e.g. PU) can 

accomplish their goals in smaller search regions. Despite the 

above analysis, it is currently not possible to determine the 

optimal search region through a paradigm for a given dataset, 

which needs to be further addressed. 

VI. CONCLUSION

Due to the 3D inherent of HSI, it is desirable to find an 

effective method for the simultaneous extraction of spectral and 

spatial features. In conventional spectral-spatial methods, the 

spectral and spatial features are usually extracted separately. 

Although the existing 3D methods further consider the spectral 

and spatial correlation, they pay insufficient attention to global 

features, and their performance is also limited by the training 

samples. To solve these problems, this paper proposed a new 

TensorSSA method for 3D feature extraction of HSI, which is 

suitable for classification under limited samples. 

Adaptive embedding operation considers the spatial self-

similarity in HSI and constructs a trajectory tensor containing 

global spectral-spatial features. T-SVD and truncated t-SVD 

can jointly extract the low-rank intrinsic characteristics of 

trajectory tensor, and eliminate the influence information such 

as noise. Reprojection operation further improves intra-class 

similarity and maintains inter-class difference while 

transforming the reconstruction tensor into a feature image. The 

final features have good low rank, robustness, and 

representativeness, leading to higher classification accuracy 

with limited training samples. 

Experimental carried out on IP, PU, and MG datasets have 

demonstrated that 1) the extracted features have an image 

enhancement and denoising effect. 2) the classification 

accuracies of TensorSSA are superior to current 3D methods 

and most deep learning methods under both random and 

spatially disjoint training samples. 3) TensorSSA can preserve 

the shape structure of fine ground objects and their irregular 

boundaries in the classification maps.  

For future work, we will consider the rapid implementation 

of TensorSSA and its extension to large-scale hyperspectral 

data applications such as UAV hyperspectral wetland 

classification and fine identification of forest species. 
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