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A B S T R A C T

Electric vehicles, as a new green mode of transportation, have put forward higher demand indicators for accurate modeling and efficient parameter identification 
strategies for lithium-ion batteries. In this paper, a lumped electrical characteristic model is constructed for lithium-ion batteries considering the hysteresis 
component effect based on a proposed adaptive forgetting factor recursive least squares-linearized particle swarm optimization (AFFRLS-LPSO) algorithm with 
strong working condition characterization capability for full parameter identification. First, to characterize the relationship accurately and intuitively between the 
external characteristics and the internal state quantities of the battery, the charging and discharging measurement information is captured, and the difference in the 
open circuit voltage (OCV) caused by the hysteresis phenomenon is resolved. Then, the complex working condition experiments is conducted, and through online 
inspection of experimental data, the fusion strategy concept is introduced to prevent the phenomenon of “filter saturation” and improve the ability of the algorithm 
to track the variable characteristic parameters of the battery. The full parameter identification results and terminal voltage tracking effects under different 
identification strategies are compared. Also, the consistency verification results of the adaptive parameter identification strategy under different working 
conditions are further analyzed. The experimental results show that the voltage tracking error of the model with an added hysteresis component is significantly 
smaller than the error without hysteresis. Furthermore, at an ambient temperature of 15 ◦C, the root mean squared error and mean absolute percentage error of 
the AFFRLS-LPSO algorithm are reduced by 0.0037 V and 0.300 %, respectively, under the dynamic stress test and Beijing bus dynamic stress test working 
conditions, and the consistency accuracy of the unconstrained parameter estimation is improved by 9.9 %. The fusion strategy provides a theoretical basis for 
real-time parameter identification models for lithium-ion batteries with high precision and adaptability for electric vehicles.   

1. Introduction

With the continuous development of new energy vehicles, large-scale energy storage, special robots, and aviation equipment, the demand for battery systems 
with large capacity, strong endurance, low environmental pollution, a long cycle life, wide operating range, and high reliability continues to increase [1–5]. 
As a third-generation battery product, lithium-ion batteries are currently the most widely used energy storage system due to their advantages of high energy 
density, low self- discharge rate, strong charge retention capability, no memory effect, long cycle life, etc. [6,7]. With the deepening of supply-side structural reform 
as the main line, the whole world comprehensively promotes energy transformation and industrial restructuring and attaches great significance to the development 
of lithium-ion batteries. It is the main technical feature is the development direction of energy industry innovation. 

Accurate state estimation of lithium-ion batteries based on high-precision model construction effectively suppresses inter-unit differences and their significant 
error accumulation, as well as the problem of unreasonable decay of cycle life, can prevent irreversible damage to batteries due to over-charge and over-discharge, 
and provides a reliable foundation for efficient and safe lithium-ion battery management [8]. Accurate and effective equivalent circuit modeling (ECM) and its exact 
mathematical expression are important prerequisites for lithium-ion battery state estimation and battery system safety management. In the process of real-time 
online collaborative estimation of multi-state parameters, it is very important to establish an appropriate index system. The most common method is to build an 
ECM and determine the impedance parameters [9,10]. Due to the internal coupled processes involving electrochemical reactions, charge transfer and heat transfer, 
lithium-ion batteries have strongly nonlinear dynamic characteristics [11]. Meanwhile, their working environment, series-parallel structure, and application 
scenarios have significant complexity, which further increases the difficulty of mathematical modeling. 

At present, considering the different mechanisms of modeling, they are mainly divided into thermal model, electrical property model, the electrothermal 
coupling model, and the aging model. Since the battery generates heat during operation, the thermal model requires the assumption of the cause of battery heating 
and assumes that it all originates from the battery core, thus the estimation of the temperature of the battery core may lead to its high estimation value. For a specific 
ECM, the model parameter identification strategy directly determines the reliability and accuracy of the established model. Model parameter identification is mainly 
divided into two categories: offline and online. The commonly used offline identification algorithms include impedance spectrum analysis (ISA) method, external 
characteristic fitting (ECF) method, least square (LS) method and genetic algorithm (GA) [12–17]. Wang et al. [18] passed the HPPC test and used the point 
calculation method to identify the model parameters for data processing. However, this method requires a large amount of experimental data to support is, and 
there are many external factors affecting battery operating characteristics, which greatly limits the accuracy of modeling. Yang et al. [19] used a simulated annealing-
particle swarm optimization (SA-PSO) algorithm for offline parameter identification, but the amount of stored data is large and the operation rate is reduced. 
Offline identification requires that the identified object be separated from the entire system, and then a large amount of input and output data are stored, and data 
processing is performed according to a certain identification algorithm. The works of Tian et al. and Wang et al. endow the model with a certain physical meaning 
to better study the relationship between the battery model and the internal properties. Although this method has high precision, the parameters cannot change in 
real time with time [20,21]. Offline identification methods are time and resource intensive, can be limited by sample data, are not applicable to dynamic 
environments, and rely on specialized skills with questionable credibility.
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The online identification algorithm can obtain the identification results in real time because it does not need to know the experimental data in advance, so this 
kind of algorithm is widely used in the process of complex influencing factors and random changes in working conditions [22]. Commonly used online 
identification algorithms include recursive least squares (RLS), forgetting factor recursive least squares (FFRLS), and other least squares derivatives [23–26]. Wu et 
al. [27] proposed an online identification algorithm called adaptive forgetting factor recursive augmented least squares (AFFRALS), which can effectively solve the 
problem of dynamic allocation of data weights under the influence of non-Gaussian white noise. However, it does not consider the influence of the internal 
characteristics of the battery, making the model local defects. Ouyang et al. [28] proposed a robust recursive least squares al-gorithm to extract model parameters 
online. Even if there are abnormal values in the battery measurement signal, the parameter identification performance can be effectively guaranteed, but the 
identification accuracy needs to be improved. The work of Xiong et al. [29] and Wang et al. [30] further optimized the online parameter identification strategy to 
accurately simulate the internal dynamic characteristics of lithium-ion batteries, but ignored the physical meaning of the battery itself. 

Therefore, considering the influence of internal electrochemical mechanisms, materials, spectrum, and internal diffusion effects of lithium-ion 
batteries, a battery model that meets the requirements of accuracy, complexity, and computation is constructed. Intending to seek the optimal solution of the 
model structure under various constraints, it monitors and simulates the battery's dynamic characteristics and complex reaction mechanism, and provides 
accurate and effective input parameters for battery state estimation and life prediction [31–34]. 

Different types of models have been developed to estimate the states of batteries, but many challenges remain. For instance, (1) Balance between accuracy and 
computational speed: Battery models need to have high accuracy to ensure that the simulation results match the actual situation. However, more detailed models 
need to consider more parameters, which will increase the computational complexity, while simplified models will ignore some important influencing factors. 
Therefore, a balance between accuracy and computational speed is needed when building the model. (2) Real-time: The battery model needs to be able to be used 
in a real-time environment. This means that the model needs to be responsive with sufficient accuracy for real-time control. (3) Scalability: With the emergence of 
new battery technologies, the battery model needs to be scalable to accommodate different application scenarios. Therefore, we need to validate and test the model 
to ensure its accuracy and reliability under different operating conditions. (4) Data acquisition: The battery model needs a large amount of data support, including 
battery composition, performance parameters, working conditions, etc. The difficulty and cost of this data acquisition are also one of the challenges of battery 
model construction. 

The method proposed in this work for original contributions differs from that used in the preceding literature. First, the differences between battery charge 
and discharge are introduced into a lumped electrical characteristic model considering the influence of the hysteresis component and constructed 
based on an adaptive forgetting factor recursive least squares-linearized particle swarm optimization (AFFRLS- LPSO) algorithm. Secondly, to make up for 
the “data saturation” shortcomings of the traditional model parameter identification algorithm, the fusion strategy concept is introduced for the intelligent 
algorithm used for optimization in the identification of the full parameters of the battery. Finally, to characterize the parameters with clear physical meaning, 
normalization is performed to verify the accuracy of the identification results on long-term scales. 

The remainder of this paper is organized as follows. Section 2 demonstrates lumped electrical characteristics model and the AFFRLS-LPSO parameter 
identification strategy. The Section 3 introduces the battery experiment platform, as well as provides experimental results and further discussion. Finally, 
Section 5 is the conclusion of the paper. 

2. Model building and identification strategy

2.1. Lumped electrical characteristic modeling considering hysteresis

A lithium-ion battery is a high-energy secondary battery, which is a general term for batteries with lithium-ion intercalation compounds as positive electrode 
materials. Its energy conversion mechanism involves the multi-level transport process of carriers in components such as a positive electrode, a negative 
electrode, separator, and electrolyte, which realizes energy conversion through the transfer of carriers between positive and negative electrodes [35,36]. The 
negative electrode of a lithium-ion battery is graphite, which is often used as the base material for the oxidation reaction against discharge because of its 
multi-layer structure and ability to accommodate lithium ions [37]. The positive electrode is a transition metal oxide for the reduction reaction to occur during 
discharge. The model structure of the electrical properties of the lithium-ion battery particle set is shown in Fig. 1. 

As shown in Fig. 1, throughout the charge and discharge process, the carbon material itself provides lattice vacancies, and Li+ is repeatedly extracted and 
intercalated between the positive and negative electrodes. The description of these carrier dynamic transfer processes is to build a battery model that is highly 
correlated with the internal properties. At present, ECMs that describe electrochemical properties through multiple combinations of simple components such as 
resistors, capacitors, and inductors are widely used. The modeling process is based on experimental data and can be used to characterize electrochemical 
properties, thermal behavior, temperature, and aging effects as a function of charge-discharge current and closed-circuit voltage. Meanwhile, the true output value 
of the terminal voltage is estimated under a certain current input. Therefore, a battery model that effectively balances complexity and accuracy is of great 
significance for the estimation of each state quantity in the battery management system. 

At present, the ampere-hour integration method is the methodology commonly used for state of charge (SOC) estimation, and its estimation formula is 
shown in Eq. (1) [38,39]. 
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Fig. 1. Lumped electrical characteristic model structure.  
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UOCV(t) = f (SOC(t) ) (3) 

To determine the functional relationship between the open circuit voltage UOCV and SOC, according to the proposed model, OCV can be approximated as a 
nonlinear equation related to SOC, as shown in Eq. (4). 

UOCV(z) = α0 + α1z+ α2z2 + α3
/

z+ α4ln(z)+ α5ln(1 − z) (4) 

In Eq. (4), z is the battery SOC value, and α0 to α6 are parameters describing the relationship between SOC and OCV. For the same single cell, the OCV-SOC 
curve is relatively stable. 

The voltage hysteresis is caused by the relaxation of the polarization of the battery, and it is manifested that the voltage change shows an asynchronous trend 
relative to the current change, that is, the surface charge-discharge curves do not overlap. Therefore, this study considers the influence of the battery hysteresis 
effect to better simulate the hysteresis characteristics of the battery, thereby improving the model accuracy. Professor Plett and others in the United States 
proposed a formula for calculating the hysteresis voltage, as shown in Eq. (5). 

In Eq. (2), zk and zk-1 indicate SOC values at k and k-1 respectively, and Δt indicates the sampling time interval. 

Due to the complex electrochemical reaction, charge transfer, heat transfer, and other coupled processes involved in the interior of the battery, it has 
strong nonlinear dynamic characteristics. For the analysis of the internal reaction mechanism of the battery, establishing an ECM can reduce the energy loss 
during the experiment [40]. Compared with traditional secondary batteries, lithium-ion batteries have the advantages of high energy density, long cycle life, 
and high computational cost. The method of constructing battery ECMs and using them as core energy storage components has become an effective way to 
solve the problem of reliable energy supplies [41]. The commonly used battery models can be divided into four categories: thermal model, electrical 
characteristic model, electrothermal coupled model, and aging model. 

In this paper, considering the difference in battery OCV caused by hysteresis, a lumped electrical characteristic model integrating multi- stage parameters is 
constructed. The model structure is shown in Fig. 2. 

In Fig. 2, UOC( SOC) stands for the static OCV of a lithium-ion battery. R0 indicates the ohmic internal resistance, the instantaneous change in the terminal 
voltage caused by the reaction current. R1 and R2 express the polarization resistance of the battery. C1 and C2 express the polarized capacitance of the battery. R1, R2, 
C1, and C2 denote the battery's static characteristics and jointly reflect the polarization effect caused by the current change. Hyst is a hysteresis module, which is 
used to describe the battery hysteresis effect, and its hysteresis voltage is represented by Uh. I denotes the battery load current, and the positive direction in this 
paper represents the discharge. UL represents the battery's load terminal voltage. 

Based on Fig. 2, it is divided into two modules: runtime-based model and voltage-current characteristics-based model. The first part models the capacity, SOC, 
and runtime of a lithium-ion battery, which consists of a capacitor, a current-controlled current source, and a self-discharge resistor. The second part can be 
divided into static sub-model and dynamic sub-model. The static sub-model shows the battery electromotive force, providing the energy loss of the external circuit. 
When the two parallel circuits of resistance and capacitance in the dynamic sub-model describe the highly nonlinear dynamic characteristics of the battery, the 
polarization effect of the charging and discharging process of the battery cell can be more accurately characterized. Also, the hysteresis caused by the mechanical 
stress and the distortion of the active electrode material during the battery working process is considered, to realize the precise mathematical expression of the 
battery working characteristics and the effective extraction of the characteristic information. 

2.2. Model-based modular state discrete representation 

It is generally believed that the voltage at both ends of the battery is the OCV after the battery is fully put on hold. At this time, the battery has eliminated the 
influence of polarization and reached a stable state, which is not affected by the charging or discharging current and is only related to the battery material and the 
SOC. The SOC can be calculated from the OCV, and this process needs to establish a functional relationship between OCV and SOC. There is a corresponding 
functional relationship between the open circuit voltage UOCV and SOC of the lithium-ion battery, as shown in Eq. (3). 

∫ t
t0

η⋅I(τ)dτ
Ce

(1) 

In Eq. (1), SOC(t0) denotes the initial value of SOC, Ce denotes the battery rated capacity, η is the Coulomb coefficient, and I(τ) is the function of charge 
and discharge current versus time. Based on Eq. (1), the discretized recursive form of SOC is shown in Eq. (2). 

zk = zk− 1 − ηIk− 1Δt/Ce (2)
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κ is the decay factor. Then, according to Kirchhoff's law, the mathematical relationship representation of the lumped electrical characteristic model is 
obtained, as shown in Eq. (7). 

⃒
⃒
⃒
⃒ḣ = −
ηiiγ
Ce

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒h+
ηiiγ
Ce

⃒
⃒
⃒
⃒sgn(i) (5) 

In Eq. (5), h is the hysteresis level, ηi is the charge-discharge efficiency, and γ is the hysteresis factor. Although the calculation formula of the hysteresis level is 
obtained, since ηi and Ce are unknown parameters, the formula needs to be rearranged, and the differential equation of the hysteresis level is obtained as shown in 
Eq. (6). 

ḣ = − |κi|h+ |κi|sgn(i) (6) 
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UL = UOC + hM − U1 − U2 − iR0

ḣ = − |κi|h + |κi|sgn(i)

(7) 

In this paper, half of the hysteresis voltage is set as M, which is used for the correction of the OCV-SOC relationship. During the experiment, the data 
collection of the voltage and current of the lithium-ion battery is discrete, which leads to the discrete input of the SOC estimation algorithm. Therefore, the 
continuous data is segmented into a segmented interval, thereby obtaining the model discrete state-space equation shown in Eq. (8). 
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In Eq. (8), Δt represents the sampling time interval, τ1 = R1C1, τ2 = R2C2. The model output voltage can be expressed, as shown in Eq. (9). 

UL,k = UOC,k + hkMk − U1,k − U2,k − ikR0 (9) 

According to the different state parameters of the lithium-ion battery in different modes such as charging, discharging, and standing, to improve the 
simulation accuracy of the model, the OCV is modified, and the calculation formula of Mk is shown in Eq. (10). 

Mk = ζSOC
(
OCVchg,k − OCVdchg,k

)
(10) 

Among them, OCVchg,k and OCVdchg,k represent the OCV value of the charging and discharging process respectively. ζSOC is an adjustment coefficient, 
and piecewise linearization is adopted for the hysteresis voltage and SOC range, so that the model can fully and accurately reproduce the hysteresis 
characteristics of lithium-ion batteries. Set UE = UL-UOC-hM, then the circuit transfer function in the complex frequency domain is obtained as shown in 
Eq. (11). 

G(s) =
UE(s)
I(s)

= −

(

R0 +
R1

1 + sR1C1
+

R2

1 + sR2C2

)

= −

(

m1s2 +
m5

m2
s+

m4

m2

)/(

s2 +
m3

m2
s+

1
m2

)

(11) 

The expressions of m1 ~ m5 in the Eq. (11) are as Eq. (12). 
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⎧
⎨

⎩

m1 = R0,m2 = R1C1R2C2
m
m

3 = R1C1 + R2C2,m4 = R0 + R1 + R2

5 = R0R1C1 + R2R1C1 + R0R2C2 + R1R2C2

(12)



G(z) =
θ3 + θ4z− 1 + θ5z− 2

1 − θ1z− 1 − θ2z− 2 (13) 

The expressions of θ1 ~ θ5 in Eq. (13) are as Eq. (14). 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1 = −
(
2T2 − 8m2

)/(
T2 + 2m3T + 4m2

)

θ2 = −
(
T2 − 2m3T + 4m2

)/(
T2 + 2m3T + 4m2

)

θ3 = −
(
m4T2 + 2m5T + 4m1m2

)/(
T2 + 2m3T + 4m2

)

θ4 = −
(
2m4T2 − 8m1m2

)/(
T2 + 2m3T + 4m2

)

θ5 = −
(
m4T2 − 2m5T + 4m1m2

)/(
T2 + 2m3T + 4m2

)

(14) 

Therefore, the difference equation of the electrical characteristic model is shown in Eq. (15). 

UE(k) = θ1UE(k − 1)+ θ2UE(k − 2)+ θ3I(k)+ θ4I(k − 1)+ θ5I(k − 2) (15)  

2.3. Full-parameter adaptive identification strategy 

2.3.1. Multi-identification strategy algorithm fusion architecture 
Lithium-ion batteries have strong nonlinear dynamic characteristics in charge and discharge operation due to the coupling process of multiple 

parameters, such as internal electrochemical reaction, charge transfer, carrier transport, and heat transfer. The conventional offline method for real-
time tracking of model parameters and feedback correction is lost. Therefore, this paper adopts the full parameter identification method of online 
detection data and proposes a fusion strategy. The overall research idea is shown in Fig. 3. 

As a typical nonlinear system of a lithium-ion battery, the influence of external conditions will make the changes in various parameters of the model 
extremely sensitive, and may even lead to the results oscillation or divergence. Because of this, this paper proposes an online parameter identification 
strategy for lithium-ion batteries with good operating condition characterization capabilities. As shown in Fig. 3, the real voltage and current data measured 
in the experiment are used as the input of the multi-fusion strategy, and the coupling information about R0 is used as the input parameter of the linearized 
particle swarm optimization (LPSO) algorithm, and then fed back to the harmony between the model parameters. The above process completes the parameter 
identification and update in the response to each link based on the adaptive forgetting factor recursive least squares (AFFRLS) and LPSO lower-level 
algorithms, and realizes the multi-fusion algorithm parameter identification strategy. 

5

According to the principle of bilinear transformation, let s=2(1-z-1)/[T(1+z-1)], the Z domain epression of the transfer function is shown in formula Eq. (13).

Fig. 3. Full-parameter identification scheme based on AFFRLS-LPSO fusion strategy.st
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θ(k) = θ(k − 1)+K(k)e(k) (18) 

The parameter estimation value at time k is modified based on the estimation at time k-1 by multiplying the innovation and the gain matrix K(k).  

c) Update the system gain K(k) as shown in Eq. (19).

K(k) = P(k − 1)φ(k)
[
λ(k) + φT(k)P(k − 1)φ(k)

]− 1 (19)    

d) Calculate the covariance matrix P(k), as shown in Eq. (20).

P(k) = P(k − 1) − K(k)φT(k)P(k − 1)
/

λ(k) (20) 

In this process, the forgetting factor is adaptively adjusted, as shown in Eq. (21). 

{
ε(k) = round

(
(e(k)/ebase )

2
)

λ(k) = λmin + (1 − λmin)hε(k)
(21) 

The round function rounds the result to a specified number of digits, and this article sets the rounding to the second digit. The value of the variable 
forgetting factor can change exponentially linearly with the algorithm's estimation error at the current moment. When the estimation error is larger, the 
variable forgetting factor is closer to the mini-mum value of the forgetting factor; when the estimation error is smaller, the variable forgetting factor is 
closer to 1. The AFFRLS identification process is shown in Fig. 4. 

The parameters of the lumped electrical characteristic model are separated by parameters, and the function expression between the variables m and θ is 
obtained from the Eq. (12) and the Eq. (14), as shown in the Eq. (22). 

2.3.2. Design of sub-algorithm 

2.3.2.1. Adaptive forgetting factor recursive least squares. Aiming at the problem of inaccurate detection of signal feature information by the RLS method, to 
compensate for the lack of tracking ability of sudden changes and time-varying signals under complex working conditions, an adaptively adjusted weighted 
forgetting factor λ is introduced based on the optimization of exponential weighting. It solves the requirement that fast-tracking ability and small steady-state 
error cannot be achieved at the same time under the condition of a fixed forgetting factor, effectively prevents the phenomenon of “filter saturation” in traditional 
algorithms, and improves the ability of the algorithm to track variable channel parameters. According to the difference equation of the electrical charac-teristic 
model, the system input matrix is determined, as shown in Eq. (16). 

{ θ(k) = [θ1 θ2 θ3 θ4 θ5]
T

φ(k) = [UE(k − 1) UE(k − 2) I(k) I(k − 1) I(k − 2) ]T
(16) 

In Eq. (16), θ(k) is the system parameter matrix and φ(k) is the system data matrix.  

a) Define e(k) as the error between the estimated response of the system and the actual system feedback y(k), which is also the residual, as shown in Eq. (17).

(17)    e(k) = UE (k) −  φT (k)θ(k −  1)

b) Calculate the parameter matrix θ(k), as shown in Eq. (18).

Fig. 4. The flowchart of the adaptive forgetting factor recursive least squares algorithm.  
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m
m
m
m
m

1 = (θ4 − θ3 − θ5)/(1 + θ1 − θ2)

2 = (1 + θ1 − θ2)T2/4(1 − θ1 − θ2)

3 = (1 + θ1)T/(1 − θ1 − θ2)

4 = ( − θ3 − θ4 − θ5)/(1 − θ1 − θ2)

5 = (θ5 − θ3)T/(1 − θ1 − θ2)

(22) 

Assuming τ1 =
(

m3 +
√̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m3
2 − 4b

)/
2, τ2 =
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m3

2 − 4b
√ )/

2, then the various parameter expressions of the model are obtained as 

⎧
⎨

⎩

R
R
C

0 = m1,R2 = m4 − m1 − R1

1 = [τ1(m4 − m1) + m1m3 − m5 ]/(τ1 − τ2)

1 = τ1/R1,C2 = τ2/R2

(23) 

shown in Eq. (23). 

The above steps can identify the model full parameters by dynami-cally adjusting the forgetting factor, and simulate the internal electrochemical 
characteristics of the battery more realistically. It lays a solid foundation for long-term online synchronous estimation of various state parameters of the battery. 

2.3.2.2. Linearized particle swarm optimization.      

The PSO algorithm is a bionic algorithm that mainly simulates social behaviors such as birds foraging and human cognition. Particles share information only 
through the current search, and the entire search can converge to the optimal solution faster. To identify the model parameters of the lumped electrical 
characteristic accurately and quickly, it is often desirable to use a global search first, and then use a local fine search to obtain a high-precision solution, thereby 
improving the global detection and local mining capabilities of the algorithm. Therefore, based on the traditional PSO algorithm, this paper introduces an inertia 
weight linearization adjustment strategy to balance the globality of convergence and the speed of convergence, to quickly follow the optimal particle search in the 
solution space of identification parameters. Assuming that the particle is extended to the D-dimensional space search, a population contains N particles, and the 
following four variables are defined.  

i. The i-th particle position.

xi,d=
[

xi,1 xi,2 ⋯ xi,d
]

(24)    

ii. The i-th particle velocity.

vi,d=
[

vi,1 vi,2 ⋯ vi,d
]

(25)    

iii. The optimal position searched by the i-th particle.

pi,d=
[

pi,1 pi,2 ⋯ pi,d
]

(26)    

iv. The optimal position searched by the group.

gi,d=
[

gi,1 gi,2 ⋯ gi,d
]

(27) 

Therefore, the search speed of the i-th particle in the D-dimensional space can be represented as shown in Eq. (28). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
k
,d
+1 = Ai

k
,d + Bi

k
,d + Ci

k
,d

Ai
k
,d = ωvi

k
,d

Bi
k
,d = c1r1

(
pi

k
,d − xi

k
,d

)

Ci
k
,d = c2r2

(
gi

k
,d − xi

k
,d

)

(28) 

Among them, vk + 1 i,d shows the D-dimensional spatial component of the search velocity vector of particle i in the k + 1 iteration process, and xk + 1 
i,d shows the D-dimensional spatial component of the particle i position vector in the k + 1 iteration process. Ak + 1 i,d is the inertial part of the current 
search velocity, which is used to characterize the velocity component of the individual particle affected by the prior conditions. Bk + 1 i,d is the 
cognitive part of the particle individual, which is used to optimize the optimal position and direction of the iterative individual. Ck + 1 i,d is the 
social cognition part, which transmits the information-sharing mechanism between individuals in the population and is used to adjust the distance and 
direction between the individual and the optimal position of the group. c1 and c2 are the learning factors of individuals and groups, respectively. r1 and 
r2 are random numbers in [0,1], which effectively enhance the randomness of the particle search process. ω is the inertia weight, which can expand the 
search range of the solution space to a certain extent. The adaptive process of the inertia weight in this paper is shown in Eq. (29). 
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ω = (ωmax − ωmin)exp
{
− [iter/(n⋅iter) ]2

}
+ωmin (29) 

In Eq. (29), iter denotes the current iteration count. This process makes the initial ω of the algorithm larger, the global optimization ability is strong, and 
it is easy to jump out of the local extremum; while the later ω is smaller, the algorithm is easy to converge. Therefore, the position update of the i-th particle in the 
D-dimensional space is ob-tained, as shown in Eq. (30). 

xi
k
,d
+1 = xi

k
,d + vi

k
,d
+1 (30) 

The schematic flowchart of the LPSO algorithm is shown in Fig. 5. To evaluate the excellent performance of the fusion strategy, the root mean squared error 
(RMSE) and the mean absolute percentage error (MAPE) are used to characterize, and the calculation formula is as follows more intuitively. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 N∑

N i=1
(yi − ŷi)

2

√
√
√
√

MAPE =
100%

N

N∑

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒

(31) 

In the formula, N is the number of samples, yi is the actual value of the system, and yi is the estimated value of the system. Eq. (31) can be used to 
comprehensively evaluate the performance of the algorithm. 

Fig. 5. The flowchart of the linearized particle swarm optimization algorithm.  

3. Experiments and results analysis

3.1. Experimental test platform construction

To further verify the accuracy of the battery dynamic characteristics and the lumped electrical characteristic model, this paper selects the 70 Ah ternary 
lithium-ion battery as the research object and conducts experiments under complex working conditions. The construction of the experimental platform and 
the detailed parameters of the battery characteristics are shown in Fig. 6. 

As shown in Fig. 6, the construction of the experimental platform includes the test battery, the host computer, the power battery charge, and discharge 
tester (CT-4016-5V100A-NTFA), and the temperature cycle test box (BTKS5-150C). The power battery charge and discharge tester can perform constant 
current/constant voltage charge and discharge operations on the battery, simulate the real operating conditions of the battery in different scenarios, and 
output data parameters such as current, voltage, energy, and power of the battery in real-time. The temperature cycle test box can be pulled according to the 
demand and set a constant temperature value to avoid internal fluctuations caused by environmental factors during the normal operation of the battery. 
The host computer determines the specific test steps of the battery by setting the corresponding experimental steps under different working conditions, and 
finally realizes the data transmission between different devices through the TCP/IP, to intuitively read the various types of data collected. Based on the 
construction of the above experimental platform, various charging and discharging operations of the tested battery can be completed in this paper, providing 
real test data for the subsequent comprehensive analysis of the algorithm, and using basic experiments and confirmatory experiments to further verify the 
feasibility of the improved algorithm. 

3.2. Comprehensive performance analysis considering hysteresis characteristics 

The hysteresis effect is a complex dynamic behavior of the battery, which is manifested as the non-overlapping charge-discharge curves on the surface of the 
battery. This behavior has the phenomenon of electrode polarization, that is, under the same SOC state, there are different equilibrium potentials, which are all 
caused by the relaxation of polarization. To verify the model accuracy, the influence of voltage hysteresis is considered in this paper, and the battery is charged 
and discharged at a rate of 1C under constant temperature conditions to obtain the OCV of the battery in different states. Moreover, the same test was performed 
at SOC of 40 %, 60 %, and 80 %, that is, when the lithium-ion battery was released or increased its capacity by 20 %, the recorded data was a hysteresis loop, so 
three hysteresis loops were obtained. Plot the OCV- SOC curve as shown in Fig. 7. 

Fig. 7 is the OCV-SOC curve considering the hysteresis characteris-tics, OCV1 represents the open circuit voltage value during the discharge process, 
OCV2 represents the open circuit voltage value during the charging process, and OCV3 represents the average voltage value during one charge-discharge 
cycle. D is expressed as the difference between the OCV during charging and discharging. U1 and U2 correspond to the OCV of the charge/discharge process, 
respectively. The hysteresis loop composed of U3 and U4 is expressed as the terminal voltage variation curve of SOC in the range of 20% to 40%. The hysteresis 
loop composed of U5 and U6 is expressed as the terminal voltage variation curve of SOC in the range of 40% to 60%. The hystersis loop composed of U7 and U8 
is expressed as the terminal voltage variation curve of SOC in the range of 60%~80%. Then, a simplified electrochemical model was fitted to the average OCV and 
SOC, and the fitting results are shown in Table 1.



Fig. 6. Construction of experimental platform for battery characteristic test and model test.te
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Fig. 7. Plot of piece linearization of OCV vs SOC considering hysteresis characteristics.  

In the Table 1, the sum of squares due to error (SSE) describes the sum variance of the fitting method, the coefficient of determination (R- squared) 
represents the goodness of fit, degree-of-freedom adjusted co-efficient of determination (adjusted R-squared) represents the coeffi-cient of determination of 
the fitting adjustment, and RMSE represents the root mean square error of the fitting. When the SSE and RMSE values are closer to 0, the fitted data approaches 
the measured data. When R-squared and adjusted R-squared are closer to 1, the better the fitting equation can interpret the data and the better the fitting effect. 
This process can well characterize the OCV values corresponding to different SOC values. Given this, removing the influence of the electrode polarization effect, 
the relationship between the hysteresis voltage Uh and the SOC is obtained as shown in Fig. 8. 

Due to the voltage plateau characteristics of lithium-ion batteries, in the voltage plateau region, M is about 50 % of the OCV difference between charge and 
discharge. In the voltage non-stationary region, the weighting factor is determined by the linear difference. Considering the model accuracy and algorithm 
complexity, the hysteresis voltage is piecewise linearized according to the SOC range and linearized into a three-segment function, so the OCV-SOC correction 
strategy is obtained, as shown in Eq. (32). 
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Table 1 
OCV and SOC fitting relationship expression  results.re

General model UOCV(z) = α0 + α1z + α2z2 + α3/z + α4ln(z) + α5ln(1-z) 

Coefficients(with 95% confidence bounds) α0 = 4.041 (3.886, 4.196) α1 = −  1.107 (−  1.434, −  0.7811) α2 = 1.348 (1.119, 1.577) 

α3 = − 0.002527 
− 0.0002235) α4 = 0.1998 (0.1359, 0.2637) α5 = 0.02058 

( −0.0001217, 0.04128) 

Goodness of fit SSE 
R- 
squared 

adjusted 
R-squared RMSE 

0.005373 0.9979 0.9977 0.01118  

(− 0.00483, 

⎧
⎨

Uh(k) =
⎩

− 0.0189z(k) + 0.2498, 2% ≤ z(k) ≤ 12%
M(k), 12% ≤ z(k) ≤ 88%
0.0021z(k) + 0.1812, 88% ≤ z(k) ≤ 98%

(32)  

Fig. 8. Plot of hysteresis voltage vs SOC.  

3.3. Statistical analysis of the identified results 

According to the constructed lumped electrical characteristic model considering the hysteresis effect, it is necessary to identify the full parameters of the 
model to reflect the behavioral characteristics of the system, and further illustrate the rationality of the algorithm in char-acterizing the internal effect of 
the battery. The unknown parameters that need to be identified in this paper include R0, R1, R2, C1, C2, and the parameters are identified and the model 
accuracy is verified under the dynamic stress test (DST) condition. The DST working condition is generally composed of operations such as splitting, 
cutting, simplifying, and power distribution statistics of the actual working condition. In this paper, the battery is tested for cyclic charging and discharging, 
and the dynamic change curves of current and voltage at different temperatures are obtained by customizing the DST working conditions in Fig. 9. 

For the fusion identification algorithm proposed in this paper, parameter identification is carried out at 15 ◦C, 25 ◦C and 35 ◦C to obtain each state 
parameter of the model, and the identification results are shown in Fig. 10. 

Fig. 10 (a) shows the dynamic adaptive adjustment process of the forgetting factor, and Fig. 10 (b)-(f) shows the identification results of each 
parameter. In the whole iterative process of the adaptive forgetting factor recursive least squares-linearized particle swarm optimization (AFFRLS-LPSO) 
algorithm, due to the errors existing in the system itself, there is a large deviation in the early identification stage. However, with the progress of time, each 
identification result fluctuates within a certain range, indicating that the joint online identification method has high stability. Because of this, using the 
current data provided by DST con-ditions as input, the experimental parameters based on intermittent charging and discharging correspond to the 
parameters of the charging and discharging process in Fig. 10. The performance of the ECM is evaluated by comparing the estimated terminal voltage of the 
simulation model with the measured voltage, and the terminal voltage estimation effect of different identification methods is obtained, as shown in Fig. 11. 



Fig. 9. Experimental test data under DST condition.

R

R R

C C

Fig. 10. Full parameter identification results and dynamic forgetting factor adjustment process at different temperatures. (a) Forgetting factor adaptive adjustment 
curve. (b) R0 identification result. (c) R1 identification result. (d) R2 identification result. (e) C1 identification result. (f) C2 identification result. 
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Fig. 11 (a), (c), and (e) show the results of the simulated versus experimental voltages of the measured lithium-ion battery at different temperatures for the DST 
conditions. Fig. 11 (b), (d), and (f) show the results of the voltage estimation error of the real-time monitoring parameter model at their corresponding 
temperatures. According to Fig. 11, the fusion algorithm has a faster convergence rate, and the real voltage value of the lithium-ion battery can be tracked more 
quickly at the early stage of identification. It can also be seen that the established hysteresis model is closer to the measured value than the simulated voltage 
waveform without adding hysteresis to the model, and the model without hysteresis cannot simulate the actual battery terminal voltage change in time during the 
charge/discharge transition. The AFFRLS-LPSO algorithm converges quickly under different working conditions, and the estimates all remain in a stable range 
with smooth tracking curves. Also, the maximum error of the improved algorithm is more than doubled when comparing with or without adding the hysteresis 
module and different identification strategies, which verifies its effectiveness and accuracy. With the aging of the lithium-ion battery, except for the end of the 
discharge stage, the error increases due to the violent electrochemical reaction inside the battery, which is a normal phenomenon. To further verify the universality 
of the AFFRLS-LPSO algorithm, the experimental steps for the lithium-ion battery test were set with reference to the Beijing bus dynamic stress test (BBDST) 
condition, and the experimental data under the complex current cycle test was obtained, as shown in Fig. 12. 

Similarly, we added different temperatures to the battery model to verify the accuracy of the constructed model by placing the battery in a constant 
temperature chamber at 15 ◦C, 25 ◦C, and 35 ◦C, respectively, and comparing the model output with the test voltage. Besides, the covariance model without 
the introduction of hysteresis voltage was also compared to verify the compensation effect of the hysteresis link. Using the experimental data of BBDST dynamic 
conditions as the excitation, the model verification results and simulation errors are obtained, as shown in Fig. 13. 

As can be seen in Fig. 13, the online identification algorithm based on AFFRLS-LPSO still has better estimation accuracy under more complex dynamic 
conditions, and the relative error of estimated terminal voltage is basically stable within 0.03 V. The model considering the influence of battery hysteresis effect has 
a significantly smaller voltage tracking error than that without the hysteresis link, and has a significantly smaller relative error compared to the AFFRLS 
algorithm, with a faster convergence speed and higher stability. Therefore, to further describe the excellent performance of the fusion algorithm in 
characterizing the full parameters of the model and verifying the accuracy of the model, the Error, RMSE, MAPE, and running time under different dynamic 
conditions are comprehensively compared. These four indicators are used to quantitatively analyze the accuracy of the model, as shown in Table 2. It should be 
noted that the total time of this paper is 8250 s under the DST condition and 13,300 s under the BBDST condition. Due to the large increase in the amount of data, 
the iterative running time of the algorithm is also relatively prolonged. 



Fig. 11. Comparison of terminal voltage error curves under DST at different temperatures.te

Fig. 12. Experimental test data under BBDST condition.  
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According to the inter-comparison between the parameters in Table 2, the introduction of hysteresis components more accurately describes the battery 
behavior, and there is a certain time lag relation-ship between the supplemental potential and the charge state. Taking the ambient temperature of 15 ◦C as an 
example, the AFFRLS-LPSO al-gorithm reduces the Error, RMSE and MAPE by 0.0465 V, 0.0192 V and 0.242 %, respectively, and increases the running time
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 1.881 s compared to the AFFRLS algorithm in the DST condition. In the BBDST condition, the AFFRLS-LPSO algorithm reduces the Error, RMSE and MAPE by 
0.0140 V, 0.0037 V and 0.300 %, respectively, and increases the runtime by 1.546 s. Because the fusion algorithm is based on the AFFRLS algorithm, the LPSO 
algorithm is superimposed, which makes the running time relatively longer, but does not affect the superiority of the comprehensive performance of the proposed 
algorithm. Hence, the improved algorithm effectively improves the identification accuracy of the ECM parameters, makes the simulated voltage quickly converge 
to the actual value, and lays a foundation for the accurate evaluation of the state parameters of the subsequent lithium-ion battery. 

3.4. Parameter consistency verification analysis 

Measuring the correlation between the estimated value of the ter-minal voltage and the actual value is a means of judging the validity of the model and 
identification strategy. In addition, considering the physical meaning of the internal parameters is also one of the evaluation methods and comprehensively 
analyzes the consistency of the identification parameters of the multi-fusion strategy under different working conditions. In this paper, the quantitative analysis of 
all parameters of the model is carried out, and the identification results are normalized to measure the closeness of the correlation of identification parameters 
under different working conditions at 15 ◦C. The parameter normalization verification results are shown in Fig. 14. 

By standardizing the model parameter data, the verification results under different algorithms shown in Fig. 14 are obtained. Fig. 14 (a) shows the 
normalization results of the model's full parameters using the single identification strategy algorithm. Fig. 14 (b) shows the normal-ized results of the model's full 
parameters using the multi-identification strategy algorithm. By comprehensively analyzing the fitness under different conditions, the unconstrained parameter 
estimation consistency errors of the AFFRLS algorithm are 26.4 % and 12.3 % under the DST and BBDST working conditions, respectively. The unconstrained 
parameter estimation consistency errors of the AFFRLS-LPSO algorithm are 16.5 % and 9.9 % under the DST and BBDST working conditions, respectively. 

Compared with the AFFRLS-LPSO algorithm, the parameter consistency error of the AFFRLS algorithm is larger, which accumulates more errors for the 
subsequent estimation of the state parameters of the lithium-ion battery. Consequently, the fusion strategy proposed in this paper has far-reaching significance for 
battery state estimation.

Fig. 13. Comparison of terminal voltage error curves under BBDST at different temperatures.te



14

4. Conclusion

Table 2 
Comparison of Error, RMSE, MAPE, and Running time under DST and BBDST conditions.  

Working condition DST BBDST 

15 ◦C 15 ◦C  

Error/V RMSE/V MAPE/% Running time/s Error/V RMSE/V MAPE/% Running time/s 

non-hy-AFFRLS 0.1056 0.0300 0.0042 18.679 0.0424 0.0310 0.0039 26.329 
hy-AFFRLS 0.0765 0.0310 0.0031 18.827 0.0257 0.0183 0.0036 28.786 
hy-AFFRLS-LPSO 0.0300 0.0118 6.71e-04 20.708 0.0117 0.0146 6.05e-04 30.332   

Working condition DST BBDST 

25 ◦C 25 ◦C  

Error/V RMSE/V MAPE/% Running time/s Error/V RMSE/V MAPE/% Running time/s 

non-hy-AFFRLS 0.1080 0.0430 0.0054 19.839 0.0521 0.0440 0.0048 30.112 
hy-AFFRLS 0.1071 0.0473 0.0049 19.550 0.0400 0.0334 0.0041 32.871 
hy-AFFRLS-LPSO 0.0325 0.0214 0.0012 21.592 0.0143 0.0284 0.0014 35.350   

Working condition DST BBDST 

35 ◦C 35 ◦C  

Error/V RMSE/V MAPE/% Running time/s Error/V RMSE/V MAPE/% Running time/s 

non-hy-AFFRLS 0.0723 0.0378 0.0044 22.344 0.0457 0.0304 0.0042 29.034 
hy-AFFRLS 0.0469 0.0375 0.0037 19.344 0.0332 0.0296 0.0034 30.861 
hy-AFFRLS-LPSO 0.0327 0.0142 8.29e-04 21.285 0.0181 0.0173 8.63e-04 32.880  

CRCRR R R C R C

Fig. 14. Normalized check value of each parameter of the model.  

This paper seeks an accurate modeling method and efficient parameter identification strategy for lithium-ion batteries to clarify the differences 
between charge and discharge tests. To reduce the model error caused by the difference characteristic, a hysteresis module is introduced to construct a 
lumped electrical characteristic model considering the influence of the hysteresis component. In addition, a fusion strategy parameter identification based on 
the AFFRLS optimized by the LPSO algorithm is constructed. This method effectively solves the problem of online synchronous identification of model 
parameters at long-term scales, balances the globality of convergence and the speed of convergence, quickly tracks the optimal solution in the solution space of 
identification parameters, and improves the system identification accuracy. Then, the experimental steps of DST and BBDST working conditions are customized, 
and the correlation between the estimated value of terminal voltage and the actual value of different identification strategies is compared on a long-term scale. The 
research results fully show that the proposed algorithm has good tracking performance and high generality, and can better characterize the internal dynamic 
characteristics of the battery, which verifies its superiority over the AFFRLS-LPSO algorithm. Simultaneously, to quantitatively analyze the closeness of the 
correlation between model parameters under different working conditions, all parameters are normalized. The experimental results show that the unconstrained 
parameter estimation consistency error is reduced by 9.9 %, and the parameter consistency degree is high. Therefore, this work provides a useful exploration for 
the reliable modeling and high-precision real-time parameter identification of lithium-ion batteries and lays the foundation for the effective evaluation of 
subsequent battery states. 
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