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Abstract: Strong electromagnetic interference, which has a significant impact on the performance and safety of the 

lithium-ion battery, usually affects the accurate state of charge (SOC). Different optimization strategies are used to 

estimate the model parameters and the SOC due to the unknown nonlinear characteristics caused by noise. However, 

the impact of sensor and model errors is treated separately. To express the sensor and model uncertainties, a noise 

bias compensation-equivalent circuit model (NBC-ECM) is proposed, in which sensor noise and model error voltages 

are employed in the model structure and the SOC estimation process of the lithium-ion battery. For parameter 

identification, a singular value decomposition-bias compensation recursive least squares (SVD-BCRLS) algorithm 

is proposed to identify the characteristic micro-parameters of the battery. Then, a moving window adaptive extended 

Kalman filtering (MWAEKF) algorithm based on window functions is proposed for accurate SOC estimation of 

lithium-ion batteries. The stability of the model parameters and the reliability of the proposed algorithm in estimating 

the SOC are evaluated using different noise factors: current and voltage sensor noises of 10 and 50 mA. Using the 

proposed SVD-BCRLS-MWAEKF algorithm, the maximum SOC error is 1.3%, the root mean square error (RMSE) 

is 0.3972%, and the mean absolute error (MAE) is 0.2316% using the noise of 0.05 V/A under the hybrid power 

pulse characterization (HPPC) operating condition. With the same noise value under the Beijing bus dynamic stress 

test (BBDST) operating condition, the proposed algorithm SOC has a maximum SOC error of 1.57%, an RMSE of 

0.5638%, and an MAE of 0.4475%. Under noise interference conditions, estimation is more accurate compared to 

static conditions, proving that the proposed algorithm can overcome the uncertainties encountered by lithium-ion 

batteries for real-time BMS applications. 
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1. Introduction 

Because of the limitations of fossil energy and its associated global warming effects, the electric vehicle (EV) 

market has experienced unprecedented growth, with electricity serving as a driving force from renewable and clean 

energy sources [1]. Lithium-ion batteries are increasingly powering our world through EVs and energy storage 

systems [2]. It is due to their unique properties, such as high energy density, lightweight, long cycle life, low self-

discharge rate, no memory effect, etc. [3-6]. However, an effective battery management system (BMS) is necessary 

for EVs to guarantee reliable, safe, and stable power delivery for the various devices for which these batteries provide 

energy under different conditions [7, 8]. Among the functions of the BMS is the estimation of the state of charge 

(SOC), which is a measure of stored electricity, and its estimation attracts broad attention [9]. As only current, voltage, 

and sometimes surface temperature are measured by the BMS for SOC estimation, estimating internal battery states 

becomes an urgent topic to avoid any overcharging and over-discharging of the EV’s battery for safe and long-lasting 

operation [10, 11].  

1.1. Literature review 

As a critical battery state parameter, the SOC serves as a reference for the BMS's safe and reliable operation 

[12]. It cannot, however, be measured directly and must be estimated using efficient and accurate methods. Several 

methods have been proposed in recent times, and these methods can be divided into four categories, which include 

direct measurement methods, open-circuit voltage (OCV) method, data-driven methods, and model-based methods 

[13]. The direct measurement methods for SOC estimation of lithium-ion batteries are constructed based on the 

characterization of the battery parameters, which includes Ampere-hour (Ah) integral [14], electrochemical 

impedance spectroscopy [15], and internal resistance [16] methods. However, as simply and easily as these methods 

can be implemented on the BMS, they are highly susceptible to the uncertainties of the operating conditions, which 
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affect their estimation accuracy and robustness [17]. The OCV method is used to estimate the SOC based on the 

approximate OCV-SOC linear relationship [18]. However, since the SOC of a lithium-ion battery is related to the 

embedding quantity in the active material, an OCV method can estimate the SOC after the battery gets sufficient rest 

to reach equilibrium, which may be two hours in some cases, resulting in much inconvenience [16, 19]. Data-driven 

methods such as the gated recurrent unit [20], long short-term memory [21], convolutional neural network [22], 

nonlinear autoregressive model with exogenous input [23], etc., have been proposed for SOC estimation of lithium-

ion batteries. However, one of the major limitations of these methods is that they operate as a “black box”, which 

makes it difficult to explain certain results and determine the root cause [24]. Furthermore, converged training results 

at various local optimum levels with random weight initialization could result in different performances and 

computational costs for batteries under new operating conditions, resulting in an overall trial-and-error network 

training process, making it less attractive for battery state estimation, especially when the cause of the results is also 

difficult to explain [25]. Moreover, due to the large training sample requirement, it has a high computational demand 

[26].  

In comparison to prior methods, model-based methods achieve successful application due to the rational trade-

off between computation cost and estimation accuracy. In this SOC estimation process, the error source mainly exists 

in two parts: the imprecise battery model and an estimation algorithm. As one of the battery models, the equivalent 

circuit model (ECM) serves as the core element of the BMS and has been widely used to simulate the nonlinear 

characteristic parameters of the battery using circuit elements and linear parameter changes [27, 28]. The model’s 

quality determines whether the battery can operate safely and reliably over time. However, the performance of the 

model highly depends on the model’s structure to simulate these dynamic characteristics of the battery by effectively 

determining the trade-off between computational complexity and accuracy for SOC estimation of the battery [29-31]. 

To use this class of method, battery model parameters must be identified for the state estimation algorithm, which 

may be identified offline or online. The offline parameter identification method uses least-squares curve fitting to 

identify the parameters of the battery [32]. However, they do not have real-time adaptability due to changes in the 



operating environment, and only point-to-point parameters are available [33]. The online parameter identification 

can adaptively accommodate and adapt to the complex operating conditions of the battery. Typically, the recursive 

least squares (RLS) method is used to minimize the sum of the calculation error squares when autonomously 

identifying the battery parameters for state estimation methods [34-36].  

Kalman filter-based algorithms, such as extended Kalman filter (EKF), unscented Kalman filter (UKF) [37-39], 

cubature Kalman filter (CKF) [40], sigma-point Kalman filter (SPKF) [41, 42], etc., are established based on the 

different variants of the ECMs and are suitable for SOC estimation of lithium-ion batteries. For instance, given the 

possibility of divergence caused by inaccurate initial covariance matrices, He et al. [43] used the AEKF algorithm to 

adaptively update process and measurement noise covariance matrices to improve estimation accuracy even further. 

Peng et al. [44] proposed an improved adaptive dual UKF algorithm to achieve co-estimation for battery model 

parameters and SOC, where the algorithm estimates the SOC precisely under some interferences, such as an 

erroneous initial SOC, inaccurate battery capacity, and different ambient temperatures. Li et al. [45] proposed using 

a sequential Monte Carlo filter with EKF to determine the cell SOC and its electrochemical impedance, which refines 

the treatment of hysteresis voltage using the probability density function (PDF) with an online adaptation of its model 

parameters. Tong et al. [46] proposed an improved UKF to estimate the SOC that includes the use of nonlinear state-

space models to reduce random measurement loss and inaccurate noise covariance matrices to reflect the uncertainties. 

Bhattacharyya et al. [47] used EKF and DEKF methods for the on-road SOC estimation of lithium-ion batteries, 

where the impact of voltage and current sensor bias on SOC is investigated. Xu et al. [48] proposed a novel dual 

fuzzy-based adaptive extended Kalman filter (DFAEKF) method for the SOC estimation of lithium metal batteries, 

which designs an intelligent noise estimator based on a fuzzy inference system to adjust the length of the residual 

innovation sequence to update the noise covariance. Maheshwari et al. [49] proposed a sunflower optimization with 

an EKF algorithm to find the optimal values of the process and measurement noise covariance matrices. To address 

the problem, improving battery SOC estimation with noise bias characterization has great potential. The polynomial 

regression and the Gaussian process regression models are proposed to examine the effects of the two methods based 



on a noise bias model [50]. 

However, in the actual operating conditions, the complexity of the internal nonlinear structure of the battery and 

the uncertainties make the estimation model and algorithm of the actual state of the battery encounter many 

challenges by not taking into account the estimation accuracy being affected by external noise under correspondingly 

complex operating conditions [51]. From the battery model to the estimation algorithm, any aspect of research is 

inevitably linked to determining the estimation accuracy. Therefore, under complex operating conditions, it is 

essential to estimate the noise so that the system can be considered uniform. Because of the sensitivity of current 

detection, noise introduces errors into the model via limited current sensor resolution and entering current data while 

subject to electromagnetic interference. The contamination of current data affects the identification of model 

parameters in terms of model-matching adaptability. As a result, the voltage noise generated by the current passing 

through the battery system must be considered, as it affects the accuracy of the SOC. 

1.2. Objectives of this paper 

Considering the influence of the first-order Thevenin ECM, its trade-off between computational complexity and accuracy, 

and the influence of noise in the whole process of SOC estimation, this paper proposes the idea of using an independent noise 

bias model to simulate the error characteristics of the battery model by employing bias compensation and augmented matrix 

methods to complete the model’s construction. The objectives of this paper are in two folds: 

(1) A noise bias compensation (NBC)-ECM is proposed using the extracted state noise to compensate for the ECM state 

error, in which the current fluctuation and voltage error of the battery are fully considered, where the current fluctuation may 

be affected by different amplitudes of Gaussian white noise and colored noise. 

(2) A singular value decomposition-bias compensation recursive least squares and moving window adaptive extended Kalman 

filtering (SVD-BCRLS-MWAEKF) functional algorithm is proposed for the dynamic parameter identification and SOC 

estimation. The hybrid power pulse characterization (HPPC) test and Beijing bus dynamic stress test (BBDST) 

operating conditions are considered to verify the accuracy and robustness of the algorithm. 



2. Development of battery modeling and SOC methods 

2.1. Noise bias compensation-equivalent circuit modeling method 

In a typical battery system, the ECM of the battery can realize the complete equivalent of the external 

characteristics of the battery. During battery discharge, the current and voltage fluctuations caused by changes in the 

strong electromagnetic interference are transmitted to the ECM via the sensor, which makes SOC estimation difficult. 

Therefore, it is reasonable and effective to develop an NBC-ECM based on a current fluctuation whose state noise is 

conditioned by observation noise. Considering the problem of parameter coupling and noise interference, the first-

order RC ECM is employed as a base model to establish the NBC-ECM by adding a system structure function to 

compensate for the noise interference, whose architecture is shown in Figure 1. 
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Figure 1. The architecture of the noise bias compensation-equivalent circuit model 

As shown in Figure 1, the NBC-ECM consists of complex components: (a) the internal component of the 

equivalent voltage source and: (b) the battery ECM. In Subfigure 1(a), the equivalent voltage source section for the 

lithium-ion battery is shown, and 𝐶𝑐𝑎𝑝 is the capacitance of the battery. The current 𝐼𝐵 flows through the capacitance 

𝐶𝑐𝑎𝑝 to obtain the SOC by accumulating charge, which is the original expression of the ampere-hour integration 

method. Then, 𝐼𝐵  is amplified by a magnification factor 𝛽  to produce the inductive voltage 𝑉𝐿ℎ  that controls the 

hysteretic voltage 𝑉ℎ, as relationally expressed in Equation (1). 



{
𝑉ℎ = 𝑓(𝑉𝑠𝑜𝑐 , 𝑉𝐿ℎ)

𝐸𝑀𝐹 = 𝑓(𝑉𝑠𝑜𝑐)
𝑈𝑜𝑐 = 𝑉ℎ + 𝐸𝑀𝐹

 (1) 

In Equation (1), 𝑈𝑜𝑐 is the open-circuit voltage (OCV), the hysteresis voltage 𝑉ℎ is mainly determined by the 

inductance 𝑉𝐿ℎ and SOC, the EMF is mainly determined by SOC. It is worth noting that the EMF is the electromotive 

force of the battery obtained under noiseless conditions, while the 𝑉ℎ has different performance because of the change 

in different current 𝐼𝐵  operating conditions. When current fluctuation 𝛿𝐼𝐵   is considered as the factor of the 𝑈𝑜𝑐 

variation, its effect can be expressed by Equation (2). 

𝛿𝑈𝑜𝑐 = 𝑓(𝛿𝐼𝐵 ) (2) 

In Equation (2), the 𝛿𝑈𝑜𝑐 is controlled by current fluctuation 𝛿𝐼𝐵 . Among them, the 𝛿𝐸𝑀𝐹 is affected by the 

change of the SOC which  depends on the value of 𝛿𝐼𝐵, and the 𝛿𝑉ℎ is affected by the change of SOC and 𝛿𝑉𝐿ℎ which 

depends on the 𝛿𝐼𝐵 through the amplification of the coefficient 𝛽 . 

Due to the limited accuracy of the sensor detection, there is often a certain degree of current fluctuation value 

𝛿𝐼(𝑘) during the use of the sensor, depending on the battery system. The input value of the current is shown in 

Equation (3). 

𝐼𝐿 = 𝐼(𝑘) + 𝛿𝐼(𝑘) (3) 

In Equation (3), the total current 𝐼𝐿 consists of the real-time measurement current 𝐼(𝑘) flowing out of the battery 

and the current fluctuations 𝛿𝐼(𝑘) caused by sensor noise. Therefore, the Ah integration is performed to obtain the 

reference SOC using the real current data. As a representation of the residual energy in the battery, the SOC is 

calculated using Equation (4). 

𝑆𝑂𝐶(𝑘) = 𝑆𝑂𝐶(𝑘0) −
1

𝐶𝑐𝑎𝑝
∫ 𝜂 ⋅ (𝐼(𝑘) + 𝛿𝐼(𝑘))
𝑘

𝑘0

𝑑𝑘 (4) 

As is shown in Equation (4), 𝐶𝑐𝑎𝑝 denotes the actual capacity of the battery, 𝜂 denotes the Coulombic efficiency 

of the battery, which is set to 1, and 𝑘0 represents the initial SOC time. The SOC is obtained by the Ah integral 

method of the total current. From the internal complex equivalent circuit in Figure 1(a), it is easy to see that when 

sensor noise enters the battery model through the current, it is reflected not only in the value of SOC by the Ah 

integration in Equation (4) but also in the change of direction through the inductor change 𝑉𝐿ℎ in OCV in Equation 



(2). Consequently, the ECM is shown in Subfigure 1(b). Based on Kirchhoff’s circuit law and capacitance 

characteristics, the continuous state-space equation is obtained, as shown in Equation (5). 

{

𝑈𝑜𝑐(𝑘) = 𝐼(𝑘)𝑅0 + 𝑈1(𝑘) + 𝑈𝐿(𝑘) + δV(𝑘)

𝛿𝑉(𝑘) = N(𝑧−1)𝛿𝐼(𝑘)

𝑈1(𝑘) = (1 − 𝑒
−

𝑘
𝑅1𝐶1)𝐼(𝑘)𝑅1 + 𝑒

−
𝑘

𝑅1𝐶1𝑈(0)

 (5) 

From Figure 1 and Equation (5), the value of the voltage source is considered equal to the OCV 𝑈𝑜𝑐(𝑘), which 

is determined by the current SOC value. 𝑈1(𝑘)  represents the voltage drops across the RC circuit, 𝑈𝐿(𝑘)  is the 

measured voltage, and 𝑈𝑜𝑐(𝑘)  is obtained through the curve-fitting relationship of 𝑈𝑜𝑐 = 𝑓(𝑆𝑂𝐶, 𝑉𝐿ℎ) . The 𝑅0 

represents the internal ohmic resistance. The electrochemical polarization resistor 𝑅1 and polarization capacitor 𝐶1 

is used to simulate the low-frequency dynamic parameter characteristics of the lithium-ion battery. It is worth noting 

that the impedance network formed by these three parameters varies very little with the SOC of the battery and has 

a slowly changing value. Compared to the equivalent impedance network, the surge of voltage obtained from the 

current fluctuation through the noisy system module varies sharply, which is a rapidly changing value used to reflect 

the high-frequency dynamics parameter characteristics of the lithium-ion battery. 

2.2. Model-based discrete state-space representation 

When noise is present in the model, SOC, as a state parameter reflecting the remaining capacity of the battery, 

affects its accuracy. Therefore, it is a critical parameter to be considered for the state changes of the battery. Usually, 

the SOC is obtained using the Ah integration. However, under experimental conditions, the use of its expression 

changes from Equations (4) to (6). 

𝑧𝑘 = 𝑧0 +
∑ 𝐼𝑘
𝑁
𝑘=0

𝐶𝑐𝑎𝑝
𝛥𝑘 +

∑ 𝛿𝐼𝑘
𝑁
𝑘=0

𝐶𝑐𝑎𝑝
𝛥𝑘 (6) 

In Equation (6), 𝑧𝑘 and 𝑧0 represent the SOC value at time steps 𝑘 and 0, respectively. 𝛥𝑘 is the sampling time 

of the BMS and 𝐼𝑘 is the input current of the battery at the time step 𝑘. 

In Section 2.1, it can be observed that 𝑈𝑜𝑐 is affected by 𝑆𝑂𝐶 and 𝑉𝐿ℎ, while the current 𝐼𝐵 also indirectly affects 

𝑈𝑜𝑐  through its variation factor δ𝐼𝐵. However, 𝑉ℎ and EMF expressions with 𝑧𝑘 cannot be obtained independently 

using Equation (1) but can be obtained using Equation (7). 



{
 

 𝑉𝐸𝑀𝐹,𝑘(𝑧𝑘) =∑ (𝑂𝐶𝑉𝑐ℎ,𝑖,𝑘(𝑧𝑘) + 𝑂𝐶𝑉𝑑𝑖𝑠,𝑘(𝑧𝑘))
𝑁

𝑘=0
/2𝑁

𝑉ℎ,𝑘(𝑧𝑘) =∑ (𝑂𝐶𝑉𝑐ℎ,𝑖,𝑘(𝑧𝑘) − 𝑂𝐶𝑉𝑑𝑖𝑠,𝑘(𝑧𝑘)(𝑧𝑘))
𝑁

𝑘=0
/2𝑁

 (7) 

In Equation (7), 𝑉𝐸𝑀𝐹,𝑘 and 𝑉ℎ,𝑘 represent the values of the EMF and hysteresis voltage, respectively, at time 

step 𝑘.The 𝑂𝐶𝑉𝑐ℎ,𝑖,𝑘 and 𝑂𝐶𝑉𝑑𝑖𝑠,𝑘 represent the OCV at the charging and discharging moment of the ith iteration at 

time step 𝑘, and 𝑁 represents the length of the selected sample. It is worth noting that the effect of the parameters 

caused by the current variation can only be represented by the noise model, as shown in Equation (8). 

𝑈𝐿,𝑘 = 𝑉𝐸𝑀𝐹,𝑘(𝑧𝑘) + 𝑉ℎ,𝑘(𝑧𝑘)⏟              
𝑈𝑜𝑐,𝑘(𝑧𝑘)

+ 𝛿𝑉𝑘(𝛿𝐼𝑘)⏟      
𝛿𝑈𝑜𝑐,𝑘(𝑧𝑘)⏟      

ℎ𝑖𝑔ℎ−𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

+ 𝑈1,𝑘 − 𝑅0𝐼𝑘⏟      
𝑙𝑜𝑤−𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

 

(8) 

According to the above-mentioned analyses of the OCV, hysteresis voltage, and equivalent impedance voltage 

in the NBC-ECM, the state-space and observation equations based on the battery model are in Equation (9). 

[

𝑧𝑘
𝑈1,𝑘
𝛿𝑉𝑘

] = [

1 0 0

0 𝑒
−
𝛥𝑘
𝑅1𝐶1 0

0 0 𝛱𝑘,𝑘−1

] [

𝑧𝑘−1
𝑈1,𝑘−1
𝛿𝑉𝑘−1

] +

[
 
 
 
 

𝛥𝑘

𝐶𝑐𝑎𝑝

𝑅1(1 − 𝑒
−
𝛥𝑘
𝑅1𝐶1)

0 ]
 
 
 
 

𝐼𝑘 + [

𝛥𝑘

𝐶𝑐𝑎𝑝
0
1

] 𝛿𝐼𝑘 (9) 

As is shown in Equation (9), it is worth noting that 𝛿𝑉𝑘, as the noise state inside the cell, is not only related to 

the noise model function 𝛱𝑘,𝑘−1, but also to the system noise 𝛿𝐼𝑘. This result also reflects the effect of 𝛿𝐼𝑘 in the 

battery, as shown in Equation (1).  

2.3 The SVD-BCRLS parameter identification method 

In conventional battery models, only two variables, current and voltage, are considered in the parameter 

identification, and the response mechanisms take two common observations into account during the charge and 

discharge states. Because the complex characteristics of the battery are frequently influenced by external factors, 

noise as an external input variable is a reality-based consideration. When the effects of environmental noise must be 

considered, the modeled characteristics of the battery in the presence of noise take precedence. Given the error in the 

sampled values of the data, the relationship between a set of true and measured values is expressed in Equation (10). 

In Equation (10), the measurement values 𝑀𝑘 include the true value 𝑀𝑘
∗, the constant bias 𝛥𝑀, and the randomly 

varying 𝛿𝑀𝑘 . It is worth noting that constant bias 𝛥𝑀  and randomly varying part 𝛿𝑀𝑘  two components are of 

𝑀𝑘 = 𝑀𝑘
∗ + 𝛥𝑀 + 𝛿𝑀𝑘 (10) 



particular concern. The noise effect is mainly from current noise and voltage noise. Assuming that the current error 

is 𝜉𝐼(𝑘), which is from the sensor noises and resolution effect, the voltage error is 𝜉𝑉(𝑘), which is from the model 

parameter error, fitting error of the OCV-SOC, and other related noise, the random noise is independent and 

identically distributed. The mean and variance are expressed, as respectively shown in Equation (11). 

{
𝐸(𝜉𝐼(𝑘)) = 𝐸(𝛥𝐼 + 𝛿𝐼𝑘) = 𝛥𝐼, 𝜎

2(𝜉𝐼(𝑘)) = 𝜎
2(𝛿𝐼𝑘) = 𝜎𝐼

2

𝐸(𝜉𝑉(𝑘)) = 𝐸(𝛥𝑉 + 𝛿𝑉𝑘) = 𝛥𝑉, 𝜎
2(𝜉𝑉(𝑘)) = 𝜎

2(𝛿𝑉𝑘) = 𝜎𝑉
2
 (11) 

In the Equation (11), the error characteristics of the current are represented by the mean 𝐸(𝜉𝐼(𝑘)) and variance 

𝜎2(𝜉𝐼(𝑘)). Also, those of the voltage are represented by the mean 𝐸(𝜉𝑉(𝑘)) and variance 𝜎2(𝜉𝑉(𝑘)). For the 𝛥𝑀 

and 𝛿𝑀𝑘, one of the more obvious differences is that the former is a constant deviation and will show a constant 

mean in the statistical properties of the error, while the latter is a random deviation and will show a certain variance 

in the statistical properties of the error. The actual relationship between a set of true and measured values is shown 

in Equation (12). 

In Equation (12), 𝑀(𝑘)  is a variable that varies in real time, contains the results of both 𝑀𝑘
∗  and 𝛥𝑀 , the 

resolution error and true values in the detection results of the current, the fitting error of the OCV, and true values in 

the detection results of the voltage. The noise variable is represented as an independent variable in 𝛿𝑀𝑘.  

When the influence of noise factors is added, the continuous model with added noise can be transformed from 

Equation (5) to (13).  

(𝑈𝑜𝑐(𝑠) − 𝑈𝐿(𝑠)) + 𝛿𝑉(𝑠) = (𝐼(𝑠) + 𝛿𝐼(𝑠))𝑅0 +
(𝐼(𝑠) + 𝛿𝐼(𝑠))𝑅1
𝑅1𝐶1𝑠 + 1

 (13) 

In the Equation (13), 𝛿𝐼(𝑠) represents a small change in the input noise from current, and 𝛿𝑉(𝑠) represents the 

output noise from the voltage that has the same structure as the system noise.  

Using 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
  to discretize Equation (13), then simplify and sort out 𝐸(𝑘) = 𝑈𝐿(𝑘) − 𝑈𝑜𝑐(𝑘)  to obtain 

Equation (14). 

{
 
 

 
 
𝐸(𝑘) + 𝛿𝑉(𝑘) = 𝐺(𝑧−1)𝑖(𝑘) + 𝑁(𝑧−1)𝛿𝐼(𝑘)

𝐺(𝑧−1) =
𝐸(𝑘)

𝐼(𝑘)
=
𝜃2 + 𝜃3𝑧

−1

1 + 𝜃1𝑧
−1

𝑁(𝑧−1) =
𝛿𝑉(𝑘)

𝛿𝐼(𝑘)
=
𝜃4 + 𝜃5𝑧

−1

1 + 𝜃1𝑧
−1

 (14) 

𝑀𝑘 = 𝑀(𝑘) + 𝛿𝑀𝑘 (12) 



In Equation (14), 𝜃1  represents the pole characteristics of the system. 𝜃2, 𝜃3, 𝜃4 , and 𝜃5  represents the zero 

characteristics of the system. Using a sum of 𝐸(𝑘) and 𝛿𝑉(𝑘) as the value of the measured voltage 𝑧(𝑘), based on 

the system structure shown in Figure 1, the input parameter structure of the battery is constructed, as shown in Figure 

2. 
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Figure 2. Structure of parameter identification based on NBC-ECM 

In Figure 2, the outputs are represented using two system functions 𝐺(𝑧−1) and 𝑁(𝑧−1). By simplification, the 

parameter equation can be expressed, as shown in Equation (15). 

{
𝐸(𝑘) = 𝜃1𝐸(𝑘 − 1) + 𝜃2𝐼(𝑘) + 𝜃3𝐼(𝑘 − 1)

𝛿𝑉(𝑘) = 𝜃1𝛿𝑉(𝑘 − 1) + 𝜃4𝛿𝐼(𝑘) + 𝜃5𝛿𝐼(𝑘 − 1)
 (15) 

From Equation (15), the results of state noise can be obtained. Then, by combining the two equations in Equation 

(15), the identification function can be obtained, as shown in Equation (16) . 

{
 
 
 
 

 
 
 
 
𝑧(𝑘) = 𝜃1𝑧(𝑘 − 1) + 𝜃2𝐼(𝑘) + 𝜃3𝐼(𝑘 − 1) + 𝜃4𝜉(𝑘) + 𝜃5𝜉(𝑘 − 1)

𝜃1 =
𝑇 − 2𝑅1𝐶1
𝑇 + 2𝑅1𝐶1

𝜃2 =
𝑅0𝑇 + 𝑅1𝑇 + 2𝑅1𝐶1𝑅0

𝑇 + 2𝑅1𝐶1

𝜃3 =
𝑅0𝑇 + 𝑅1𝑇 − 2𝑅1𝐶1𝑅0

𝑇 + 2𝑅1𝐶1
𝜃4 = 𝑛𝑜𝑖𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(1)
𝜃5 = 𝑛𝑜𝑖𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(2)

 (16) 

To obtain expressions for the identified parameters, Equation (16) is transformed into the discrete-time domain, 

as shown in Equation (17). 

{

𝑧(𝑘) = 𝒉(𝑘)𝑇𝜽(𝑘)

𝒉(𝑘) = [𝑧(𝑘 − 1) 𝐼(𝑘) 𝐼(𝑘 − 1) 𝛿𝐼(𝑘) 𝛿𝐼(𝑘 − 1)]𝑇

𝜽(𝑘) = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5]

 (17) 

The model parameters 𝑅0 ,𝑅1 ,𝐶1 , and 𝑁(𝑧−1)  are obtained using the SVD-BCRLS parameter identification 

algorithm. The detailed recursive process of the online parameter identification method includes five steps: 

At time step 𝑘 = 0: 

Step 1: Initialization:  



1. Initialization of identified parameter �̂�(0) and error covariance matrix 𝑷(0), as shown in Equation (18). 

{
�̂�(0) = 𝐸[𝜽(0)]

𝑷(0) = 𝐸[(�̂�(0) − 𝜽(0))(�̂�(0) − 𝜽(0))𝑇]
 (18) 

2. Initialization of decomposition parameter 𝑼(0) and 𝑫(0), as shown in Equation (19). 

{
𝑼(0) = 𝑰

𝑫(0) = √𝑷(0)
 (19) 

At the time 𝑘 = 1,2, … ,𝑁, repeat: 

Step 2: One-step update of the identified parameters �̂�𝐿𝑆(𝑘), error residual 𝒆(𝑘), and gain matrix 𝑲(𝑘), as shown 

in Equation (20). 

{

𝒆(𝑘) = 𝒛(𝑘) − 𝒉𝑇(𝑘)�̂�𝐿𝑆(𝑘 − 1)

𝑲(𝑘) = 𝑷(𝑘 − 1)𝒉(𝑘)[𝜆 + 𝒉𝑇(𝑘)𝑷(𝑘 − 1)𝒉(𝑘)]−1

�̂�𝐿𝑆(𝑘) = �̂�𝐿𝑆(𝑘 − 1) + 𝑲(𝑘)𝒆(𝑘)

 (20) 

Step 3: One-step calculation of the error criterion function 𝑱(𝑘) and bias compensation factor 𝝈2(𝑘) using Equation 

(21). 

{
 
 

 
 𝑱(𝑘) = 𝑱(𝑘 − 1) +

𝒆2(𝑘)

1 + 𝒉𝑇(𝑘)𝑷(𝑘 − 1)𝒉(𝑘)

𝝈2(𝑘) =
𝑱(𝑘)

𝑘[1 + 𝜽𝐵𝐶(𝑘 − 1)𝑫𝜽𝐿𝑆(𝑘 − 1)]

 (21) 

Step 4: One-step error covariance matrix 𝑷(𝑘) for the calculation of the SVD algorithm: 

1. Update the construction matrix 𝜮 ∈ 𝑹(𝑛+1)×𝑛 using Equation (22). 

𝜮 = [
𝒉𝑇(𝑘)𝑼(𝑘 − 1)

𝑫−1(𝑘 − 1)
] = �̄�(𝑘 − 1) [�̄�(𝑘 − 1)

0
] [�̄�(𝑘 − 1)]𝑇 (22) 

2. Construct the singular array 𝑼(𝑘) and update the error covariance matrix 𝑷(𝑘), as shown in Equation (23). 

{

𝑼(𝑘) = 𝑼(𝑘 − 1)�̄�(𝑘 − 1)

𝑫(𝑘) = [�̄�(𝑘 − 1)]−1

𝑷(𝑘) = 𝑼(𝑘)𝑫2(𝑘)𝑼𝑇(𝑘)

 (23) 

Step 5: One-step parameter bias compensation calculation using Equation (24). 

�̂�𝐵𝐶(𝑘) = �̂�𝐿𝑆(𝑘) + 𝑘𝝈
2(𝑘)𝑷(𝑘)𝑫�̂�𝐵𝐶(𝑘 − 1) (24) 

In Equations (18) to (24), 𝑰  represents the identity matrix. �̂�(𝑘) and �̂�(𝑘)  are (𝑛 + 1) × (𝑛 + 1)  and 𝑛 × 𝑛 

dimensional matrices, respectively, the left and right singular arrays of the matrix 𝜮 . 𝑫(𝑘)  is an (𝑛 + 1) × 𝑛  -

dimensional diagonal array whose elements on the main diagonal are singular values of 𝜮 and are non-negative. The 



block diagram of its signal flow is shown in Figure 3. 
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Figure 3. Schematic diagram of the proposed SVD-BCRLS-MWAEKF observer 

In sub-Figure 3 (a), the input signals are 𝐼𝑘, 𝑈𝑘 , 𝛿𝐼𝑘, and the output signal is 𝜽𝐵𝐶𝑅𝐿𝑆. On the one hand, when 

each 𝑘 is added to another time step, the criterion function 𝑱(𝑘 − 1) obtains the modulating factor from the error 

variable 𝒆(𝑘), and the known input information 𝒉(𝑘) and adjusts the value of the criterion function 𝑱(𝑘) in real-time 

in Equation (21). Then, 𝝈2(𝑘) as an adjustment parameter completes the update of 𝜽𝐵𝐶𝑅𝐿𝑆, where the 𝑫 is a diagonal 

matrix, whose diagonal elements take values that is selected for the parameters to be adjusted. On the other hand, the 

error covariance matrix 𝑷(𝑘) is obtained using the decomposition of the eigenvalues to obtain its update in Equations 

(23), avoiding the computational complexity of solving the inverse matrix directly, accuracy and stability are 

achieved. Finally, the results of the parameter identification are derived using Equation (25). 

{
 
 
 

 
 
 𝑅0 =

𝜃2 − 𝜃3
1 − 𝜃1

𝜏 = 𝑅1𝐶1 =
1 − 𝜃1
2𝜃1 + 2

𝑅1 = (1 + 2𝜏)𝜃2 − 2𝑅0𝜏 − 𝑅0

𝐶1 =
𝜏

𝑅1

 (25) 



2.4 Moving window adaptive extended Kalman filtering method for SOC estimation 

After the model parameters of the battery are determined, the state parameter estimation also requires a precise 

algorithm to improve its accuracy. Using this concept, the state noise must be added to the system equation for the 

co-estimation, making the state-space equation suitable for the co-estimation of state noise and SOC, as shown in 

Equation (26). 

{
�̂�𝑘|𝑘−1 = 𝑨𝑘−1�̂�𝑘−1|𝑘−1 +𝑩𝑘−1𝑢𝑘−1 +𝒘𝑘

𝒚𝑘 = 𝑪𝑘�̂�𝑘|𝑘−1 +𝑫𝑘𝑢𝑘 + 𝒗𝑘
 (26) 

In Equation (26),𝑨𝑘 , 𝑩𝑘, 𝑪𝑘, and 𝑫𝑘 are the state-transition matrix, control-input matrix, observation matrix, 

and transfer matrix, respectively. 𝒘𝑘 is the process noise and 𝒗𝑘  is the observation noise at time step 𝑘. Suppose the 

state variable matrix is defined as �̂�𝑠,𝑘|𝑘−1 = [𝑧𝑘  𝑈1,𝑘 𝛿𝑉𝑘]
𝑇 , 𝑢𝑘 = 𝐼𝑘, based on Equation (9), the system equation’s 

expressions can be constructed, as shown in Equation (27). 

{
 
 
 
 

 
 
 
 𝑨𝑘 = 𝑑𝑖𝑎𝑔 [1 𝑒

−
𝛥𝑘

𝑅1,𝑘−1𝐶1,𝑘−1 𝛱𝑘,𝑘−1
]

𝑩𝑘 = [
𝛥𝑘

𝐶𝑐𝑎𝑝
𝑅1,𝑘−1 (1 − 𝑒

−
𝛥𝑘

𝑅1,𝑘−1𝐶1,𝑘−1) 0]

𝑇

𝑪𝑘 = [𝐶1,𝑘 1 1]𝑇

𝑫𝑘 = [−𝑅0]

𝒘𝑘 = [
𝛥𝑘

𝐶𝑐𝑎𝑝
𝛿𝐼𝑘 0 𝛿𝐼𝑘]

𝑇

 (27) 

As shown in Equation (27), the process noise 𝒘𝑘 has similar properties to current fluctuations 𝛿𝐼𝑘 and varies 

with the noise characteristics of the current. In addition, 𝐶1,𝑘 is the result of linearization from the nonlinear fitting 

𝑈𝑜𝑐,𝑘(𝑧𝑘), as shown in Equation (28). 

𝑈𝑜𝑐,𝑘 ≈ 𝑧𝑘 ⋅
𝑑(𝑈𝑜𝑐(𝑘))

𝑑(𝑆𝑂𝐶(𝑘))
|
𝑧𝑘=𝑆𝑂𝐶(𝑘)

= 𝑧𝑘 ⋅ 𝐶1,𝑘 (28) 

Based on the effect of process noise, the MWAEKF algorithm is proposed to estimate the SOC of the lithium-

ion battery. The main iterative equations based on MWAEKF are as follows: 

Initialization at time step 𝑘 = 0: 

Step 1: Initialization of identified parameter �̂�0 and error covariance matrix 𝑷0, as shown in Equation (29). 

{
�̂�0 = 𝐸[𝒙0]

𝑷0 = 𝐸[(𝒙0 − �̂�0)(𝒙0 − �̂�0)
𝑇]

 (29) 

At the time step 𝑘 = 1,2,… ,𝑁, repeat: 



Step 2: One-step calculation of the state �̂�𝑘|𝑘−1 and error covariance matrix 𝑷𝑘|𝑘−1 using Equation (30). 

{
�̂�𝑘|𝑘−1 = 𝑨𝑘−1�̂�𝑘−1|𝑘−1 +𝑩𝑘−1𝑢𝑘−1 + 𝑹𝑘−1

𝑷𝑘|𝑘−1 = 𝑨𝑘−1𝑷𝑘−1|𝑘−1𝑨𝑘−1
𝑇 +𝑸𝑘−1

 (30) 

Step 3: One-step update of the state estimate �̂�𝑘  and error covariance matrix 𝑷𝑘, as shown in Equation (31). 

{
 
 

 
 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑪𝑘

𝑇(𝑪𝑘𝑷𝑘|𝑘−1𝑪𝑘
𝑇 +𝑹𝑘−1)

−1

𝒆𝑘 = 𝒚𝑘 − (𝑪𝑘�̂�𝑘|𝑘−1 +𝑫𝑢𝑘)

�̂�𝑘 = �̂�𝑘|𝑘−1 +𝑲𝑘𝒆𝑘
𝑷𝑘 = 𝑷𝑘|𝑘−1 −𝑲𝑘𝑪𝑘𝑷𝑘|𝑘−1

 (31) 

Step 4: One-step update of the variance of the process noise and observation noise, as shown in Equations (32) and 

(33). 

𝑯𝑘 =

{
 
 

 
 
𝑘 − 1

𝑘
𝑯𝑘−1 +

1

𝑘
𝒆𝑘𝒆𝑘

𝑇 , 𝑘 ≤ 𝑊

1

𝑊
∑ 𝒆𝑖𝒆𝑖

𝑇 , 𝑘 > 𝑊

𝑘

𝑖=𝑘−𝑊+1

 (32) 

{
𝑸𝑘 = 𝑲𝑘𝑯𝑘𝑲𝑘

𝑇

𝑹𝑘 = 𝑯𝑘 − 𝑪𝑘𝑷𝑘|𝑘−1𝑪𝑘
𝑇 (33) 

In Equations (32) and (33), the 𝑊  is the size of the moving window, and the 𝑯𝑘  is the variance of the 

algorithmic errors. The process noise covariance 𝑸𝑘  and observation noise covariance 𝑹𝑘 are the results of adaptive 

filtering algorithms based on moving windows, which can dynamically adjust the variance size of the algorithmic 

errors by changing the length of window 𝑊 . As is shown in Figure 3 (b), the suitable window function 𝑯𝑘  is 

calculated through the error 𝒆𝑘, and the adequate amount of 𝑸𝑘  is obtained through the evaluation of the 𝑯𝑘 and 𝑲𝑘. 

On the other hand, the update for 𝑹𝑘 is obtained using the joint action of covariances 𝑷𝑘|𝑘−1 and 𝑯𝑘, which corrects 

the result of the Kalman gain 𝑲𝑘 . Finally, the updated results for the state quantity are corrected. The overall 

flowchart of the SVD-BCRLS-MWAEKF estimation-based algorithm is shown in Figure 4. 
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Figure 4. The flowchart of the SVD-BCRLS-MWAEKF algorithm 

In Figure 4, Section (a) is the result of the channel information measured from NBC-ECM. The data information 

is obtained from the model and input into the algorithm for online parameter identification. The parameters are 

accurately identified under the combined effect of Section (b), the calculation for the NBC, and Section (c), the 

calculation of the 𝑷𝑘|𝑘−1  matrix by eigenvalue decomposition. Section (d) is the adaptive method based on the 

moving window approach. The acquired parameter and data information are imported into the NBC-ECM framework 

to update and obtain the system noise and measurement noise using the improved adaptive window function. 

2.5. Performance evaluation metrics 

Three standard evaluation metrics are employed to verify the performance of the proposed methods, which 

include the maximum error (MAX), root mean square error (RMSE), and mean absolute error (MAE). Their 

mathematical calculations are expressed in Equation (34). 



{
 
 
 
 

 
 
 
 

𝐸𝑘 = 𝑦𝑘 − �̂�𝑘

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑘 − �̂�𝑘)

2

𝑁

𝑘=1

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑘 − �̂�𝑘|

𝑁

𝑘=1

𝑀𝐴𝑋 = 𝑚𝑎𝑥|𝑦𝑘 − �̂�𝑘|; 1 ≤ 𝑘 ≤ 𝑁

  (34) 

As shown in Equation (34), 𝐸𝑘  is the difference between the actual value 𝑦𝑘 and estimated value �̂�𝑘. The RMSE 

is used to measure the deviation between the actual value 𝑦𝑘 and estimated value �̂�𝑘. The MAE indicates that in the 

error data sequence, all individual differences between positive and negative data values are equally weighted. These 

two equations explain the evaluation metrics from different angles. If the dispersion of the estimated error is high, 

the RMSE will increase more than the MAE. The MAX represents the absolute maximum error in the estimated error 

data sequence. 

3. Results and discussion 

3.1. Battery tests and data collection 

To verify the performance of the proposed SVD-BCRLS-MWAEKF estimation-based algorithm based on the 

proposed NBC-ECM, battery tests under different operating conditions are conducted using a commercial ternary 

lithium battery (LNMC70 Ah) as the research object. The established experimental test platform and specifications 

of the test battery are shown in Figure 5.  

Lithium-ion  

battery

NEWARE battery test system
Characteristic battery parameters

Battery brand: CATL

Battery chemistry: NCM

Rated capacity: 70 Ah

Rated voltage: 3.7 V

Charging cut-off voltage: 4.2 ± 0.05 V

Discharge cut-off voltage: 2.7 ± 0.05 V

Internal resistance:  1 m 

Weight: 1.3 kg

Dimensions: 148 mm*40 mm*98 mm
Operating condition settings

Host computer

Safety chamber

 

Figure 5. Experimental test platform and battery parameters 



As shown in Figure 5, a NEWARE battery charge and discharge test system (CT-4016-5V100A) is used for the 

experiment under different operating conditions. Before the test, step settings using the host computer and real-time 

data can be obtained via the TCP/IP network cable. For each test condition, the lithium-ion battery is placed in a 

chamber at a constant temperature to ensure the safety of the battery during its operation. Then, the host computer is 

used to program the working steps for the charge and discharge tester to complete the battery test under each operating 

condition. Table 1 displays the technical specifications of the NEWARE battery charge and discharge test system. 

Table 1. Specifications of the NEWARE battery test system 

Property Parameter 

Working current range 0.5~100 A 

Voltage range 0.025–5 V 

Output power 14.2 kW 

Available test channels 16 

Measurement accuracy ±0.1% full-scale rating 

Data acquisition interval 0.1 s 

This study adopts the HPPC and BBDST datasets obtained at a room temperature of about 25 ℃. Three capacity 

tests are conducted to obtain the actual capacity of the battery, which is 68.47 Ah. The constant current-constant 

voltage (CC-CV) charging method promotes longer battery life and increased safety by switching between CC 

charging, which prevents overcurrent, and CV charging, which avoids overvoltage, based on the battery’s state. All 

the operating condition tests begin with a CC-CV charging method, which is applied until the maximum capacity of 

the battery is attained. The discharge steps are applied after a 40-minute rest to ensure thermal and electrochemical 

equilibrium. More details about the typical HPPC and BBDST experimental procedures can be obtained in [11, 21]. 

The characteristic voltage and current datasets obtained from the HPPC and BBDST experiments are shown in Figure 

6. 



  
(a) HPPC voltage curve (b) HPPC current curve 

  
(c) BBDST voltage curve (d) BBDST current curve 

Figure 6. The characteristic voltage and current curves under different operating conditions 

3.2. Validation of terminal voltage tracking effect based on the NBC-ECM 

Firstly, current, voltage, and current fluctuation noise as input are involved in the identification of the noise 

model. For the test environment, the NEWARE battery charge and discharge test system have a test accuracy of ±0.1% 

full scale. However, to reflect the effectiveness of the algorithm and fully reflect the bias correction characteristics 

of the noise model in the electromagnetic environment, the input current fluctuation is set to 0.01A. Then, to analyze 

the adaptability of the NBC-ECM, the estimation effects of Gaussian observation noise 𝑹 = 0 V/A, 𝑹 = 0.01 V/A, 

𝑹 = 0.05 V/A, and colored process noise 𝑸 are discussed. The data with Gaussian white noise is entered into the 

model as contaminated data. The colored process noise 𝑸 is 100 times 𝛿𝑉𝑘 calculated based on the Equation (15) 

using the NBC-ECM and 𝛿𝐼𝑘 = 0.01 V/A. Given that the battery is a nonlinear system with noise interference, the 

impact of noise on battery parameters and SOC estimation accuracy is investigated using parameter identification 

and SOC estimation algorithms for further verification under various operating conditions. For the parameter 

identification algorithms, the RLS, BCRLS, and SVD-BCRLS are used to identify the parameters of the battery based 
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on input current and voltage with and without noise. Moreover, based on the performance of the proposed SVD-

BCRLS algorithm, its parameters are used as input to test and verify the performance of the proposed MWAEKF 

SOC estimation algorithm under various noise and operating conditions. Then, the estimations of the proposed 

MWAEKF algorithm are compared to the EKF and AEKF algorithms for further verification. 

3.2.1 Adaptation of the battery model to different operating conditions 

The comparative results of the monitored and simulated voltages by the established battery NBC-ECM using 

different parameter identification algorithms and conducted with different noise interferences under the HPPC 

operating condition. Using the proposed SVD-BCRLS algorithm, the voltage traction characteristics are carried out 

considering different measurement noise and compared with the RLS and BCRLS algorithms to verify its 

performance, as shown in Figure 7. 

  
(a-1) Comparative voltage traction results (a-2) Comparative voltage error results 

(a) Gaussian observation noise 𝑹 = 0 V/A 

  
(b-1) Comparative voltage traction results (b-2) Comparative voltage error results 

(b) Gaussian observation noise 𝑹 = 0.01 V/A 
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(c-1) Comparative voltage traction results (c-2) Comparative voltage error results 

(c) Gaussian observation noise 𝑹 = 0.05 V/A 

  
(d-1) Comparative voltage traction results (d-2) Comparative voltage error results 

(d) Colored noise 𝑸 

Figure 7. Voltage tracking results for different identification algorithms under the HPPC operating condition 

As shown in Figure 7 (a), without any noise, it can be observed that the voltage traction results using the SVD-

BCRLS algorithm have better performance compared to the RLS and BCRLS algorithms under the HPPC operating 

condition. From the results, it can be observed that the proposed SVD-BCRLS algorithm can correct the initial noise 

fluctuations that affect the other algorithms, especially when noise values of 0.01 and 0.05 V/A are used. Compared 

to the BCRLS algorithm, the SVD-BCRLS has a very stable drop at each discharge period and around the zero value 

from 2500 s to the end of discharge, as shown in Figure 7 (a-2). An obvious change begins when a noise value of 

0.01 V/A is applied, as shown in Subfigure 7 (b). Based on the voltage traction results, it can be observed that the 

RLS and BCRLS algorithms have constant errors in the process of discharge time, whereas the SVD-BCRLS shows 

good convergence and low noise effects. Also, as the measurement noise value 𝑹 = 0.05 V/A increases, the error 

superimposed on the input data increases the voltage errors using the BCRLS algorithm, as shown in Figure 7 (c). 

However, the voltage error still has good stability using the SVD-BCRLS algorithm. The most obvious change 

appears in Figure 7(d) when the system color noise is applied. The BCRLS displays fewer voltage estimation results 
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during battery discharge, but the SVD-BCRLS has good adaptability, showing a more robust result until the end of 

discharge. 

To further verify the performance of the proposed SVD-BCRLS parameter identification algorithm, the MAE 

and RMSE metrics are employed, as shown in Table 2.  

Table 2. Comparative results of the voltage errors using different noise characteristics 

Noise 

interference 
Metric RLS BCRLS SVD-BCRLS 

𝑹 = 0V/A 

RMSE 0.8627% 0.7809% 0.7717% 

MAE 0.6321% 0.6234% 0.6092% 

𝑹 = 0.01 V/A 

RMSE 1.014% 0.8712% 0.8684% 

MAE 0.7298% 0.6384% 0.6363% 

𝑹 = 0.05 V/A 

RMSE 1.036% 1.665% 1.008% 

MAE 0.7353% 0.6955% 0.6944% 

𝑸 

RMSE 1.071% 0.9148% 0.8772% 

MAE 0.7569% 0. 6690% 0.6379% 

From Table 2, using 𝑹 = 0.0 V/A, it can be observed that the RMSE and MAE values of the proposed SVD-

BCRLS algorithm are 0.7717% and 0.6092%, which shows that the proposed algorithm has improved accuracy 

compared to the RLS and BCRLS algorithms. Furthermore, using different noise values of 0.01 and 0.05 V/A, it can 

be shown that the proposed SVD-BCRLS algorithm has optimal voltage tracking capability by showing RMSE and 

MAE values of 0.8684% and 1.008%, and 0.6363% and 0.6944%, respectively, which are less than those of the RLS 

and BCRLS parameter identification algorithms. 

To further verify the performance of the proposed SVD-BCRLS algorithm in comparison to the RLS and 

BCRLS, the battery verification is carried out using different noise values under the complex BBDST operating 

condition, as shown in Figure 8.  



  
(a-1) Comparative voltage traction results (a-2) Comparative voltage error results 

(a) Gaussian observation noise 𝑹 = 0 V/A 

  
(b-1) Comparative voltage traction results (b-2) Comparative voltage error results 

(b) Gaussian observation noise 𝑹 = 0.01 V/A 

  
(c-1) Comparative voltage traction results (c-2) Comparative voltage error results 

(c) Gaussian observation noise 𝑹 = 0.05 V/A 

  
(d-1) Comparative voltage traction results (d-2) Comparative voltage error results 

(d) Colored noise 𝑸 

Figure 8. Voltage tracking results for different identification algorithms under the BBDST operating condition 
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As shown in Figure 8 (a-1), without noise, it can be observed that the SVD-BCRLS algorithm performs a good 

convergence role in treating battery discharge time. The bias compensation effect in the RLS is more clearly 

demonstrated at the end of discharge, which shows a steep decline caused by the characteristics of the battery at low 

SOC levels. According to the estimation result for noise 𝑹 = 0.05 V/A, the objective of the SVD optimization occurs 

when the noise amplitude is large, or when the battery discharge deviation is large, as shown in Figure 8 (c). Also, at 

a low SOC level, it can be observed that the SVD-BCRLS optimization effect is also better than that of the BCRLS 

algorithm. At the same time, it can be observed that the voltage error of the SVD-BCRLS algorithm has an error drop 

at the time of 1000–2000 s compared with the BCRLS algorithm, which is due to the SVD’s ability to accelerate the 

convergence rate. When an input noise is colored noise 𝑸, the estimated results of voltage for the BCRLS and SVD-

BCRLS algorithms are both better than the RLS algorithm. One possible reason is that the colored noise is extracted 

from the NBC-ECM, which is an extension of the Thevenin ECM. Therefore, the colored noise has the characteristics 

of that compensation model when the bias compensation is effective. The RLS algorithm cannot finish the error 

correction with bias compensation. But both the BCRLS and SVD-BCRLS algorithms can change the spectrum 

structure of colored noise and have the same voltage tracking result. 

A more thorough comparison of the proposed identification algorithm is presented in Table 3, along with the 

RLS and BCRLS algorithms’ results under the BBDST operating condition. 

Table 3 Comparative results of the voltage errors using different noise characteristics 

Noise interference Metric RLS BCRLS SVD-BCRLS 

𝑹 = 0 V/A 

RMSE 4.035% 3.381% 3.300% 

MAE 1.154% 0.972% 1.035% 

𝑹 = 0.01 V/A 

RMSE 4.009% 3.299% 3.243% 

MAE 1.145% 0.9550% 0.9473% 

𝑹 = 0.05 V/A 

RMSE 4.010% 3.117% 2.656% 

MAE 1.145% 0.9550% 0.9473% 

𝑸 

RMSE 4.033% 5.017% 5.017% 

MAE 1.151% 1.032% 1.032% 

From Table 3, it can be observed that using the SVD-BCRLS algorithm, the RMSE is 3.300% compared to 



3.381% for the BCRLS algorithm, which is better than the RLS algorithm’s value of 4.035%, showing the optimal 

adaptability to the voltage of the battery under the BBDST operating condition. At a noise value of 0.01 V/A, it can 

be observed that the SVD-BCRLS algorithm is slightly optimized. The RMSE of the SVD-BCRLS algorithm is 

3.243%, which is also better than 3.299% for the BCRLS algorithm. Furthermore, the comparative results show that 

when the noise amplitude is 𝑹 = 0.05 V/A, the RMSE for the SVD-BCRLS is 2.656%, which is better than the 

BCRLS and RLS, which have RMSEs of 3.117% and 4.010%, respectively. From the longitudinal comparison, the 

RMSE decreased by 0.027% when the noise amplitude increased from 0 to 0.01 V/A and by 0.587% when the noise 

amplitude increased from 0.01 to 0.05 V/A, which means when the noise amplitude increased by five times from 0 

to 0.05 V/A, the RMSE decreased by 0.614%. These results prove that the optimization characteristic of the SVD-

BCRLS algorithm is more suitable for parameter identification under the influence of electromagnetic noise. 

3.2.2 Parameters identification of the SVD-BCRLS algorithm  

An accurate ECM is the most significant factor in preventing battery model voltage and SOC divergence and 

ensuring the safety of the EV. Following model validation, the performance of the proposed SVD-BCRLS algorithm 

in identifying battery parameters is tested and compared to that of the RLS and BCRLS algorithms to validate its 

performance. Using the RLS, BCRLS, and SVD-BCRLS parameter identification algorithms, the 𝑅0, 𝑅1, 𝐶1, and 

𝛿𝑉𝑘  with a noise value of 𝑹 = 0.01 V/A are identified under the HPPC operating condition, as shown in Figure 9. 

  
(a) Internal ohmic resistance: 𝑅0 (b) Electrochemical polarization resistance: 𝑅1 
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(c) Electrochemical polarization capacitance: 𝐶1 (d) Noise voltage: 𝛿𝑉𝑘  

Figure 9. Identification of battery parameters using different algorithms 

In Figure 9 (a), comparing the increased trend of the RLS and the larger fluctuation of the BCRLS algorithm, 

the SVD-BCRLS has a more stable trend. In Figure 9 (b) and (c), the changing trends of the BCRLS and SVD-

BCRLS algorithms for the 𝑅1 and 𝐶1 tend to be monotonically increasing during discharge time. It is because the BC 

method can overcome the noise uncertainties and makes the dynamic characteristics more adequate, which are visible 

in the resistance and capacitance changes. Comparing the results obtained for the 𝑅1 and 𝐶1, it can be observed that 

both the BCRLS and SVD-BCRLS algorithms show a similar increasing trend. However, the results of the BCRLS 

have noisy changes, which makes the SVD-BCRLS a more suitable algorithm for identifying the parameters of the 

battery. On the other hand, the 𝑅1 estimation by the RLS shows an increasing trend, which remains constant until the 

end of discharge, where it begins to show a downward trend, which means it loses robustness in identifying the 

parameter of the battery until a full discharge state. Also, the RLS is observed to have a very small 𝐶1, which means 

it cannot sufficiently identify the parameter of the battery. As shown in Figure 9 (d), the noise values of the BCRLS 

and SVD-BCRLS algorithms have a higher ability to identify the noise component from the middle to the end of 

discharge than the RLS algorithm, which shows the RLS cannot identify the noise and it can be extracted using the 

BC. Moreover, the role of the SVD has been reflected in the stability of mid-discharge time, demonstrating the 

optimal characterization of the SVD for the stability of parameter identification. 

3.3. SOC estimation based on the SVD-BCRLS-MWAEKF algorithm 

This section presents the SOC estimation results using different noise interference for 𝑸𝑘 and 𝑹𝑘 to update the 

noise under the HPPC and BBDST operating conditions. After verifying that the established battery model provides 
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a reliable representation of the battery, the identified parameters of the SVD-BCRLS algorithm are then utilized for 

estimating the SOC based on the proposed MWAEKF algorithm. To further verify the performance of the proposed 

SOC estimation algorithm, the EKF and Saga-Husa-based EKF (AEKF) algorithms are also employed. 

3.3.1 Impact of noise on the SOC under the HPPC operating condition 

The comparative estimation results using different noise interferences of the EKF, AEKF, and MWAEKF 

algorithms under the HPPC operating condition are shown in Figure 10. 

  
(a-1) Comparative SOC traction results (a-2) Comparative SOC error results 

(a) Gaussian observation noise 𝑹 = 0 V/A 

  
(b-1) Comparative SOC traction results (b-2) Comparative SOC error results 

(b) Gaussian observation noise 𝑹 = 0.01 V/A 

  
(c-1) Comparative SOC traction results (c-2) Comparative SOC error results 

(c) Gaussian observation noise 𝑹 = 0.05 V/A 
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(d-1) Comparative SOC traction results (d-2) Comparative SOC error results 

(d) Colored noise 𝑸 

Figure 10. Comparative SOC results using different noise interferences under the HPPC operating condition 

As shown in Figure 10 (a-1), the SOC estimation is carried out without a noise value. For the MWAEKF 

algorithm, except for the large error at the initial moment, the result of the SOC estimation quickly converges to the 

actual value during the whole discharge process, with a MAX of 2.2%. Meanwhile, the results of the EKF and AEKF 

algorithms show that they have a good convergence rate. However, their estimations tend to fluctuate much more 

than the MWAEKF, which results in MAXs of 3.5% for the EKF and 3.2% for the AEKF algorithm. Furthermore, 

when the noise value is increased to 0.01 V/A, the SOC error for the MWAEKF algorithm converges with the least 

MAX of 2.1%, while the EKF and AEKF have 3.6% and 5.04%, respectively. Moreover, when the noise is 0.05 V/A, 

the SOC error for the MWAEKF algorithm proves to be the least, showing a MAX of 1.3%. The results reflect that 

the proposed MWAEKF algorithm not only maintains good accuracy in the presence of different noise values but 

also has optimal estimation results as the noise amplitude increases. These changes demonstrate that the optimization 

effect improves when the noise amplitude increases from 0.01 to 0.05 V/A. Meanwhile, compared with the EKF, the 

AEKF algorithm has poor adaptability to the SOC estimation accuracy of different noise amplitudes. The maximum 

SOC error increases from 3.5% to 7.2% as the noise interference increases from 0 to 0.05 V/A. It can be observed 

that when the noise amplitude of the AEKF increases, not only the estimation error becomes larger, but also the 

convergence line becomes worse. When the colored noise 𝑸 is input into the system, the same results also confirm 

the improved accuracy of SOC estimation using the proposed MWAEKF algorithm, which has a MAX of 2.2%. 

To further verify the SOC performance of the proposed MWAEKF algorithm, the standard metrics are employed, 

which are conducted and presented in comparison with the EKF and AEKF algorithms, as shown in Table 4. 
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Table 4. Performance evaluation results for different SOC algorithms under the HPPC operating condition 

Noise interference Metric EKF AEKF MWAEKF 

𝑹 = 0 𝑉/𝐴 

RMSE 1.159% 1.101% 1.106% 

MAE 0.8411% 0.7956% 0.5427% 

𝑹 = 0.01 𝑉/𝐴 

RMSE 1.163% 1.550% 0.8387% 

MAE 0.8617% 1.130% 0.6384% 

𝑹 = 0.05 𝑉/𝐴 

RMSE 1.132% 1.604% 0.3972% 

MAE 0.8506% 1.200% 0.2316% 

𝑸 

RMSE 1.165% 1.367% 0.8399% 

MAE 0.8641% 0.9889% 0.5514% 

According to the performance evaluation results shown in Table 4, with no noise applied, the RMSE values of 

the EKF, AEKF, and MWAEKF algorithms are 1.159%, 1.101%, and 1.106%, respectively. Furthermore, the MAEs 

for the EKF, AEKF, and MWAEKF algorithms are 0.8411%, 0.7956%, and 0.5427%, respectively, indicating that the 

proposed MWAEKF outperforms the EKF and AEKF algorithms. Furthermore, using 0.01 V/A observation noise, 

the results show that the MWAEKF algorithm significantly improved SOC performance, with RMSE and MAE of 

0.8387% and 0.6384%, respectively, which is better than the EKF (1.163% and 0.8617%) and AEKF (1.550% and 

1.130%). Also, when the noise is 0.05 V/A, the RMSE and MAE of the EKF and AEKF algorithms are higher than 

those of the MWAEKF algorithm, and a similar pattern is observed when colored noise is used. This further illustrates 

the MWAEKF algorithm’s excellent estimation ability and anti-interference ability in the presence of noise. 

3.3.2 Impact of noise on the SOC under the BBDST operating condition 

Following the completion of the battery operating tests, the actual operating conditions should be fully 

considered to verify the SOC estimation performance of the proposed MWAEKF algorithm. The SOC is carried out 

at various noise interference levels under the BBDST operating condition, as shown in Figure 11. 



  
(a-1) Comparative SOC traction results (a-2) Comparative SOC error results 

(a) Gaussian observation noise 𝑹 = 0 V/A 

  
(b-1) Comparative SOC traction results (b-2) Comparative SOC error results 

(b) Gaussian observation noise 𝑹 = 0.01 V/A 

  

(c-1) Comparative SOC traction results (c-2) Comparative SOC error results 

(c) Gaussian observation noise 𝑹 = 0.05 V/A 

  

(d-1) Comparative SOC traction results (d-2) Comparative SOC error results 

(d) Colored noise 𝑸 

Figure 11. Comparative SOC results using different noise interferences under the BBDST operating condition 
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As shown in Figure 11(a-1), without noise, it can be observed that even though the MWAEKF algorithm has 

poor initialization, it converges to the reference value more closely during the mid-stage of the estimation with low 

fluctuation amplitudes, showing a MAX of 0.71% compared to the EKF and AEKF algorithms, which have 3.54% 

and 3.80%, respectively. Also, when the noise is 0.01 V/A, the results show that the MWAEKF algorithm converges 

to the reference value more closely during the mid-stage of estimation with fewer fluctuations than the EKF and 

AEKF algorithms. Furthermore, when the noise is 0.05 V/A, the proposed MWAEKF algorithm has a MAX of 1.57% 

after fast convergence. However, the AEKF is further affected, where dense noise accumulates on the estimated 

results, causing the error to increase. This shows the excellent convergence characteristic of the MWAEKF algorithm 

and its good adaptability under the BBDST operating condition. Meanwhile, by comparing Figure 11 (d), it is known 

that when colored noise 𝑸 passes through the system, the estimation results of the MWAEKF algorithm are more 

stable than those of the EKF and AEKF algorithms. The results of the MWAEKF algorithm show a MAX of 1.55%, 

which is less than the EKF and AEKF algorithms, which are 3.41% and 2.26%, respectively. These prove that the 

proposed MWAEKF has good convergence characteristics under the BBDST operating condition with colored noise. 

Further, it can be seen from Figures 11 (a)-(d) that with the progress of SOC estimation, the MWAEKF algorithm 

has a stable trend, while other algorithms have divergence problems after a long time of testing. The main possible 

reason is that for EKF and AEKF algorithms, with the progress of estimation with the interference noise, the error of 

the filter accumulates in the state variable, which causes the data saturation, and the error covariance matrix 𝑷 is not 

robust, the process noise 𝑹 and measurement noise 𝑸 cannot be updated properly, which resulting in the deterioration 

of SOC estimation accuracy. Meanwhile, the MWAEKF algorithm can not only reduce data saturation through the 

moving average method but also update noise variables. It can be seen that the update optimization of the MWAEKF 

outperforms the EKF and AEKF in correcting errors throughout the estimation process.. At the same time, with the 

increase of environmental noise, the estimation results of the state variables of the noise model also change in real-

time, thus improving the accuracy of SOC estimation. 

The SOC performance of the proposed MWAEKF algorithm is conducted and presented in comparison with the 



EKF and AEKF algorithms using the MAE and RMSE metrics, as shown in Table 5. 

Table 5. Performance evaluation results for different SOC algorithms under the BBDST operating condition 

Noise interference Metric EKF AEKF MWAEKF 

𝑹 = 0 𝑉/𝐴 

RMSE 1.215% 1.1221% 0.1317% 

MAE 0.8496% 0.8222% 0.0933% 

𝑹 = 0.01 𝑉/𝐴 

RMSE 1.216% 1.1354% 0.2254% 

MAE 0.8501% 0.8342% 0.1373% 

𝑹 = 0.05 𝑉/𝐴 

RMSE 1.218% 1.237% 0.5638% 

MAE 0.8514% 0.9204% 0.4475% 

𝑸 

RMSE 1.218% 1.022% 0.5638% 

MAE 0.8530% 0.6185% 0.4475% 

As is shown in Table 5, using 𝑹 = 0 V/A, the RMSE for the proposed MWAEKF is only 0.1317%, which is 

less than the AEKF (1.1221%) and EKF (1.215%). Also, when the noise amplitude increases from 0.01 to 0.05 V/A, 

the RMSE for the MWAEKF algorithm increases from 0.2254% to 0.5638%, and that of the AEKF algorithm 

increases from 1.1354% to 1.237%. Overall, it can be observed that the MAEs and RMSEs show that the proposed 

MWAEKF algorithm outperforms both the EKF and AEKF algorithms with significant accuracy and robustness. The 

verification under BBDST operating conditions shows that the accuracy of SOC estimation using the MWAEKF 

algorithm has good performance under high noise conditions and great robustness. 

4. Conclusion 

The SOC estimation of the battery is susceptible to strong electromagnetic noise interference, leading to unstable 

and inaccurate estimations. Taking into account the problems caused by these noise uncertainties, the NBC-ECM is 

established based on a first-order Thevenin ECM to overcome the noise interferences and uncertainties by adding a 

system structure function to compensate for the noise interference. Then, an MWAEKF algorithm is proposed for 

SOC estimation, whose characteristic parameters use an SVD-BCRLS algorithm, and the results are compared to 

those of the EKF and AEKF algorithms using different system noise. The error comparison result shows that the 

SVD-BCRLS-MWAEKF algorithm provides optimal SOC estimation results. Using the proposed MWAEKF 

algorithm with a 0.05 V/A under the HPPC operating condition, the results show that the maximum SOC error is 



1.3%, the RMSE is 0.3972%, and the MAE is 0.2316%. Under the BBDST operating condition, the maximum error 

of the proposed MWAEKF algorithm is 1.57%, the RMSE is 0.5638%, and the MAE is 0.4475%. The results of SOC 

estimation have high estimation accuracy under different operating conditions and noise interferences, demonstrating 

that the proposed MWAEKF algorithm can overcome the uncertainties encountered by lithium-ion batteries for real-

time BMS applications. 

In the future, the method of reducing the calculation amount of the SVD-BCRLS-MWAEKF calculation will be 

studied. We will also further study the applicability of the model due to the influence of noise caused by considering 

different ambient temperatures and aging factors for the state of health estimation of lithium-ion batteries. 
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