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THEORY APPLICATIONS OF LEAJLMING AUTOMATA

by-

Neil James Mackie

Abstract

Although the theoretical performance of many learning automata has 
been considered, the practical operation of these automata has 
received far less attention. This work starts with the construction 
of fwo action Tsetlin and Krylov automata. The performance of these 
automata has been measured in stationary and non-stationar^/
environments. The operation of a hierarchical automaton controlling
the memory size of a Tsetlin automaton is also investigated.

Two new automata are proposed with the aim of avoiding the 
operational disadvantages of the Tsetlin autom^aton. These automata 
have been tested using a computer simulation and in addition 
theoretical performance results have been calculated and compared with 
results for Tsetlin, Krylov and Lri automata.

A model of a non-autonomous environment is simulated and its 
operation analysed theoretically. A more accurate model is analysed 
and its operation with a Lri automaton examined and compared to 
theoretical predictions. The requirements for learning autom.ata to 
operate successfully in non-autonomous environments is considered and
it is shown that the Lrp and Lri automata do not converge to the
optimum for a non-autonomous environm.ent.

Three automata are proposed which are designed to operate in- 
non-autonomous environments and their performances are compared to 
those of the Lrp and Lri automata.

The operation of automata in a hierarchical learning system and in 
cooperative and competitive games is considered. In these situations 
the performance of the new automata is compared to that of the Lrp and 
Lri automata.

Finally, ti</o applications of learning automata are investigated. 
The first considers the Tsetlin allocation scheme, gives a 
modification which increases the performance and makes a comparison 
with a scheme using other learning automata. The second involves the 
selection of a processor in a multiprocessor computer system and 
compares a scheme using learning automata with a fixed scheduling 
discipline.
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Abbreviations and Symbols

ADDIE adaptive digital element

first parameter of Lrp automaton 

action of learning automaton 
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mean first passage time from state i to j

average penalty

memory size of Tsetlin automaton

probability of counting up in a random walk

action probability vector of learning automaton

state vector of learning automaton

parameter in linear or non-linear non-autonomous 
environment

proportional intergral differential 

pseudo-random binary sequence
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state probability vector of learning automaton

transition matrix of learning automaton

probability of counting down in a random walk

number of actions available to a learning automaton

number of states in a random walk

step size of probabilistic Tsetlin automaton

parameter in linear or non-linear non-autonom,ous 
environment

input to automaton from environment
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THEORY AND APPLICATIONS OF LEAJINING AUTOMATA

CHAPTER 1 REVIEW OF LEARNING AUTOMATA

Introduction

The aim of constructing a machine able to control a variety of 

processes with little or no prior knowledge of the process being 

required is an attractive proposition. The use of learning is a 

method of achieving these aims and has lead to the study of learning 

automata.

The aim of a learning automaton is to select an optimal action from 

a set of possible actions. An action, as selected by a learning 

automaton, can consist of a single action or a number of actions which 

are performed on an environment. The environment responds to the 

action or actions with an output from a set of possible outputs which 

is probabilistically related to the action of the autom.aton. The 

automaton in turn learns by using the output of the environment to 

change its internal state prior to selecting another action. The 

configuration of automaton and environment is shown in Figure 1.1.

The study of learning automata involves determining the 

characteristics of learning automata and the environments with which 

they will be used. This enables automata to be selected to suit 

different types of environment and allows the performance of automata 

to be evaluated, compared and hopefully improved. This chapter deals 

in general with the different types of automaton and environment while 

the other chapters deal with particular automata and particular 

environments and types of environment.



The process, system or medium in which the learning automaton 

operates is termed the environment. The environment is defined by the 

triple (oC,C,X) where oc represents the input set to the environment in 

the form of an action and X represents the output set. The 

environment is assumed to be stochastic so that in response to an 

input j it is possible to generate any of the elements of the 

output set according to c^ , an element of C, the penalty probability 

set.

There are three different schemes for the output of the 

environment, termed the P, Q and S models. In the S model, the output 

of the environment can have a continuous range of values in the 

interval [0,1]. In the 0 model, the output can have one of a finite 

number of values in the interval [0,1]. However it is the P model 

which is most widely used with learning automata and which will be 

used in the chapters that follow. In this model there are only two 

output values, namely 0 representing a reward and 1 representing a

The Environment

penalty. At time t=n c^ is defined as

c^ (n) = ProbabilityC x(n) = l | oiCn)=o<^ ) (1.1)
Thus c^ represents the probability of a penalty being output in 

response to input o<̂  while the probability of a reward is 1-c. . The 

P model has the advantage of simplicity when environments or learning 

automata are being investigated either through theoretical analysis or 

practical observation.



Although a learning automaton requires little a priori knowledge 

about an environment, some information is required. An automaton must 

know the number of allowable actions for the environment or a number 

greater than the number of allowable actions. This is so that the 

actions of the automaton can be matched to the actions of the 

environment, with any extra automaton actions being made dumm.ies with 

a penalty probability of unity. The automaton must know the form of 

the environment output in terms of P, 0 or S models. Finally, the 

operation of the environment and automaton must be synchronised so 

that action and feedback follow each other in the correct order. Both 

the automaton and the environment are assumed to operate in discrete 

time with the input to the environment oc(n) being followed by output 

x(n) to the automaton which after its internal operations produces 

oc(n+l). Apart from the above information, a learning automaton should 

be able to converge towards selecting the optimal action of the 

environment by working from an initial condition where each action is 

regarded as being equally favourable. The information the automaton 

uses to select its actions is the favorable (reward) or unfavorable 

(penalty) responses made by the environment to its past actions.

A learning automaton can be described by the quintuple (X,©«",<j>,F,G) 

and falls within the classification known as the Mealy model [1,2]. 

The input set X has the allowable inputs to the automaton as its 

elements. For an automaton operating with a P model environment, the 

set will have two elements =0 and x^ =1. The set ô -is the output 

set of the automaton which has as its elements the actions the 

automaton can take. The set (j) is the set of states of the automaton. 

The operation of the automaton is defined by its algorithm F which

The Learning Automaton



relates the state of the automaton to its next state

F(0(n),x(n)) -> 0(n+l) (1.2)

F can be a deterministic or a stochastic function and defines a set of 

transition matrices, one for each element of X allowing equation (1.2) 

to be written as

Pt(x) 0(n) = 0(n+l) (1.3)

If the transition matrices have only 0 or 1 as their elements the 

automaton is called deterministic while if any of the elements are 

probabilities the automaton is called stochastic. If the elements of 

the transition matrices are constants the automaton is described as 

having a fixed structure but if any of the elements is a variable the 

automaton has a variable structure. G is the output function of the 

automaton which relates the state of the automaton to the output,

G(0(n)) ->oc (n) (1.4)

G may be deterministic or stochastic.

There are two more quantities which are often used in describing 

automata, namely Ps(n) and Pa(n). Ps(n) is the state probability 

vector and its elements are defined as

probability(0(n) =0^ ) = ps^ (n) (1»5)

the probability that the automaton occupies state 0^ at time n. 

Pa(n) is the action probability vector and its elements are defined as

(1 .6)
the probability that the action of the automaton will be action cĉ  

at time n.

probability(cc(n) ) = pa^ (n)



Types of Learning Automata

A large number of learning automata have been proposed and 

investigated [3,4,5]. Table 1.1 gives a list of those commonly 

mentioned in the literature on the subject as well as automata which 

are of particular interest in later chapters. This list has been 

divided into four types containing automata which have similarities in 

the way they operate.

The automata included in Type 1 are all variable structure 

automata. These automata are best described by their algorithm and 

best observed via the action probability vector Pa. The naming of 

these automata is based on the algorithm so that if the algorithm is a 

linear equation the automaton has an L as the start of its name. If 

the algorithm is non-linear the first letter is an N while H denotes a 

hybrid algorithm. The subscripts which follow indicate whether the 

automaton changes state in response to a reward (r), a penalty (p) or 

remains inactive (i), while (w) indicates a weighted response.

Although the Type 1 automata are a more recent development than the 

Type 2 automata, recent investigations have dealt far more with Type 1 

automata than Type 2. In particular the Lrp [6] and Lri [7,8] have 

been the most common automata for study. As these two automata are 

used in later chapters the Lrp and Lri automata will be described 

here.

The operation of the Lrp automaton is described in terms of its 

algorithm as

(1.7)

(1.8)
pa. (n+1) =c<pa. (n)J / 1 J

pa. (n+1) = 1-27 . . .  pa. (n+1) 1 1 ^ 1 J
in response to a reward after action cx whilei

pa^ (n+1) =/3pa^ (n) (1.9)



pa^ ^  ̂ (n+1) = pa^ (n) + (l-/3)/(r-l) pa^ (n) (1.10)

in response to a penalty after action o<i. , where c< and Q are in the 

interval (0,1).

From equations (1.7)-(1.10) it can be seen that oc controls the 

operation of the automaton in response to a reward while Q controls 

the operation in response to a penalty. Often cxand Q are combined to 

give a third parameter defined as

 ̂ = ( l -o^)/( l - i3)  ( 1 . 1 1 )

By making /?=1 the action probability vector does not change in 

response to a penalty and the Lrp becomes the Lri automaton. Thus the 

Lri automaton is just a special case of the Lrp automaton with 13=1 but 

the performance of the Lri automaton is sufficiently different from 

that of the Lrp automaton for the Lri automaton to be refered to as a 

distinct automaton.

While the performance of the rest of the automata in Type 1 has 

been studied [9,10,11,12,13,14], none have had the consistent 

performance of the Lrp and Lri automata for all penalty probabilities.

The automata included in Type 2 are all fixed structure automata 

with a deterministic or stochastic algorithm and a deterministic 

output function. Because of their deterministic output function each 

state is associated with only one output and these automata can be 

classed as Moore models [1,2,20]. These automata are best described 

by a graph showing the state transitions in response to a penalty and 

reward. Figure 2.1 shows the graph of the Tsetlin automaton as an 

example. The capacity for changing the performance of these automata 

is limited as the algorithm is fixed, only the number of states in the 

automaton is variable.



The first of the Type 2 automata to be studied was the Tsetlin [15] 

while the automata of Krylov [16], Krinskii [17] and Ponomarev [18] 

followed the lead given by Tsetlin by devising automata similar to 

Tsetlin's but with modifications designed to improve performance. All 

these automata have a series of states corresponding to a single 

action joined to other series of states corresponding to different 

actions. The difference between the automata is in the way they 

attempt to ensure the automaton stays in states corresponding to the 

optimal action. The Q model is a modification by Tsetlin to his own 

multi-action automaton where instead of the action of the automaton 

changing in a deterministic manner it changes stochastically. These 

automata have been studied by Langholz [20,21,22] and the G2n,2 has 

been studied by Narendra et al [19] but nothing further will be said 

here as the Tsetlin and Krylov automata are studied in Chapter 2.

Although the Type 3 automata are based on the Tsetlin automaton 

they have a variable structure and so are similar to Type 1, however 

the Type 1 automata have a stochastic output function while the Type 3 

automata have a deterministic output. The Type 3 automata are 

investigated in Chapter 3.

Although the automata included in Type 4 have a variable structure 

with either deterministic or stochastic output functions [23] they are 

not grouped with the Type 1 automata because of their different 

approach to learning. The Type 4 automata use the output of the 

environment to estim.ate the elements of the set C. The automata then 

generally select the action corresponding to the lowest estimate which 

should be the optimal action of the environment. These automata have 

not been as widely studied as Types 1 and 2 though some work has been 

done by Coutts [24,25].



Type 5 automata are fixed structure automata with deterministic 

algorithms and stochastic output functions. They are similar to Type 

2 automata, consisting of a series of states but cannot be classed as 

Type 2 because of their stochastic output functions which give them 

some of the advantages of Type 1 automata. These automata are dealt 

with in more detail in Chapter 5.

Synthesis of Learning Automata

Using digital techniques, learning automata can be readily and 

economically developed to run at high speed and automata have been 

built using this method, for example the Tsetlin and Krylov automata 

in Chapter 2. However some automata are too complex to be easily 

synthesised this way and in experimentation, where comparisons have to 

be made between different automata, more flexibility is required. 

Microprocessors have been used to provide this without a proliferation 

of hardware and a great speed penalty [26]. Where speed is not 

important and the greatest flexibility is required a mainframe 

computer has been used to simulate the learning automata as in Chapter 

6.

Three functions that are required in the study of learning automata 

are the generation of random numbers, the generation of a random bit 

with a particular probability and the estimation of a probability from 

a random sequence. The methods used to obtain these functions can be 

implemented using any of the synthesis techniques mentioned above.

Random numbers can be obtained using independent segments of a

pseudo-random binary sequence (PRES) as a binary number. Such numbers
Nwill be uniformly distributed in the range 0->2 -1 where N is the 

number of bits on the binary number. A PRES can be obtained from a 

shift register operating with feedback [27,28]. A register when

8



fitted with the appropriate feedback connections will progress through 

every possible register state except for the all zeros state in a 

pseudo-random manner before reentering its initial state. The output 

from a single bit of the register will be a PRBS with probability 0.5. 

To obtain a random bit e.g. to obtain a penalty or reward with a 

particular penalty probability, a random number in the range (0,1) is 

compared to the probability. If the random number is less than the 

probability the output is a penalty, otherwise it is a reward. Figure 

1.2 shows a digital version of this which was used in Chapter 2 to 

produce a sequence of bits to represent a penalty probability.

In order to estimate the value of a probability an Adaptive Digital 

Element (ADDIE) is used [29,30] as shown in Figure 1.3. When 

operating in the steady state the ADDIE counter contains an estimate 

of the input probability. If the value in the counter is too low the 

feedback from the comparator is such that the counter counts up more 

often than it counts down while, if the value in the counter is too 

high the inverse is true. In reaction to a sudden change in the 

input, an ADDIE has a first order response with an error decaying 

exponentially with time. For a fast response, an ADDIE should have a 

small counter size but for the estimate of the input to have low 

variance, the counter size should be large. In practice, a compromise 

must be reached between these two conflicting criteria.

Stationary Environments and Measures of Performance for Learning 

Automata

Stationary environments have penalty probabilities c^ which are 

constant and do not vary with time. One measure of performance is the 

average penalty M output by the environment. An automaton is said to 

be expedient if



« < * Z l  . 1 _ >  r "i (1-12)
that is, if the automaton operates so that it receives an average 

penalty lower than that which could be obtained by randomly selecting 

actions. An automaton is said to be absolutely expedient if

E(M(n+l) I Ps(n)) < M(n) (1.13)

that is, the average penalty can be expected to decrease as the 

automaton operates. If

M(n) < 1/r ^  ̂  ̂^ (1.14)

absolute expediency implies expediency and in stationary environments 

absolute expediency implies £ optimality [4]. An automaton is said to 

be optimal if

Lim M -> c . (min) (1.15)

and £ optimal if

Lim ^ M -> c^ (min) + £ (1.16)

When operating in a stationary environment an automaton which was

optimal would select the action corresponding to c^ (min) with 

probability 1 and so receive the lowest possible average penalty. An 

automaton described as having gone optimal is selecting an action with 

probability 1. In a stationary environment an automaton which is 

optimal or as near optimal as possible will receive the lowest average 

penalty and have the best performance.

Non-stationary Environments and Measures of Performance for Learning 

Automata

Non-stationary environments are defined as environments in which 

the characteristics of the penalty probabilities change with time. A 

switched environment is one in which one or more penalty probabilities 

change instantaneously from one value to another. There are 

deterministically switched environments in which the changes will

10



occur at regular time intervals and Markov switched environments in 

which, at regular time intervals, there is a probability that the 

penalty probabilities will change.

Unlike the stationary environment an optimal, or near optimal 

automaton operating in a non-stationary environment will in most cases 

not achieve the lowest average penalty. To be able to adapt to

changes in the environment, an automaton must detect these changes by

selecting non-optimal actions. A near optimal automaton will usually 

take a long time to adapt to changes in the environment and during 

this time the automaton will not be selecting the action corresponding 

to the lowest penalty probability. Thus a measure of performance

introduced for use in non-stationary environments is the mean

adjustment or switching time [31]. This is defined for an automaton 

selecting between two actions as the average number of epochs after a 

sudden change in the penalty probabilities from to ĉ  ̂ > c^

until the action probability pa^ changes from being less than pa^ to

being greater than pa2 •

Non-Autonomous Environments and Measures of Performance for Learning 

Automata

The environments described so far have been autonomous in that the 

penalty probabilities associated with an action were unaffected by the 

operation of an automaton. However in many practical situations the 

environment would be affected by the actions taken by the automaton. 

An example would be a telephone system where the available lines would 

depend on the routing of previous calls. Such environments are 

described as non-autonomous.

11



In autonomous environments, a single action corresponds to the 

minimum penalty probability and so the performance of an automaton can 

be judged from how nearly optimal the automaton is. In a 

non-autonomous environment, because the penalty probabilities vary as 

the action probabilities change, no single action probability can be 

described as best, and the task of the automaton changes from finding 

the best action to finding the best distribution of actions. In 

non-autonomous environments the degree of optimality is not an 

effective measure of performance and the average penalty received by 

the automaton is used.

A non-stationary non-autonomous environment is not one in which the 

penalty probabilities change but one in which the relationship between 

the penalty probabilities and the action probabilities change. In 

non-autonomous environments the mean switching time of an automaton is 

less important than in an autonomous environment. Poor mean switching 

times in a non-stationary autonomous environment are caused by an 

automaton selecting a single action and not detecting changes in the 

second. However in a non-autonomous environment, where the best 

policy is to select both actions in a particular ratio, changes are 

quickly detected.

12
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA 

CHAPTER 1 TSETLIN AND KRYLOV AUTOMATA 

Tsetlln Automaton-Operation

In 1961 Tsetlin described a fixed structure learning automaton with 

deterministic algorithm and output function [15]. The Tsetlin 

automaton has been considered theoretically [32,33] and by simulation 

[19,30] but a Tsetlin automaton has not been built and its practical 

operation considered. The operation of the automaton is best

explained with the aid of Figure 2.1. This shows a two action

automaton with 2N states and a memory size of N. States 1 to N

correspond to one action while states N+1 to 2N correspond to the 

other. When the automaton receives a penalty it m.oves towards states 

N and N+1 while, in response to a reward, the automaton moves towards 

end state 1 or 2N. Thus the automaton performs a random walk 

determined by the penalty probabilities of the environm.ent with

reflecting barriers beyond states 1 and 2N [34].

Tsetlin Automaton-Hardware Synthesis

In order to investigate the operation of the Tsetlin automaton the 

automaton was built using digital electronics. A. block diagram of the 

circuitry used is shown in Figure 2.2 with more detailed circuit 

diagrams of the combinational logic used shown in Figures 2.3 and 2.4.

The heart of the automaton was a 12 bit binary counter allowing up

to 4096 states or memory sizes up to 2048 with two actions. The most

significant bit of the counter was taken as the action of the

automaton and was connected directly to the environment. In response 

the environment output a penalty or reward according to the 

appropriate penalty probability. The output of the environment and
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the action of the automaton were fed into combinational logic to 

convert them into an up/down control signal for the counter. The 

up/down control was in turn fed into more combinational logic with the 

state of the automaton and signals representing the memory size to 

provide a disable signal to prevent the counter exceeding the required 

memory size.

An environment was constructed using the method shown in Figure 1.3 

using shift registers of length 23 and 31 bits generating maximal 

length sequences. The two penalty probabilities were then fed to the 

circuitry shown in Figure 2.5 which was used to produce a switched 

environm.ent if required and to select the action probability 

corresponding to the automaton action. To monitor the operation of 

the automaton, the state of the 12 bit binary counter was converted to 

an analogue signal and displayed on an oscilloscope.

Tsetlin Automaton-Experimental Results

The performance of a Tsetlin automaton with a memory size of 2048 

was investigated in both stationary and switched environments. Figure 

2.6 shows learning curves for the automaton with action 2 the output 

and changed from 0 to 7/16 in steps of 1/16. The results show 

what is basically a linear movement from the central states of the 

automaton to the end state. For low penalty probabilities the 

movement to the end state is faster giving a shorter learning time.

Figure 2.7 shows the operation of the automaton in a 

deterministically switched environment with the central trace 

indicating the switching instants wiien ĉ  ̂ was changed to the previous 

value of c^ and C2 changed to the previous value of ĉ  ̂ . Figure 

2.7(a) shows the automaton operating with c^ 's of 15/16 and 1/16. It 

can be seen that the automaton operates well and starts to move
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towards states associated with the other action as soon as the 

environment switches. Figure 2.7(b) shows the same as Figure 2.7(a) 

initially but then the c^ ' s  are changed to 15/16 and 3/4. The 

performance of the automaton changes, it remains near its central 

states N and N+1 and frequently changes its output between action 1 

and action 2. Figure 2.7(c) also shows the same as Figure 2.7(a) 

initially but the c^ 's are then changed to 3/16 and 1/16. In this 

case the operation of the automaton also changes. The automaton 

operates poorly as its action remains the same regardless of the 

changes in the environment.

The results shown in Figure 2.7 demonstrate that the operation of 

the Tsetlin automaton will fall into one of three modes depending on 

the environment. If the c^ '̂s are about the value of 0.5, one action 

will tend to make the automaton move towards states associated with 

the other action, while the other action will tend to make the 

automaton move towards the corresponding end state. Thus one action 

is stable while the other is unstable and the automaton works well. 

If the c^ 's are both greater than 0.5, both actions will tend to make 

the automaton move towards states associated with the other action. 

Thus both states are unstable, the automaton moves between states N 

and N+1 frequently and works poorly. If the c^ ' s  are both less than 

0.5, both actions will tend to make the automaton move towards the end 

state associated with that action. Thus both actions are stable, with 

the automaton only moving from one action to another due to variance 

in the penalty probability causing it to be temporarily greater than 

0.5 over a long enough time to allow the automaton to move from one 

action to the other. If the largest penalty probability is not close 

to 0.5, or if the memory size is large, the automaton can output the
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wrong action for long periods of time and the automaton works poorly.

Tsetlin Automaton-Action Probability Results

Though the Tsetlin automaton is a deterministic automaton with a 

deterministic output function, over a long period of time a two action 

Tsetlin automaton will output both actions. If these are recorded the 

overall probability of selecting the optimal action can be calculated. 

It was found that slight differences were present between the measured 

and expected results which became apparent as the difference between 

the penalty probabilities was reduced or the penalty probabilities 

approached low values. It was found that the positioning of the 

connections from the individual bits of the PRBS shift registers 

affected the penalty probabilities. Rather than build a new random 

number generator the best positioning of the connections was selected 

and used for the later results.

Tsetlin Automaton-Mean Switching Time Results

Measurement were made of the mean switching time of the Tsetlin in

switched environments with penalty probabilities equally spaced about

0.5. For the Tsetlin and Krylov automata the mean switching time can

be defined as the average number of epochs, after a sudden reversal of

the penalty probabilities till the first output of the correct action,

assuming the automaton had rightly output the previously correct

action immediately prior to the switch in the environment. Figures

2.8(a)-(g) show the mean switching time results for various penalty

probabilities plotted against memory size with the corresponding

theoretical results. In general the results are in good agreement but

it can be seen that as the difference between the c 's is reduced the
1

measured results differ more from the theoretical results. This is
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due to the deficiencies in the generation of the penalty 

probabilities.

Krylov Automaton-Operation

The Krylov automaton [16] was proposed as an automaton which became 

more nearly optimal as its memory size increased in any environment 

instead of only in environments with one or both c^ 's less than or 

equal to 0.5 as for the Tsetlin automaton. The Krylov automaton is 

very similar to the Tsetlin automaton in that it has a series of 

states 1 to 2N, with states 1 to N being associated with one action 

and states N+1 to 2N being associated with the other. It is in the 

movement between states that the Krylov and Tsetlin automata differ. 

As Figure 2.9 shows, in response to a reward the Krylov automaton acts 

as the Tsetlin and moves deterministically towards an end state but, 

in response to a penalty, the automaton acts stochastically and moves 

either towards states N and N+l or towards the end states with 

probability 0.5.

The operation of the Krylov automaton can be related to that of the 

Tsetlin automaton. If an automaton performs an action such that it 

receives a penalty with probability c^ then

penalty probability = c1
reward probability = 1-c 1

If a reward response is taken as a movement towards states 1 or 2N and 

if a penalty response is taken as a m^ovement towards states N and N+l 

then for the Krylov automaton

penalty response probability = /2

reward response probability = (1-c^ )+(c^ /2) = /2

and for the Tsetlin automaton

penalty response probability =
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reward response probability = l-ĉ  ̂

and a similar argument applies to C2 •

Equating response probabilities it is seen that a Krylov automaton 

receiving penalty probabilities in the range [0,1] is equivalent to a 

Tsetlin automaton receiving penalty probabilities in the range 

[0,0.5] . However previous results showed that the Tsetlin automaton 

did not operate well with penalty probabilities which were both less 

than 0.5, and so it was expected that the Krylov automaton would not 

work well.

Krylov Automaton-Hardware Synthesis

Because of the similarity between the Krylov and Tsetlin automata 

the circuitry used in constructing the two automata was identical 

except for combinational logic block 1, as shown in Figure 2.2.

This circuitry, which is shown in Figure 2.10, instead of 

deterministically converting a penalty response from the environment 

into an up/down signal for the counter, as in the Tsetlin automaton, 

sampled a stochastic sequence of probability 0.5 and used this as the 

control signal for the counter.

Krylov Automaton-Experimental Results

The performance of the Krylov automaton was investigated whilst 

operating in both stationary and switched environments. Figure 

2.11(a) shows a Krylov automaton of memory size 2045, initially with 

output action 1, operating in a switched environment with penalty 

probabilities of 0 and 15/16. As predicted the result is similar to a 

Tsetlin automaton working with both c^ 's less than 0.5 with the 

automaton action remaining unchanged even though the environment 

switches. This inability to change is a function of memory size. The
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automaton has two stable actions, with the action corresponding to the 

lower c^ being more stable than the other and with stability 

increasing as the memory size increases. Variance in the penalty

probabilities causes movement between the actions and the time spent 

in an action depends on its stability. Thus while both actions are 

stable, for small memory sizes, variance should cause movement between 

the actions with the automaton spending more time in the most stable 

action. This can be seen in Figure 2.11(h) which shows a Krylov 

automaton, with memory size of 8, and operating with ĉ  ̂ = 7/8 and = 

5/8 moving from states corresponding to o.̂  to states corresponding to 

Cĵ , remaining in those states for a time and then moving back. 

Figure 2.11(c) shows a Krylov automaton, with memory size of 8, 

operating in a switched environment with c^ 's of 3/4 and 5/8. Since 

when the switching trace is high the automaton trace should be low it 

can be seen that the automaton works poorly.

Tsetlin and Krylov Automata-Theoretical Action Probability Results

In order to calculate how optimal a Tsetlin or Krylov automaton is

the steady state probabilities of the states of the automaton are

required.

For a Tsetlin automaton if the environment is such that C2 ~ ’

and if the automaton is not at an end state, when the input is action 

1 the probability of the automaton counting up is ĉ  ̂ and the

probability of counting down is 1-c, . . o i.It xs action 2 the

probability of counting up is ^ “ ^ 2  ~ *̂1 probability of

counting down is . Thus for all states 2 to 2N-1 the

probability of counting up is ĉ  ̂and the probability of counting down

is ^ random walk with reflecting boundaries [34] at 1 and

a and with a probability of going up of p and of going down of q the
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probability of being in state k after a long time is

(1-p/q) / (l-(p/q) ° ) * (p/q)*̂

where r is the number of states in the random walk, o

(2.1)

Thus for the Tsetlin automaton the steady state probability of state k 

is
2N k-1(l-(c^ /(1-c^ )))/(l-(c^ /(1-c^ )) )*(c^ /(1-c^ )) (2.2)

where k = 1 -> 2N

If C2 does not equal then the calculation of the steady

state probabilities is more difficult. The method used to calculate 

the steady state probabilities is given in Appendix 1 and was used to 

calculate the results given in Chapter 3.

Figures 3.3(a)-(d) give the theoretical degree of optimality for 

the Tsetlin and Krylov automata against memory size for various 

environments with penalty probabilities about 0.5. Results for the 

Lrp automaton have been included as this automaton was used as a 

reference. The results show that the Tsetlin and Krylov automata 

become nearly optimal as the memory size approaches 10. The Krylov 

automaton is also more optimal than the Tsetlin for the same memory 

size.

Figures 3.5(a)-(f) show results for the Tsetlin automaton in 

environments where the penalty probabilities are not constrained about 

0.5. For penalty probabilities both greater than 0.5 the optimality 

of the automaton levels out and does not increase to one as the memory 

size is increased. When one of the penalty probabilities falls below 

0.5 this measure of performance begins to approach 1 as the mem.ory 

size in increased. As the penalty probabilities are decreased further 

the optimality for a particular memory size increases.
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Tsetlin and Krylov Automata-Theoretlcal Mean Switching Time Results

The method used to calculate the mean switching time of the Tsetlin 

automaton used for Figure 2.8 and the results in Chapter 3 is given in 

Appendix 2.

In a switched environment there is a probability that the automaton 

will not be selecting the action corresponding to the lowest penalty 

probability when the environment switches. When this occurs the 

switching time of the automaton is zero. In taking results for the 

graphs shown in Figure 2.8, switching times of zero were ignored. In 

order to have the calculated mean switching times correspond to the 

results the steady state probability vector was modified so that

^1 . 1 _ >  n '■"l ■ 1
i.e. the automaton action is always correct immediately prior to the 

switch in the environment. This definition gives slightly longer mean 

switching times compared to the definition given in Chapter 1.

Figures 3.4(a)-(d) give mean switching time results for Krylov and 

Tsetlin automata in a variety of environments corresponding to those 

in Figures 3.3(a)-(d). Again the Lrp automaton has been included as a 

reference. It should be noted that the definition of mean switching 

time for the Lrp automaton is that given in Chapter 1 and differs 

slightly from that used for the Tsetlin and Krylov automata. Even for 

widely spaced penalty probabilities the Krylov automaton has very long 

switching times. As the difference between the penalty probabilities 

is reduced the performance of the Krylov automaton worsens 

dramatically. In Figures 3.6(a)-(f) which correspond to the 

environments of Figure 3.5 the results for the Krylov automaton have 

been omitted so the results for the Tsetlin automaton can be examined. 

For penalty probabilities above 0.5 where the optimality of the
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Tsetlin automaton is relatively poor the mean switching times are low. 

For penalty probabilities below 0.5 where the optimality is high the 

mean switching times are high, so much so that results for the Tsetlin 

have been excluded from Figures 3.6(e)-(f).

The theoretical results for the Tsetlin and Krylov automata 

confirmed the conclusions drawn from the experimental work with the 

automata. The Krylov automaton has a near optimal performance in all 

environments but has switching times so large that its use is 

impractical. The Tsetlin automaton has relatively poor optimality in 

environments with high penalty probabilities compared to its 

performance with low penalty probabilities. However with low penalty 

probabilities the switching times of the Tsetlin automaton are high 

and it is only with penalty probabilities about 0.5 that the Tsetlin 

has a high degree of optimality and low mean switching times.

Tsetlin Automaton-Average Penalty

In his paper [15] Tsetlin considers the operation of his automaton 

in a Markov switched environment and derives an equation for finding 

the average penalty as
2M=l/2-(a-l) /2 * 

cosh(ny)-l
2Nd/(l-2d)*((a+l)**2)*cosh(Ny)+((a-l)**2)*coth(y/2)*sinh(Ny) (2.3)

where

cosh(y)=((l+a)**2)/2a * (l-d)/(l-2d) -1 

a=p/(l-p), c^ = p, c^ = 1-p 

d = probability of environment switching 

N = memory size

Figure 2.12 shows results from this equation which show there is a 

memory size which corresponds to a minimum average penalty and that
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this memory size decreases as the switching rate increases. Figure 

2.13 shows that as the penalty probabilities move toward 0.5 the best 

memory size increases while the minimum of the curve becomes less 

distinct.

Tsetlin Automaton-Average Penalty Results

Measurements were made of the average penalty received by the 

Tsetlin automaton in both deterministically and Markov switched 

environments. In order to produce a Markov switched environment the 

switching circuitry shown in Figure 2.5 was used, connected to a 

Markov switching clock. The switching clock was arranged to switch 

every time a penalty was present on a signal representing the 

switching probability.

Measurements were then taken of the measured average penalty of a 

Tsetlin automaton operating in a Markov switched environment with 

penalty probabilities of 1/4 and 3/4 and varying the memory size and 

switching rate. Figure 2.14 shows the measured results compared with 

theoretical results. The measured average penalties show there is a 

memory size which corresponds to a minimum average penalty but 

disagree in some cases with the theoretical results on the value of 

the memory size. The differences between measured and theoretical 

results increase as the switching rate increases until the measured 

results indicate that at very fast switching rates the automaton is 

receiving an average penalty greater than the mean of the two penalty 

probabilities. These differences are due to the deficiencies in the 

generation of the penalty probabilities but also indicate how 

sensitive the Tsetlin automaton is to the nature of the penalty 

probabilities, a factor which should be borne in mind if the automaton 

is used in real environments.
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Figure 2.15 shows measurements of the average penalty but obtained 

with the automaton operating in a deterministically switched 

environment. Comparison with Figure 2.14 shows that the curves are 

steeper with the best memory size being more clearly defined. This is 

to be expected since a Markov switching rate is a mixture of a range 

of deterministic switching rates.

Optimal Memory Size Automaton-Criteria

Having shown that for a given switching rate there is an optimal 

memory size it was decided to build circuitry to automatically control 

the memory size in order to minimise the average penalty received by 

the Tsetlin automaton. This would create a hierarchical structure 

with a secondary automaton adjusting a parameter of the primary, 

Tsetlin automaton. Whilst the Tsetlin automaton would be operating in 

a switched environment, the secondary automaton would, if the 

switching rate remained constant, operate in a stationary environment. 

The secondary automaton would be working with penalty probabilities 

like those of Figure 2.14. These have a single global minimum with no 

local minima so stochastic hill-climbing methods could be used as an 

alternative to stochastic automata methods [4]. Since the curves of 

Figure 2.14 are relatively flat the automaton would have to be slow in 

order to distinguish between penalty probabilities which were near the 

same value. However, because the curves were flat an action which was 

non-optimal, but near the optimal value for memory size could be 

tolerated since the difference in average penalty between the two 

would be small. A non-optimal automaton was also favoured so that it 

could adjust the memory size to changing switching rates. At first 

sight it seemed that a multi-action automaton with an action 

corresponding to each particular memory size would be needed. This
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would have required a large structure but it was realised that in the 

simple environment with no local minima a two action, deterministic, 

gradient following automaton could be used.

Optimal Memory Size Automaton-Operation

The automaton designed to control the memory size of the Tsetlin 

automaton was like those of type 4 in Table 1.1 in that it estimated 

the penalty probabilities, and selected an action on the basis of 

those estimates. It consisted of two counters, a comparator, a memory 

size counter and some control circuitry as shown in Figure 2.16. In 

operation the automaton measures the penalty probability, in this case 

the average penalty received by the Tsetlin automaton, at a memory 

size and the penalty probability at the next highest memory size. The 

automaton then compares the two measurements and, on the basis of 

which is the smaller, either increments or decrements the memory size 

counter by one and repeats the operation. In this way the automaton 

moves down the gradient of the average penalty curves towards the 

optimal memory size. The automaton can never output the optimal 

memory size with probability greater than 0.5 since comparisons will 

always be made with the mem.ory sizes above and below the optimal 

value. Thus the automaton will respond to changes in the environment 

due to changes in the switching rate relatively quickly while the 

increased penalty probability caused by selecting the memory sizes 

about the optimal size is not great. The size of the measuring 

counters is a compromise between the smoothing effect required to 

obtain the average penalty received by the Tsetlin automaton over a 

number of switches in the environment, speed of operation and 

construction considerations. A value of 12 bits giving a counter size 

of 4096 was selected. The automaton was also limited to operate with
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memory sizes in the range 1 to 16.

Optimal Memory Size Automaton-Results

For the optimal m.emory size automaton, measurements were made of 

the steady state probability of each memory size in both Markov and 

deterministically switched environments for penalty probabilities of 

1/4 and 3/4. Figures 2.17(a)-(f) and 2.18(a)-(d) show these results 

with the optimal memory size shown as a solid line. It can be seen 

that the memory size favoured by the automaton changes with the 

switching rate though the most frequent memory size does not always 

correspond to the optimal size, there being a tendency to favour a 

higher memory size. This is because the gradients of the average 

penalty curves are steeper below the optimal memory size than above 

it. If the automaton is below the optimal memory size it will be 

forced back towards the optimal action relatively quickly whilst, if 

it is above the optimal memory size, the average penalty does not rise 

so steeply so the automaton will be forced back towards the optimal 

action more slowly.

Figure 2.17(b) shows a consequence of limiting the memory size to 

16 which results in an increased probability of the higher memory 

sizes. If the range of memory sizes was larger, memory sizes above 16 

would occasionally be selected but, because there is a limit of 16, 

the distribution of memory sizes is distorted, resulting in increased 

probability of states just below the limit.

Figures 2.18(a)-(d) show the results for deterministic switching. 

These are much more compressed because of the steeper gradients of the 

average penalty curves. Figures 2.19 (a)-(b) show more results

obtained in a deterministically switched environment, this time for 

the speed of operation of the automaton starting initially at a memory
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size of one. The results give the average number of measurements made 

before getting to the optim.al memory size. The automaton is 

relatively slow but this is due to it having to try each memory size 

twice, e.g. in moving to memory size 6 the automaton would have to 

make at least 2 measurem.ents at memory sizes 2,3,4 and 5.

Conclusions

Most learning automata have a high trade off between degree of 

optimality and mean switching time so that reducing the m.ean switching 

time also significantly reduces the optimality. The Tsetlin seems to 

provide good mean switching times and a high degree of optimality but 

with a severe limitation on the environment, the c_ 's having to be 

about 0.5. When operating in a switched environment with penalty 

probabilities about 0.5 the Tsetlin automaton does not have to sample 

the wrong state in order to determine whether the environment has 

switched or not. Because the penalty probabilities are about 0.5 when 

the switch occurs, a c. which was less than 0.5 is now greater than 

0.5 and the automaton m.oves towards states associated with the other 

action no matter the degree of optimality and so a good steady state 

performance does not imply a poor transient response as in most 

automata.

The Krylov automaton has been shown to operate for all penalty 

probabilities like the Tsetlin automaton with penalty probabilities 

less than 0.5. It works poorly in a switched environment, relying on 

a small memory size and variance in the penalty probabilities to cause 

movement between the actions.
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The optimal memory size automaton was designed for a specific task 

and was made as simple as possible. The limitations of its design 

became apparent in operation as regards speed and degree of optimality 

but nevertheless it was found satisfactory in controlling the memory 

size of the Tsetlin automaton.

These investigations highlighted the desirable and undesirable 

characteristics if the Tsetlin automaton. The difference in operation 

of the Tsetlin and Krylov is small but the effect on performance is 

large. Having noticed these changes and their effect it was thought 

that an automaton could be developed that would retain the good 

qualities of the Tsetlin automaton but avoiding some of its 

disadvantages.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHA.PTER 3 MODIFIED TSETLIN AUTOMATA

Modified Tsetlin Automata-Operation

In operation the Tsetlin automaton has stable or unstable actions

depending on whether the appropriate penalty probabilities are below

or above 0.5. By using a stochastic response to a penalty the Krylov

automaton always has stable actions regardless of the penalty

probabilities. It has been shown that the Tsetlin automaton works

well if one action is stable and the other unstable while it works

poorly if both actions are either stable or unstable. There was scope

for improvement by designing an automaton which could operate well for

penalty probabilities about any value, rather than the value of 0.5 as

for the Tsetlin automaton. This was achieved by using a stochastic

response to penalties and rewards.

The modified Tsetlin automata, types 1 and 2, take two penalty

probabilities of greater than 0.5 but about a value c^ and, by using

a stochastic response to a penalty, will produce one penalty response

probability which is less than 0.5 and one which is greater than 0.5.

Further, by using a stochastic response to a reward, two penalty

probabilities both less than 0.5 but about a value c will producem
one penalty response probability which is greater than 0.5 and one 

which is less than 0.5. This is illustrated in Figure 3.1.

The operations of the new automata are shown in Figure 3.2. For 

the automaton shown in Figure 3.2(a) and penalty probabilities about a 

c_ value greater than 0.5 as shown in Figure 3.1(a), to obtainm
penalty response probabilities c' and c' spaced about 0.5

1

c' =0.5 m (3.1)

64



Using a stochastic response to a penalty with probability W of 

moving towards states N and N+1 and assuming a deterministic response 

to a reward then

c' = c * W (3.2)m m  p
Substituting equation (3.2) into equation (3.1) gives

W = l/(2c )p m
W is to be a stochastic variable and so has a maximum value of 1 
P
thus

W = l/(2c ) if l/(2c ) < or = 1p m  m
= 1 if l/(2c^ ) > 1 m

For c less than or equal to 0.5 W =1. m p

(3.3)

For penalty probabilities about a c value less than 0.5, as shownm
in Figure 3.1(c), to obtain penalty response probabilities c'^ and

c ' 2  spaced about 0.5

c' = 0.5 m (3.4)

c' = c^ + (1-W^ )(l-c )m m  r m

Using a stochastic response to a reward with probability of moving 

towards the end state associated with the action output by the 

automaton and assuming a deterministic response to a penalty, an 

assumption justified by equation (3.3), then

(3.5)

substituting equation (3.5) into equation (3.4)

= l/2(l-c^ ) if l/2(l-c^ ) < or = 1

= 1 if l/2(l-c^ ) > 1 (3.6)

greater than 0.5, = 1, so justifying the assumption made in

forming equation (3.2).
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For the automaton shown in Figure 3.2(b) in addition to penalty and 

reward responses there is an inaction response. If an inaction

response is counted as half a penalty response, for penalty 

probabilities about a c^ value greater than 0.5, as shown in Figure 

3.1(a), to obtain penalty response probabilities c'ĵ  and c ' 2  spaced 

about 0.5

c' = 0.5 (3.7)m
Using a stochastic response to a penalty with probability of

moving towards states N and N+1 and (l~Wp ) of remaining in the same

state, and assuming a deterministic response to a reward then

c' = c W + 1/2 c (1-W ) (3.8)m m p m p
Substituting equation (3.8) into equation (3.7)

W = (1-c )/c if (1-c )/c < or = 1p m m m ' m
=1 if (1-c )/c > 1m m

For c less than or equal to 0.5 W =1. m  ̂ p

(3.9)

For penalty probabilities about a c value less than 0.5, as shownm
in Figure 3.2(c), to obtain penalty response probabilities c'^ and

c ' 2  spaced about 0.5

c' = 0.5 m (3.10)

Using a stochastic response to a reward with probability of moving 

towards the end state associated with the action output by the 

automaton and (1-W^ ) of remaining in the same state, and assuming a 

deterministic response to a penalty, an assumption justified by 

equation (3.9) then

c' = c + 1/2 (1-c )(1-W^ ) (3.11)m m  m r
Substituting equation (3.11) into equation (3.10)

W = c /(1-c ) if c /(1-c ) < or = 1r m m m m
=1 if c /(1-c ) > 1 (3.12)m m
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For c greater than 0.5, W =1 so justifying the assumption made in 

forming equation (3.8).

Using equations (3.3) and (3.6) or (3.9) and (3.12) the automata 

should be able to operate with 's about any value and retain the 

qualities of the Tsetlin automaton when operating with ' s  about

0.5. It was thought that the type 2 automaton with the inaction 

response would have less variance and so could be more optimal than 

the type 1 automaton for the sam.e m.emory size.

Modified Tsetlin Automata-Steady State Probability and Mean Switching 

Time

The steady state probabilities of the states of the automata and 

the mean switching times may be calculated for the modified Tsetlin 

using the same methods as used for the Tsetlin automaton by simply 

substituting the appropriate Markov transition matrix as given in 

Appendix 3.

The state probability and mean switching time results were 

calculated by computer and the corresponding results for the Tsetlin, 

Krylov and Lrp automata were also calculated for the purpose of 

comparison. Figures 3.3(a)-(d) show the sum. of the steady state 

probabilities for states corresponding to the optimal action, for 

various penalty probabilities about 0.5. The corresponding measure 

for the Lrp automaton is the action probability of the optimal action 

and these two measures have collectively been described as the 

optimality of the autom.aton. It can be seen that the results for the 

Tsetlin and modified Tsetlin automata are identical. Figures 

3.4(a)-(d) show corresponding results for the mean switching times of 

the automata. Like the Tsetlin and Krylov automata this is defined 

for the modified Tsetlin automata as the average time from the switch
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in the environment till the first output of the new correct action 

assuming the automaton was selecting the correct action before the 

switch•

Figures 3.5(a)-(g) and 3.6(a)-(g) show results for penalty 

probabilities that are not limited to be about the value of 0.5 so 

showing the performance of the modified Tsetlin automata with c^ 

values other than 0.5. It can be seen from Figures 3.5(a)-(g) that 

for penalty probabilities greater than 0.5 the probability of the 

modified Tsetlin automaton selecting the correct action is far higher 

than the corresponding Tsetlin automaton. For penalty probabilities 

both less than 0.5 Figures 3.6(a)-(g) show that the modified Tsetlin 

automata have mean switching times which are reasonably constant 

compared to those of the Tsetlin. The differences betwen the two 

modified Tsetlin automata become apparent in Figures 3.5 and 3.6. For 

similar memory sizes the type 2 automaton is more nearly optimal while 

the type 1 autom.aton has a shorter mean switching time. However over 

the complete range of penalty probabilities the results show that the 

modified Tsetlin automata maintain near optimal behavior and have 

short mean switching times indicating that they will operate well in 

non-stationary environments.

Having seen that the modified Tsetlin automata can operate without 

restrictions on the penalty probabilities they can be compared with 

the Lrp automaton. The values of oC and S chosen for the automaton 

represent values which in practice would give a very high perf orm.ance. 

The results for the optimality of the modified Tsetlin autom.ata are 

better than the corresponding results for the Lrp. However the mean 

switching time results are poorer. In practice the memory sizes for 

the Lrp automaton are rather small and more states would be used in
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order to gain a degree of optimality comparable to the modified 

Tsetlin results. This would in turn increase the mean switching time 

results to a level nearer the values for the modified Tsetlin 

automata•

Modified Tsetlin Automata-Simulation

Because of the relatively complicated calculation involved in

finding W and W required for the operation of the modified Tsetlin 
P t

automata it was decided to carry out investigations using a simulation 

on a computer rather than build a hardware synthesis. A set of 

stochastic simulation programs was already in existence and so 

additions were made to these to include the modified Tsetlin automata 

and also the Tsetlin and Krylov automata.

The first program that was modified created, from, a graphical 

schematic diagram input by the user, a data file which was used by a 

second program to simulate the system. An example of a schematic 

diagram produced by this program is shown in Figure 3.7 which shows 

the Tsetlin, Krylov and both m.odified Tsetlin automata in a typical 

test circuit, connected to two probability generators which provide 

the penalty probabilities. The simulation facilities were limited to 

two action automata but the memory size of the automata was variable 

as was the initial state.

To operate the modified Tsetlin automata a value is required for

c in order to calculate W and W . This was done by using two m p r
ADDIEs to estim.ate the penalty probabilities, c^ and , input to

the automata and c was taken as the arithmetic mean of these. Whenm
the automata had as their output, action 1, the penalty probability 

was input to the ADDIE estimating c^ while for action 2 the penalty 

probability was input to the ADDIE estimating c^ • This m.ethod of
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obtaining was included in the second program to be modified which

carried out the stochastic simulation and allowed the inspection and 

modification of circuit element parameters.

Modified Tsetlin Automata-Simulation Results

The results obtained from the stochastic simulation program were in 

graphical form showing automaton state against iterations with states 

1 to N, corresponding to action 1, below the axis and states N+1 to 

2N, corresponding to action 2, above the axis. At the end of each 

simulation it was possible to examine and modify circuit element 

parameters and in this way, by changing the penalty probabilities, 

switches in the environment could be simulated.

Figures 3.8, 3.9 and 3.10 show the operation of the type 1 modified 

Tsetlin automaton in a range of environments. In each case the memory 

size is 10 and the ADDIEs have 5 bits while c^ and c^ are initially 

0.4 and 0.1, 0.65 and 0.35 and 0.9 and 0.6 with the environment being 

switched between the (a) and (b) figures. Figures 3.11, 3.12 and 3.13 

show corresponding results for the type 2 modified Tsetlin automaton. 

It can be seen that the automata learn in all environm.ents, though the 

learning times are longer if the penalty probabilities are high. It 

can also be seen that the automata respond quickly to a switch in the 

environment, the switching time being smaller than the learning time. 

Figure 3.11 and to a lesser extent Figures 3.12 and 3.13 show the 

lower variance of the type 2 automaton as compared with the type 1 

automaton.

I'Jhen the automata first operate, the ADDIEs are in their initial

state and hold c estimates of zero giving a c value of zero.
1 m

Because of this, both actions of the automaton are unstable and the 

automaton moves frequently between the two actions so providing an
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input for both ADDIEs. As the estimates rise the actions of the

automata become less unstable until the value of c^ becomes larger

than the lower c^ • At this point the automata have one action that

is unstable and one that is just stable. The automaton will spend

most time in states associated with the stable action allowing the

corresponding AJDDIE to rise to its steady state value. Any movement

into states associated with the wrong action will tend to make the

corresponding ADDIE rise towards its steady state value, increasing

the value of c and making the correct action more stable. The m
results show that the initial learning time is longer than the 

switching time. This is because, within the automaton, the response 

time of the ADDIEs is longer than that of the counter. When a switch 

in the environment occurs the action that was stable becomes unstable 

and the automaton moves to change its action. The ADDIE also receives 

a new penalty probability and begins to move towards a new steady 

state value, however, before it has time to change significantly the 

automaton moves from the unstable to the new stable action.

Figure 3.14 shows the response of the autom.ata to a change in the

environment from 0.4 and 0.1 to 0.6 and 0.9. It can be seen that the

automata respond with a learning type behaviour, moving frequently

between states N and N+1, before moving to the correct action. When

the environment changes, both actions are made unstable. Time is

required for the ADDIEs to respond and produce a c value high enoughm
to result in one stable and one unstable action.

Figure 3.15 shows the response of the two automata to a change in 

the environment from 0.9 and 0.6 to 0.1 and 0.4. In this situation 

the automata continue to output the same action because of their near 

optimal behavior. When the environment switches, both actions become
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's. The automata continue to output the same action and the 
i

corresponding ADDIE falls to a new steady state value but this is not 

sufficient to give a c^ value low enough to make the action unstable. 

In this case the solution, as for other learning automata, is to make 

the automaton less optimal. This causes the automaton to enter states 

which correspond to the now smaller penalty probability allowing the 

ADDIE to fall. This decreases c^ and makes both actions less stable 

until there is again a stable and an unstable action.

In Figures 3.16(a) and (b) the effect of making the automata less 

optimal can be seen. Conditions in Figure 3.16 are the same as those 

in Figure 3.15 except that the memory size has been decreased. It can 

be seen that the automata respond better to the change in the 

environment though of course the steady state performance has been 

reduced.

Though the use of ADDIEs with a small num.ber of bits m.ay seem

desirable, in that it decreases the learning time of the automaton, it

introduces an undesirable effect. Figure 3.12(b) is an example of

this and shows a significant delay between the switch and a change in

the action of the automaton. This can occur with either of the

modified Tsetlin automata and has two causes. The first is the value

of c which is too large causing the actions of the automata to be m
too stable so increasing the mean switching time. The large c^ is 

due to inaccurate penalty probability estimates at the time of the 

switch in the environm.ent. This can be caused either by variance in 

the ADDIEs or as a result of a short ADDIE response time. When the 

environment switches the AJ3DIE associated with the action the 

automaton is taking receives a higher penalty probability and starts

more stable because of the high value of in relation to the new
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to move towards this higher value. If the memory size is large, 

relative to the ADDIE size, before the automaton has time to change 

the action it is taking the ADDIE will have moved significantly 

upwards. This raises the value of c^ , making both actions more 

stable and increasing the mean switching time. The solution to both 

these causes, the high variance and the short response time, is to 

increase the number of bits in the ADDIEs sufficiently to reduce the 

variance and increase the response time.

Conclusions

It has been shown that the two modified Tsetlin automata do operate 

well for all penalty probabilities. The automata retain the short 

mean switching times and near optimal behaviour like that of the 

Tsetlin automaton but without the limitations on the values of the 

penalty probabilities. The most striking feature is the ability in 

many environments to change actions in response to a switch without 

having to sam.ple the non-optimal action. The operational difficulties 

of the automata have also been discovered in the form of the 

relationship between the ADDIE and counter response times and the 

environments in which the switching times are longer. This latter 

problem is one shared by all automata operating in non-stationary 

autonom.ous environments.
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THEORY AND APPLICATIONS OT LEARNING AUTOMATA 

CHAPTER 4 NON-AUTONOMOUS ENVIRONMENTS 

Linear Non-Autonomous Environments

For many of the applications of learning automata the environments 

are non-autonomous and have penalty probabilities which vary as the 

action probabilities. The first person to realise this and propose a 

model for non-autonomous environments was Narendra who analysed the 

operation of the Lri automaton in a two action non-autonomous 

environment [35] where the penalty probabilities were given by

(4.1)

C2 (n+1) = c^ (n) - 0 2  (4.2)

if action at(n) = 0Cĵ and

Cĵ (n+1 ) = Cĵ (n) - 0  ̂ (n)

c^ (n+1 ) = c^ (n) + 0  ̂ (n)

C2 (n+1) = C2 (n) + 0 2  (n)

(4.3)

(4.4)

if action oc(n) =oc.

where 0  ̂ and 0  ̂ are positive constants and the penalty probabilities 

are constrained within the range (0 ,1 ).

Narendra's analysis for the Lri automaton shqwed that the action 

probability pa^ of the automaton could reach steady state in one of 

three ways,

pa. (n) - 0  
1

(4.5)

pa^ (n) = 1 (4.6)

^  0  > n 1 i (0 ^ + 0 2  + 0  ̂ + 0 2  ) (4.7)

Equations (4.5) and (4.6) correspond to the automaton going optimal and 

selecting a single action with probability 1. In this case the penalty 

probabilities diverge till they reach the limits of 0 and 1. Equation 

(4.7) corresponds to the automaton converging with action probabilities
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other than 0 and 1. The automaton selects both actions in a particular 

ratio. In this case the penalty probabilities converge to a value of 0 

or 1 depending on whether 6  ̂ * ® 2  ~ 1 * ^ 2  negative or positive.

For any automaton operating in the linear non-autonomous environment, 

if the probability of action cx ̂  is pa^ , the steady state value of the 

penalty probability c^ will be zero if

(1-pa^ )(|)̂ > pa^ e ̂

and will be one if

PSi e i > (1 -pa^ )(j)̂

(4.8)

(4.9)

thus c^ will converge to zero if

(4.10)

(4.11)

pa^ < /(e. + )

and will converge to one if

pa. > 4,̂  /(e. + 4>. )

In general in a two action environment the penalty probabilities will 

not change from converging to zero to converging to one at the same 

probability. This is illustrated in Figure 4.1 which shows the steady 

state penalty probabilities ĉ  ̂and c^ for a linear non-autonomous

environment plotted against the probability of action 1. It can be seen 

that there is a band of action probabilities which produces penalty 

probabilities which are equal and so a band of action probabilities 

which will produce the minimum average penalty rather than a unique 

optimal action probability.

A different non-autonomous environment has been proposed by Kumar 

[36] where the penalty probability is a function of the action

probabilities. Chrystall [37] has used this and defined the action

probabilities more positively as

c, (n) = k. pa. (n) (4.12)
1 1 1

and has done simulations using this model. It is an improvement on
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Narendra's model in that there is a unique action probability and the 

penalty probabilities have steady state values other than 0 or 1. 

However the model requires the use of the action probabilities of the 

automaton which in practice would not be available to the environment. 

This also limits the model to use with automata where the action 

probabilities are easily available. Automata with deterministic output 

functions do not have action probabilities as part of their operation 

and could not be- used with this m.odel. Also by being directly connected 

to the action probabilities the model does not have the same variance 

and time lags which were a realistic feature of Narendra's scheme.

Linear Non-Autonomous Environment-Simulation Results

Narendra's linear non-autonomous environment scheme was added to the 

stochastic simulation program described in Chapter 3 in order to 

investigate the operation of this environment, confirm the band 

structure and determine the operation of various autom.ata in it.

Figure 4.2 shows a typical result showing a Lri automaton operating 

in an environment with =0.01 = 0.03 ~ 0.003 and 

4*2 = 0.009. This produces an environment with a band structure in 

which the steady state penalty probabilities will change at action 

probabilities of 0.25 and 0.75 as indicated in Figure 4.2(a). Initially 

the penalty probabilities have a value of 0.5 and the action 

probabilities are outside the band which will produce converging c^ 's. 

At first the penalty probabilities diverge but as the automaton responds 

and changes its action probability pâ  ̂ to below the value of 0.75 both 

penalty probabilities converge to the value of 0. When the penalty 

probabilities have converged the automaton receives the same penalty 

probability whatever action it takes so its action probability becomes 

free to vary randomly. Only when this random wandering takes the action
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probability above the value of 0.75 and the penalty probabilities start 

to diverge does the automaton receive feedback to keep the action 

probability in the range (0.25,0.75).

The simulation results confirm.ed the band theory for the linear 

non-autonomous environment and showed that the environment was not a 

very typical representation of a non-autonomous environment. Nor was it 

very useful for examining the operation of automata since it has bands 

where the autom.aton receives no useful feedback.

The Non-Linear Non-Autonomous Environment

In order to produce a non-autonomous environment in which the penalty

probabilities converge to a value other than 0 or 1 a non-autonomous

environment was proposed where the penalty probabilities were given by

c. (n+1) = c. (n) +e. (1-c. (n)) (4.13)
1 1 1 1

if action oc(n) = oc and
1

c^ (n+1) = c^ (n) (n) (4.14)

otherwise

where and are positive constants. In a physical sense the

factor (1 -c^ (n)) can be related to the decreased availability as

its use increases while <j) ̂  c^ (n) corresponds to the increasing

availability of a resource as its use decreases. VThen the penalty

probabilities have reached their steady state values

E(amount of increase in c. ) = E(amount of decrease in c. ) (4.15)
1 1

With the environment as defined by equations (4.13) and (4.14) equation 

(4.15) can be expressed as

(4.16)pa. 0  . (1-c. ) = (1 -pa. ) <b . c.
1 1  1 l * ^ ! !

so

or

pa. = (<i). c. )/(©. -®. c. + . c. ) (4.17)1 1 1  1 1 1  1 1
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~  ̂ (4.18)

Figure 4.3 shows how the penalty probabilities vary with action 

probability in this non-linear non-autonomous environment.

The average penalty received by an automaton is

M = pa^ c^ + pa^ (4.19)

Using pa2 =

and substituting equation (4.18) into equation (4.19) the average

penalty in a non-linear non-autonomous environment is
2M = 9̂  pa^ /(0^ - pa^ + 9̂  ̂ pa^ )

2+ (6o -29q_pa. + 9o_ESiü
(02 pa^ +92 "02 P^i  ̂ (4.20)

This expression for the average penalty can be differentiated with

respect to pa^ to produce a quartic equation. When this is equated to 

zero and the roots found, the real result in the interval (0 ,1 ) gives 

the action probability pa^ which corresponds to minimum average 

penalty.

Steady State Conditions of the Lrp and Lri Automata

To appreciate the operation of a Lri automaton in a non-linear 

non-autonomous environment consider Figure 4.3 with the action 

probability set 'initially to 0.5. Will the action probability tend to 

increase or decrease? The probabilities of selecting either action are 

equal as is the change in action probabilities due to the reinforcement 

algorithm. Thus the only difference between the actions is their

penalty probability and the action probability will change to favour the 

action corresponding to the most rewards, in this case action oĉ  . The 

action probability of cĉ  will tend to increase till the automaton 

reaches steady state.

This occurs when
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pa^ (1 -c^ ) ( p a ^  -O c p a ^ ) = pa2 (l-c^ )(pa^ “ OCpa^ ) (4.21)

which reduces to

c^ = (4.22)

Thus the Lri automaton moves to make the penalty probabilities from both 

actions equal.

Substituting equation (4.18) into equation (4.22)

îl / (îi +8  ̂ pa^ ) =

pa / ( 0  - 0  pa +e pa ) (4.23)

Using pa^ = 1-pa^ gives the steady state action probability of the Lri 

automaton in the non-linear non-autonomous environment as

P^i = y  ~ Q1—Í 2— -̂1— -̂2
(e^ 02 -01 02 ) (4.24)

Only one of the solutions for pa^ is in the range (0,1).

To find the steady state value of c. use

pa^ = l-pa^ (4.25)

Substituting equation (4.17) gives

0  ̂ /(8  ̂ -0 j c^ +0  ̂ c^ )

= l-( 0 2  C2 ( 0 2  - 0 2  ^2 " ^ ^ 2 ' ^2  ̂ ^

Substituting c^ =C2 gives the steady state penalty probabilities of the

Lri automaton in a non-linear non-autonomous environment as

=c^ = (_9̂ __8 2  +/-0 _̂_ 9  __0 ^__^ 2 __)
■ 0 1 0 20 1  0 2 (4.26)

which is also the steady state average penalty received by the Lri 

automaton.

For the Lrp automaton the calculations are more complex. Steady 

state occurs when

increase in pâ  ̂ due to action 1 being rewarded 

+ increase in pa^ due to action 2 being penalised 

=decrease in pa 1 due to action 2 being rewarded
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+ decrease in due to action 1 being penalised

=> pa^ (1-c^ ) (pa 2 -ocpa2 ) + V ^2 *-̂ 2  ̂̂ ^^2 “ ̂ P^2 ^

= pa^ (l-c^ )(pa^ -ocpa^ )+pa^ (ĉ  ) (pa^ - Pp̂ ĵ  ) 
if oc is set equal to j3 equation (4.27) reduces to

(4.28)

(4.27)

pa^ = C2 /(c^ C 2 )

since pa^ =l-pa2 equation (4.28) can be expressed as

pa^ Cĵ = pa^ c^ (4.29)

That is the Lrp automaton with oc = |3moves so that it receives the sam.e 

penalty rate from each action.

Using the equations (4.22) and (4.29) the steady state conditions of 

the Lrp automaton with at = P and the Lri automaton in the non-linear 

non-autonomous environment can be calculated and as an example this has 

been done for the environm.ent shown in Figure 4.3. The steady state 

conditions of the automata are a long way from the optimum action 

probability showing that the automata in satisfying their own steady 

state conditions do not converge to the optimum action probability.

Non-Linear Non-Autonomous Environment-Simulâtion Results

Like the linear non-autonomous environment the non-linear 

non-autonomous environm.ent was added to a learning automaton simulation 

program in order to investigate the operation of the environment and 

confirm the equations derived above.

Figures 4.4, 4.5 and 4.6 show typical results of a Lri automaton 

operating in various non-linear non-autonomous environm.ents. In all 

three examples it can be seen that the steady state values of action and 

penalty probabilities are near the values given by equations (4.24) and 

(4.26). The action and penalty probabilities do not converge to the 

values given by equations (4.24) and (4.26) since as the penalty 

probabilities converge to become equal the automaton receives a similar
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response from the environment whichever action it choses and so its 

action probability is free to vary randomly. This in turn causes the 

penalty probabilities to diverge a little before the automaton detects 

this and causes the penalty probabilities to converge again.

Simulations were done using the Tsetlin, Krylov, modified Tsetlin and 

modified estimating automata in the non-linear non-autonomous 

environment but the performance of these automata was poor. All these 

automata have deterministic output functions and so when they are in 

steady state a single action is output. In a non-autonomous environment 

the best performance is gained by selecting all actions with a 

particular ratio. Automata with deterministic output functions can 

never achieve this and reach a steady state condition. The automata 

tested attempted to switch between actions but caused the penalty 

probabilities to oscillate and never achieved the smooth performance 

achieved by the Lri and Lrp automata with stochastic output functions.

Another factor which was found to be important from the results of 

simulations was the convergence rate of the automaton relative to the 

rate of change of the penalty probabilities. If the convergence rate of 

the automaton is fast compared to the rate of change of the penalty 

probabilities an oscillation can occur. This is illustrated in Figures 

4.7 and 4.8 with the action and penalty probabilities initially set to 

simulate a disturbance from the steady state. If the automaton reaches 

the steady state action probability before the penalty probabilities 

reach their steady state there will be a difference between the penalty 

probabilities which will cause the automaton to overshoot the steady 

state. This will in turn cause the penalty probabilities to overshoot. 

In most cases the resulting oscillation dies out but in some cases as in 

Figure 4.7, where the action of the automaton has gone optimal, the
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oscillations can grow. Such oscillations can be prevented by avoiding 

the use of an automaton which has a convergence rate which is fast 

relative to the rate of change of the penalty probabilities while the 

output of one action continuously can be prevented by the use of an 

automaton which is merely expedient rather than optimal.

Conclusions

Theoretical consideration of the Lrp and Lri automata has resulted in 

simple formula describing the steady state behaviour of these automata. 

Theoretical investigations into various non-autonomous environments have 
resulted in greater understanding of their operation and formula for the 

optimal action probabilities. It has also been shown that the Lri and 

Lrp do not converge to these optimal action probabilities. Results from 

simulation has shown that only automata with stochastic output functions 

are suitable for use in non-autonomous environments and a number of 

other practical considerations have been highlighted.
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THEORY AND APPLICATIONS 0¥ LEARNING AUTOMATA 

CHAPTER 2  PROBABILISTIC TSETLIN AUTOMATA 

Introduction

The Tsetlin automaton was of interest for use in autonomous 

environments because of its simple structure and good performance 

under certain conditions. In non-autonomous environments the 

performance of the Tsetlin was found less satisfactory because of its 

deterministic output function. Three automata based on the Tsetlin 

structure, deterministic in operation but with stochastic output 

functions were proposed. These were investigated in the hope that 

they would be suitable for use in non-autonomous environments. The 

automata were named Tri, Tip and Trp using the naming convention used 

for the Lrp automata with T representing a Tsetlin type automaton.

The Tri Automaton

The Tri au-tomaton has a series of N-1 states. In any state n the 

probability of choosing action oĉ  is

pâ  ̂ = (N-n)/N

pa2 = 1-paĵ  = n/N

(5.1)

and the probability of choosing action GC2 is

(5.2)

if, in response to an action, the automaton receives a reward from, the 

environment it will move to the adjacent state which will select that 

action more often. Otherwise it will remain in the same state as 

shown in Figure 5.1.

The probability of moving from state n to state n-1 is given by 

probability of action 1 * probability of a reward

(5.3)

The probability of moving from state n to state n+1 is given by

= (N-n)/N * (1-c^ )
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= n/N * (I-C2 ) C5.4)

The probability of remaining in the same state is given by

probability of action 1 * probability of a penalty 

+ probability of action 2 * probability of a penalty

(5.5)

From, the above equations the Markov transition matrix can be found and 

is given in Appendix 3.

probability of action 2 * probability of a reward

= (N-n)/n * + (n/N) c^

The Tip Automaton

The Tip automaton has a series of N-1 states like the Tri 

automaton. If, in response to an action, the automaton receives a 

penalty it will move to the adjacent state which will select that 

action less often. Otherwise it will remain in the same state as 

shown in Figure 5.2.

The probability of m.oving from state n to state n+1 is given by 

probability of action 1 * probability of a penalty 

= (N-n)/N * (5.6)

The probability of moving from state n to state n-1 is given by 

probability of action 2 * probability of a penalty

= (n/N)c2 (5.7)

The probability of remaining in the same state is given by

probability of action 1 * probability of a reward 

+ probability of action 2 * probability of a reward

(5.8)

From the above equations the Markov transition matrix can be found and 

is given in Appendix 3.

= ((N-n)/N) (1-c^ ) + (n/N)(l-C2 )
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The Trp Automaton

The Trp automaton has a series of N-1 states like the Tri and Tip 

automata. If in response to an action the automaton receives a reward 

it will move to the adjacent state which will select that action more 

often. Otherwise in response to an action the automaton will receive 

a penalty and will move to the adjacent state which will select that 

action less often as shown in Figure 5.3.

The probability of moving from state n to state n+1 is given by 

probability of action 1 * probability of a penalty

+ probability of action 2 * probability of a rewarS

(5.9)

The probability of moving from state n to state n-1 is given by 

probability of action 1 * probability of a reward

+ probability of action 2 * probability of a penalty

(5.10)

From the above equations the Markov transition matrix can be found and 

is given in Appendix 3.

=((N-n)/N)c^ + (n/N)(l-C2 )

= ((N-n)/lO (1-c^ ) + (n/N)c2

The Lrp Automaton

In this and previous chapters the Lrp automaton has been used as a 

reference. Theoretical results for the Tsetlin, Krylov, m.odified 

Tsetlin and probabilistic Tsetlin automata are compared to 

corresponding results for the Lrp automaton.

Using the normal description of the Lrp automaton as a variable 

structure automaton, with a variable transition matrix operating on 

the action probability vector Pa, the Lrp automaton cannot be analysed 

like the Tsetlin, Krylov and probabilistic Tsetlin automata have been, 

as this requires a fixed structure to be able to construct a Markov 

transition matrix. However by imposing a set of states on the Lrp
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automaton and limiting the action probabilities from a continuous 

range to a discrete range corresponding to the states, a fixed

structure is produced and a Markov transition matrix can be found.

Unlike the Tsetlin automata, movement is not only to adjacent states 

but can be to any state in the automaton. The probability of movement 

to states corresponding to the result of the updating algorithm given 

in equations 1.7-1.10 is high while the probability of movement to 

states far from the updating algorithm result is low. In the 

specification of the probabilistic Tsetlin automata, absorbing end 

states were excluded since they were unwanted. To be able to compare 

like with like the absorbing states were excluded from the analysis of 

the Lrp automaton. Thus the Lri automaton as presented here could not 

go optimal as the Lri automaton normally would. This gives the Lri

automaton a better performance than the Lrp and it is the Lri that is

used for comparison later in the chapter.

The Lrp automaton can be considered as a set of N-1 states. In 

state n the probability of choosing action 1 is

pa^ = (N-n)/n (5.11)

and the probability of choosing action 2 is

pa2 = 1-paĵ  = n/N (5.12)

The response to an action is applied to an algorithm which determines 

the new action probabilities. The new action probability for action 

oc^ is from equations (1.7)-(1.10)

pâ  ̂ (n+1) = pa^ (n)(l-c^ )(l-cc*pa2 (n))

+ pâ  ̂ (n)c^ ( p *pa^ (n))

+ pa2 (n)(l-C2 ) (cc *pa^ (n))

+ pa2 (n)c2 (l-p*pa2 (n)) (5.13)

The automaton can move to any other state or remain in the same state
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state n is [29]
(n-1) ( N - n - 1 )

[pi ][(l-pl) ][(N-2)I/((n-l)!(N-l-n))j (5.14)

The element pij, an element in the Markov transition matrix is given 

by the probability of moving from state i to j.

pij=[((N-i)/N) (1-c^ ) (l-oc(i/n)) + ((N-i)/N) /?(N-i)/N

+ (i/N)(l-C2 )o<(CN-i)/N) + (i/N)c2 (l-/?(i/N)) ] ̂ ’ 

*[l-(((N-i)/N) (1-c^ ) (1-oc (i/N)) + ((N-i)/N) /?((N-i)/N)

depending on the new action probability. The probability of moving to

+  ( i / N ) ( l - C 2  )cx(N-i)/N +  ( i / N ) c 2  ( l - / ? ( i / N ) ) ]
(N-J-1 )

* ( N - 2 ) ! / [ ( N - l ) ! ( N - j - l ) ! ] (5.15)

Tri,Tlp,Trp and Lrp Automata-Theoretical Results

The theoretical degree of optim.ality and mean switching times of 

the Tri, Tip, Trp and Lrp automata xjere calculated for various 

autonomous environments and the results are shown in Figures 5.4-5.7. 

The environments used are the same as used in Figures 3.3-3.6. 

Figures 5.4 show that the Tri and Trp automata have the most optimal 

performance while the Tip automaton has poor optimality which does not 

improve as the memory size is increased. However Figures 5.5 reveal 

that the Tri automaton has large mean switching times compared to the 

other automata and because of this the Tri automaton has been omitted 

from Figures 5.6 and 5.7. Figures 5.5 have a constant difference 

between the penalty probabilities and again show that the performance 

of the Tip automaton is limited. At high penalty probabilities the 

performance of the Trp automaton is like that of the Tip automaton but 

as the penalty probabilities are reduced the performance improves. 

Figures 5.7 showing mean switching time results again shows the 

similarity between the Trp and Tip automata at high penalty 

probabilities while at low penalty probabilities the Trp automaton has
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relatively high switching times like the Tri automaton. As stated 

earlier the memory sizes used here for the Lrp automaton are smaller 

than used in practice giving the effect of lower degrees of optimality 

than would normally be found and lower switching times.

The automaton used as the reference is a Lri automaton with od=0.6. 

This autom^aton was chosen after obtaining results for the Lrp 

automaton like those shown in Figures 5.8-5.10. These results show 

the probabilities of the individual states of the automaton in 

addition to the overall action probabilities and mean switching times 

as shown in Figures 5.4-5.7. Also included in Figure 5.10 is the 

average penalty received by the automaton which is used as a measure 

of performance. These results are for automata with 19 states, a 

value which was smaller than desired but which was close to the limit 

imposed by speed and accuracy. Figures 5.8-5.10 (a)-(b) show 

distributions for Lrp automata with constant 6 but varying and /?

while Figures 5.8-5.10 (c)-(d) have oc constant but varying /9 and . 

The distributions confirm that increasing 5 makes the automaton more 

optimal. What can also be seen is that increasing  ̂ makes the 

distribution spread. Comparing Figures 5.8-10 (a)-(b) it can be seen 

that even with b constant, lowering oc and /? can make the automaton 

more optimal and make the distribution narrower. The automaton which 

performs best is the Lri with ot=0.6. This performance could be 

improved by lowering ocwhich would also decrease the learning time of 

the automaton however it has been found in practice that automata 

which learn too quickly do not perform well. The value of oc=0.6 was 

taken as a com:promise between good theoretical results and practical 

considerations .
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Figures 5.11 and 5.12 compare, for a range of penalty 

probabilities, the state probability distributions of the Tri, Tip and 

Trp automata with the best Lrp automaton selected from Figures 5.8-10. 

These results reveal in more detail the operation of the automata. To 

accurately determine the performance of the automata the average 

penalties received by the automata were calculated and included in the 

figures. In Figure 5.11(a) the Trp automaton performs best but in 

Figures 5.11(b)-(d) it is the Tri automaton which has the best 

performance. The probability distributions show that as the penalty 

probabilities increase the operation of the Trp automaton becomes more 

like that of the Tip automaton. Throughout this series of results the 

Trp automaton performs better than the Lrp.

Tri-Operation

The Tri automaton when at the centre of its range will select both 

actions equally and move to select the action which gives most 

rewards. However, at either end of its range the automaton will 

select one action far m.ore often than the other. Because the 

automaton changes state only in response to a reward it will tend to 

move in response to rewards from the action it is selecting most 

often. Thus the automaton tends to move to the extremes of its range. 

Over m.ost of its range it will tend to m.ove toward selecting the 

action corresponding to the smaller penalty probability but over part 

of its range it will tend to move toward selecting the action 

corresponding to the larger penalty probability. The division between 

these two stable ranges occurs when

number of rewards from action 1 = number of rewards from action 2

=> pa^ (1-c^ ) = (1-pa^ )(l-c^ )1

=> pa^ = (l-c^ )/(2-c^ -c^ ) (5.16)
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Tip-Operatlon

At the centre of its range, the Tip automaton will select both 

actions equally and will move away from the action which gives the 

most penalties. It will continue to move until the number of

penalties tending to make it move in opposite directions becomes 

equal. The automaton has two unstable regions with a steady state 

between the two when

number of penalties from action 1 

= number of penalties from action 2 (5.17)

=> pa^ c^ = (1-pa^ )c^ 

=> pa^ = c^ /(c^ i-ĉ  ) (5.18)

Trp-Operation

The Trp automaton can be considered as a combination of the Tri and 

Tip automata. Thus when the penalty probabilities are small the 

automaton will receive few penalties and the automaton will show 

behaviour like the Tri automaton. When the penalty probabilities are 

high there will be few rewards and the automaton will behave like the 

Tip automaton. The automaton will tend not to change state when 

penalties from action 1 + rewards from action 2 

= penalties from action 2 + rewards from action 1 

=> pâ  ̂ Cĵ + (1-pa^ )(1 -C2 )

= (1-pa^ )C2 + pa^ (1-Cĵ  )

=> pa^ = (l-lc^ )/(2-2c^ -20^ ) (5.19)

When this equation has a value outwith the range (0,1) there is 

nowhere, other than at one of the end states, where the automaton will 

reach steady state.
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The operation of the Trp automaton is illustrated well in Figures 

5 .1 2 (a)-(d). In Figure 5.12(a) with small penalty probabilities the 

distribution of the Trp automaton is similar to that of the Tri 

automaton. In Figure 5.12(b) with large penalty probabilities the 

distribution of the Trp automaton is similar to that of the Tip 

automaton. Figures 5.12(c)-(d) show the Trp with penalty 

probabilities equal and about the value of a half. When the penalty 

probabilities are about the value of a half equation (5.18) does not 

have a solution in the range (0,1) and the Trp automaton exhibits its 

best performance being like neither the Tri nor the Tip. Figure 

5.12(d) illustrates this by showing the distribution with penalty 

probabilities of 0.51 and 0.49.

Non-Autonomous Environments-Results

In addition to their perform.ance in autonomous environments the 

performance of the probabilistic Tsetlin automata in non-autonomous 

environments is also of interest. Figures 5.13-5.15 give the state 

probability distributions, the average penalty received by the 

automaton, which is the equivalent of the degree of optimality but for 

non-autonomous environments, and mean switching times., of the 

probabilistic Tsetlin automata in a range of non-autonomous 

environments with the Lrp automaton included as a reference. The 

non-autonomous environments used in these figures were chosen to 

provide a range of optimal action probabilities and penalty 

probabilities.

In Figures 5.13(a)-(f) it is the Tip automaton which has the lowest 

average penalty while the Lrp and Trp autom.ata having lesser but on 

the whole similar performances while the Tri automaton has a poor 

performance. These results are reinforced by Figures 5.14(a)-(f). In

138



some of these figures the results for the Tri automaton have been 

omitted because the large mean switching- times were unsuitable for 

inclusion in Figures 5.15(a)-(f). The form of Figures 5.15 requires 

some explanation. The mean switching time is defined by equation A2.1 

where the state the automaton is switching to is the new optimal 

action probability after the environment has switched. Because the 

number of states in the automaton limits the number of possible action 

probabilities at each memory size the new optimal state was defined as 

the state corresponding to the action probability closest to the 

optimal action probability. Since the optimal action probability lies 

between two states, as the memory size changes the optimal state will 

change from corresponding to an action probability lower than the 

optimal action probability to higher and back, this accounts for the 

stepped appearance of some of the Figures 5.15. These results show 

that though the Lrp automaton has the best overall mean switching time 

results the performance of the Trp and Tip autom.ata is still good by 

comparison and when combined with the average penalty results the Tip 

automaton could be expected to give the best performance in a 

non-autonomous environment.

Conclusions

The characteristics of the probabilistic Tsetlin automata in 

autonomous environments have parallels with the Tsetlin and Krylov 

automata. The Trp automaton operates at its best when the penalty 

probabilities are about the value of a half like the Tsetlin. The Tri 

automaton is stable in both actions like the Krylov automaton. Though 

the average penalty results for the Tri automaton are good, because 

the automaton is stable in both actions the response to a 

non-stationary environment is slow so the Trp automaton is prefered.
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The probabilistic Tsetlin automata were proposed as automata which 

could operate well in non-autonomous environments because of their 

stochastic output functions. This has been shown to be true and when 

compared to the Lrp automaton it is the Tip automaton vzhich has shown 

the best performance.
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F ig u r e  5 3 S^at■e d ia g ra m  of Tpjp a u ^oma^on



Figure 5 - 4 (a) Theorefical sfeady sfafe acfion probobilifies



F i g u r e  5 4 ( b )



Fi  gu re  5-4 (c )



F i g u r e  5-4 (d )



oo

F i g u r e 5 - 5 ( a ]  Theore ficai mean swif chin g fîmes



F i g u r e  5-5{b)



B E T A . 1-000

F igure  5-5 (c )



Fl g u r e  5 - 5 (d )



oo

F i gu r e  5-6 (a) Theorefical steady state action probabilities



oo

1.000

memory size

Fi gure 5• 6 (b)



8

F i g U re 5 6(c)



8

Figure 5-6 (d



ALPHA = 0.600 
BETA-1-CXX

Figure 5-6 ( e )



Fi gure 5-6 ( f )



F i g u r e  5-6 (g)



oo

F i gu r e  5-7(a) Theoretical mean switching times



A L P H A  =  0 .600 
B E T A  = 1.000

F i g u r e  5-7 (b



Fl gare 5•? (c)



oo

F i g u r e  5-7(d)



mean switching time

>

> > M •* O
o  o> o  o  o  o



oo

F i g u r e  5 - 7 [f)



F i g u r e  5-7  (g)



oo

Figure 5-8 Theorefical steady sfate acfion probabilifies



F i g u r e  5-9 Theoreiical mean swifching Fime



n

lO
d
—)
fD
LTI

a
(/I

crc
or)

LTi

R-roC/l

relative probability relative probability x relative probability relative probability x 10

t->i

g

Cr
&o| 
''C

%

iCJ
IIo

Cr

Olb

Q
Olb



r  AUTOMATON 
R\

average penalty = 0-1125

T̂ p automaton

average penalty = 0-1122

Lj,p AUTOMATON

alpha =0-6 

beta = 1

average penalty=0-1275

T AUTOMATON  
IP

average penal ty = 0-1502

Figure 5-11 (q ) Distribution of States



LO
O
CD

LD

relative prQbability 
0 0025 005 0075 0 1

h i

a
LO

c r

5o

o&Q
Cr

0

§:

r

relative probability x id
0 0250 050 0750 1

Qo
o3
tl
3 SO' 8 Q &
n: o .

? "

1

o

in
?
lA

Q•C15“1
'S
<5

Ta
<5

Q
i l

i<~nCD

- T * Q Cr Q r -T3 <05 0) ■o POUi i Q
'> •
Q QC UD c:05 II 11O o

r ) à i3 Q 35 : II8
k dO l



relative probability
02S0 0 50 0 750 1

relative piobability

Q<
'5

Q<Cl
X)<5DQ
S;

IIo
KjOC/>

"0
c:
i
32:

T)
X)mDQ

O

i
3

8



autom aton

average penalty = 0-510A

O —
^  I O

AUTOMATON
Kr*

average penalty^ 0-5A32

L r p  a u t o m a t o n

alpha = 0-6 

beta - 7

average penalty = 0-5725

r ,p  AUTOMATON

average penalty = 0-5833

F i gure  5-11 (c) Distribution of States



Tp5j A U T O M A TO N

average penalty = 0-7102

r^p AUTOMATON

average pena lty : 0-7678

Lpp AUTOMATON

alpha = 0-6 

beta : 1

average penalty: 0-7725

Tjp AUTOM ATON

average penalty: 0-7875

Fi gure 5-11 (d) Distribufion of States



r̂, AUTOMATON

AUTOMATONKP

L^p AUTOMATON

a lpha  =0-5 

b eta = 1

Tjp AUTOMATON

F i g u r e  5-12 (a) DisfribuHon of Sfafes



Tpjj AUTOMATON

T^p AUTOMATON

AUTOMATONK“

alpha = 0-6 

beta = ?

r,p  AUTOMATON

F i g u r e  5'12 (b) Disfribufion of States



r^j AUTOMATON

Tf,p AUTOMATON

Lpp  AUTOMATON

a lpha  = 0-5  

beta = 1

T i p  AUTOMATON

Figure 5 ’12 ( c ) Distribution of States



r ^ j  AUTOMATON

average penalty=QA969

Tpjp AUTOMATON

average penalty^ 0A988

AUTOMATON

a lp ha=  0-6 

b e ta  = 1

average penalty=0A997

T AUTOMATON 
!P

average penalty=QA998

Fi gure 5-12 (d ) Disfribufion of Sfafes



AUTOM ATON

average penaltys 0-2666

Distribution of States 
0 , - 0-001 

(jj, = 0 - 0 5  

9^ =  0-1 

<j)̂ ̂  0 - 0 2

Tp,p AUTOMATON

average penalty = 0-2385

Lpp AUTOMATON

a l p h a  =0-6  

b e t a  s 1

average penaltys 0-2136

fjp AUTOMATON

average penaltys 0-173A

F i g u r e 5*13 (a



AUTOMATON

average penalty - 0-6635

5 S.-§-Q P
&0)

'a
?  9

Distribution of States 

9̂  = 0 - 0 0 5  

<t>, = 0 - 0 5  

02 = 0 - 3  

^  = 0-001

□=-'o.oco a75o "ala
action probability

1.00

7-pjp AUTOMATON

average penalty = 0-5133

Lpp AUTOMATON

alpha = 0-6 

beta - T

average penalty = 0-^330

F i g u r e  5-13(b)

fjp AUTOMATON

average penalty = 0-IW9



Tp, AUTOMATON

average penalty = 0-1913

=
 ̂ -

0 001 

0 -1

AUTOMATONR r

average penalty- 0-U>65

Lj,p AUTOMATON

alpha = 0-6 

beta  = 1

average penalty = 0-0329

Tjp AUTOMATON

average penalty = 0-01 ¿,3

F i g u re 5-13 (c



AUTOMATON

average penalty = 0-79A3

0 - 0 2 5

0 -02

AUTOMATONRP

average penal ty= 0-5019

AUTOMATON
RP

a l p h a s  0-6  

b e t a  = 1

average penalty = 05281

F i gu r e  5 -13(d)

r, p AUTOMATON

average penalty = 0-L375



O I
O I

O tai
¿ s AUTOMATON

average penalty- 07889

Distribution of States 

= 0 - 0 7  

 ̂ = 0 - 0 2

= 0 - 0 7  

A = 0 - 0 3

AUTOMATON

average penalty^ 0-7712

Lpp AUTOMATON

a lpha - 0-6 

beta = 1

average penalty = 0-7853

f j p  AUTOMATON

average penalty- 0-7700

F i g u r e  5-13 ( e )



s J

r„, AUTOMATONK1

average penalty = 0-9870

Distribution of Stetes

3, =

< p , =

?2 =

0 - 5

0 0 1

0-1 S

Tpp AUTOMATON

average penalty = 0-9853

Lpp AUTOMATON

alpha = 0-5 

beta = 1

average penaltys- 0-9855

Figure 5-13 ( f )

Tjp AUTOMATON

average penaltys 0-9853



8

Figure 5 -lAla)Theoretical average penalties



o
o

F i gure 5-14 (b)



ALPHA -  0-600 
BETA -  1-000

F i g u r e  5 -14 (c)



ALPHA -  0-500 
BETA -  1-000

F i g u r e  5 - 1 4 (d



I D D  A L P H A - 0-600
L K r  b e t a - 1-000

TRP
TIP

F i gure 5-14 (e)



ALPHA 
BETA ^

0.600
1.000

Fi g u r e  5 - 1 4 ( f )



F i gure  5 -15 (a) Theoretical mean switching times



o
o

F i g u r e  5 - 15 ( b )



ALWA ̂ 
BETA

0.500
1.000

F i g u r e  5 1 5 ( c )



oo

F i g u r e  5 -15 (d )



F i g u r e  5 - 15  (e)



oo.

F i g u r e  5 ■ 15 ( f



THEORY AND APPLICATIONS OF LEARNING AUTOMATA 

CHAPTER ^ MULTI-ACTION AUTOMATA AITD AUTOMATA GAMES 

Introduction

The learning automata considered in earlier chapters were two 

action automata. In practice an environment was unlikely to have only 

two actions, multi-action automata were required. The formula for the 

Lrp automaton, equations (1.7)-(1.10) is for an automaton of r 

actions. Tsetlin also gives a multi-action scheme for his automaton 

[15]. When the practical implementation of multi-action automata 

is considered, for example a 100 action automaton, problems arise if 

the hardware Involved is linearly related to the number of actions. 

In a software version the processing time increases with the number of 

actions. The hierarchical learning scheme was proposed and 

investigated by Neville [38,39] as a means of using two action 

automata to provide multi-action capability without a great increase 

in the hardware or processing required. It was investigated to 

determine the effectiveness of the system using the modified Tsetlin 

automata compared to the Lrp automaton.

The Hierarchical Learning System

The hierarchical learning system uses many decisions of a two 

action automaton to achieve a single decision between many actions. 

With the possible pathways through a decision network as shown in 

Figure 6.1, a two action automaton will select one of 2^ actions by 

taking n decisions.
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In operation a single two-action automaton is used to make a 

decision at each node on the path through the decision network. The 

data necessary for a decision at every node is stored in a memory and 

supplied to the automaton as required. Once an action has been taken 

and a response obtained from the environment the path taken through 

the decision structure is retraced and the decision data for each node 

encountered is updated by the automaton.

The hierarchical learning scheme was simulated using a computer. 

The automata included in the simulation were the two action Lrp, as 

defined by equations (1.7)-(1.10) and the modified Tsetlin automata as 

described in Chapter 3.

The Hierarchical Learning System-Results

The results show the average number of times a particular action 

V7as selected by the automaton over 100 runs of the simulation. Each 

graph shows the situation after the automaton has selected I actions. 

Also included with each graph is the average penalty received by the 

automaton and the probability of selecting the optimal action up to 

that time. The Initial conditions at the start of each simulation 

were such that each path through the decision network was of equal 

probability. The values of ocand ft chosen for the Lrp automaton and 

the ADDIE and memory sizes chosen for the type 1 modified Tsetlin 

automaton represented the best from a variety of values tested which 

corresponded with consistent behaviour.

Figures 6.2(a)-(c) show the operation of a type 1 modified Tsetlin 

automaton with memory size of 10 and ADDIE bit size 6 in a 16 state 

environment. The penalty probabilities of the environment were chosen 

at random with the result that action 14 corresponded to the minimum 

penalty probability. Figure 6.2(a) shows that after the first 100
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iterations the automaton is already selecting the optimal action most 

often but that during this period the automaton has been selecting the 

other actions to a considerable extent. Figure 6.2(b) shows that by 

500 iterations action 14 has been selected more often than the other 

actions put together. Figure 6.2(c) shows that in the long term the 

total average penalty received by the automaton continues to decrease 

and over 10,000 iterations the probability of selecting the optimal 

action is approximately 0.88.

Figures 6.3(a)-(c) show results for an Lrp automaton with cc = 0.96 

and p =  0.99 operating under the same conditions as Figure 6.2. Over 

the first 100 iterations the performance of the Lrp automaton is 

better than that of the modified Tsetlin automaton. Over 1000 

iterations Figures 6.3(b) and 6.2(b) show that the average penalties 

received by the two automata are approximately equal after 750 

iterations while the probabilities of selecting the optimal action are 

equal after 1000 iterations. In the long term the performance of the 

Lrp automaton reached steady state at values which were poorer than 

the corresponding values for the modified Tsetlin automaton.

Figures 6.4 and 6.5 show results for the automata in a different 

environment. In this case the penalty probabilities were chosen in 

order to make it difficult for the automaton to select the optimal 

action. Action 13 was selected as the optimal action while the 

actions closest to it in the decision network, actions 14, 15 and 16 

were given high penalty probabilities.

The aim of this was to discourage the use of the decision network 

paths leading to actions 14, 15 and 16 during the initial learning 

period. Since the path leading to action 13 was for most' of its 

length common to the paths leading to actions 14, 15 and 16, giving
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these actions high penalty probabilities would have the effect of 

discouraging the selection of action 13. For similar reasons the 

second most optimal action, action 4 was surrounded by actions V7ith 

relatively low penalty probabilities in order to encourage the 

automaton to select action 4 rather than the optimal action.

The results show that neither automaton converges to the wrong 

action in the difficult environment though using automata with 

different parameters it was found that convergence to the non-optimal 

action 4 was more likely in the difficult environment.

The Hierarchical Learning System-Conclusions

The results show that though the Lrp automaton has a shorter 

learning time in a hierarchical learning system the type 1 modified 

Tsetlin automaton has a better steady state performance. Attempts to 

improve the steady state response of the Lrp automaton by adjusting 

the values of cc and p resulted in occasional convergences to 

non-optimum actions. It was felt that the hierarchical learning 

system may have accentuated this tendency. The modified Tsetlin 

automaton was less prone to this as it selected the actions more 

evenly during the learning period.

Automata Games-Introduction

A game exists between two automata when each automaton can affect 

the penalty probability received by the other automaton. There are 

two types of automaton game, cooperative games, where the automata 

receive the same penalty probability and so can cooperate to receive 

the lowest average penalty, and zero sum or competitive games, where 

if one automaton receives a reward the other receives a penalty. 

Automata games are of interest as a way of comparing and testing
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differing types of automata to determine the desirable qualities for 

automata. In the practical use of learning automata where many 

automata operate on different parts of a single environment, gam.es 

exist. The use of automata in telephone traffic routing 

[45,46,47,48,49] as well as the system investigated in Chapter 8 are 

examples of practical situations where games occur. In such cases the 

understanding of simple games could be an advantage.

Cooperative and competitive games between the Lrp automaton and 

some of the Type 2 automata, including the Tsetlin automaton, have 

been investigated [40]. Since the probabilistic Tsetlin automata have 

advantages over the Tsetlin automaton these automata were tested 

against the Lrp automaton in games.

Cooperative Games

A simulation program was written to provide games between the Lrp, 

Lri, Trp, Tip and Tri automata. The program provided for up to three 

players in the game, though in practice only two were used, and for up 

to ten actions available to each player. The penalty probabilities 

were input to the program in the form of a matrix. The action of the 

first player specified a row of the penalty m.atrix while the action of 

the second player specified a column of the matrix. The com.bination 

of these defined an element of the penalty matrix from which the 

feedback for the learning automata could be obtained. Facilities were 

provided to allow the automata to receive the same feedback giving a 

cooperative game or to receive the opposite feedback giving a 

competitive game.
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The first results were obtained for cooperative games with a 

variety of matrices and for different combinations of automata with 

varying parameters. The operation of the automata was as expected 

'from previous work and in most cases the automata converged towards 

selecting the smallest penalty element most frequently. However when 

operating with an environment like

0.4 0.5 0.6 

0.3 0.9 0.2 

0.1 0.05 0.8

convergence was not always to the element corresponding to the minimum 

penalty. In most cases the automata converged to the third row and 

first column, element 3,1 most frequently. Convergence to the correct 

element depended on the operation of player 1 which controlled which 

row of the penalty matrix was selected. If the player 1 automaton had 

a low degree of optimality there was a significant probability that 

rows 1 and 2 would be selected so it was an advantage to player 2 to 

select column 1 rather than select column 2 and also be forced to 

receive the high penalty probabilities associated with rows 1 and 2 in 

that column. If the player 1 automaton had a high degree of 

optimality convergence would be to row three. In this case player 2 

was free to select column 2. However while player 1 was converging, 

player 2 was forced to select column 1 and if the rates of convergence 

of the players were similar or if player 2 converged faster than 

player 1 , player 2 would not be able to change actions after player 1 

had converged. The automata only converge to select the optimal 

probability element if both the automata have a high degree of 

optimality and player 2 has a rate of convergence slower than player 

1.
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Competitive Games

A variety of experiments were also carried out with competitive 

games. In this situation the players are operating with different 

penalty probability matrices. For example player 1 operates with the 

matrix shown below on the left while player 2 operates with the matrix 

shown on the right.

0.7 0.6 0.4 0.3 0.4 0.6 

0.6 0.5 0.1 0.4 0.5 0.9 

0.5 0.45 0.3 0.5 0.55 0.7

In the experiments, if player 1 selected the rows and player 2 

selected the columns there was overall convergence to the penalty 

element corresponding to a minimum of a column in the player 1 matrix 

and the minimum of a row in the player 2 matrix. Considering the 

player 2 matrix only, the overall convergence was to the penalty 

element which was the minimum of a row and the maximum of a column. 

For the matrix above this corresponds to elem.ent 3,1.

In the matrix given below there are no elements which satisfy the

conditions given above for convergence.
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0.4 0.5 0.6 0.6 0.5 0.4

0.3 0.9 0.2 0.7 0.1 0.8

0.1 0.05 0.8 0.9 0.95 0.2

Experiments with this matrix have shown that the automata select 

penalty elements 2,2 3,2 3,3 2,3 cyclically. The automata are 

constantly changing their most frequent action and never converge. 

Figure 6.6 shows the action probabilities of two Lri automata in a 

competitive game using this matrix plotted against time. It was felt 

that a penalty matrix in which their were no penalty elements which 

satisified the convergence criteria given above would be the best in 

which to test automata against each other.

The results given in Table 6.1 were taken for automata games using 

the penalty probability matrix given below.

0.1 0.3 0.7 0.9 0.7 0.3 

0.1 0.7 0.3 0.9 0.3 0.7 

0.5 0.9 0.9 0.5 0.1 0.1

Player 1 selecting the rows sees high penalty probability elements in 

row 3 and lower penalty elements in rows 1 and 2. Player 2 selecting 

the columns sees high penalty probability elements in column 1 and 

lower penalty elements in columns 2 and 3. The automata will select 

penalty elements 1,2 2,2 2,3 1,3 but there should not be convergence 

to any of these elements as the convergence conditions are not 

satisified. For automata of equal performance the average penalty 

received by each automaton should be 0.5. The results presented in 

Table 6.1 are the average of two simulation runs, each automaton 

having the player 1 and player 2 position with the same random number 

sequence being used in both runs.
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The first results taken were for automata of the same type. For 

fast Lri automata with relatively low oc parameters it was difficult to 

get results as the automata went optimal but results were obtained for 

more slowly acting automata. Table 6.1(a) shows that the faster Lri 

automata with the smaller cc parameter have the better performance. 

Obviously if a Lri automaton is made too fast it will go optimal and 

the slower automaton will have the better performance. Results 

(b),(c) and (d) are for Lrp automata. Results (b) with B =1 are 

inconclusive with the faster automata not showing a particular 

advantage. Results (c) with constant B are again inconclusive. The 

results (d) compare automata with varying B and show that the higher 

the degree of optimality the better the performance.

Results (e) for Trp automata show inconclusive results till large 

step sizes are used when the smaller step sizes have the better 

performance. In these cases the advantage in a small step size is 

lower variance and this factor becomes of greater importance than 

speed with large step sizes. Results (f) for the Tip automata are 

similar to the Trp with speed being an advantage for small step sizes 

but with low variance becom.ing more important at large step sizes. 

For the Tri automaton it was difficult to get results. The Tri 

automaton has a high tendency to go optimal and once a player has gone 

optimal the opponent is free to select the best penalty element. The 

results for the Tri automata measured which automaton went optimal 

last. Results (g) are runs in which the automata did not go optimal 

but this happened only for large step sizes and in any case the 

results are inconclusive.
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Next the probabilistic Tsetlin automata were tested against the Lrp 

and Lri automata. The results in Table 6.1 (h) show the performance 

of various Trp automata against an Lrp automaton with 8 =1. In all 

cases the Trp has the better performance. Increasing 8 in results (i) 

increases the performance of the Lrp automata. In results (j) and (k) 

against Lri automata, the Lri automata have the better performance. 

For the Tip automaton results (1) shows that it has a poorer 

performance than the Lrp with 8=1. For results (m) and (n) it was 

again difficult to get results in which the Tri automaton did not 

become optimal but for the results given the performance was worse 

than that of the Lrp and Lri automata.

Finally the probabilistic Tsetlin automata were tested against each 

other. Results (o) shows the Trp superior to the Tip while (p) shows 

it generally superior to the Tri.

Automata Games-Conclusions

The Lrp, Lri and probabilistic Tsetlin automata have been 

investigated operating in a variety of games situations. For 

cooperative games the operation of the automata was as expected and in 

general convergence was to the m.inimum penalty element. A case where 

convergence was not to the minimum penalty element was identified and 

the conditions causing it found. Conditions for convergence in 

competitive games have been established as well as the possibility of 

convergence to either of two penalty elem.ents or to none of the 

penalty elements. Using a matrix where there should be no convergence 

the Lrp, Lri and probabilistic Tsetlin automata have been tested 

against each other with the Lri automaton showing the best 

perf ormance.
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Players

LrivLri

LrpvLrp

TrpvTrp

TipvTip

TrivTri

LrpvTrp

Parameters Average Parameters Average
player 1 penalty 1 player 2 penalty 2

0.999 1 0.50265 0.995 1 0.49735
0.9995 1 0.504 0.999 1 0.496

(a)

0.99 0.99 0.4995 0.95 0.95 0.50055
0.995 0.995 0.50005 0.99 0.99 0.49995
0.999 0.999 0.5004 0.995 0.995 0.4996
0.9995 0.9995 0.50085 0.999 0.999 0.49915

(b)

0.999 0.9998 0.50105 0.998 0.9996 0.49895
0.995 0.999 0.4996 0.99 0.998 0.5004
0.99 0.998 0.49995 0.98 0.996 0.50005
0.98 0.996 0.5 0.96 0.992 0.5

(c)

0.995 0.999 0.4754 0.99 0.995 0.5246
0.995 1.0 0.47825 0.995 0.999 0.52175

(d)

0.0005 0.4991 0.001 0.5009
0.001 0.50055 0.002 0.49945
0.002 0.49975 0.005 0.50015
0.005 0.4961 0.01 0.5039
0.01 0.501 0.02 0.499
0.02 0.4956 0.05 0.5044
0.05 0.4698 0.1 0.5302

(e)

0.001 0.50025 0.002 0.49975
0.002 0.5003 0.005 0.4997
0.005 0.50085 0.01 0.49915
0.01 0.49925 0.02 0.50075
0.02 0.47565 0.05 0.52435
0.05 0.45584 0.1 0.54415

(f)

0.075 0.48525 0.15 0.51475
0.1 0.50285 0.2 0.49715

(g)

0.99 0.99 0.52305 0.05 0.47695
0.99 0.99 0.53645 0.01 0.46355
0.99 0.99 0.5532 0.005 0.4468
0.99 0.99 0.56335 0.002 0.43665
0.99 0.99 0.5668 0.001 0.4332

(h)

Table 6.1
Results of competitive automata games

in 2 runs of 100000 iterations
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LrivTrp

LrpvTip

LrpvTri

LrivTri

TrpvTip

TrpvTri

0.995 0.9975 0.5233 0.01 0.4767
0.995 0.999 0.5021 0.01 0.4959
0.995 0.9995 0.4924

(i)
0.01 0.5076

0.995 1.0 0.48055 0.01 0.51945
0.995 1.0 0.48795 0.005 0.51205
0.995 1.0 0.4923 0.002 0.5077
0.995 1.0 0.4936

(j)
0.001 0.5064

0.999 1.0 0.4975 0.001 0.5025
0.99 1.0 0.49455

(k)
0.001 0.50545

0.99 0.99 0.48115 0.001 0.51885
0.99 0.99 0.4816 0.002 0.5184
0.99 0.99 0.48175 0.005 0.51825
0.99 0.99 0.4819 0.01 0.5181
0.99 0.99 0.48135 0.02 0.51865
0.99 0.99 0.47825 0.05 0.52175
0.99 0.99 0.4515

(1)
0.1 0.5485

0.99 0.99 0.49825 0.1 0.50175
0.995 0.999 0.4627

(m)
0.1 0.5373

0.995 1.0 0.4466
(n)

0.1 0.5534

0.001 0.42935 0.001 0.57065
0.01 0.44935 0.01 0.55065
0.1 0.48025

(o)
0.1 0.51975

0.1 0.5025 0.1 0.4975
0.01 0.4649 0.1 0.5351
0.01 0.3342

(p)

Table 6.1

0.05 0.6658

Results of competitive automata games
in two runs of 100000 iterations
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA 

CHAPTER 2 the TSETLIN ALLOCATION SCHEME 

Introduction

Tsetlin [41] has considered the operation of a queueing system and 

the effect of different priority systems. Tsetlin examined the case 

of subscribers requiring the use of a telephone channel. By using a 

system which gave priority to subscribers who made short calls, 

Tsetlin aimed to reduce the mean queue length and reduce the mean 

waiting time for the system. The system used learning automata to 

assign priorities to subscribers and was of interest as a practical 

application of learning automata. It required no a priori knowledge 

of the characteristics of the subscribers and was adaptive. The 

system was investigated using a computer simulation and was compared 

to a simulation of a first come, first served (f.c.f.s.) system which 

was used as a reference.

The Tsetlin Channel Allocation Scheme

The explanation of the Tsetlin allocation scheme which follows is 

presented in conjunction with Figure 7.1.

Subscribers in a system are the source of requests for the use of a 

channel. Before a subscriber is allowed the use of a channel the 

subscriber must have an automaton. As the subscribers make their

requests they can either have an automaton assigned to them, in which 

case they are described as dominant or reserve subscribers, depending 

on the type of automaton they have, or have no automaton. There are 

two automata for every channel in the system and these are called the 

dominant and reserve automata. Each dominant automaton contains the 

identification of the subscriber it is assigned to, a queue for the
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subscriber to wait in and the credit of the subscriber. Each reserve 

automaton is similar but without the queue for the subscriber.

A subscriber requiring a channel enters the system. If the 

subscriber is dominant on a channel, the subscriber is put onto that 

channel if it is free or is put into the queue in the dominant 

automaton until the channel becomes free. A subscriber who is not 

dominant is put onto the main queue if there are no free channels. If 

there are channels free, these are searched to see if the subscriber 

has a reserve automaton on any of them. If the subscriber has reserve 

automata on free channels, the subscriber uses the channel which 

corresponds to the automaton with the highest credit. If the 

subscriber has no reserve automata, the subscriber is assigned a 

reserve automaton on the free channel which has the least credit in 

its reserve automaton.

i*7hen a channel becomes free a dominant subscriber waiting in the 

dominant subscriber queue has first priority. If the dominant 

subscriber is not waiting the second priority goes to the reserve 

subscriber who may be waiting in the mn.in queue. If the reserve 

subscriber is not waiting a subscriber is taken from the main queue on 

a first come first served basis, the subscriber is allocated the 

reserve automaton on that channel and the credit is set to zero.

I'Jhen any subscriber starts to use a channel the autom^aton 

associated with the subscriber on that channel is given a constant 

amount of credit. When a subscriber ends the use of a channel the 

credit is reduced by an amount dependant on the length of time the 

channel has been used. In the results this is expressed as a credit 

gain/loss per second the channel is used less/longer than a threshold 

value. A subscribers credit is limited by the automaton to a maximum
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amount and cannot fall below zero.

A dominant subscriber can have only one dominant automaton and no 

reserve automata but a reserve subscriber can have more than one 

reserve automaton. A reserve subscriber can become a dominant 

subscriber by being allocated a channel on which the subscriber has a 

reserve automaton. The reserve and dominant automata compete and the 

automaton with the largest credit becomes the dominant automaton and 

the subscriber becomes the dominant subscriber.

The Tsetlin Channel Allocation Scheme-Results

The allocation scheme described above was used in a computer 

simulation [43] with the facility for up to five channels and thirty 

subscribers. A number of results were taken over a range of 

subscriber and automata parameters. The time between the end of a 

call and the start of the next call and the duration of call for the 

subscribers were exponentially distributed. The results given below 

were taken over a long simulation time so that the results would be 

well averaged. I-Jhere results are compared directly the same random 

seed was used for the simulations so that the simulations were 

operating with the same inputs.

Table 7.1 gives results for individual subscribers for simulations 

over 200,000 time intervals or approximately 450,000 calls in systems 

with 5 subscribers using 2 channels. In simulation (a) the mean time 

between calls for all subscribers was made equal so that the effect of 

call length could be observed. Subscribers with short call lengths 

have the highest probability of being dominant and have low 

probabilities of being reserve automata while the reverse is true of 

subscribers with long call lengths. In simulation (b) all the 

subscribers have the same mean length of call so they would each tend
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to gain the same amount of credit from their calls. The mean time 

between calls differs so that the subscribers have differing frequency 

of calls. The results show that subscribers who make calls frequently 

have a greater probability of being dominant. To become dominant a 

subscriber must first build up credit in a reserve automaton and then 

return to the reserve automaton on which the subscriber has credit. A 

subscriber making calls frequently will have more reserve automata, 

will be more likely to return to an automaton before it is assigned to 

another subscriber and so will build up credit. A subscriber making 

calls frequently is more likely to be assigned to new reserve automata 

and so destroy the credit of other subscribers.

Table 7.2 gives results for simulations over 10,000 time intervals 

corresponding to approximately 160,000 calls from 15 subscribers using 

2 channels. The subscriber parameters in this simulation have a 

constant ratio between the mean call length and the mean time between 

calls. The subscribers with the shortest call lengths become dominant 

whilst amongst the other subscribers those with the shortest call 

lengths and greatest frequency are most likely to have reserve 

automata. The most important result in Tables 7.1 and 7.2 can be seen 

when the mean waiting times are compared to those for the f.c.f.s 

scheme. This shows that subscribers which are dominant have mean 

waiting times longer than the reference while it is the performance of 

the reserve automata which increases.

Table 7.3 gives overall results for 7 simulations. For a system 

performing well the number of events in the simulation will be high, 

the mean number in the system will be low and the mean waiting time 

will be low. For identical Inputs the most efficient system will have 

more channels free but in this case because the number of calls and
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their distribution amongst the subscribers varies it is difficult to 

equate this with system efficiency. The seven sets of results have 

differing loads moving from the most heavily loaded (a) to the least 

loaded (g). These results show that it is in the most heavily loaded 

systems that the Tsetlin allocation scheme gives an improved 

performance. As the loading on the system falls so does the 

performance of the Tsetlin scheme with respect to the reference until 

the load becomes about 90% of the total capacity when the performance 

of the f.c.f.s. scheme becomes best.

The aim of the Tsetlin allocation system was to reduce the mean 

waiting time of a system by introducing a system of priorities which 

would favor subscribers with short mean call lengths. The Tsetlin 

allocation scheme has been shown to do this only in heavily loaded 

systems. In the other cases the performance of subscribers with 

priority is decreased. This is because dominant subscribers are 

limited to use the channel on which they are dominant. If a reserve 

subscriber is using the channel the dominant subscriber must wait. A 

subscriber without a dominant automaton is not constrained to use a 

particular channel and is free to use channels as they become 

available. It is only in highly loaded systems that a dominant 

subscriber with priority on a particular channel is at an advantage 

over the other subscribers with no priority but free to use any 

channel.

The Modified Tsetlin Allocation Scheme

The Tsetlin allocation scheme has a poor performance because 

dominant subscribers are limited to a particular channel. The 

modified Tsetlin scheme allows dominant subscribers to use any channel 

with priority over reserve and other subscribers. When more than one
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dominant subscriber requires a channel the one with the greatest 

credit takes priority. When a reserve subscriber competes for a 

dominant automaton the competition is with the dominant subscriber 

with the least credit. A dominant subscriber may be using a channel 

when the competition occurs but completes the call as normal. The 

number of dominant subscribers allowed is equal to the number of 

channels in the system.

The Modified Tsetlin Allocation Scheme-Results

Table 7.4 gives results for the Tsetlin scheme, the f.c.f.s. 

scheme and the modified Tsetlin scheme for six different simulations 

producing lightly and highly loaded systems. In all cases the 

modified Tsetlin scheme allows a greater number of calls to be made, 

has fewer calls waiting in the system and has the lowest mean waiting 

time. The subscribers with the lowest call length become dominant as 

in the Tsetlin scheme but unlike the Tsetlin scheme the performance of 

dominant subscribers improves whatever the loading of the system. In 

the modified Tsetlin scheme the number of short calls from the 

dominant subscribers increases while the number of long calls is 

reduced. The increase in the number of short calls increases the 

number of events in the simulation. Because a subscriber is now more 

likely to be held up by a short call than a long call, the overall 

waiting time is reduced. In addition, the replacement of a long call 

by a number of short ones of equivalent length makes the system more 

easy to run efficiently. However in some cases the f.c.f.s scheme has 

fewer free channels indicating that this scheme is allowing more of 

the channel capacity to be used by having more calls from subscribers 

who produce long calls.
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Further Improvements to Tsetlin^s Allocation Scheme

The priority system of the modified Tsetlin allocation scheme 

divides the subscribers into three classes, the dominant subscribers, 

the reserve subscribers and the others. Dominant subscribers have top 

priority on all channels and the dominant subscribers are themselves 

graded, giving greater priority to subscribers with most credit. 

Reserve subscribers have priority over subscribers with no automaton 

but only on the channel which corresponds to their reserve automaton 

otherwise they are treated like subscribers with no automaton. 

Further improvements in performance could be gained by extending the 

priority system. The reserve subscribers could be given priority on 

all channels and graded like the dominant subscribers. A further step 

would be to extend the priority scheme to all subscribers by grading 

them all. This would involve giving all subscribers an automaton 

which would m.easure the subscribers credit. The distinction between 

reserve and dominant automata would be removed and the priority would 

simply depend on the credit in the subscribers automaton.

Tsetlin's credit scheme is not a very effective method for 

determining the priority of subscribers on the basis of call length. 

Subscribers with mean call lengths greater than the threshold value 

will tend to lose credit while the rest will tend to gain credit. 

Subscribers who tend to lose credit will all tend to have credits of 

zero while subscribers who gain credit will all tend to have maxim.um 

credit. Thus the Tsetlin scheme tends to split the subscribers into 

two groups and is not suitable for giving each subscriber an 

individual priority. The Tsetlin scheme also requires the use of a 

threshold value, the value of which affects the operation of the 

scheme and so it is not a true a priori system. It would be more
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effective to measure the call lengths of subscribers and base a 

priority system on this using the methods of the modified estimating 

automaton [24,25]. However there are automata better than the 

modified estimating which could be used in an allocation scheme.

In this way it was decided that the next step in the allocation 

scheme would not be based on Tsetlin's scheme. It would give 

individual priorities for each subscriber provided by a learning 

automaton based on the call lengths of the individual subscribers. Of 

the automata which had been investigated the Lrp, Trp and Tip had the 

best performance and so these were included in the new scheme.

Automaton Allocation Scheme-Operation

The automaton allocation scheme was simulated in the same way as 

the Tsetlin allocation scheme. If when a subscriber enters the system 

there is a channel free the automaton is not involved and the channel 

is allocated to the subscriber. If there are no channels free the 

subscriber waits in a queue. If when a channel becomes free there are 

two or more subscribers waiting in the main queue the automaton 

selects a subscriber from the queue who will be allocated the channel. 

The action probabilities of the automaton represent priorities for the 

subscribers. Though the sum of the action probabilities is unity, the 

automaton cannot be allowed to select from the full range of its 

actions since not all subscribers will be waiting in the queue. Thus 

only the action probabilities of the subscribers waiting in the queue 

are taken and modified to sum to one so that the automaton will only 

select one of the subscribers waiting in the queue.
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When a call ends the length of the call is fed back to the 

automaton. A penalty/reward signal was required by the automaton with 

long call lengths corresponding to a high penalty probability. The 

equation
1/N

= 1-1/((scale*call length) ) (7.1)

was used to convert call lengths into probabilities. The scale factor 

was chosen so that few calls would be shorter than 1/scale and if this 

did occur the penalty probability was set to 0. The root factor N was 

included to separate long call times. Figure 7.2 shows the 

characteristics of equation (7.1) in converting call lengths into 

penalty probabilities using the values used in the simulation compared 

to the characteristics with N=l. The root factor has the effect of 

producing a less steeply rising characteristic as well as moving the 

penalty probabilities nearer to the centre of their range.

Autom-aton Allocation Scheme-Results

Simulations were made using the automaton allocation scheme with 

the same subscriber and channel parameters as used previously for the 

modified Tsetlin scheme.

During the simulations the Tip automaton was found to be performing 

poorly. Table 7.5 (c) gives results for a simulation using the Tip 

automaton. Comparing results with similar results using Lrp automata 

as given in Table 7.5 (a) and (b) the Tip automaton has fewer events 

and longer waiting times. However the results for the action 

probabilities was of most interest as these indicated that the 

automaton was trying to select the subscriber with the longest mean 

call length m.ost often rather than the subscriber with the shortest 

call length.
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The analysis of the Tip automaton in a two action environment 

showed that the automaton will reach steady state when

penalties from action 1 = penalties from action 2 (5.17)

The action probabilities for the Tip automaton in Table 7.6 (c) can be 

explained as an attempt by the automaton to satisfy this condition for 

all subscribers. Since the mean time between calls was different for 

each subscriber the arrival rates were different. However since the 

penalty probabilities were fixed by the mean call length the only way 

the automaton could satisfy the condition was by trying to change the 

frequency of calls from the different subscribers. The action of the 

automaton was to slow calls from subscribers who made calls frequently 

and attempt to increase the frequency of calls from subscribers who 

make calls infrequently. It did this by having a high action

probability for subscriber 5 who had a long mean time between calls

but also a long mean call length. This gave subscriber 5 a good 

performance but this resulted in a reduced overall performance and 

poorer performances for the other subscribers.

The Lrp with cc = |3 and the Tip automata satisfy the same steady 

state conditions and so the action probability results for the Lrp 

automaton could be expected to show the same effect as for the Tip 

automaton. Though the action probabilities in Table 7.5 (b) are 

higher for infrequent subscribers than the corresponding results for 

the Lri automaton the difference is far less than the Tip results. 

The results in Table 7.5 (b) and (d) do not satisfy the condition

(5.17) indicating that the Lrp automaton is not operating as expected.
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A conventional analysis of the Lri automaton shows that the 

automaton operates to equalise the penalty probabilities of the 

environment. If this is not possible, as in an autonomous 

environment, the automaton selects the action corresponding to minimum 

average penalty probability with a high probability. As shown in 

Table 7.5 (a) the Lri does not equalise the penalty probabilities or 

select the action corresponding to the minimum penalty probability 

with a high probability.

The anomalies discribed above were the result of a common cause. 

Normal analysis assumes that every time an automaton selects an action 

the selection is made between every action and that the feedback is 

applied to every action probability. In the diannel allocation scheme 

the selection was made between only the subscribers waiting in the 

queue and if only one subscriber was waiting the automaton was not 

involved. However the updating was appled to every action every time 

a call ended. Because of this the normal analysis does not apply and 

the automata will not operate as expected.

Once the cause of the unusual results had been determined further 

results were taken with the exclusion of the Tip automaton. Table 7.6 

gives results for the Lrp and Trp automata corresponding to the 

simulations in Table 7.4. In results (a) and (b) the modified Tsetlin 

scheme produces a better performance by having a distinct priority for 

subscribers 1 and 2 compared to the less defined priority of the 

automata schemes. In (c) the Trp automaton produces the best 

performance by giving more priority to subscriber 1 than the Lrp. In 

results (d),(e) and (f) the number of subscribers is Increased to 15 

and the range of mean time between calls and mean call lengths is much 

greater. In all these results the Lrp automaton has the best
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performance. The performance of the Trp automaton is good for 

subscriber 1 but is degraded because the automaton gives a relatively 

high priority to subscribers 12-15 who make calls infrequently but 

have long call lengths. Because these subscribers are selected by the 

automaton relatively frequently the performance of the other 

subscribers falls as does the overall performance.

In Chapter 5 the operation of the Trp automaton was described as a 

mixture of Tri and Tip automata. However the Tip when operating in 

this simulation tended to choose the subscriber with the lowest 

frequency of calls. Since the Trp is a mixture of the Tri and Tip 

automata the behaviour of the Trp in the results above can be 

explained as the character of the Tip automaton showing through.

Conclusions

Investigation into the Tsetlin allocation scheme has shown that in 

most cases the system does not operate as intended and give priority 

to subscribers with short call lengths. Instead, except at very high 

loadings, the performance of dominant subscribers who should have 

priority is reduced.

Having discovered the shortcomings of the Tsetlin scheme the 

modified Tsetlin scheme was developed to operate as Tsetlin intended 

his scheme to operate. This modification was sucessful and provided a 

better performance for all loadings.

As a further development each subscriber in the system was given an 

individual priority using learning automata. When the results were 

not as expected this was found to be due to the unusual selection and 

updating procedures required in the system. This resulted in a 

distortion to the automata algorithms so changing the characteristics 

of the automata. Despite this the Lrp and Trp automata were able to

232



-W*- produce good performances. These simulations highlighted an aspect of

the use of automata which had not been considered before.
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subscribers

F i gure7-1 The Tsetlin allocaTion scheme



criber Mean 
length 

of call 
(seconds)

Mean time 
between 
calls 

(seconds)

Percentage 
time as 
dominant 

subscriber

Percentage 
time as 
reserve 
subscriber

Mean
waiting

time

1 0.1 2.0 99.98 0.0 0.0971
(0.0211)

2 0.2 2.0 99.23 0.53 0.0941
(0.0179)

3 0.3 2.0 0.72 66.31 0.0135
(0.0141)

4 0.4 2.0 0.05 66.34 0.0097
(0.0109)

5 0.5 2.0

(a)

0.0 66.82 0.0082
(0.0089)

1 0.3 1.0 59.90 36.36 0.0351
(0.0138)

2 0.3 1.5 47.94 40.98 0.0366
(0.0171)

3 0.3 2.0 35.99 43.81 0.0344
(0.0197)

4 0.3 2.5 31.51 40.57 0.0350
(0.0213)

5 0.3 3.0 24.66 38.28 0.0342
(0.0223)

(b)

Table 7.1
Tsetlin's allocation scheme simulation results 
with results for a f.c.f.s. scheme in brackets 

5 subscribers, 2 channels, credit=30/s 
threshold value=0.3s, maximum credit=91
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scriber Mean 
length 

of call 
(seconds)

Mean time 
between 
calls 

(seconds)

Percentage 
time as 
dominant 

subscriber

Percentage 
time as 
reserve 
subscriber

Mean
waiting

time

1 0.01 0.1 99.93 0.02 0.0637
(0.0369)

2 0.02 0.2 99.51 0.18 0.0942
(0.0514)

3 0.05 0.5 0.10 27.39 0.0694
(0.0727)

4 0.06 0.6 0.13 24.68 0.0736
(0.0754)

5 0.07 0.7 0.07 22.23 0.0763
(0.0787)

6 0.09 0.9 0.02 18.90 0.0784
(0.0831)

7 0.1 1.0 0.04 17.81 0.0817
(0.0862)

8 0.15 1.5 0.06 14.83 0.0833
(0.0882)

9 0.2 2.0 0.00 13.22 0.0898
(0.0976)

10 0.3 3.0 0.01 11.78 0.0952
(0.0958)

11 0.4 4.0 0.00 11.04 0.0896
(0.0965)

12 0.6 6.0 0.00 10.06 0.1006
(0.0875)

13 0.8 8.0 0.00 9.90 0.0846
(0.0907)

14 1.0 10.0 0.06 9.33 0.0889
(0.0847)

15 2.0 20.0 0.07 8.63 0.0814
(0.0736)

Table 7.2
Tsetlin's allocation scheme simulation results 
with results for a f.c.f.s. scheme in brackets 

15 subscribers, 2 channels, credit=400/s 
threshold value=0.03s, maximum credit=61
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Number of 
subscribers

Number of 
channels

Number of 
events

Mean
number in 

system

Mean
waiting

time
(seconds)

Mean
number of 

free
channels

15 2 677393
(606617)

(a)

11.6189
(11.9706)

1.4189
(1.6426)

0.0003
(0.0002)

15 2 630252
(609376)

(b)

8.6998
(8.9062)

1.0655
(1.1360)

0.0212
(0.0214)

15 2 611733
(602417)

(c)

7.6587
(7.7707)

0.9326
(0.9657)

0.0512
(0.0520)

15 2 591912
(587132)

(d)

6.7098
(6.7770)

0.8112
(0.8291)

0.0966
(0.0957)

15 2 569826
(568326)

(e)

5.8811
(5.9053)

0.7074
(0.7133)

0.1539
(0.1527)

15 2 544797
(546990)

(f)

5.1866
(5.1496)

0.6240
(0.6148)

0.2163
(0.2167)

15 2 519514
(523832)

4.5989
(4.5117)

0.5545
(0.5330)

0.2850
(0.2837)

(g)

Table 7.3
Tsetlin's allocation scheme simulation results 
with results for a f.c.f.s. scheme in brackets 

(a) credit=100/s, threshold value=0.006s, maximum credit=61 
(b)-(g) credit=400/s, threshold value=0.003s, maximum credit=61
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Number of Number of 
subscribers channels

15

15

15

umber of Mean Mean Mean
events number in 

system
waiting

time
(seconds)

number of 
free

channels

316840 4.2080 1.4175 0.0390
350071 4.1253 1.2254 0.0211
396468 4.0101 1.0243 0.0221

(a)
241392 2.5845 0.8586 0.4526
271739 2.2826 0.5093 0.4103
274985 2.2496 0.4797 0.4107

(b)
426831 0.7274 0.0461 1.3712
433043 0.6655 0.0149 1.3670
433102 0.6649 0.0146 1.3671

(c)
884245 12.7990 2.4402 0.0000
762986 13.1004 2.9075 0.0000
1020868 12.4581 2.0465 0.0000

(d)
519514 4.5989 0.5545 0.2850
523832 4.5117 0.5330 0.2837
533851 4.3138 0.4860 0.2843

(e)
167657 2.5190 0.0763 0.7613
182862 2.3459 0.0590 0.7332
188759 2.3013 0.0545 0.7276

(f)

Table 7.4
Comparason of results for 

Tsetlin's allocation scheme 
f.c.f.s. scheme 

modified Tsetlin scheme
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O

Figure 7-2 Penalty probability choraclerics for fhe aulomalon
allocation scheme



Automaton Automaton Number Mean Mean Mean
parameters of number in waiting number of

events system time
(seconds)

free
channels

(a) Lrp 0.9 1.0 378772 4.0553 1.0960 0.0217
(b) Lrp 0.95 0.95 365111 4.0873 1.1542 0.0214
(c) Tip 0.0005 332915 4.1687 1.3141 0.0203
(d) Lrp 0.95 0.95 558211 3.1565 0.4708 0.1603

Mean call Subscriber Subscriber Subscriber Subscriber Subscriber
length 1 2 3 4 5
(seconds)
(a,b,c,d) 0.2 0.5 0.6 2.0 5.0
Mean time 
between 
calls 

(seconds)
(a,b,c) 0.5 0.5 0.5 0.5 0.5

(d) 0.2 0.5 0.6 2.0 0.5

Action
probability

(a) 0.3700 0.2453 0.2260 0.1120 0.0467
(b) 0.3159 0.2269 0.2150 0.1428 0.0994
(c) 0.0059 0.0046 0.0042 0.0048 0.9805
(d) 0.3913 0.2204 0.1979 0.1079 0.0825

Penalty
probability

(a) 0.4339 0.5435 0.5638 0.6777 0.7422
(b) 0.4343 0.5461 0.5618 0.6751 0.7418
(c) 0.4376 0.5459 0.5674 0.6783 0.7391
(d) 0.4356 0.5459 0.5654 0.6761 0.7391

Number of 
penalties

(a) 47725 49448 49399 39890 23211
(b) 44449 47377 46966 40674 23856
(c) 36978 42207 42853 41412 25430
(d) 107524 72480 72480 29506 14052

ci*pi
(a) 0.1605 0.1333 0.1274 0.0759 0.0347
(b) 0.1372 0.1239 0.1208 0.0964 0.0737
(c) 0.0026 0.0025 0.0024 0.0033 0.7224
(d) 0.1704 0.1203 0.1119 0.0729 0.0609

Table 7.5
Automaton allocation scheme simulation results
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Number of 
subscribers

Number of 
channels

15

15

15

Number of Mean Mean Mean
events number in 

system
waiting

time
(seconds)

number of 
free

channels

350071 4.1253 1.2254 0.0211
396468 4.0101 1.0243 0.0221
378722 4.0553 1.0960 0.0217
389099 4.0266 1.0520 0.0219

(a)
271739 2.2826 0.5093 0.4103
274985 2.2496 0.4797 0.4107
272324 2.2725 0.5026 0.4128
274546 2.2503 0.4819 0.4121

(b)
433043 0.6655 0.0149 1.367
433102 0.6649 0.0146 1.3671
432732 0.6629 0.0147 1.3691
433174 0.6635 0.0146 1.3686

(c)
762986 13.1004 2.9075 0.0000

1020868 12.4581 2.0465 0.0000
1281417 11.8092 1.5288 0.0000
1016796 12.4687 2.0568 0.0000

(d)
523832 4.5117 0.5330 0.2837
533851 4.3138 0.4860 0.2843
539747 4.1892 0.4583 0.2876
535934 4.2614 0.4745 0.2847

(e)
182862 2.3459 0.0590 0.7332
188759 2.3013 0.0545 0.7276
188963 2.2779 0.0527 0.7189
188369 2.3226 0.0551 0.7189

(f)

Table 7.6
Automaton allocation scheme results for 

f.c.f.s. scheme 
modified Tsetlin scheme 

Lrp (X =0.9 j3 = l 
Trp step size=0.0005
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THEORY AND APPLICATIONS OT LEAJINING AUTOMATA 

CHAPTER 8 ALLOCATION W  A MULTIPROCESSOR SYSTEM 

Introduction

In a single processor computer system, users of the system are 

sources of jobs which require the use of the processor. Since the

processor can only carry out the tasks associated with one job at a 

time, jobs must be queued if more than one job is in the system.

There are a variety of queueing systems used to determine which job is 

allowed the use of the processor e.g. round-robin, xihere each job in 

turn is allocated a set amount of processing time, batch, where each

job is allocated the processor until the job is completed and priority

schemes where the processor is allocated according to a priority 

system based on the amount of processing time a job has already 

received [42]. Some queueing systems favour short jobs and ensure 

that they have short waiting times while others are more favourable to 

jobs with long processing times. In either case the amount of 

processor time available is limited and only the distribution of the 

processing capacity amongst the jobs can be changed. A single 

processor system is sim.ilar to the system examined in Chapter 7 in 

that it has a limited capacity resource being allocated in a variety 

of possible ways amongst a number of users.

In a computer system with multiple processors there is more 

flexibility in that the jobs can be allocated to different processors 

with the aim of obtaining the best service. In a system where the 

speed of each processor is known as well as the queue length, at each 

processor a fixed scheduling discipline can be used to calculate the 

processor with the least waiting time. However if the param.eters of
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the system are not known, the fixed scheduling discipline cannot be 

used and if the parameters change with time the performance of the 

fixed scheduling discipline can be surpassed. Colon-Osorio [44] 

investigated the operation of the fixed scheduling discipline in a 

multiprocessor system by simulation and compared the performance with 

an adaptive scheme using Lrp automata. A similar investigation was 

carried out but with the addition of the Trp, Tip and Tri automata.

Multiprocessor System Simulation

The multiprocessor system simulation, illustrated in Figure 8.1, 

had provision for up to 5 processors with individual processing rates 

and up to 30 sources of jobs with individual exponentially-distributed 

processing requirement and time between job arrivals. The allocation 

scheme could either be the fixed scheduling discipline or an automaton 

scheme. The automaton scheme used an automaton at each source to 

allocate the jobs to the processors. The automaton at any source 

could be any of the types Lrp, Trp, Tip or Tri. This simulation 

provided a system which had not been investigated before. The 

environment was non-autonomous but the number of automata operating in 

the environment was equal to the number of job sources and the 

automata were operating in a games situation in that the actions of 

one automaton could affect the other automata via the penalty 

probabilities of the processors. The penalty probabilities were 

determined using the method used by Colon-Osorio i.e. a penalty was 

received if the processor chosen by the automaton was busy otherwise a 

reward was received.
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The initial measurements obtained from the multiprocessor 

simulation showed how the penalty probabilities varied with respect to 

the action probabilities. This was done by running the simulation 

with a variety of fixed action probabilities. Results were obtained 

for a system with a single source of jobs and two processors with the 

system loaded to 0.357 of capacity and are shown in Figure 8.2. The 

second set of results were obtained for a larger system with 5 sources 

and 2 processors with the system loaded to 0.7 of capacity. These 

results are given in Figure 8.3 and with Figure 8.2 confirm that the 

system represents a non-autonomous environment with the penalty 

probabilities linearly related to the action probabilities. Also 

included in these figures are the average penalty and mean turnaround 

time results. It should be noted that these measures of performance 

do not have their minima at the same action probability and so an 

automaton achieving the minimum average penalty would not minimise the 

mean turnaround time which is the measure of performance for the 

system.

Multiprocessor System Simulation-Automaton Steady State Conditions

Included in Figures 8.2 and 8.3 are the results of a number of 

simulations using a variety of automata. The results indicate the 

average action probability during the simulation. Figure 8.2 gives 

results for a single processor operating over 50000 iterations and 

includes the average penalty received by the automaton. It can be 

seen that the Lrp automaton with B =1 and the Tip automaton converge 

close to the point where c^ pa^ = C 2 pa2 as expected from equation 

(4.29) and (5.17). Also as expected from equation (4.22) two Lri 

automata converge to the action probability where c^ = C 2 and a Lrp

Multiprocessor System Simulation-Identification of Environment
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automaton with oc ^ ^ converges between the Lri and Lrp automata. The 

most unusual results are three for Lri automata withcc=0.9 which have 

action probabilities less than 0.1. Because oc is so low these 

automata have large step sizes and so converge quickly. What has 

happened is that the automata have gone optimal and converged to 

selecting a single action before the system reached steady state.

Table 8.1 gives results for a variety of automata operating in the 

environment shown in Figure 8.3. In Table 8.1 there were 5 job 

sources so the results are the average over five automata. Again the 

Lrp automaton with 8 =1 and the Tip automata converge near the same 

action probability, the difference in the mean turnaround times being 

due to the different learning times for the automata, as shown by the 

result for the slowest automata, the Tip with the step size of 0.001. 

The Lri automata achieve a better performance in terms of mean 

turnaround time since the point where c^ = C2 is closer to the 

optimum action probability for the system.

None of the results for these automata achieve a mean turnaround 

time as low as that achieved by the fixed scheduling discipline. Even 

the minimum mean turnaround time given in Figure 8.3 is far larger 

than the fixed scheduling discipline result. This is because the 

scheduling discipline is a deterministic rule while the automata 

implement a stochastic rule. Because of variance, an automaton may 

allocate a series of jobs to a single processor while a second 

processor may be free. The fixed scheduling discipline with its up to 

date information of the queue lengths would easily avoid this. Thus 

provided the fixed scheduling discipline has accurate information 

about the system its performance can never be matched by an automaton 

scheme.
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Colon-Osorio saw the use of an automaton system being an advantage 

in situations where the parameters of the system changed so that the 

performance of the fixed scheduling discipline was decreased allowing 

an adaptive system scope to provide a better performance.

Table 8.2 gives results of simulations using system parameters used 

by Colon-Osorio where the processor speeds are switched though the 

systems loading remains constant at 0.7. This degrades the 

performance of the fixed scheduling discipline while the automata 

schemes should be able to adapt to achieve the same steady state 

performance before and after the switch.

Table 8.2 shows that the performance of the Lrp autom.ata with '6 =1 

is poor. Throughout the simulation the processor queues are growing 

longer resulting in long turnaround times. The Lri automata have a 

good performance before the switch but a poor performance after. This 

is because the automata are slow to switch and because any autom.ata 

which have gone optimal will be unable to switch. A better 

performance is produced by the Lrp automata in the third simulation 

result as these cannot go optimal and the result after the switch is 

only poorer because of the delay in the automata responding to the 

switch in the environment.

The results for the Trp automaton show that the automata produce a 

reasonable performance prior to the switch but afterwards the 

performance is poor with the processor queues growing longer. This 

illustrates an aspect of the operation of the Trp automaton. When the 

simulation is started the system is empty and the penalty 

probabilities are low. With low penalty probabilities the operation 

of the Trp automaton is like that of the Tri automaton and this

Multiprocessor System Slmulation-Switched Environments
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automaton produces good results as Table 8.2 shows. When the 

environment switches the penalty probabilities rise and the automata 

have to adapt. However the operation of the Trp automaton with high 

penalty probabilities is like that of the Tip automaton and the 

results show that this automaton produces a poor performance. The Trp 

automaton is unable to regain its previous performance after the 

switch because of the high penalty probabilities, but cannot reduce 

the penalty probabilities because of its poor performance.

The results produced by the Tri automaton were the best that were 

obtained, particularly the first result. This had a lower mean 

turnaround time after the switch than before and producing the lowest 

result of all the automata schemes. The second result is less good 

even though the final action probabilities of both runs are the same. 

The difference is in the speed of response to the switch with the 

second result being slower and allowing large queues to develop before 

responding to the switch in the environment.

Table 8.3 gives results of simulations in the same environment as 

Table 8.1 but with a switch after 2000 iterations. The switch in the 

environment is much less drastic than in Table 8.2 and the loading on 

the system is 0.7. Again the Tip automaton produces the poorest 

results and again the Tri automata produce the best results but marred 

by a slow response to the switch. Chapter 5 suggested that the Tri 

automaton would have a poor performance in a non-autonomous 

environment because the automaton tends to converge to select a single 

action almost exclusively. In the simulations above, a number of 

automata are used together so that each can converge to a single 

action and still as a whole produce an action probability between 0 

and 1. In fact the more automata working together the better, as the
i
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combined action probability produced by the automata will be closer to 

the optimal action probability. When responding to a switch in the 

environment the Tri automata are reluctant to change their action. 

However when a queue builds up at a processor and the penalty 

probability rises to 1 this forces a number of the automata selecting 

that action to change their action which changes the overall action 

probability to nearer the new optimal action probability.

In operation the fixed scheduling discipline calculates the 

expected turnaround time of a job allocated to each processor in the 

system knowing the processor speeds and the processor queue lengths 

and allocates the job to the processor with the shortest turnaround 

time. In a heavily loaded system the effect of the fixed scheduling 

discipline will be to establish processor queues, the length of which 

is proportional to the processor speed. When the environment 

switches, the fixed scheduling discipline is working with inaccurate 

data and will establish the longest queue for the slowest processor. 

However this does not have as large an effect on the performance as 

might be expected as the fixed scheduling discipline will stop filling 

the long queue in favour of the short queue which will be processed 

quickly by the fast processor. The fixed scheduling discipline also 

responds well if a processor fails completely since any jobs allocated 

to that processor will enter the queue and not be processed. The 

queue will only grow to an extent where the fixed scheduling 

discipline allocates all the jobs to the other processors. Since the 

fixed scheduling discipline still has accurate information about the 

other processors in the system the performance will still be optimal. 

Thus the fixed scheduling discipline provides a reasonable performance 

even when it has inaccurate information on the processor speeds.
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So far the results presented have been for simulations in which the 

automata were of the same type and with the same parameters. In 

Tables 8.4 and 8.5 the automata are of the same type but with 

different parameters. The environment used was that of Figure 8.3 

with 5 automata and 2 processors. In Table 8.4 runs (a)-(d), the 

number of optimal Lri automata is increased from 0 to 3. The results 

show that the Lri automata converge to selecting the fastest processor 

so gaining the shorter mean turnaround time. As more Lri automata are 

introduced the remaining Lrp automata are forced more and more into 

selecting the slower processor.

Runs (e) and (f) are for the Trp automaton, while Table 8.5 has 

results for the Tri and Tip automata. In these cases changing the 

automaton has no effect on the theoretical steady state conditions of 

the automata, instead the speed of convergence and variance are 

changed, small step sizes producing slow automata with low variance. 

In Table 8.4 (e) and (f) results for Trp automata show that changing 

the speeds of the automata results in a poorer performance. This is 

because the overall action probability is reduced by the slow automata 

and though the fast automata compensate it in not sufficient. For the 

Tip automata, as shown in Table 8.5(a)-(b), a variety of processor 

speeds increases performance. Overall, the action probability and 

penalty probability changed little but the mean turnaround time is 

affected. A variety of automata speeds can have two benefits. The 

first is a decrease in variance as the slow processors have reduced 

variance and the second is an increase in speed. Any tendency toward 

increased variance due to the fast automata is reduced as the response 

to the effects of the variance on the system is speeded up. Also any

Microprocessor System Simulation-Interaction of Automata
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tendency toward a decreased response time due to the slow automata is 

reduced provided the fast automata can compensate until the slow 

automata reach steady state.

Table 8.5(c)-(f) gives results for the Tri automata with a range of 

parameters. Tri automata are expected to go optimal but in (c) with 

the parameters all equal, the automata all have the same convergence 

rate. They all converge to select processor 1 but because of their 

similar speeds prevent each other from going optimal. In results 

(d)-(e) the fastest automata converge to selecting processor 1 almost 

exclusively. This forces the slowest automaton to select processor 2. 

Since this is the only automaton selecting processor 2 the penalty 

probability received is low even though the mean turnaround time is 

high. The overall performance is good since the mean turnaround time 

provided by processor 1 is low as only 4 automata are selecting it and 

because the variance of the system is reduced because the automata are 

nearly optimal. Result (f) has even more widely spaced parameters and 

in this case two automata converge to select processor 2 most 

frequently. Once all the automata have converged the fastest automata 

switches to select processor 2 because of its low penalty probability. 

However this has a detrimental effect on the overall performance.

Finally a closer look was taken at the steady state conditions of 

automata which have been analysed theoretically, i.e. the Lrp, Lri 

and Tip automata. The environment used had two automata and two 

processors, using the same processing speeds as in Figure 8.3 but with 

the mean time between jobs changed to keep the systems load at 0.7 of 

capacity. The results are given in Table 8.6.
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The results given in (a) and (b) are for an Lri automaton operating 

with a Lrp automaton withB=l. The Lri automaton will try to equalise 

the penalty probabilities while the Lrp will try to equalise the 

penalty rates according to equation (4.29). If the Lri automaton is 

successful in making ĉ  ̂ = C 2 then from equation (4.29) the action 

probabilities for the Lrp automaton must be 0.5. This is what was 

observed in the simulations, the two automata combining to produce an 

action probability of approximately 0.7. The difference between the 

two results is the initial action probabilities of the automata. A 

similar performance (f), is produced by a Lri and Tip automaton 

operating together. This is as expected since the Lrp and Tip 

automata have the same steady state conditions.

Table 8.6 (c) is for a Lrp automaton operating with a fixed 

probabilistic rule. By satisfying its own steady state condition, the 

automaton produces a poor overall performance. Poor results are also 

shown in (d) and (g) which give results produced by two Lrp and two 

Tip automata operating together.

The fifth result shows two Lri automata operating together. 

Overall the result is the same as the other results with only a single 

Lri automaton. The addition of a second Lri instead of a Lrp 

automaton has no overall effect though the individual action 

probabilities of the automata are changed.

Conclusions

The investigations into allocation methods in a multiprocessor 

system has shown that the fixed scheduling discipline can provide a 

good performance even when it has inaccurate information. It has been 

shown that the steady state conditions of the Lri, Lrp and Tip 

automata do not necessarily correspond to the action probabilities
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which would give the best system performance. The Trp automaton has a 

reasonable performance but the Tri automaton has been of most 

interest. Individually these automata have a poor performance in 

non-autonomous environments but when a number have been used together 

they have been shown capable of steady state results better than any 

of the other automata schemes.
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Figure 8-1 Allocation of jobs in a multi-processor system



Characteristics of multiprocessor system 

1 source of jobs
mean time between Jobs = 0-2s 
mean processing requirement = 1c.u.

2 processors of speeds 6c.u./s and 8c.u./s 

Results taken over 50000 iterations

T|p s. s. = 0*01 ap. = 0 -3539

Lr p o C = 0 .9 5  ^ = 0 .9 5  a p . - 0.3585

LR p o C  = 0. 95  ^ = 0 -9 9 5  a.p, = 0 .3565

Lr i «: = 0.98 1 ap. = 0 -3 5 9 4

Lr i <s<; =0.95 a.p =  0. 3 706

Tr p  s .s . =  0.01 a p  =  0 - 3 7 2 4

fixed scheduling discipline a p - 0 1 7 0 9

L p io i  =o.g ap  =  0 - 576

L r i ° c  = 0.9 a p  =  0-5947

Automaton results show, automaton, automaton parameters, and average penalty 

received.

F i g u r e  8-2



Characteristics of rrul tiprocessor system

 ̂ .mean time between jobs = Is
5 sources of jobs < „  . n c ̂ mean processing requirement = 0-5c.u.

2 processors of speeds 2-5cu/s and 1-071bc.u./s 

Results taken over LOOOO iterations

*  f ixed scheduLe discipline
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omaton Automaton Overall Mean Percentage Percentag
parameters1 action turnaround time time

probability- time processor1 processor
processor 1 (seconds) busy busy

FSD - 0.7774 0.5993 0.7631 0.5018

Lrp 0.95 0.95 0.6036 1.3700 0.5866 0.9138
Lrp 0.95 0.99 0.6492 1.0034 0.6308 0.8107
Lri 0.95 1.0 0.6930 0.8699 0.6726 0.7132
Lri 0.98 1.0 0.6906 0.9205 0.6672 0.7257

Trp 0.03 0.6518 1.0717 0.6298 0.8109
Trp 0.01 0.6482 1.0274 0.6312 0.8098
Trp 0.005 0.6482 1.0595 0.6299 0.8130
Trp 0.001 0.6166 1.4054 0.6005 0.8815

Tip 0.03 0.6008 1.5225 0.5822 0.9214
Tip 0.01 0.5982 1.5518 0.5815 0.9236
Tip 0.005 0.5958 1.6306 0.5785 0.9307
Tip 0.001 0.5702 4.1737 0.5553 0.9848

Tri 0.1 0.6826 1.1658 0.6642 0.7320
Tri 0.05 0.7572 0.8998 0.7403 0.5537
Tri 0.01 0.6652 1.7218 0.6470 0.7725
Tri 0.005 0.7428 0.9884 0.7219 0.5975
Tri 0.001 0.6178 1.5195 0.6038 0.8736

Table 8.1
Multiprocessor allocation scheme simulation results 

5 job sources, mean time between jobs 1.0s 
mean processing requirement 0.5cu 

2 processors of speed 2.5cu/s and 1.0714cu/s 
5000 iterations
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omaton Automaton Overall Mean Percentage Percentag'
parameters action turnaround time time

probability time processor1 processor
processors (seconds) busy busy

1 and 2

FSD _ .7285 .2485 0.8880 0.8258 0.5868
.1333 .4250 3.7351 0.4949 0.4839

Lrp 0.95 0.95 .4775 .3235 19.0883 0.5585 0.7267
.2014 .3276 58.2761 0.4949 0.3595

Lrp 0.98 0.98 .4707 .3265 20.0600 0.5580 0.7090
.1994 .3274 64.2834 0.4949 0.3578

Lrp 0.95 0.995 .5370 .3408 1.8085 0.6548 0.7095
.1138 .3284 2.0431 0.8464 0.7217

Lri 0.95 1.0 .5553 .3357 1.6011 0.6870 0.6875
.0052 .3884 8.0939 0.2348 0.7920

Trp 0.01 .5320 .3217 3.4224 0.6261 0.7062
.1402 .3178 11.0677 0.9822 0.7072

Trp 0.005 .5273 .3205 3.5206 0.6224 0.7076
.1380 .3274 19.5042 1.0000 0.7173

Tip 0.03 .445 .3225 30.0657 0.5221 0.7076
.2312 .3228 82.9226 1.0000 0.7270

Tip 0.01 .4465 .3195 31.5873 0.5169 0.7243
.2316 .3246 87.7283 1.0000 0.7187

Tri 0.05 .5515 .3100 1.7526 0.6935 0.6735
.0518 .3130 1.4018 0.3605 0.6985

Tri 0.01 .5480 .4110 2.1457 0.7187 0.7754
.0194 .3118 20.0978 0.5332 0.6870

Table 8.2
Multiprocessor allocation scheme simulation results 

3 job sources, mean time between jobs 0.5s, 0.75s, 1.0s. 
mean processing requirement 2.0cu, 1.5cu, l.Ocu.

3 processors of speed 6cu/s, 3cu/s, Icu/s. 
switching to Icu/s, 3cu/s and 6cu/s after 4000 iterations 

first result taken over iterations 0-4000 
second result taken over iterations 5000-10000
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Automaton Automaton Overall Mean Percentage Percentage
param,eters action turnaround time time

probability time processor! processor!

FSD

Lrp 0.95 0.99

Trp O.OI

Tip 0.01

Tri 0.02

rocessor 1 (seconds) busy busy

0.793 0.5274 0.7744 0.5001
0.770 0.6643 0.7829 0.5539
0.471 0.9586 0.9327 0.5062
0.411 1.0541 0.9606 0.5879
0.401 1.1071 0.9672 0.5633

0.668 1.0252 0.6345 0.8256
0.649 1.0918 0.6578 0.8398
0.349 1.2386 0.7470 0.5880
0.344 1.3442 0.8167 0.6502
0.352 1.1507 0.7816 0.6483

0.651 1.0994 0.6259 0.8456
0.639 1.0533 0.6584 0.8382
0.373 1.4174 0.7861 0.5730
0.346 1.4109 0.8261 0.6438
0.339 1.0387 0.7580 0.6574

0.590 1.7851 0.5791 0.9449
0.606 1.6716 0.6180 0.9427
0.425 1.7915 0.8794 0.5328
0.397 1.9348 0.9495 0.5875
0.394 1.9422 0.8983 0.6016

0.747 0.9256 0.7281 0.6079
0.678 1.1209 0.6821 0.7829
0.510 13.9919 1.0000 0.4126
0.181 4.4858 0.5927 0.8174
0.223 1.0428 0.4668 0.7786

Table 8.3
Multiprocessor allocation scheme simulation results 

5 Job sources, mean time between jobs 1.0s 
mean processing requirement 0.5cu 

2 processors of speed 2.5cu/s and 1.0714cu/s 
5 sucessive runs of 1000 iterations 

with the environment switched after 2000 iterations
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Automaton Run Run Run Run Run Run
parameters (a) (b) (c) (d) (e) (f)

Lrp Lrp Lrp Lrp Trp Trp

1 .95 .995 .95 .995 .95 .995 .95 1.0 0.005 0.03
2 .95 .95 .95 .95 .95 .95 .95 .95 0.005 0.01
3 .95 .9995 .95 1.0 .95 1.0 .95 1.0 0.005 0.005
4 .9 .99 .9 .99 .9 .99 .9 .99 0.005 0.002
5 .98 .9998 .98 .9998 .98 1.0 .98 1.0 0.005 0.001

Mean
turnaround

time
1 0.9087 0.9461 0.9101 0.7844 0.9386 0.9420
2 0.9121 0.9199 0.8759 0.8841 0.8966 0.9497
3 0.6696 0.6163 0.6083 0.6451 0.8566 0.9264
4 1.0226 1.0457 1.0204 1.0110 0.9584 1.0420
5 0.7900 0.8139 0.7384 0.8160 1.0048 1.1080
rail 0.8608 0.8685 0.8307 0.8281 0.9305 0.9930

Average
penalty-
received

1 0.6606 0.6606 0.6667 0.6687 0.6747 0.6847
2 0.6905 0.6847 0.6868 0.6828 0.6692 0.6867
3 0.6660 0.6580 0.6540 0.6660 0.6740 0.6920
4 0.6957 0.7160 0.7120 0.6937 0.6815 0.6998
5 0.6728 0.6870 0.6748 0.6890 0.7012 0.7134

overall 0.6772 0.6812 0.6788 0.6800 0.6800 0.6952

Action 
probability 
processor 1

1 0.6029 0.5567 0.5550 0.7649 0.6447 0.6702
2 0.5405 0.5386 0.5348 0.5195 0.7010 0.6958
3 0.9320 0.9977 0.9977 0.9990 0.6597 0.6709
4 0.4876 0.5037 0.4790 0.4460 0.6393 0.6265
5 0.8150 0.7907 0.8217 0.7669 0.6595 0.5817
rail 0.6716 0.6740 0.6776 0.6976 0.6588 0.6492

Table 8.4
Multiprocessor allocation scheme simulation results 

5 job sources, mean time bet-ween jobs 1.0s 
mean processing requirement 0.5cu 

2 processors of speed 2.5cu/s and 1.0714cu/s 
final 2500 of 5000 iterations
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A.utomaton Run Run Run P.un Run Run
parameters (a) (b) (c) (d) (e) (f)

Tip Tip Tri Tri Tri Tri

1 0.01 0.05 0.02 0.04 0.04 0.1
2 0.01 0.02 0.02 0.02 0.04 0.04
3 0.01 0.01 0.02 0.02 0.02 0.02
4 0.01 0.005 0.02 0.02 0.01 0.01
5 0.01 0.002 0.02 0.01 0.01 0.004

Mean
turnaround

time
1 2.0077 1.8455 1.1382 0.8555 0.8575 1.3126
2 1.8977 1.7415 1.0775 0.8472 0.8513 0.6536
3 1.8124 1.7253 1.0006 0.8621 0.8647 0.6652
4 1.9404 1.8220 1.0979 0.8444 0.8473 0.6670
5 1.9828 1.8774 1.1480 0.9225 0.9202 1.2222
rail 1.9283 1.8021 1.0925 0.8662 0.8681 0.9051

Average
penalty-
received

1 0.7201 0.7201 0.6978 0.7711 0.7711 0.7050
2 0.7177 0.7204 0.6942 0.7623 0.7583 0.6771
3 0.7127 0.7113 0.6839 0.7629 0.7636 0.6839
4 0.7143 0.7088 0.6857 0.7517 0.7558 0.6937
5 0.7313 0.7306 0.7076 0.4990 0.4983 0.6941
rail 0.7192 0.7183 0.6939 0.7101 07101 0.6888

Action 
probability 
processor 1

1 0.6077 0.6084 0.6405 0.9769 0.9769 0.2230
2 0.6053 0.5988 0.6644 0.9779 0.9720 0.9774
3 0.6048 0.6049 0.7000 0.9785 0.9785 0.9794
4 0.6195 0.6202 0.6562 0.9791 0.9893 0.9899
5 0.5926 0.5957 0.6600 0.0101 0.0102 0.3382

overall 0.6069 0.6077 0.6612 0.7843 0.7851 0.6945

Table 8.5
Multiprocessor allocation scheme simulation results 

5 job sources, mean time between jobs 1.0s 
mean processing requirement 0.5cu 

2 processors of speed 2.5cu/s and 1.0714cu/s 
final 7500 of 10000 iterations
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Automaton Overall 
parameters action

probability- 
processor 1

Automaton Mean 
action turnaround 

probabilities time

cl & c2 for Lri 
Cĵ pa^ & C2 pa

for Lrp & Tip

Lrp
Lri

0.98
0.98

0.98 0.6981 
1.0

0.5024
0.8930

(a)

0.4976
0.1071

1.0824 0.3449
0.6886

0.3471
0.6912

Lrp
Lri

0.98
0.98

0.98 0.6930 
1.0

0.5080
0.8782

(b)

0.4920
0.1218

1.0965 0.3480
0.6900

0.3473
0.6928

Lrp 0.98 0.98 0.5739 0.6345
0.5

(c)

0.3655
0.5

6.9390 0.3577 0.3559

Lrp
Lrp

0.98
0.98

0.98 0.6056 
0.98

0.5989
0.6030

(d)

0.4011
0.3970

2.3982 0.3601 0.3559

Lri
Lri

0.98
0.98

1.0 0.6968
1.0

0.6188
0.7721

(e)

0.3812
0.2279

1.1302 0.6894 0.6946

Tip
Lri

0.01
0.98

0.6955
1.0

0.5003
0.8919

(f)

0.4997
0.1081

1.1096 0.3431
0.6857

0.3520
0.7064

Tip 0.01 0.6046 0.5963 0.4037 2.2618 0.3578 0.3589
Tip 0.01 0.6000 0.4000 

(g)

Table 8.6
Multiprocessor allocation scheme simulation results 

2 job sources, mean time between jobs 0.625s 
mean processing requirement 0.5cu 

2 processors of speed 2.5cu/s and 1.0714cu/s 
10000 iterations
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 2 CONCLUSIONS AND FURTHER WORK

The work described in Chapter 2 is believed to be the first 

investigation of the Tsetlin and Krylov automata synthesised using 

digital electronics. These investigations quickly revealed practical 

weaknesses in these automata which have not been highlighted by 

theoretical analysis. The Tsetlin automaton is optimal as the memory 

size increases towards infinity provided one of the penalty

probabilities is less than 0.5. However this work shows that for 

satisfactory performance the penalty probabilities should be about 0.5. 

For this reason Tsetlin automata with more than two actions are not 

considered practical. The Krylov automaton is designed to provide a 

better performance than the Tsetlin automaton by being optimal for all 

penalty probabilities as the memory size increases towards infinity. In 

contrast it has been found that the performance of the Krylov automaton 

has been unsatisfactory in all environments.

Also described in Chapter 2 is what is believed to be the first use 

of hierarchical automata. A second automaton has been used to monitor 

the performance of the first and controls its parameters to enable it to 

achieve the best performance in a non-stationary environment. The 

importance of this is increased when, in later chapters on 

non-autonomous environments, it is shown that in general automata do not 

converge to the optimum for the environment but to a steady state 

condition determined by their parameters.
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The work in Chapter 2 has highlighted the deficiencies in the 

automata described as Type 2 in Table 1.1. These have a fixed structure 

and a deterministic output which means that the automata cannot provide 

good performance for the whole range of penalty probabilities. The 

automata proposed in Chapter 3 have a variable structure and the results 

have shown that adopting a variable structure can achievfe good 

performances over the range of penalty probabilities.

Chapter 4 shows the disadvantages of a deterministic output function 

by considering non-autonomous environments, where a mixture of actions 

produces the best performance. To be able to investigate non-autonomous 

environments a model is required. The model proposed in Chapter 4 is 

more realistic than others in that it uses the information that would be 

available to an actual environment and also provides a model on which it 

is easy to carry out theoretical analysis. Simulations of automata with 

deterministic output functions has shown their unsuitability in 

non-autonomous environments. Simulations of automata with stochastic 

output functions operating in Narendra's non-autonomous environment has 

led to a theoretical analysis showing the unsuitability of this model. 

Theoretical analysis of the steady state conditions of the Lri and Lrp 

automata has been given and though these results have been presented 

elsewhere the method used here to achieve the results is different. 

These results show that the Lrp and Lri automata operate to satisfy 

their own steady state conditions and not the conditions for minimum 

average penalty.
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Based on the conclusions of Chapter 4, three automata are proposed in 

Chapter 5 which have stochastic output functions. The operation of 

these automata has been analysed and their performance calculated and 

compared to the Lri automaton. The graphs presented in this and 

previous chapters giving the optimality, average penalty and mean 

switching times in a variety of stationary, non-stationary and 

non-autonomous environments is an attempt to give useful information 

about the performance of the automata and so enabling them to be 

compared directly. The analysis of the Lrp automaton required to 

produce these graphs is believed to be the first of its kind. Of the 

automata proposed in this chapter, the Trp and Tip have performances 

comparable to the Lri automaton.

Chapter 6 considers multi-action automata using the hierarchical 

learning system and automaton games. Though the use of the hierarchal 

learning system is not new the modified Tsetlin automata have not been 

used in this system before. Comparisons with the Lrp automaton have 

proved valuable and certain advantages of the modified Tsetlin automata 

highlighted. Attempts to cause the hierarchical learning system to 

converge to the incorrect actions were unsuccessful proving the 

practicality of the system.

The operation of various automata in games situations has been 

observed and was as expected from previous work. In cooperative games 

the convergence of the automata to the optimum penalty probability 

element has been tested and the best conditions for convergence 

established. In competitive games the operation of the automata has 

been observed and the conditions for their convergence or
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non-convergence understood. Based on this, a penalty probability matrix 

has been devised to test the performance of the automata. From these 

tests the Lri automaton has provided the best performance but the Trp 

automaton also gave good results, in many cases better than Lrp 

automata.

In Chapter 7 the operation of the Tsetlin allocation scheme was 

investigated and it was found that it did not perform as expected. The 

reasons for this were identified and a modification to the system 

provided an improvement in performance by making the operation of the 

system closer to what was originally intended. Also tested was a more 

conventional learning automata scheme. Although this also provided an 

improvement in performance a more important practical consideration was 

discovered. In the system the automaton could not select between all 

its actions but for simplicity the feedback was applied to all actions. 

The result of this was that the automata algorithms were distorted so 

that the automata did not operate as expected. The effect on different 

automata was variable with the operation of some automata changing 

dramatically. This is obviously an effect that will occur in a variety 

of practical applications and should be remembered when future systems 

are being designed.

In Chapter 8 a scheduling discipline for a multiprocessor system with 

up to date information about the system is compared to an automaton 

system with no information about the system. The comparison is somewhat 

unfair as the superior performance of the fixed scheduling discipline 

shows. It is only when the system is disrupted a great deal that the 

adaptability of the automaton scheme becomes beneficial. A point worth

265



noting from these investigations is the performance of the Tri automata. 

When operating alone they have a poor performance but when many are used 

together their combined performance has been shown to be good.

The work presented here investigates the performance of a variety of 

automata and how they operate in various environments. It is felt that 

enough is known about the performance and characteristics of learning 

automata to allow their use in practical situations. However the 

selection of a suitable application for the use of learning automata is 

important. Learning automata learn by selecting the wrong actions and 

cope with non-stationary environments by continuing to select the wrong 

actions occasionally after they have learned. Because of this, learning 

automata cannot be used where the wrong actions would cause damage or 

have dangerous consequences. They are more suitable in non-autonomous 

environments where there are no wrong actions and the ratio of actions 

is important. Learning automata are best used in situations where 

feedback is available frequently and the feedback should be determined 

by the actions of the automaton as directly as possible. It is also 

important to be sure there are gains to be made by using learning 

automata. For example the use of learning automata within a single 

processor computer system cannot provide more processing time for the 

users, it can only distribute it between the users in different ways.

One example which illustrates all these points is the adaptive 

cancelling of sound [50] where a waveform is adaptively generated to 

cancel the noise of a diesel exhaust. In this example the performance 

is easily specified, an output from the environment is always available 

for feedback and an incorrect action by the automaton does not have
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serious consequences.

One application of learning automata that is receiving considerable 

attention is the adaptive routing of calls in a telephone network 

[45,46,47,48,49]. To provide a link between the source of a call and 

its destination a number of links are made between exchanges. For a 

particular source and destination there are a variety of paths the call 

can take. The use of learning automata to route calls between exchanges 

has a twofold advantage. First the learning scheme can achieve near 

optimal performance and so match the performance of a conventional 

routing algorithm but in addition the learning scheme is also adaptive 

and so can maintain performance in a non-stationary situation. Secondly 

a learning scheme can cope with overloads in particular parts of the 

system by using unused capacity in other parts of the system, something 

a conventional routing algorithm cannot do. Although the operation of 

individual automata in such a system can be predicted much less is knovm 

about the overall performance and it is here that present work is being 

concentrated.

A similar application is the use of learning automata in a packet 

sv/itched communication network. In this case a complete link from 

source to destination is not made, instead the message is split into 

standardised packets and sent from exchange to exchange. A packet 

switched communication network provides an even more complex system than 

the telephone network with a greater rate of feedback for the learning 

automata but also with more quickly changing characteristics. Once 

again the performance of individual learning automata in a decentralised 

system can be forecast from previous work but questions are still
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unanswered regarding the global performance and how global 

characteristics can be used to control local automata.

Finally recent work [53] has drawn interest towards the use of a 

hierarchical automaton to control a PID three term controller. This 

combination provides a control unit with widely understood and trusted 

operating characteristics. However the use of a learning automaton to 

control the parameters of the controller provides a learning capability 

and an ability to adapt to changing environmental characteristics.
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APPENDIX CALCULATION _OF STEADY STATE ACTION PROBABILITIES

The operation of an automaton can be described in terms of the 

state vector and the Markov transition matrix Pt [51,52] as

{¿(n+l) = Pt * 0(n) (Al.l)

Given an initial condition 0(0), 0(n) can be calculated as

0(n) = p” * 0(0) (A1.2)

As n->Qo 0(n) approaches the steady state probability vector. This 

method of calculating the steady state probability vector is 

impractical because of the large number of matrix computations 

involved.

Equation (Al.l) describes a set of N simultaneous equations. By 

replacing the first equation by

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

1 - 0j + !i. + • • • (A1.3)

the set of equations can be solved to give the steady state 

probabilities. Once the state probabilities are found and the 

relationship between the states of the automaton and the actions is 

known the action probabilities can be calculated.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 2 CALCULATION OF MEAN SWITCHING TIMES

For an automaton with 2n states operating in a switched environment

initially favoring action 1 but changing to favor action 2 in response

to a switch the mean switching time is given by [31]

t = m, , , + m , +... m , (A2.1)i n + i  ^2 2 ’̂ + !  n n n + 1
where (6̂  = probability of state i

m  ̂ j = mean first passage time from state i to state j 

To find the mean first passage time from state i to state j consider 

the situation after one time epoch [52]. The automaton will have 

moved from state i to some other state k, which may be the final state 

j with probability Pt  ̂ thus

” i j =  ̂+ ̂  k = j P*=i k “k j ^^2.2)
since when k=i m , , = 0k J
where pt  ̂ is an entry in the Markov transition matrix for the 

automaton after the switch in the environment. By considering 

equation (A2.2) for all values of i a set of simultaneous equations 

can be formed which when soIved^/Ve passage times from

the states i to state j. Using equation (A2.1) the mean switching 

time of the automaton can be found.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 3 MARKOV TRANSITION MATRICES OF AUTOMATA

Tsetlin Automaton

1 2 3 4 .

1 "l 0 0

2 0 c 0

3 0 1-Ci 0 c^

4 . N-1 N N+1 N+2.2N-3 2N-2 2N-1 2N

N

N+1

1 - c ,

0 1-c,

2N-2

2N-1

2N

where c 

and c.

' 2

0
0

0 1-c

'2

0

1

2

0 1-c

c 1—c
2 2

and N 

and 2N

= penalty probability associated with action 1 

= penalty probability associated with action 2 

= memory size of automaton 

= number of states in automaton
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Krylov Automaton

1 2 3 4 . N-

1 1-Ci / 2 / 2 0 0

2 1-Ci / 2  0 c
1

0

3 0 1-Ci / 2 0 n

N

N+1

1-c, /2 0 c 1 / 2  0

0 C2 /2 0 I-C2 /2

2N-2

2N-1

2N

n  0 I-C2 / 2  0

0 C 2 /2 0 I-C2 /2

0 0 / 2  I-C2 / 2
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Type Modified Tsetlin Automaton

1 (1-c^ )W +c, r 1
(1-Wp ) (1 -c^ )(1 --wr )+c^ WP

2 (1 -Ci )W +c, ' r 1
(1 -Wp ) 0 (1 -Ci )(i-w.

3 0 (1 -c^ )W^ (1 --“p ) 0

W

N

N+1

(1-c. )W +c, (1-W )
1 r 1 p

(I-C2 )(1-W^ )+C2 ^ P

(1 -c^ )(1 -W^ )+c^ W

(I-C2 )W^ +C2 (1-Wp )

2N-2 0 (1 -Ci )(1 -W^ )+c^ Wp 0

2N-1 (I-C2 )(1 -W^ )+C2 WP 0 (I-C2 )Wj. +C2 (1-WP
2N 0 (I-C2 )(1-W^ )+C2 Wp (I-C2 )W^ +C2 (1-WP

...2N - 2 2N-1 2N

where WP = l/(2 c^ ) (3.3)

and Wr = l/2 (l-c^ ) (3.6)

and cm = (c^ +C2 ) / 2
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Type 2_ Modlf led Tsetlin Automaton

3. . .

2

3

1 (1 -c^ )+c^ (1 -Wp )

(1 -c^ )W^

c, W 1 P
Cl W 1 P(1 -c^ )(1 -W^ )+c^ (1-Wp )

(1-c^ )W^ (1-c^ )(1-W^ )+c^ (1-Wp )

N

N+1

(1 -c^ )W^ (1 -c^ )(1-W^ )+c^ (1-wp) c, W 1 P
0 C2 Wp (I-C2  )(1-W^ )+C2 (1-Wp ) (I-C2  )Ŵ

2N - 2 (1 -~'~2  ̂ )d"C2 (1-Wp ) (1 -c2 )W^ 0

2N-1 c„ W 2 P (I-C2 )(1 -W^ )+C2 (1--»p ) (1--C2 )W,

2N 0
- 2  ^ (I-C2 )+C2 (1-WP

.. .2N - 2 2N - 1 2N

where ^P (3.9)

and W = c /(1-c ) (3.12)r m m
and cm = (c^ +C 2 ) / 2
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Tri Automaton

3 • • •

N-l+c, 
N '

g - c o j
N

2 ( ^ ) d - c ,  ) (N-2)c^ +2c^ (N-2)(1-Ci )
N N N

N-1 2 (l-c^ ) 
N

2 c ̂ +(N-2 )c^ 
N

(N-2)(l-c^
N

N 0 (1 -c, )
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STOCHASTIC AUTOMATA IN NON-STATIONARY 
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The application of digital stochastic computing techniques 
to the hardware synthesis of Tsetlin and Krylov automata is 
considered. Experimental results and measurements are presented 
for the performance of the Tsetlin automaton in non-stationary 
random environments. Contrary to previous work the Krylov 
automaton is shown to possess serious disadvantages in 
non-stationary environments. The results of simulations for 
two new automata based on those of Tsetlin and Krylov are given.



Introduction
1)Tsetlin in a pioneering paper" described a fixed 

structure learning automaton with a linear tactic, operating 
in a random environment.

Recently the suggestion has been made that the automaton
described by Tsetlin is more suitable than other automata

( 2 )for use in non-stationary environments . Elsewhere the
( 3 )Krylov automaton has been proposed as an automaton which 

was asymptotically optimal for any environment, rather than 
being asymptotically optimal only for environments with one 
penalty probability c^ less than half and the other ĉ. greater 
than half as for the Tsetlin automaton.

The operation of an automaton is governed by an algorithm 
F which, in a fixed structure automaton, relates the state of 
the automaton (i)(n) to b(n + 1 ) and can be either deterministic 
or stochastic. In a variable structure automaton, F relates 
p(n), the state probability vector, to p(n + 1 ) while it is 
p(n) which relates 4>(Q) to + 1 ). ®(n) is related to the
action of the automaton a(n) by an output function G, which also 
can be either deterministic or stochastic. The Tsetlin 
automaton considered later is a fixed structure deterministic 
automaton while the Krylov automaton is a fixed structure 
stochastic automaton. Both have a deterministic output 
function. The discussion will be confined to automata
classified as p model and with action sets limited to two 
elements.

For learning automata operating in non-stationary
environments a measure of performance is the mean adjustment

( 2 )or switching time , defined as the average number of epochs, 
after a sudden change of the penalty probabilities from 
c^ < c^ to c^ > c^, till p^ changes from being less than p^ 
to being greater than or equal to p^. For linear learning 
automata the mean switching time is the average number of 
epochs, after a sudden reversal of the penalty probabilities, 
until action 2 is reached, assuming the automaton was correctly 
providing an action 1 input immediately prior to the switch in 
the penalty probabilities.

2 The Tsetlin .Automaton
2.1 Theory of Operation

The operation of the Tsetlin automaton can be seen with 
reference /



reference to Figure 1 which shows a two action automaton 
with a memory size of n, and has one action corresponding 
to internal states 1 to n and the other corresponding to 
internal states n + 1 to 2n. When the automaton takes action 
1 the environment outputs a stochastic sequence of value c^, 
while action 2 corresponds to a stochastic sequence of value 
c^. When the automaton receives a penalty the automaton 
moves towards states n and n + 1 while, in response to a reward, 
the automaton moves towards end stats 1 or 2n. Thus, with 
output action 1 the automaton performs a simple random walk 
between its internal states, with a reflecting barrier beyond 
state 1 and with output action 2 the automaton performs a 
simple random walk between its internal states, with a 
reflecting barrier beyond state 2n. If an action has associated 
with it a c^, the value of which is greater than half, the 
automaton will tend to move towards states associated with the 
alternative action while, if the value of c. is less than half, 
the automaton will tend to move towards the end state associated 
with the action it is already taking.

The operation of the Tsetlin automaton will fall into one 
of three modes depending on the environment. If the 's are 
about a half, one action will tend to make the automaton move 
towards states associated with the other action, while the 
other action will tend to make the automaton move towards the 
corresponding end state. Thus one action is stable while the 
other is unstable and the automaton works well. If the 's are 
both greater than a half, both actions will tend to make the 
automaton move towards states associated with the other action. 
Thus both actions are unstable, the automaton moves between 
states n and n + 1 frequently and works poorly. If the ĉ. 's 
are both less than a half, both actions will tend to make the 
automaton move towards the end state associated with that action. 
Thus both actions are stable, with the automaton only moving 
from one action to another due to variance in the penalty 
probability causing it to be temporarily greater than a half 
over a long enough time to allow the automaton to move from 
one action to the other. If the largest penalty probability 
is not close to a half, or if the memory size is large, the 
automaton can output the wrong action for long periods of ti.me 
and the automaton w'orks poorly.

2.2



2.2 Hardware Design
A Tsetlin automaton, the block diagram of which is shown 

in Figure 2 was implemented using digital stochastic 
techniques ̂  ̂̂ ̂  ̂ ̂ ̂  \  The heart of the automaton is a 12-bit 
binary counter allowing up to 4096 states or memory sizes up 
to 2048. The most significant bit of the counter is taken 
as the action of the automaton and is input to the environment 
which outputs the appropriate penalty probability. The output 
of the environment and the action of the automaton are fed into 
combinational logic to convert these into an up/down control 
signal for the counter. The up/down signal is in turn fed 
into more combinational logic along with the -state of the 
automaton and signals representing the memory size to provide 
a disable signal to prevent the counter exceeding the required 
memory size.

2.3 Experimental Results
The performance of a 2048 state memory Tsetlin automaton

was investigated with a switched environment. Figure 3 shows
the operation of the automaton with the central trace in each
case indicating the switching instants for a reversal of penalty
probabilities c^. Figure 3(a) shows the satisfactory operation
of the automaton with c. 's of and . Figure 3(b)1 Xd Xo ^- 2
shows the effects of change of c. 's to t-—  and -r, i.e. both ̂ X X D ^
greater than — . It is evident that the automaxon fails to
operate. Finally Figure 3(c) illustrates the characteristics 

3 1with c. 's of -TTr and —rr . In this case since the c. 's are 
1 16  ̂ 16 1

both less than the automaton again operates poorly and locks
onto one action. These results are entirely consistent with
the theoretical predictions.

Figure 4 shows e.xperimental and theoretical results for
mean switching times. The theoretical results given agree

( 2 )basically with previous predictions , but a compensation 
factor has been included to prevent the possibility of switching 
times less than one epoch which were not included in the 
experimental results. -As may be seen from Figure 4 good 
correlation is obtained between theoretical and experimental 
results.

3 The Krylov .Automaton
3.1 Theory of Operation 

The /
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3.2

The Krylov automaton is very similar to the Tsetlin 
automaton in that it has a series of states 1 to 2 n, with states 
1 to n being associated with one action and states n + 1 to 2 n 
being associated with the other. It is in the movement between 
the states that the Krylov and Tsetlin automata differ as shown 
in Figure 5. In response to a reward the Krylov automaton 
acts as the Tsetlin and moves deterministically towards an end 
state but, in response to a penalty, the automaton acts in a 
stochastic manner and either moves towards states a and n + 1 or 
towards the end states with probability ^  .

The action of the Krylov automaton can be.related to that 
of the Tsetlin automaton. If an automaton performs an action 
such that it receives a penalty with probability c^ then 

penalty probability = c^

reward probability = 1 - c^

If a reward response is taken as a movement towards states 1 
or 2 n and if a penalty response is taken as a movement towards 
states n and n + 1 then for the Krylov automaton 

penalty response probability = 
reward response probability = 1

and a similar argument applies to ■

Equating response probabilities we see that a Krylov 
automaton receiving penalty probabilities in the range 0 , 1 is 
equivalent to a Tsetlin automaton receiving penalty probabilities 
in the range 0 , . However, it has been shown above that
the Tsetlin automaton does not function correctly with penalty 
probabilities both less than and so it was expected that
the Krylov automaton would not work well over the complete 
range of c^'s .

Hardware Design
A Krylov automaton was designed using digital stochastic 

computing techniques and its schematic diagram is shown 
in Figure 2. The circuit is identical to that used in the 
Tsetlin automaton except that instead of deterministically 
converting a penalty response from the environment into an 
up/down control signal for the counter, a stochastic sequence 
of probability is sampled and used as the control signal.

¿a
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3 . 3 Experimental Results
Figure 6 (a) shows a Krylov automaton with memory size

of 2045, initially with output action 1, operating in a
switched environment with c„'s of 0 and ^  . As nredicted the

2 lo
result is similar to a Tsetlin automaton working with both c.'s

1
less than a half with the automaton locked into the output of 
one action. This locking is in fact a function of the memory 
size. The automaton has two stable states, with the state 
corresponding to the lower c_. being more stable than the other 
with stability increasing as the memory size increases. Variance 
in the penalty probabilities causes movement between the states 
and the time spent in a state depends on its stability. Thus 
while both states are stable, for small memory sizes, variance 
should cause movement between the states with the automaton 
spending more time in the most stable state. This can be seen 
in Figure 6 (b) which shows a Krylov automaton with memory size 
of 8 with c., of and c„ of moving from states corresuonding
to c^ to states corresponding to c^, remaining in those states 
for a time then moving back. Finally Figure 6 (c) shows a Krylov 
automaton with memory size of 8 working in a switched environment 
with c.'s of X • Since when the switching trace is
high the automaton trace should be low it can be seen that it 
works poorly.

The Modified Tsetlin Automata, Types 1 and 2
Though the results of testing the Krylov automata were

disappointing the Krylov automaton proved to be the basis of two
new learning automata. The aim in designing these was to retain
the good qualities of the Tsetlin automaton but also to produce
automata which would operate well for c.'s about any value
rather than the value of half which the Tsetlin automaton is
limited to. The Krylov automaton took penalty probabilities
which were greater than a half and produced penalty response
probabilities which were less than a half. The modified
Tsetlin automata take two penalty probabilities of greater
than a half but about a value c and, by using a stochasticrn
response to a penalty, produce one penalty response probability 
which is less than a half and one which is greater than a half. 
Further, by using a stochastic response to a reward, two penalty 
probabilities /
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orobabilities both less than a half but about a value c willm
produce one penalty response probability which is greater than 
a half and one which is less than a half. This is illustrated 
in Figure 7. Thus provided c^ is known any pair of penalty 
probabilities can be transformed to be about a half producing 
a Tsetlin type response.

4.1 Theory of Operation
The modified Tsetlin automata are similar to the Tsetlin

automaton in that they have a series of states 1 to 2 n with
states 1 to n being associated with one action and states n + 1

to 2n being associated with the other. However, the movement
between the states is more complex and is shown in Figure 8 .

For the modified Tsetlin automaton, type 1 shown in
Figure 8 (a), and penalty probabilities about a c value greaterm
than a half, as shown in Figure 7(a), to obtain penalty response 
probabilities c^ and c^ spaced about a half

m = 0.5 ( 1 )

Using a stochastic response to a penalty with probability 
of moving towards states n and n + 1 and assuming a deterministic 
response to a reward then

m = c  ̂ W m p (2)

Substituting equation (2) into equation (1)
1W

2 cm

W is to be a stochastic variable and so has a maximum value
of 1 thus 

W
2  cm

if __1
2 cm

(3)

If
2 cm

For penalty orobabilities about a c value less than a half as * m
shown in Figure 7(c), to obtain penalty response probabilities 
c^ and c^ spaced about a half

m = 0.5 ( 4 )
Using a stochastic response to a reward with probability 
of /
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of moving towards the end stats associated with the action 
output by the automaton and assuming a deterministic response 
to a penalty, an assumption justified by equation (3) then

= c ( 1  - W ) ( 1  - c^) r mm m
substituting equation (5) into equation (4)

(5)

W
2 2

(6 )

if
2 ( 1  - c )m

For c greater than a half m W = 1  r so justifying the
assumption made in forming equation{2 ^

For the modified Tsetlin automaton, type 2, shown in
Figure 8 (b) in addition to penalty and reward responses we
have an inaction response. If an inaction response is counted
as half a penalty response, for penalty probabilities about a
c value greater than a half as shown in Figure 7(a) to obtain m
penalty response probabilities cĵ  and c^ spaced about a half

m = 0.5 (7)

Using a stochastic response to a penalty with probability of W 
of moving towards states n and (n + 1 ) and ( 1  - ) of remaining
in the same state, and assuming a deterministic response to a 
reward then

m = c Wm
1
2 ^m ( 1  - W^) (8)

Substitutingequation(8 ) into equation (7)
1 - c

W 1 - cm

= 1

.m

if
1 - cm

m

m
m

(9)

For penalty probabilities about c^ value less than a half, as 
shown in Figure 7(c), to obtain penalty/ probabilities c^ and 
C2 spaced about a half

c ' m = 0.5 ( 1 0 )

Using a stochastic response with probability of moving 
towards the end state associated with the action output by the 
automaton and assuming a deterministic response to a penalty, 
an /
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an assumption justified by equation (9; ;hen

m = c + m 1 ( 1  - c^)(l - W^)
2 tn r

Substituting equation (11) into equation (10)

m
1 - c if

m
m

1 - cm

(11)

(1 2 )

= 1 if in
1 - cm

For c greater than a half W = 1, so justifying the assumption 
made in forming equation (8 ).

Equations (3), (6 ), <9) and (12) require a value for c 
This is taken as the mean of estimated values for and

m
/ 0 \

obtained from two adaptive digital circuit elements (ADDIES)^ 
which respond to the reward/penalty signals obtained from the 
environment, these signals being fed to the ADDIE estimating 
c^ when action 1 is output and to the ADDIE estimating c^ when 
action 2 is output. It was predicted that; the type 2 
automaton with the inaction response would have less variance 
than the type 2 automaton and would be more nearly optimal 
for the same memory size.

4.2 Software Simulation
The modified Tsetlin automata, types 1 and 2 were

simulated on a computer rather than the hardware synthesis used
for the Tsetlin and Krylov automata because of the relative
complexity of the automata structures. For the purpose of
comparison the Tsetlin and Krylov automata were also simulated.

Figure 9 shows results from a simulation of a modified
Tsetlin automaton, type 1, with memory size of 10, ADDIE
counter size of 32 and operating in an environment with penalty
probabilities of 0.6 and 0.9. It can be seen in Figure 9(a)
that the automaton initially moves between actions 1 and 2

frequently but later moves to states associated with the action
corresponding to the lower penalty probability. Initially, with
the estimates of the 's 1^ "tbe ADDIES being zero, both actions
are unstable but as the estimates of the penalty probabilities
rise the actions become less unstable until in the steady-state
the action corresponding to c.. . . is stable and the other® i(min)
unstable. The learning time is limited by the speed of 
response /
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response of the ADDIES. Between Figures 9(a) and 9(b) the 
environment has been switched and it can be seen that the 
automaton reacts quickly to the change. It can be seen that 
the switching time in Figure 9(b) is shorter than the learning 
time in Figure 9(a). This is because the switching time is 
governed by the memory size which is small, rather than the 
counter size of the ADDIES which is larger.

Figure 10 shows results from a simulation of a modified 
Tsetlin automaton, type 2, with the same parameters as the 
type 1 considered above but operating with penalty probabilities 
of 0 . 1  and 0.4, again with the environment switching between 
Figures 10(a) and 10(b). The automaton operates satisfactorily 
and the lower variance, of the type 2 automaton can be seen.

Figure 11 shows results of simulations of Tsetlin and 
Krylov automata. Figure 11(a) shows the Tsetlin automaton 
operating with penalty probabilities of 0.6 and 0.9 and moving 
frequently between states n and n + 1 , both actions being 
unstable, while Figure 11(b) shows the Krylov automaton 
remaining in the incorrect state after a switch in the environment 
to 0.65 and' 0.35.

Figure 12 illustrates a problem that can occur with 
either of the modified Tsetlin automata. Figure 12(a) shows 
a type 2 modified Tsetlin automaton operating in an environment 
with penalty probabilities of 0.35 and 0.65. In Figure 12(b) 
these have been switched but it is a relatively long time before 
the automaton changes its output action. This is due to two 
causes. The first is variance in the .ADDIES. .At the time
of the switch the ADDIES held estimates of the penalty 
probabilities which were higher than normal. This resulted in 
a higher than normal value for c^ causing the stability of the 
actions of the automaton to be increased leading to a longer 
switching time. The second cause is the speed of response of 
the .ADDIES being too fast in comparison with the speed of the 
speed of the counter. In this example the me.mory size was 10 
and the ADDIE counter size 32. After the switch the automaton 
has as an input the higher c^. If the .ADDIES are small their 
response time is fast and the penalty probability estimate in 
the .ADDIE has increased significantly before the automaton
counter has had time to output the action corresponding to c., .. ̂ 1 (min)
Because of this, the value of c increases causing the stabilitvm
of both actions to increase and result in longer switching 
t imes . /



times. In order to maintain short switching times the 
ADDIES used in the modified Tsetlin automata should not be 
too small so that they have low variance and response times 
longer than the automata's counters.

Conclusions
In the course of investigating the Tsetlin automaton in

a deterministically switched environment, comparisons have
been made with other automata structures. Optimal automata
are a severe disadvantage when operating in a non-stationar3/
environment because an automaton which is nearly optimal takes
the correct action with a probability very nearly unity. Thus
if the c^'s change so that the previously correct action becomes
the wrong action, the automaton will continue to output the
previously correct action and will not cause the environment
to output the c^ corresponding to the current correct action
and so the change in the c.'s can go unnoticed by the automaton
for a long time. Decreasing the optimality will cause the
wrong action to be output more often and so any change in the
c.'s will be noticed by the automaton sooner. There is a 

1
trade-off between optimality and mean switching time.

The Tsetlin automaton provides good mean switching times
and a near optimal performance but with a severe limitation
on the environment, the having to be about a half, but it
is the restrictions on the c.'s that gives the good optimality
and learning times. When operating in a switched environment
the Tsetlin automaton does not have to sample the wrong state
in order to determine whether the environment has switched or
not. Because the c.'s are about a half when the switch occurs,

1
a c. which was less than a half is now greater than a half and 

1

the automaton moves towards states associated with the other 
action no matter the degree of optimalit:/ and so high optimality 
is not a great penalty. The Tsetlin automaton seems to have 
only a small trade-off between optimality and mean switching 
time but has a severe trade-off between optimality, mean 
switching time and limitiations on the range of c^'s that can 
be used.

The Krylov automaton was believed to be asymptotically 
optimal in arbitrary random environments. Experimental evidence 
clearly shows that the automaton possesses an unsatisfactory- 
performance /



performance in non-stationary random environments.
The modified Tsetlin automata types 1 and 2 have been 

shown to be capable of good learning characteristics with no 
restrictions on the penalty probabilities that can be used 
whilst retaining the short mean switching times and near 
optimal performance that characterises the Tsetlin automaton. 
It is hoped these automata will be of use in non-autonomous 
environments where their ability to reject actions that 
correspond to penalty probabilities above any value of c^ and 
their short switching times should prove valuable.
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