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ABSTRACT 

Prompted by the advancements in hybrid bio-nano-swirling magnetic bioreactors, a 

mathematical model for the swirling flow from a rotating disk bioreactor to a magnetic fluid 

saturating a porous matrix and containing nanoparticles and gyrotactic micro-organisms has been 

developed. An axial magnetic field is administered which is perpendicular to the disk and Hall 

currents are included. The disk is assumed to be impervious and stretches in the radial direction with 

a power-law velocity. The Buongiorno nanoscale, Kuznetsov bioconvection and Darcy porous media 

models are deployed. Anisotropic momentum, thermal, nanoparticle concentration and motile micro-

organism slip effects are incorporated. Stefan blowing is also simulated. The governing conservation 

equations are transformed with appropriate variables to a ordinary nonlinear differential equations. 

MATLAB bvp4c shooting quadrature is used to solve the emerging nonlinear, coupled ordinary 

differential boundary value problem under transformed boundary conditions. Verification with 

earlier solutions for the non-magnetic Von Karman bioconvection nanofluid case is conducted.  

Further validation of the general magnetic model is conducted with the Adomian decomposition 

method (ADM). Extensive visualization of velocity, temperature, nanoparticle concentration and 

motile microorganism density number profiles is presented for the impact of various parameters 

including magnetic interaction parameter, Hall current parameter, Darcy number, momentum slip, 

thermal slip, nanoparticle slip and microorganism slip. Computations are also performed for skin 

friction, Nusselt number, Sherwood number and motile micro-organism density number gradient. 

The simulations provide a useful benchmark for further studies. 

 

KEYWORDS: Magnetic nanofluids; Gyrotactic bioconvection; Von Karman swirling nano-

bioreactor; Darcy law; Hall current; Axial magnetic field; Sherwood number; Micro-organism 

density number; MATLAB; ADM.  

 

1.INTRODUCTION 

Modern engineering technologies are increasingly embracing biological phenomena to 

improve efficiency and increase sustainability. Micro-organisms offer some excellent advantages for 
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fuel cells, bioreactors and other systems. Nanotechnology has also emerged as a prominent area in 

the 21st century and has provided exciting new materials for enhancing engineering devices 

including electromagnetic nanofluids. Under certain circumstances the Navier-Stokes partial 

differential equations for viscous Newtonian fluids can be reduced to much simpler ordinary 

differential systems facilitating both analytical and numerical solutions. These flows are usually 

steady in nature and include Blasius boundary layer flow, Hiemenz stagnation flow and Von Kármán 

swirling flow. The latter is generated by a uniformly spinning infinitely long plane disk and was first 

considered in a monumental study by the great German engineer, Von Kármán [1] a century ago. In 

the proximity of the disk the fluid is rotated via friction which generates centrifugal forces resulting 

in the displacement of fluid radially outwards. Von Kármán swirling flows continue to be studied 

owing to their extensive applications in coating flows, turbine cooling, rotating combustors and 

medicine, and many excellent references are documented in Schlichting and Gersten [2]. Many 

extensions to the Von Karman problem have also been addressed including viscoelastic flows [3, 4], 

extended families of solutions [5], viscoplastic flows [6] and unsteady flows with wall transpiration 

[7].  

In the 21st century there is a growing thrust to achieve ecologically sustainable designs in 

technology, many of which exploit biological mechanisms. Numerous different approaches have 

been explored including biomimetic materials, peristaltic pumps, ciliated channels and the use of 

micro-organisms [8]. Bioconvection relates to the propulsion of swimming micro-organisms, 

controlled by the response to a particular stimulus (taxis). Excellent appraisals of the hydrodynamic 

modelling of micro-organism propulsion have been given by Kessler [9] and Plesset et al. [10]. 

Many different types of taxes exist including gyrotaxis (controlled by torque) [11], phototaxis (light) 

[12], chemotaxis (chemical concentration e.g. oxygen) [13], geotaxis (gravity-driven) [14, 15] and 

others e.g. magneto-taxis and combinations [16]. The mathematical models developed for 

bioconvecting micro-organisms mimic the general behavior of independent individual micro-

organisms and apply to both short-term movements of freely motile individuals (unicellular and 

multicellular), and longer-term orientation. The bacterial micro-organisms responding to these taxes 

can be manipulated to swim towards or away from a particular stimulus. For example, chemo-tactic 

bacteria may be compelled to swim towards or away from a chemical concentration gradient and 

magneto-tactic bacteria swim along magnetic field lines. Engineers are increasingly exploring the 

use of bioconvection in such devices [17, 18] which feature Von Karman swirling flow. The 

objective is to achieve green designs which are environmentally friendly [19-26].  Chlorella 

vulgaris microalgae are an example of gyrotactic bioconvecting micro-organisms that can achieve 

improved efficiency in such devices. In swirling flows of bioreactors, the rapid transport of cells is 

achieved. This achieves the desired improvements [26]. In the above studies electromagnetic effects 

have been neglected. However increasingly smart technologies in engineering are deploying 
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intelligent fluids which respond to external electrical or magnetic fields, or both. MHD [27] is the 

science of the synergy of electrically conducting fluent media and external magnetic fields. 

Mathematical models are developed in MHD by combining the Maxwell electromagnetic field 

equations with the Navier-Stokes viscous flow equations. Many different effects can then be 

simulated in magnetohydrodynamic flows including the transverse Lorentz magnetic body force, 

Ohmic dissipation (Joule heating), inclined (oblique) magnetic fields, magnetic induction, ion slip 

and Hall current effects. These phenomena can also be exploited in medical engineering applications 

which include cardiovascular flow control [28], MHD based biomedical micro-pumps, micro-bio-

mixers, blood cell manipulation (owing to haemoglobin content) [29], magnetohydrodynamic 

(MHD) microfluidic platforms for cell switching [30], magneto-robotic endoscopy [31], 

electrocardiogram interaction with MHD [32], cardiac cycle synchronization of  magnetic resonance 

imaging (MRI). Recent studies in computational simulations of magnetohydrodynamic medical 

flows have also examined a wide spectrum of applications including magneto-micro-robotic 

propulsion for embryological treatment [34], biomagnetic therapy [35], gastric endoscopy [36], bio-

inspired nanofluid smart micro-pumps [37] and radiation tissue electromagnetic treatments [38]. 

These studies have confirmed that magnetic effects offer significant benefits in biomedical systems 

and have the advantage of being non-intrusive and relatively easy to implement [39]. 

Nanofluids comprise base fluids doped with nanoparticles and were introduced by Choi [40]. 

They offer considerable enhancement in thermal performance without the agglomeration and 

clustering issues associated with larger scale (micron) particles.  They have also been shown to 

operate efficiently when combined with gyrotactic micro-organisms [41]. A powerful Hall voltage is 

developed by applying a strong magnetic field which is perpendicular to the current.  The Hall 

parameter is compelling for immense magnetic field. The Hall current generates a secondary (cross) 

flow effect and is beneficial in furnishing an extra mechanism for regulating transport characteristics. 

Rotating viscous MHD flows with Hall current effects have received some attention in recent years 

both in physiological systems and industrial energy generation. Bég et al. [42] used PSPICE electro 

thermal network simulation to compute the hydromagnetic Newtonian flow in a rotating channel 

containing a permeable medium under oblique magnetic field with Hall current effect.  They noted 

the significant acceleration in secondary flow with greater Hall current effect and a damping in the 

primary flow with increasing Hartmann number (magnetic body force number). Khan et al. [45] used 

a homotopy analysis method (HAM) to compute the unsteady hydromagnetic viscoelastic coating 

flow from a stretching surface with Hall current effect. They observed that axial flow acceleration is 

generated with stronger Hall current effect whereas deceleration is produced with stronger magnetic 

field. Bég et al. [46] used an implicit finite difference method (FDM) and Galerkin finite element 

method (FEM) to simulate the time-dependent hydromagnetic micropolar heat, mass and momentum 

transfer in channel flow with Hall and ion-slip current effects. Rotating disk swirling hydromagnetic 
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flow with Hall currents has been examined by Gaber and Mohamed [47] with wall (disk) suction and 

radiative heat transfer. Aboul-Hassanand Attia [48] investigated the swirling magnetohydrodynamic 

flow from a spinning disk with axial magnetic field and Hall effects.  Mustafa et al. [49] studied the 

thermo-magnetic ferrofluid stagnation flow from a stretching spinning disk. Further studies include 

Thomas and Davies [50] and Béget al. [51]. 

In the present study, motivated by new developments in intelligent electromagnetic swirl 

bioreactor designs, we consider the combined effect of nanofluids and gyrotactic bioconvection in 

MHD Von Karman flow from a rotating radially stretching disk to a porous medium with Hall 

current effects. Anisotropic momentum slip, thermal slip, nanoparticle slip and micro-organism slip 

as well as Stefan blowing at the disk surface are also considered. Darcy’s law is employed to model 

the porous medium drag force effect. Bacterial micro-organisms attach to the disk surface and begin 

to form cellulose as a gel that increases in thickness. Solid disks are inferior to disks that are 

perforated to allow improved film growth and therefore the presence of Stefan blowing is justified. 

The present study extends the earlier analysis of Bég et al. [52] to include magnetic field and Hall 

current effects. MATLAB bvp4c technique is achieved to find the numerical solutions [53]. The 

significance of Hall parameter, Darcy number, mass, circumferential and thermal slip, magnetic 

parameter, and Stefan suction/blowing on the  velocity, temperature, nanoparticle concentration and 

micro-organism density number distributions is depicted graphically. Adomain decomposition 

method [54] is mobilized for the verification of  the MATLAB solutions. The impact of selected 

parameters on skin friction, Nusselt number, Sherwood number and gradient of motile micro-

organism density number are also tabulated. 

 

2.MAGNETO-NANO-BIOCONVECTION SWIRLING FLOW MODEL  

The physical regime to be studied is illuminated in Figure 1. Incompressible Von Karman 

swirling nanofluid flow of an magnetic fluid incorporating gyrotactic micro-organisms adjacent to a 

saturated homogenous, isotropic porous medium, is considered under an axial magnetic field, 
0B . 

The disk radius is spanned with velocity in the radial direction. The disk spins at constant angular 

velocity   about the vertical axis, at z . Anisotropic momentum slip, isotropic thermal jump (slip), 

isotropic nanoparticle slip, isotropic micro-organism slip and Stefan blowing effects are present. The 

strong magnetic field is applied perpendicular to the current which causes for the high voltage (Hall 

voltage) difference across the nanofluid. This Hall current yields the cross flow owing to the 

generation of  radial forces. The magnetic nanoparticles added to the base fluid (water) are assumed 

dilute and do not alter the swimming direction or velocity of the micro-organisms. The resulting 

nanofluid has electrically conducting properties. However, magnetic Reynolds number is sufficiently 

small such that the magnetic field is not distorted, and magnetic induction effects are negated. The 

porous medium is non-deformable (rigid) and in thermal equilibrium with the swirling magnetic 
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nanofluid flow. A cylindrical co-ordinate system ( ), ,r z    is adopted with ( ), ,u v w  denoting the 

radial, tangential (azimuthal) and axial velocity components.  

 

 

Fig. 1 Hall current magnetohydrodynamic nanofluid rotating bioreactor flow configuration  

 

The rotating disk acts as a fluid pump and initially the nanofluid is at rest everywhere. Once 

rotation is initiated, the outward radial motion of the fluid close to the disk is compensated by an 

inward axial motion of the fluid towards the disk to conserve mass. Buongiorno’s nanoscale model is 

employed and the Kuznetsov formulation employed for gyrotactic bioconvection [52]. The 

appropriate electromagnetic equations are as follows [55]: 

 

Ohm’s Law for moving conductor with Hall currents: 

( ) ( )e eJ J B E V B
B

 
+  = +                                                                                                   (1)                      

Maxwell Electromagnetic Equations: 

. eB J =              (2) 

.
B

E
t


 = −


             (3) 

. 0J                                                         (4) 

. 0B =                                                                                                                                                (5) 

Here ( ), ,r zJ J J J=  is the electrical current density vector, B  is the magnetic field vector 

( ), ,r zB B B ,  E  is the electrical field vector,  , 
e , e  are electrical conductivity, electron 

frequency, and electron collision time respectively. Furthermore, e  is the magnetic permeability of 
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the nanofluid.   The electric field vanishes as there is no applied voltage   ( )0E = . In the light of 

above used assumptions for a weakly ionized magnetic nanofluid,   0J =  everywhere in the flow, 

so comparing the ,r z  components, it follows that the current density has components ,r zJ J as 

follows, where 
zB is taken as 

0B : 

( )
( )

2

0

21
x

B
J u hv

h




= −

+
                                   (6) 

( )
( )

2

0

21
z

B
J hu v

h




= +

+
                                                                                                                 (7) 

where 
e eh  = is the Hall parameter. When the above Eqns. (6) and (7) are combined with the 

earlier non-magnetic model of Bég et al. [52], the resulting boundary layer equations for Von 

Karman swirling magnetohydrodynamic nanofluid bioconvection from the rotating disk assume the 

form: 

Mass balance: 

( )
1

0
w

r u
r r z

 
+ =

 
                                                                                                                          (8) 

Momentum: 

( )
( )

22 2 2

0

2 2 2 2 2 2

1

1

Bu u v u u u u
u w u u hv

rr z r r r r z r h
K

R






     
+ − = + + − − − − 

       + 
 
 

             (9)                 

( )
( )

22 2

0

2 2 2 2 2

1

1

Bu vv v v v v v
u w v v hu

rr z r rr r z r h
K

R






     
+ + = + + − − − + 

      + 
 
 

            (10) 

2 2

2 2

1w w w w w
u w

r z r r r z

     

+ = + + 
     

                                                                                  (11) 

Energy 

2 2

2 2

2 2

1
B

T

T T T T T C T C T
u w D

r z r r r r z zr z

D T T

T r z

 





           
+ = + + + + +   

          

     
 +         

                           (12) 

Nanoparticle volume fraction 

2 2 2 2

2 2 2 2

1 1T
B

DC C C C C T T T
u w D

r z r r r z T r r r z

          
+ = + + + + +   

          
                           (13) 

Density number of motile organisms 

( )
2 2

2 2

1
n

n n n n n
u w n v D

r z z r r r z

      
+ + = + + 

      
                                                               (14) 
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The appropriate boundary conditions are [52]: 

At  0z = :  (disk surface), 

1 2

1 2

1 1 1

, , ,
1

, , .

m

B

w

w w w

Dr u r v r C
u N v N R w

R z R z R C z

r T r C r n
T T D C C E n n F

R z R z R z

 

−
       

= = +  = −     
  −      

       
= + = + = +     

       

             (15) 

As  z → +   (free stream), 

0, 0, , ,u v T T C C n n  → → → → →                                                                             (16) 

where the meanings of notations used in Eqns. (8)-(14) are temperature ( )T ,  number of motile 

organisms ( )n ,  nanoparticle concentration ( )C , kinematic viscosity  , density ( ) ,  constant 

permeability ( )0K ,  variable permeability ( )2

0

mK K r= ,    heat capacity of the fluid ( )
f

c ,  heat 

capacity of the nanoparticles ( )
p

c ,   thermal diffusivity ( ) ,  reference scale length ( )R ,  

thermophoretic diffusion coefficient  ( )TD ,   surface temperature ( )wT ,  ambient temperature ( )T ,  

microorganism diffusion coefficient ( )nD ,  Brownian diffusion coefficient effective nanoparticles 

heat capacity ( )BD , ambient  mass concentration  ( )C ,  surface mass concentration ( )wC ,  mass 

slip factor  ( )( )1 1 0

mE E r= ,  microorganism slip ( )( )1 1 0

mF F r= ,   velocity slip along  u   

( )( )1 1 0

mN N r= ,  velocity slip along v  ( )( )2 2 0

mN N r= , thermal slip factor ( )( )1 1 0

mD D r= ,  

chemotaxis constant ( )b , maximum cell swimming speed ( )cW , average directional swimming 

velocity of microorganisms cb W C
v

C z

 
= 

  
,  wall motile microorganism density number ( )wn .     

and  m  are dimensionless quantities representing the ratio of effective mangentic nanoparticle heat 

capacity to the fluid heat capacity and power law exponent respectively. 

 

The nonlinear partial differential boundary value problem defined by Eqns. (11)-(16) are formidable 

to solve even with modern numerical methods. It is judicious to render the system non-dimensional 

and hence the following relations are implemented.   

, Re, , , Re,

, ,
w w w

r z u v w
r z u v w

R R R R R

T T C Cn

n T T C C
   

 

= = = = =
  

− −
= = =

− −

                                                      (17) 

Implementing Eqn. (17) the non-dimensional boundary layer equations emerge as: 
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0
u u w

r r z

 
+ + =

 
                                                                                                                             (18) 

( )2 2 2

2 2 2 2 1 2

0

1 1

Re m m

M u hvu u v u u u u
u w u

r z r r rr r z K r r



 +

−     
+ − = + − + − − 

     
                   (19) 

( )2 2

2 2 2 2 1 2

0

1 1

Re m m

M v huv v u v v v v v M
u w v

r z r r r r r z K r r +

+     
+ + = + − + − − 

      
                     (20) 

 
2 2

2 2

1 1

Re

w w w w w
u w

r z r r r z

     
+ = + + 

     
                                                                                 (21) 

22

2

22

2

1 1

Pr Re Pr Pr

1

Pr

Nb Nt
u w

r z r r r r r r

Nb Nt
z z z r

      

   

        
+ = + + + +           

       
+ +            

                                     (22) 

2 2

2 2

2 2

2 2

1 1 1

Pr Re

1

Pr

Nt
u w

r z Le r r r Nb r r r

Nb

Le z Nt z

     

 

       
+ = + + + +  

       

   
+  

   

                                        (23) 

2 2

2 2

1 Pe
u w

r z Sb r Sb z z z

     


      
+ = − + 

      
                                                           (24) 

The dimensionless boundary conditions at the disk surface and in the free stream (edge of the 

boundary layer) take the form: 

( ) ( )

( ) ( ) ( )

1 2

1 2

1 1 1

Re Re
; ; ;

Pr

Re Re Re
1; 1; 1

mu v s
u N r v N r r w

R z R z Le z

D r E r F r
R z R z R z

  

  
  

−
  

= = + = − 
   


   

= + = + = +    

at  0z =              (25) 

0; 0; 0; 0; 0u v   → → → → →     as  z →                                                               (26) 

 

The dimensionless boundary value problem defined by Eqns. (18)-(26) may further be simplified by 

deploying the relations as follows: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 2 1 2, , , 2 ,

, ,

m m m mz r u r f v r g w r m f m f     

        

− − − − = = = = − − −

= = =
              (27) 

Substituting Eqn. (27) into Eqns. (18)-(24), wherein the continuity equation is automatically 

satisfied. The generated nonlinear ordinary differential equations are:  

( ) ( )( ) ( )
2 2 1

2 1 2 0f m f f m f g f M f h g
Da

    + − − − + − − − =                                           (28) 
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( ) ( ) ( )
1

2 2 2 0g m f g m f g g M g h f
Da

   + − − − − − + =                                                       (29) 

( ) ( )
2

Pr 2 0m f Nb Nt        + − + + =                                                                                (30) 

( )Pr 2 0
Nt

Le m f
Nb

    + − + =                                                                                             (31) 

( ) ( )2 0Sb m f Pe         + − − + =                                                                            (32) 

In Eqs. (28) to (32) f  corresponds to ( )f  i.e. dimensionless stream function. 

The conditions on the boundary as given in Eqs. (25) and (26) emerge as: 

( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 ; 0 1 0 ; 0 0 ;
Pr 2

0 1 0 ; 0 1 0 ; 0 1 0

u v

T c n

s
f f g g f

Le m
  

        


   = = + = − 

  = + = + = + 

 at 0 =                 (33) 

( ) ( ) ( ) ( ) ( ) 0; 0; 0; 0; 0f g    +  → +  → +  → +  → +  →  as   →                 (34) 

 

In Eqns. (28)-(32), the non-dimensional parameters are:  axial stream function ( )f ,  circumferential 

stream function  ( )g , temperature ( ) ,  nanoparticle concentration ( ) ,  motile microorganism 

density number ( ) ,  rotational Reynolds number 
2

Re
R



 
= 

 
, the magnetic interaction 

parameter 
2

0B
M





 
= 
 

,  Darcy number 0r K
Da



 
= 

 
, Prandtl number Pr





 
= 

 
, 

bioconvection Péclet number  c

B

b W
Pe

D

 
= 

 
, Lewis number 

B

Le
D

 
= 

 
, Brownian motion 

BD C
Nb





 
= 

 
,  thermophoresis  TD T

Nt
T



 

 
= 

 
, bioconvection Schmidt number 

B

Sb
D

 
= 

 
, 

radial momentum slip 
( )1 0

Re
u

N

R



 

= 
 
 

, circumferential (tangential) momentum slip 

( )2 0
Re

v

N

R



 

= 
 
 

, thermal slip 
( )1 0

Re
T

D

R



 

= 
 
 

, mass slip 
( )1 0

Re
c

E

R



 

= 
 
 

, 

microorganism slip 
( )1 0

Re
n

F

R



 

= 
 
 

, Stefan blowing parameter 
1 w

C
s

C

 
= 

− 
.  

The positive values of s  implies that the mass flux moves from the disk to the free stream and the 

opposite trend is attained for negative values of  s   (Bég et al. [52] and Fang [56]). Key engineering 

design quantities are the gradients of the transport functions at the disk surface (wall) and these are 

defined mathematically as, radial local skin friction along r -direction 
2

r
fr

f

C
u





 
=  

 

,  tangential 
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local skin friction along  -direction  
2f

f

C
v








 
=  

 

,  Nusselt number 
( )

w
r

f w

r q
Nu

k T T

 
=  − 

, 

Sherwood number 
( )

m
r

B w

r q
Sh

D C C

 
=  − 

 and wall motile microorganism n
r

n w

r q
Nn

D n

 
= 

 
  where  

0

r

z

u w

z r
 

=

  
= + 

  
,    

0z

v w

z r
 

=

  
= + 

  
,  

0

w

z

T
q k

z =

 
= −  

 
,   

0

m B

z

C
q D

z =

 
= −  

 
,  

0

n n

z

n
q D

z =

 
= −  

 
.   

Using Eqn. (18), the expressions become ( )Re 0r frC f = ,  ( )Re 0r fC g
= ,    

( )
1

0
Re

r

r

Nu = − ,  ( )
1

0
Re

r

r

Sh = − ,  ( )
1

0
Re

r

r

Nn  = −  where 
( )

2

2 1
Rer m

R

r
−


=  is the 

local rotational Reynolds number.   

 

3. COMPUTATIONAL SOLUTION WITH MATLAB BVP4C AND VALIDATION 

The dimensionless 11th order non-linear ordinary differential boundary value problem (BVP) 

defined by Eqns. (28)-(32) with boundary conditions (33, 34) may be solved with a variety of 

numerical methods. Here we adopt the MATLAB bvp4c routine [53]. The finite difference-based 

boundary value problem solver bvp4c tool in MATLAB is very efficient at solving nonlinear coupled 

higher order differential equations.  The iterative process is carried out until the accuracy of 610−  and 

this is obtained for the values of 7 =  and 0.001 =   (step size). The fourth-order formulae are 

given below: 

( )1 ,n nk h f x y=  

1
2 ,

2 2
n n

kh
k h f x y

 
= + + 

 
 

2
3 ,

2 2
n n

kh
k h f x y

 
= + + 

 
 

( )4 3,n nk h f x h y k= + +  

( )531 2 4
1

6 3 3 6
n n

kk k k
y y O h+ = + + + + +                                                                                          (35) 

The above-described computing approach cannot be used without transforming the higher-order 

differential equations to differential equations of order one. The mathematical process is described as 

follows: 
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1 2 3

4 5

6 7

8 9

10 11

, ,

,

,

,

,

f y f y f y

g y g y

y y

y y

y y

 

 

 

 = = =

= =

= =

= =

= =

                                                                                                             (36) 

( ) ( ) ( )2 2

2 1 3 4 2 2 4

1
1 2 2f m y m y y y y M y h y

Da
 = − − − − + + −                                              (37) 

( ) ( ) ( )1 5 2 4 4 4 2

1
2 2 2g m y y m y y y M y h y

Da
 = − − + − + +                                                    (38) 

( ) 2

1 7 7 9 7Pr 2 m y y Nb y y Nt y  = − − − −                                                                                   (39) 

( ) ( ) 2

1 9 1 7 7 9 72 Pr 2 Pr
Nt

m Le y y m y y Nb y y Nt y
Nb

  = − − − − −                                      (40) 

( ) ( ) ( )( )2

1 11 11 9 10 1 9 1 7 7 9 72 2 Pr 2 Pr
Nt

Sb m y y Pe y y y m Le y y m y y Nb y y Nt y
Nb


  

 = − + + − − − − −  
  

   

                                                                                                                                                           (41) 

Corresponding boundary conditions become 

( ) ( )

( ) ( )

( )
( )

( )

( ) ( )

( ) ( )

2 4 3

4 5

1 9

6 7

10 11

0 0

0 1 0

0 0 0
Pr 2

0 1 0

0 1 0

v

T

n

y y

y y

S
y y at

Le m

y y

y y











=


= + 



= =
− 

= +

= + 

                                                                                         (42)  

( ) ( ) ( ) ( ) ( ) 2 4 6 8 100; 0; 0; 0; 0y y y y y as +  → +  → +  → +  → +  → →           (43) 

                   

 

Table 1: Validation of MATLAB solutions with Chebychev collocation solutions of Bég et al. [52] 

for  

0.0, 0.1u v c n    = = = = =  

 Bég et al. [52] Present MATLAB bvp4c solutions 

 ( )0f 
 

( )0g −
 

( )0 −
 

( )0−
 

( )0
 

( )0f 
 

( )0g −
 

( )0 −
 

( )0−
 

( )0
 

s            

1−  0.4151 0.6456 1.1192 0.6302 0.8583 0.3931 0.67876 1.0862 0.60573 0.82775 

0 0.4204 0.6118 0.8196 0.596 0.7833 0.39874 0.64618 0.79628 0.57374 0.7541 

1 0.4245 0.5835 0.5869 0.5558 0.7086 0.40292 0.61853 0.57085 0.535 0.68146 
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MATLAB bvp4c has been deployed extensively in many multi-physical fluid dynamics problems 

and further details are given in Yoo [53]. Validation with the earlier Chebychev collocation non-

magnetic ( )0.0, 0.0M h= =  solutions of Bég et al. [52] has been conducted and are shown in Table 

1. Generally good correlation is arrived asserting to the efficiency and reliability of the present 

MATLAB code.  

 

4. FURTHER AFFIRMATION USING ADM (ADOMIAN DECOMPOSITION METHOD)  

To further validate the magnetic nanofluid bioconvection model solutions obtained with 

MATLAB, a different approach is required which provides a much more rigorous verification than 

merely benchmarking with existing simpler cases from the literature. ADM (Adomian [54]) is 

implemented. ADM is very flexible and is used recently to solve stagnation coating flows [58], 

intelligent magnetic squeeze orthopedic lubrication problems [59],  spin coating flows [60] and 

electromagnetic pumping [61].  Implementing ADM, we adopt the following notation:  

( )
3

1 3

d
L

d
=   and  ( )

2

2 2

d
L

d
=  and their inverse operators are: 

( ) ( )1

1

0 0 0

L d d d

  

  − =      and  ( ) ( )1

2

0 0

L d d

 

 − =                                                      (36) 

The unknown functions  , , , ,f g    and    are asserted in the Adomian polynomials as : 

( ) ( ) ( ) ( ) ( )
0 0 0 0 0

, , , ,m m m m m

m m m m m

f n f g n g n n n     
    

= = = = =

= = = = =                 (37) 

 

The exact solutions are developed as: 

( ) ( ) ( ) ( ) ( )
0 0 0 0 0

, , , ,m m m m m

m m m m m

f n Lim f g n Lim g n Lim n Lim n Lim     
    

= = = = =

= = = = =    

                       (38) 

Excellent correlation is achieved for all variables at all values of parameters between MATLAB 

bvp4c and ADM as noticed in Table 2. Confidence in the MATLAB code is therefore again strongly 

demonstrated. 

Table 2:  MATLAB versus ADM solutions for  ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0f g          with 

0.5, 0.1, 0.5, 10.0, Pr 6.0, 0.1, 1,M h m Da Nt Nb Sb Pe Le= = = − = = = = = = =

0.1, 0.1, 0.1, 0.1, 0.1u v T c n    = = = = =  (unless otherwise indicated). 

 
( )0f   

MATLAB 

( )0f   

ADM 

( )0g −  

MATLAB 

( )0g −  

ADM 

( )0 −  

MATLAB 

( )0 −  

ADM 

( )0−  

MATLAB 

( )0−  

ADM 

( )0 −  

MATLAB 

( )0 −  

ADM 

 0.5u =           

s            

- 1 0.12179 0.11946 1.36630 1.36624 0.84714 0.84709 0.36994 0.36987 0.55895 0.55892 
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0 0.12389 0.12104 1.34430 1.34419 0.64209 0.64204 0.32987 0.32978 0.48639 0.48631 

1 0.12554 0.12478 1.32700 1.32707 0.48817 0.48808 0.29583 0.29591 0.42811 0.42823 

 0.5v =           

s            

- 1 0.17291 0.17307 0.63527 0.63521 0.80125 0.80133 0.39810 0.39804 0.58312 0.58308 

0 0.17791 0.17803 0.62135 0.62129 0.59620 0.59627 0.37411 0.37406 0.52507 0.52513 

1 0.18213 0.18194 0.60939 0.60944 0.43698 0.43691 0.34751 0.34742 0.47115 0.47123 

 0.5T =           

s            

- 1 0.23032 0.23103 1.03970 1.03965 0.68793 0.68788 0.58142 0.58137 0.76218 0.76211 

0 0.23561 0.23612 1.00270 1.00267 0.50701 0.50707 0.43852 0.43847 0.58364 0.58372 

1 0.23032 0.23104 1.03970 1.03964 0.68793 0.68784 0.58142 0.58135 0.76218 0.76213 

 0.5c =           

s            

- 1 0.28054 0.28061 0.89723 0.89732 0.90254 0.90247 0.35070 0.35066 0.58377 0.58372 

0 0.28419 0.28407 0.87530 0.87526 0.72782 0.72776 0.35382 0.35378 0.55475 0.55468 

1 0.28764 0.28758 0.85376 0.85368 0.56639 0.56643 0.35265 0.35271 0.52293 0.52288 

 0.5n =           

s            

- 1 0.27893 0.27889 0.90669 0.90661 0.97436 0.97431 0.49961 0.49958 0.55636 0.55631 

0 0.28419 0.28406 0.87530 0.87526 0.72334 0.72342 0.46755 0.46759 0.51066 0.51062 

1 0.28642 0.28639 0.86146 0.86138 0.61870 0.61864 0.45128 0.45132 0.48880 0.48877 

 0.5M =           

s            

- 1 0.23767 0.23759 1.35300 1.35289 0.78610 0.78603 0.35962 0.35957 0.53928 0.53922 

0 0.24003 0.24011 1.33110 1.33099 0.58794 0.58788 0.32319 0.32323 0.47120 0.47131 

1 0.24187 0.24182 1.31360 1.31358 0.43988 0.43979 0.29050 0.29046 0.41490 0.41503 

 1.5h =           

s            

- 1 0.47001 0.47004 1.07310 1.07304 1.22000 1.22004 0.65454 0.65459 0.91629 0.91623 

0 0.47661 0.47653 1.03260 1.03256 0.90532 0.90526 0.61029 0.61037 0.82057 0.82065 

1 0.48168 0.48171 0.99839 0.99832 0.65985 0.65989 0.56624 0.56628 0.73462 0.73471 

 

 

5. RESULTS AND DISCUSSION  

MATLAB bvp4c computations are visualized in Figs 2- 11. Aqueous magnetic nanofluid is 

considered (Prandtl number is generally prescribed as Pr=6.0 or 6.8 which has a value below that of 

pure water due to the presence of magnetic nanoparticles which increase thermal conductivity). The 

following default data is utilized, following Bég et al. [52], Foster and Schwan [62] and Kuure-

Kinsey et al. [63].  The fixation values are same as shown in the tables, except the variable parameter 

in the figures. This data corresponds to intermediate strength magnetic field and nanoscale effects, 

high permeability porous media and strong bioconvection with weak anisotropic momentum and 
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other slip effects at the disk surface. As noted earlier, in all plots, an infinity boundary condition of   

7 =  is prescribed which achieves asymptotically smooth solutions for the condition,  →  . 

(a) 

 
 

 

 

 

(b) 
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Figure 2.  Profiles for different magnetic interaction number, M  
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Figure 3: Profiles for different Hall current parameter h  
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(c) 
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Figure 4 Profiles for different Darcy number Da  
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(c) 
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Figure 5 Profiles for different blowing parameter s  
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(c) 
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Figure 6 Profiles for different radial slip parameter u  
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(c) 
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Figure 7   Profiles for different tangential slip parameter, v  
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(c) 

 
 

Figure 8.  Profiles for different thermal jump (slip) parameter T  
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Figure 9 Profiles for different nanoparticle concentration slip parameter, c  
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Figure 10.  Profiles for different motile micro-organism slip parameter, n  
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Figure 11 Impact of Stefan blowing parameter on ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0f g       − − − −  

 

5.1 Magnetic interaction parameter (M) effects 

 Figures 2a-d illustrate the impact of  M i.e. magnetic interaction parameter (ratio of Lorentz 

magnetic body force and inertial rotational force), on , ,f    and  . The magnetic parameter arises 



32 

in both radial and tangential momentum equations (28) and (29). The Lorentz drag force is defined in 

the radial momentum as ( )M f −  and in the tangential momentum as ( )M g− . Since a very weak 

effect is sustained by the tangential velocity it is not plotted. The dominant effect is on the radial 

flow. Both Lorentz forces are mutually orthogonal to the direction of the axial applied magnetic field 

i.e. they act parallel to the plane of the rotating disk. For 0M =  the magnetic force vanishes, and 

electrically non-conducting flow is retrieved as considered in Bég et al. [52]. The present 

computations therefore apply to magnetohydrodynamic nanofluid rotating bioreactor systems, as 

elaborated in [39]. Radial velocity ( )f   profiles all ascend from the disk surface to peak near the 

surface and then descend smoothly to zero in the free stream. As  M  values are gained, the radial 

flow is quenched, and its peak is slowly displaced towards the disk surface.  The Lorentzian drag 

therefore damps radial flow and increases momentum boundary layer thickness. Significant flow 

control is therefore achieved with stronger axial magnetic field. Maximum radial flow velocities 

correspond to the absence of magnetic field ( )0M =  for which the hydrodynamic boundary layer 

thickness is lowest. Conversely temperature is greatly reinforced with larger values of  M  which is 

attributable to the supplementary work expended in dragging the nanofluid against the action of the 

axial magnetic field- this is dissipated as thermal energy and heats the boundary layer regime and 

also increases thermal boundary layer thickness. Strong elevation is observed therefore in 

temperatures in the swirling regime. Temperatures are therefore minimized for the non-conducting 

case ( )0M =  as is thermal boundary layer thickness. Rapid convergence of solutions is achieved 

with MATLAB as observed from the sharp decay of all profiles to the free stream. Similarly, there is 

a considerable elevation in  , and   by inflating M .  As with temperature, the magnetic body force 

terms do not arise in the nanoparticle species or micro-organism species conservation boundary layer 

equations i.e. Eqns. (31) and (32). The coupling terms however between the radial momentum (Eqn. 

28) i.e. radial velocity, and the temperature, nanoparticle and micro-organism equations enable the 

indirect effect of magnetic field on the other variables, and examples include ( )Pr 2 m f − in Eqn. 

(30), ( )Pr 2Le m f −  in Eqn. (31)  and ( )2Sb m f  −  in Eqn. (32). Furthermore, supplementary 

linear and nonlinear terms also couple the temperature and micro-organism species fields e.g. 

Nb     in Eqn. (30), 
Nt

Nb
+  in Eqn. (31) and  ( )Pe      +  in Eqn. (32). The implication 

is that there is a delicate interplay between all these variables. The increase in thermal diffusion 

mobilized by stronger magnetic field effect also encourages intensification in the nanoparticle 

diffusion and accelerates micro-organism species propulsion, leading to strong and sustained 

increase in their magnitudes throughout the boundary layer. Nanoparticle species boundary layer 

thickness and micro-organism species boundary layer thickness are therefore also boosted. The 



33 

presence of a magnetic field in the bioreactor swirling regime is therefore immensely beneficial to 

increasing thermal diffusion, nanoparticle motion and micro-organism swimming, all of which may 

then be optimized in actual designs [39].  

 

5.2 Influence of Hall current parameter ( m ) 

Figure 3a-d visualize the influence of Hall current parameter, m  on profiles of , ,f    and 

   versus axial coordinate,  . As with the magnetic interaction parameter, M , the Hall parameter 

features only in the radial and tangential moment boundary layer Eqns. (28), (29), respectively in the 

terms, ( )M f h g− −  in the former and ( )M g h f − +  in the latter. Clearly the Hall terms 

exhibit the crossflow nature of the Hall current effect and both terms are coupled with magnetic 

interaction parameter, M . The Hall current effect describes the charge separation phenomenon in a 

conductive object (in this case the magnetized nanofluid) moving in a magnetic field. This charge 

separation is produced by the opposing Lorentz forces on the positive and negative charges, and 

leads to an externally detectable voltage, the Hall voltage, as noted by Bég et al. [45] and Cramer and 

Pai [55]. The Hall voltage amplitude is determined by the strength of the Lorentz force and the 

charge density and mobility, as reflected in the appropriate terms in Eqns. (28, 29). The Lorentz 

force is proportional to the magnetic field 
0B  and the velocity of motion ( )f g , while the charge 

density and mobility are characterized by the overall conductivity σ of the object, including the 

dielectric contribution. Thus, a significant Hall voltage is created which is directly proportional to the 

product of electrical conductivity, radial (or tangential) velocity and axial magnetic field. 

Intensification in Hall parameter therefore induces a significant acceleration in the radial flow (Fig. 

3a). However, unlike magnetic parameter, M , it does not induce a displacement in the peak radial 

velocity from the disk surface. For all Hall parameter values, and indeed even in the absence of Hall 

current ( )0h = the peak velocity location is fixed at a short distance from the disk surface. However, 

momentum boundary layer thickness is reduced with increasing Hall parameter, h , which is the 

opposite effect to that induced with stronger magnetic interaction parameter, M . There is a slight 

overlap in profiles further into the free stream where the Hall current is found to produce weak radial 

flow deceleration. However, the dominant effect for the boundary layer regime is strong acceleration 

with greater Hall effect. The combined effect of axial magnetic field and Hall current may therefore 

be exploited to significantly manipulate the radial flow in the regime which allows bioreactor 

designers further flexibility in options. Increasing Hall parameter also results in a reduction in   

(Fig. 3b) and again this is the opposite trend to that computed with increasing magnetic parameter, 

M  (Fig. 2b). This concurs with many other investigations on Hall magnetohydrodynamics e. g. 

Khan et al. [44], [46], and has also been identified by Hughes and Young [27]. Therefore, while 

stronger magnetic field induces heating in the boundary layer regime, greater Hall current produces a 
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cooling effect and decreases thermal boundary layer thickness. A marked depletion in   and   also 

accompanies an increment in Hall current parameter, h , as observed in Figs. 3c, d. Again, this is the 

reverse behavior to that computed with increasing magnetic field parameter, M. The crossflow Hall 

voltage therefore depletes nanoparticle and gyrotactic micro-organism species boundary layer 

thicknesses. It is interesting to also note that the nanoparticle profiles ( )  decay to the free stream 

zero value faster from the disk surface compared with the micro-organism density ( )  and this is 

inevitably related to the difference in species diffusivities relative to momentum diffusivity. 

 

5.3 Influence of Darcy parameter (Da) 

Figures 4a-d depict the distributions of , ,f    and   for various Darcy numbers ( )Da . 

Darcy number arises in the Darcian linear impedance body force terms, 
1

f
Da

−  in the radial 

momentum Eqn. (28) and 
1

g
Da

−  in the tangential momentum Eqn. (29). The porous medium is 

isotropic and therefore only a single Darcy number is required to simulate permeability effects. 

Large values of Darcy number are employed since high permeability is required in rotating 

bioreactor designs [23-26]. There is a strong acceleration in radial flow (Fig. 4a) with increment in 

Darcy number, since the radial Darcy impedance term is reduced i.e. porous media drag is depleted. 

Lower Darcy number corresponds to lower permeability which inhibits the radial flow and vice versa 

for higher Darcy number. In computational tests the impact on tangential velocity distribution was 

found to negligible and therefore the tangential velocity plot is omitted. Of course, the Darcy model 

is restricted to low Reynolds number viscous dominated flows and the rotational velocity of the 

bioreactor is therefore relatively low. For higher spin velocity of the disk, inertial effects will be 

invoked, and a Forchheimer second order drag arises. Although this has not been considered in the 

present study, since attention is confined to slow rotation in the magnetic bioreactor, future 

investigations may consider Darcy-Forchheimer models for the porous medium [64]. Momentum 

boundary layer thickness is reduced with greater Darcy number.  There is also a progressive shift in 

peak velocity location further from the disk surface with increasing Darcy number. Fig. 4b shows 

that a considerable depletion in temperature is generated with increment in Darcy number. Higher 

Darcy number implies a progressive depletion in solid matrix fibers in the porous medium adjacent 

to the rotating disk. This suppresses thermal conduction in the regime and reduces temperature of the 

magnetized nanofluid i. e. a cooling effect is induced for more permeable media. Thermal boundary 

layer thickness is therefore also reduced, and the trend is sustained at any and all locations transverse 

to the disk surface. Significant depletion in   and   magnitudes is also computed with greater 

Darcy number, as visualized in Figs. 4c, d, respectively. Less permeable media (lower Darcy 



35 

number) with greater solid fiber presence are therefore found to encourage nanoparticle diffusion and 

micro-organism propulsion in the rotating bioreactor regime, and also result in greater nanoparticle 

and micro-organism species boundary layer thicknesses. Greater permeability i.e. the decrease in 

solid fibers and greater percolation of nanofluid actually inhibits nanoparticle mass diffusion and 

retards the micro-organism propulsion. The presence of a high permeability porous medium, 

therefore, while beneficial to damping the radial flow and achieving enhanced flow regulation, is 

counter-productive for the transport of heat, nanoparticles and micro-organisms.   

 

5.4 Influence of Stefan blowing parameter (s) 

Figure 5a-d illustrates the evolution in , ,f    and   for various Stefan blowing parameter 

values, s . The parameter ( )1 ws C C=  − , as defined in Eqn. (35) and features in the wall (disk 

surface) boundary condition, ( )
( )

( )0 0
Pr 2

s
f

Le m
 =

−
, in Eqn. (33). It therefore involves the 

dimensional nanoparticle concentration field, C . It does not arise in the free stream boundary 

conditions. Stefan blowing is distinct from the conventional wall mass flux (transpiration) effect used 

in boundary layer flows which relates to the suction/injection generated by perforations on the disk 

surface. Figure 5(a) indicates that radial velocity is suppressed (deceleration) with increasingly 

strong suction i.e. negative Stefan blowing ( )0s   whereas radial acceleration is significantly 

accentuated for strong blowing ( )0s  . Momentum boundary layer thickness is therefore elevated 

with suction and depleted with Stefan blowing in the swirl regime. Stefan blowing therefore strong 

aids the radial momentum diffusion whereas suction counteracts diffusion. For the case where Stefan 

blowing is neglected ( )0s = , the radial velocity profile is intercalated between the Stefan blowing 

and reverse Stefan blowing (suction) cases. Backflow or separation is however never initiated with 

suction despite the strong retarding effect. Inclusion of the Stefan blowing hydrodynamic effect may 

therefore be exploited in spinning bioreactor designs [17-22] since it provides a facility for adjusting 

the mass flux from the potential flow which in turn can be deployed to regulate radial velocity 

distribution. This may also be very useful in producing more homogenous coatings in Thiobacillus 

ferrooxidans biofilm deposition processes in spinning bioreactors [25]. The inclusion of spherical 

nanoparticles [65] and gyrotactic micro-organisms which do not interact also achieves a stable 

regime. Figs. 5b, c, d similarly demonstrate that with increased Stefan blowing the temperature (Fig. 

5b), nanoparticle concentration (Fig. 5c) and micro-organism density number (Fig. 5d) are all 

boosted i.e. with stronger mass flux from the spinning disk surface to the potential flow, thermal 

diffusion, nanoparticle migration and micro-organism propulsion in the swirling regime are all 

assisted. Thermal, nanoparticle concentration and micro-organism boundary layer thicknesses are 
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therefore all enhanced with s . The opposite effect is instigated with greater suction (reverse Stefan 

blowing). 

 

5.5 Influence of radial momentum (hydrodynamic) slip parameter ( )u  

Fig.6 (a)-(d) present the impact of radial momentum (hydrodynamic) slip parameter ( )u  on 

, ,f    and  . This parameter arises in the disk surface (wall) boundary condition, 

( ) ( )0 0uf f = .   A strong expedition in the radial flow (Fig. 6a) is induced with increment in 

radial slip parameter, in particular near the disk surface. The velocity peak is also displaced closer to 

the wall with greater radial slip. Radial velocity is therefore minimized in the absence of radial slip. 

The implication is that neglection of the slip effect leads to an under-estimate in the actual radial 

velocity. Slip is known to be significant in rotating bioreactors as noted in Lawrence et al. [66] as are 

porous media effects, considered in earlier graphs. Conversely there is a strong decrement induced in 

temperature (Fig. 6b), nanoparticle concentration (Fig. 6c) and microorganism density number (Fig. 

6d) values with increment in higher radial slip value, u . Strong cooling and inhibition of 

nanoparticle diffusion and micro-organism propulsion is therefore induced with greater radial 

momentum slip effect. Thermal boundary layer, nanoparticle species boundary layer and micro-

organism boundary layer thicknesses are therefore significantly reduced with greater radial slip, 

whereas the momentum boundary layer thickness is reduced. The inclusion of the radial slip 

parameter is therefore important in more realistic models of rotating bioreactors since when it is 

absent the radial velocity is under-predicted and the temperature, nanoparticle concentration and 

microorganism density number magnitudes are over-estimated. Asymptotically smooth convergence 

is achieved in the free stream with all profiles confirming the prescription of an adequately large 

infinity boundary condition in the MATLAB bvp4c computations. 

 

5.6 Influence of tangential (circumferential) momentum slip parameter ( )v  

Figs. 7 (a)-(b) present the impact of tangential (circumferential) momentum slip parameter 

( )v  on the , ,f    and  . This parameter features also in the disk surface (wall) boundary 

condition for the tangential velocity i.e. ( ) ( )0 1 0vg g = + . Converse to the radial momentum slip 

effect, an increment in tangential slip produces marked deceleration in the radial flow (Fig. 7a). The 

radial and momentum fields are strongly coupled via the terms, 2g+  and  ( )M f h g− −   in the 

former Eqn. (28) and the terms ( ) ( ) ( )2 , 2 2 ,m f g m f g M g h f  + − − − − +  in the latter Eqn. 

(29). The primary flow is in the radial direction because the disk is stretched radially.  Hence for 

larger tangential slip, hydrodynamic boundary layer thickness is escalated.   There is a also a weak 
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migration in the peak radial velocity towards the disk surface (wall) with greater tangential slip 

effect. Evidently in the absence of tangential slip, radial velocity is maximized. In other words, radial 

velocity is over-predicted in the swirling regime when tangential slip is neglected (as opposed to 

being under-predicted when radial momentum slip is ignored).  Contrary to the radial slip effect, 

increasing tangential slip results in a significant enhancement in the temperature (Fig. 7b), 

nanoparticle concentration (Fig. 7c) and microorganism density number (Fig. 7d) magnitudes. All 

the associated boundary layer thicknesses are therefore elevated with greater tangential slip. Micro-

organism propulsion is exacerbated with greater tangential slip as is the heating of the regime and the 

diffusion of the magnetized nanoparticles. Both figures 6 and 7 confirm that the inclusion of 

anisotropic momentum slip adds a new level of sophistication to modelling of rotating bioreactors 

and exert tangible effects on the radial velocity distribution and other transport characteristics.  

 

5.7 Influence of thermal slip (jump) parameter, T .  

Figures 8(a)-(c) visualize the profiles for temperature, nanoparticle concentration and motile micro-

organism density number with various values of thermal slip (jump) parameter, T . The thermal slip 

parameter do not show any major changes on the radial velocity and hence not shown pictorially. 

The thermal slip parameter, T  appears again in the disk surface (wall) boundary condition, 

( ) ( )0 1 0T   = +  and produces a step change in the temperature (“temperature jump”) at the 

wall. This decreases temperature diffusion from the wall to the magnetic but only weakly accelerates 

the radial flow (Fig. 8a) and a meager reduction in momentum boundary layer thickness. A strong 

decrease in temperature is however computed with greater thermal slip (Fig. 8b), and is pronounced 

at the disk surface, decaying in magnitude with progressive distance further into the boundary layer 

transverse to the disk surface. Thermal boundary layer thickness is therefore considerably reduced 

with stronger thermal slip. Maximum temperatures are computed in the absence of thermal slip again 

emphasizing that the neglecting of thermal slip produces an over-estimate in the temperature 

distribution in the swirling regime. A weaker decrease in   (Fig. 8c) and   (Fig. 8d) is computed 

with elevation in thermal slip parameter. Nanoparticle and microorganism species boundary layer 

thicknesses are therefore marginally reduced.  

 

5.8 Influence of nanoparticle concentration slip parameter, c .   , ,f    

Figures 9a-c present the distributions for ,   and   on nanoparticle concentration slip 

parameter, c . As with the other slip parameters, nanoparticle concentration slip parameter is present 

in the wall boundary condition,  ( ) ( )0 1 0c  +  in Eqn. (33). Increasing c  does not influence 

substantially the radial flow f   and hence not shown in the form of figure. Larger c  also produces 
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a relatively weak decrement in the temperature magnitudes     (Fig. 9b). However, it strongly reduces 

the nanoparticle concentration magnitudes at the disk and for some distance into the boundary layer. 

Conversely there is a minor uplift in   with increasing nanoparticle mass slip effect. These trends 

are sustained at all values of the axial coordinate,  . Transport of nanoparticles from the disk surface 

to the swirling boundary layer flow is evidently stifled with the nanoparticle mass slip effect, and the 

coupling terms (explained earlier) also result in non-trivial modifications in the other transport 

characteristics. Overall, the momentum and micro-organisms boundary layer thicknesses are 

increased whereas the nanoparticle and gyrotactic micro-organism boundary layer thicknesses are 

upsurged with larger nanoparticle slip effect. 

 

5.9 Influence of microorganism slip parameter n  

Figure 10 depict the influence of microorganism slip parameter n on  . , ,f    and  .  Almost 

negligible modification is computed for the radial velocity f  , temperature   and nanoparticle 

concentration    with a large increment in the n  values and hence not shown graphically. The 

micro-organism slip parameter which arises in the surface (wall) boundary condition 

( ) ( )0 1 0n   = +  in Eqn. (33) does not therefore influence the other transport characteristics. 

However, it induces a substantial depletion in microorganism density number magnitudes (Fig. 10). 

There is a substantial step difference at the disk surface in   microorganism density number which 

inhibits the propulsion of micro-organisms from the wall into the rotating disk boundary layer 

regime. There is therefore effectively a notable decrease in micro-organism species boundary layer 

thickness with increasing micro-organism slip effect but no tangible alteration in the momentum, 

nanoparticle concentration or thermal boundary layer thicknesses. 

 

5.10 Influence of Stefan blowing and different slip parameters on disk surface gradients 

Radial skin friction (Fig. 11a) is considerably reduced with increasing radial slip parameter, u , but 

weakly enhanced with Stefan blowing i.e. 0s   (and weakly decreased with reverse Stefan blowing 

i.e. 0s  ). Tangential skin friction (Fig. 11a) is also markedly depleted with increasing tangential 

(circumferential) slip parameter, v , but weakly reduced with Stefan blowing i.e. 0s   but weakly 

increased with reverse Stefan blowing i.e. 0s   (suction). In all cases the profiles are approximately 

linear in nature. Generally maximum radial and tangential skin friction therefore correspond to the 

absence of anisotropic slip effects. Nusselt number is very strongly reduced with increasing Stefan 

blowing (Fig. 11c) and greater thermal slip, T , but considerably enhanced with reverse Stefan 

blowing. With increasing nanoparticle mass slip, c  there is a significant reduction in nanoparticle 
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Sherwood number (Fig. 11d). At lower values of nanoparticle slip ( )0, 0.2c = there is also a 

decrease in Sherwood number magnitudes for greater Stefan blowing and an increase with reverse 

Stefan blowing; however, at the highest value of 0.5c =  the Stefan blowing parameter exerts the 

opposite effect. The diffusion of nanoparticles from the boundary layer swirling regime to the disk 

surface is therefore very sensitive to Stefan blowing and slip effects, which can be exploited to 

control nanoparticle distributions in bioreactor designs.  Increasing Stefan blowing effect ( )0s  and 

stronger motile micro-organism slip consistently suppress the gyrotactic micro-organism density 

gradient at the disk surface (Fig. 11e) whereas reverse Stefan blowing ( 0s   i.e. suction) induces 

the converse trend. The implication is that with stronger Stefan blowing, the motile micro-organisms 

are discouraged from moving from the boundary layer to the disk surface whereas the contrary effect 

is induced with reversed Stefan blowing.  

 

6. CONCLUSIONS 

The present study has been inspired by new trends in magnetohydrodynamic spinning 

nanotechnological bioreactor designs in which nutrients may be better distributed in porous media. A 

theoretical and computational analysis has therefore been conducted for steady swirling Von Karman 

flow from a rotating disk bioreactor to a porous medium saturated with a magnetic nanofluid 

containing gyrotactic micro-organisms. An axial magnetic field perpendicular to the disk with Hall 

currents has been considered in order to provide extra mechanisms of control for the swirling 

boundary layer flow regime. The disk has been assumed to stretching the radial direction with a 

power-law velocity. The Buongiorno nanoscale, Kuznetsov bioconvection and Darcy porous media 

models have been utilized and additionally anisotropic momentum, thermal, nanoparticle 

concentration and motile micro-organism slip effects incorporated. Stefan blowing has been 

simulated via an appropriate surface boundary condition. The transformed nonlinear ordinary 

differential boundary value problem subject to physically realistic boundary conditions has been 

solved with MATLAB bvp4c shooting quadrature Verification with earlier solutions for the non-

magnetic Von Karman bioconvection nanofluid case has been included and additional validation of 

the general magnetic model performed with the Adomian decomposition method (ADM). The main 

conclusions of the present simulations may be summarized as follows: 

 

-Strong radial flow deceleration is induced with greater magnetic field whereas  ,   and   are 

significantly enhanced in the swirling flow regime. 

-Radial flow is boosted markedly with greater Hall current effect whereas the  ,   and   

magnitudes are suppressed. 
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-With elevation in Darcy number (dimensionless permeability parameter) there is a considerable 

acceleration in radial flow but a strong decrease in temperature, nanoparticle concentration and 

motile micro-organism density number. 

-With greater Stefan blowing effects, all transport characteristics i.e. f  ,   ,   and   are enhanced. 

-The contrary behavior is computed with reverse Stefan blowing (suction).   

-With greater radial momentum slip effect and thermal slip effect, radial velocity is elevated whereas 

the temperature, nanoparticle concentration and motile micro-organism number density are 

substantially depleted. 

-With greater tangential momentum slip effect, radial velocity is reduced whereas the temperature, 

nanoparticle concentration and motile micro-organism number density are markedly enhanced. 

-With greater nanoparticle mass slip effect, motile micro-organism number density is enhanced 

whereas the radial velocity, temperature, nanoparticle concentration are significantly decreased. 

-With greater gyrotactic micro-organism slip effect, motile micro-organism number density is 

considerably depressed whereas there is no tangible modification in radial velocity, temperature or 

nanoparticle concentration. 

-Radial skin friction is decreased with increasing radial slip parameter, weakly enhanced with Stefan 

blowing and weakly decreased with reverse Stefan blowing (suction). Tangential skin friction is also 

strongly reduced with increasing tangential (circumferential) slip parameter, weakly reduced with 

Stefan blowing but slightly increased with reverse Stefan blowing. 

-Nusselt number is significantly decreased with increasing Stefan blowing and higher values of 

thermal slip, whereas it is enhanced with reverse Stefan blowing.  

-Nanoparticle Sherwood number is markedly depleted with increasing nanoparticle mass slip.     

-Gyrotactic micro-organism density gradient at the disk surface i.e. micro-organism mass transfer 

rate is suppressed with increasing Stefan blowing effect and stronger motile micro-organism slip 

whereas reverse Stefan blowing (suction) generates the opposite behavior. 

-MATLAB bvp4c and Adomian decomposition have been found to be very versatile numerical 

approaches for studying hybrid magnetic rotating nanofluid bioreactor swirl dynamics. However 

only Newtonian flow has been considered. Future studies may extend the formulation to include 

more complex rheological effects with e. g. Eringen’s micropolar model [67], which may provide a 

good framework for rotational micro-spin of nanofluid particles. Efforts in this direction will be 

communicated imminently.  
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