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Abstract—In the field of Remote Sensing Change Detection
(RSCD), accurately identifying significant changes between bi-
temporal images is essential for environmental monitoring, urban
planning, and disaster assessment. In recent years, advance-
ments in deep learning for computer vision have transformed
RSCD, significantly enhancing its effectiveness. However, existing
methods often overlook the importance of depth information,
focusing primarily on two-dimensional information. This limits
their ability to capture subtle changes and structural details
in three-dimensional space. To address these limitations, we
introduce ChangeDA—a depth-augmented multi-task network
designed to enhance the effectiveness of RSCD. ChangeDA
introduces a depth encoder module to extract implicit depth
information from optical images, enabling the utilization of 3D
structural information without reliance on external data sources.
Through the Depth Infusion Module (DIM), depth information
is integrated into the dual-temporal feature maps, significantly
enhancing the network’s ability to perceive changes in three-
dimensional spatial structures. Additionally, ChangeDA includes
a Differential Feature Extractor (DFE) tailored to pinpoint dif-
ferential features between sequential images, and an Adaptive All
feature Fusion (AAFF) strategy that significantly improves recog-
nition accuracy and generalization capability through cross-level
feature integration. Performance evaluations on four prominent
single-modal datasets—LEVIR-CD, S2-Looking, WHU-CD, and
SYSU-CD—yielded state-of-the-art F1-scores of 92.27%, 66.42%,
94.12%, and 82.74%, respectively. Furthermore, ChangeDA also
achieved outstanding results on the multi-modal 3DCD dataset,
with an F1 score of 63.52% in 2D CD and an RMSE of 1.20 in
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the 3D CD task. These results demonstrate ChangeDA’s robust
adaptability across diverse targets and real-world scenarios.

Index Terms—Change detection, Multi-task, Multimodal,
Depth estimation, Optical flow, Remote sensing.

I. INTRODUCTION

Remote Sensing Change Detection (RSCD) aims to identify
significant changes in target objects from dual-temporal remote
sensing images of the same area. RSCD finds applications in a
variety of domains, including land cover change, urbanization
processes, and geological disaster evolution [1]. In recent
years, deep learning, with its exceptional feature learning
capabilities, has made significant advancements in most areas
of computer vision (CV), such as semantic segmentation,
depth estimation, optical flow estimation, and land use and
cover classification [2], [3]. As it continues to evolve, deep
learning based RSCD has been increasingly attracting aca-
demic attention.

In the field of RSCD, Siamese neural networks serve as
a prominent baseline method [4]. These networks use two
identical sub-networks with shared weights to simultaneously
extract information from bi-temporal images and process the
differential information for change detection. Various method-
ologies have been proposed, leveraging Convolutional Neural
Networks (CNNs) or Transformer architectures [5]. However,
existing methods often overlook the importance of depth
information, focusing primarily on information from two-
dimensional images.

Similar to the human visual systems, three-dimensional
(3D) information helps capture subtle differences in tem-
poral changes [6]. Depth information reflects the geometric
characteristics of the 3D world and provides more precise
descriptions of man-made objects, such as buildings and their
changes, offering additional discriminative features [7]. These
features are crucial for tasks like change detection, as they
provide the 3D structure of the scene, enhancing the overall
understanding of changes. Therefore, exploring the depth
information to improve change detection is essential.

Some multimodal networks have achieved promising results
by utilizing the multimodal data for RSCD, demonstrating the
importance and additional value of the depth information over
the optical images. For example, Liu et al. [8] combined the
Digital Surface Model(DSM) data from the earlier phase and
digital aerial imagery from the later phase, creating a DSM-
optical multi-modal dataset that used cross-attention learning
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to achieve significant results in semantic and height change
detection. Xie et al. [9] used the height difference (HDiff)
between bi-temporal DSMs as input, designing a co-learning
framework for bi-temporal images and HDiff, which demon-
strated the advantages of incorporating the height information
in remote sensing building change detection. However, the
diverse imaging mechanisms of different sensors and the vari-
ability in satellite imaging increase the complexity of feature
extraction and processing [10]. Additionally, the high cost of
data acquisition and the difficulty of annotation severely limit
the development and application of these algorithms [11], [12].

Therefore, an interesting research direction in RSCD is to
introduce the depth information by retrieving 3D information
from the minimal 2D data, typically from the optical images
[13]. Monocular Depth Estimation (MDE) is a low-cost and
efficient method that addresses this challenge. MDE estimates
the depth information from single-camera images, making it
economically viable in terms of equipment and computational
resources. The generated depth maps can be easily integrated
into the change detection tasks, improving the detection accu-
racy and robustness [14].

Under the multi-task learning (MTL) framework, the com-
bination of MDE and RSCD shows significant advantages,
enabling them to work collaboratively. Depth estimation, as an
auxiliary task, shares the feature maps with change detection
and realizes interaction through a Depth Injection Module
(DIM). This combination fully utilizes the prior knowledge
and ground truth (GT) of change detection, effectively im-
proving the accuracy of depth estimation. At the same time,
the introduction of the depth information greatly enhances the
granularity of change detection and provides a more detailed
perspective for understanding the spatial changes, significantly
improving the generalization ability and inference efficiency of
the model, making it surpass conventional 2D semantic change
detection methods.

In this paper, we propose a novel multi-task learning frame-
work for RSCD, named ChangeDA. ChangeDA leverages
a multi-task learning approach, where depth estimation and
change detection share the same underlying feature extraction
layers to better understand the three-dimensional structure
of scenes. The depth encoder module automatically extracts
the depth information from single-modal optical images, ad-
dressing the limitations of single-modal data and enhancing
change perception. The Depth Injection Module (DIM) em-
ploys a hierarchical fusion strategy, combining direct depth
addition with depth attention mechanisms to integrate depth
information into bi-temporal feature maps, thus improving
the detection of three-dimensional structural changes. Addi-
tionally, we introduce a Difference Feature Extractor (DFE)
to capture the differences between bi-temporal feature maps.
To further enhance the accuracy and efficiency of change
detection, we use an Adaptive All-Feature Fusion (AAFF)
strategy to integrate these cross-level difference features.

The major contributions of our work can be highlighted as
follows.

(1)To the best of our knowledge, ChangeDA pioneers in in-
tegrating depth estimation into the RSCD domain and adopting
a depth-augmented multi-task learning paradigm for end-to-

end RSCD tasks.
(2) We propose a novel Differential Feature Extractor, which

introduces the additional optical flow consistency assessment
to extract the change features, thereby capturing the robust
change characteristics from bi-temporal feature maps.

(3) We innovatively introduce Adaptive All Feature Fusion,
which adaptively integrates the depth cues, semantic informa-
tion, and edge contours by fusing differential feature pyramids
across various levels.

(4) The proposed ChangeDA achieves state-of-the-art
performance not only on the single-modal LEVIR-CD,
S2Looking, WHU-CD, and SYSU-CD datasets but also on
the multimodal 3DCD dataset, yet maintaining a modest
computational complexity.

The rest of this article is organized as follows. In Section
II, we provide a brief review of the related work. Section
III details the proposed ChangeDA framework. Section IV
presents the experimental results on various datasets to validate
the efficacy of our proposed ChangeDA. Finally, Section V
summarizes the contributions and concludes the work.

II. RELATED WORKS

A. Depth Estimation

Monocular Depth Estimation (MDE), as a prototypical
ill-posed problem [15], revolves around recovering three-
dimensional depth information from two-dimensional images.
Early approaches [16], [17], [18] were heavily reliant on hand-
crafted features and conventional computer vision techniques.
These methods, constrained by their need for explicit depth
cues, struggled with complex scenes involving occlusions
and texture-less regions, where factors such as lack of cues,
scale ambiguity, transparency, or reflective materials could
significantly increase the uncertainty of estimation results [19].

Deep learning-based methods revolutionized MDE by ef-
fectively learning depth representations from meticulously
annotated datasets, thereby enabling reasonable depth map
prediction from a single RGB input [20], [21]. Eigen et
al. [22] pioneered the use of a multi-scale fusion network
for depth regression, inspiring in-depth research into deep
learning methodologies for depth estimation. For instance,
CLIFFNet [23] employs a multi-scale CNN-based framework
to yield high-quality depth predictions, while TransDepth [24]
enhances the accuracy and robustness in complex scenes with
multiple objects through a Transformer-based dual relation
graph learning framework that integrates structural and seman-
tic information.

Despite marked improvements in depth prediction accuracy,
these methods encounter several challenges in practice. They
not only lead to slow convergence during training but also
frequently settle into suboptimal solutions, a consequence of
treating depth estimation as a conventional regression problem
[25]. Hence, alternative strategies explored in studies like
[25], [26] involve segmenting the continuous depth range
into multiple discrete intervals, reframing the depth prediction
task as per-pixel classification. This shift aims to expedite
network convergence, evade local optima, potentially simplify
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network architectures, and maintain or enhance depth estima-
tion accuracy. For example, DORN [25] adopts the Spacing-
Increasing Discretization (SID) strategy, transforming depth
estimation into ordinal regression and, in conjunction with
a multi-scale network architecture, efficiently produces high-
resolution depth maps from single images. Building upon [25],
SORD [26] bolsters the model’s handling of ordinal data
with soft labels, demonstrating enhanced generalization and
adaptability, marking clear advancements in depth estimation
with a more flexible and stable discretization setup.

To strike a balance between inference speed and prediction
accuracy, some methods [15], [27] recast the problem as
classification-regression, alleviating visual quality degradation
and noticeable depth discontinuities induced by depth value
discretization. Johnston et al. [27] leverage discrete disparity
volumes to refine depth uncertainty estimation and harness
self-attention mechanisms to capture global context features,
effectively mitigating discontinuity issues in depth estimation.
Bhat et al. [15] further advance this line of thought by
dynamically adjusting depth bins based on image content, ef-
ficiently combining advantages of classification and regression
through linear combinations of bin center values, significantly
enhancing depth estimation precision. In view of this analysis,
our work adopts a classification-regression approach to depth
estimation, enabling real-time generation of accurate depth
maps from single optical images. This approach balances
accuracy and computational efficiency, leveraging the strengths
of both classification and regression.

B. Multi-task RSCD
In the research progress of multi-task learning (MTL),

numerous methods focus on simultaneously executing multiple
tasks through a single network to enhance model performance
[28]. Compared with traditional single-task RSCD, multi-task
RSCD can combine the advantages of different tasks within
the same framework and obtain more abundant context infor-
mation. Currently, multi-task RSCD detection mainly concen-
trates on several types of task combinations, such as semantic
segmentation and change detection. The research of Shen et
al. [29] and Cui et al. [30] shows that by using semantic
segmentation to assist change detection, the model can better
understand the types of ground objects and thus accurately
locate the change regions. Another type is building extraction
and change detection. The research of Sun et al. [31] and
Hong et al. [32] extracts the contour information of buildings
to provide strong support for change detection in building-
related change analysis. These multi-task architectures utilize
other tasks as auxiliaries and enrich the performance of change
detection.

However, the above algorithms fail to effectively incorporate
depth information. In three-dimensional scenes, depth is cru-
cial for analyzing the structure and distribution of ground ob-
jects. For example, in urban RSCD tasks, the height difference
of buildings and the topographic undulation are key change
features. The lack of integration of depth information makes
it difficult for the network to understand three-dimensional
space, resulting in impaired accuracy and completeness when
handling related tasks.

Recently, methods of introducing depth information into
change detection have emerged. For instance, Marsocci et al.
[33] and Xiao et al. [34] added 3D prediction heads to the two-
dimensional change detection network to enable the simul-
taneous execution of two-dimensional change detection (2D
CD) and three-dimensional change detection (3D CD) tasks,
thereby introducing depth information into RSCD. However,
these methods have certain limitations. The depth information
they obtain comes from the ground truth (GT) of 3D CD, so
they cannot be applied to a wide range of 2D CD datasets
without depth GT.

Based on this, we propose an innovative multi-task learning
framework called ChangeDA. ChangeDA introduces depth
estimation as an auxiliary task into the multi-task learning
framework. By loading the pre-trained weights on the depth
dataset, the network is endowed with initial depth estimation
ability. Meanwhile, in terms of network design, depth esti-
mation and change detection share some underlying feature
extraction layers, making full use of the multi-task synergy
advantage. With the help of the GT of RSCD, the network
is gradually optimized, which can effectively improve the
accuracy of depth estimation and further enhance the network’s
ability to perceive changes in the three-dimensional structure
of the scene. In this way, even on 2D CD datasets without
depth GT, ChangeDA can exert the multi-task advantage and
achieve better results.

C. Differential Feature Learning

In RSCD, semantic segmentation is a common approach
used to address change detection tasks. However, there are
fundamental differences between change detection and seman-
tic segmentation. Semantic segmentation focuses on enhancing
object recognition by extracting global semantic information
from a single image [35], [36], such as buildings or roads;
in contrast, RSCD emphasizes the extraction of inter-temporal
differences to accurately locate changed regions, regardless of
their specific semantics. Due to the abstractness and uncer-
tainty of change regions, RSCD presents greater challenges
than semantic segmentation. Therefore, in RSCD tasks, it is
crucial to effectively extract differences between images taken
at different times and analyze these differences to precisely
identify changed areas.

Direct extraction of change features can be achieved through
unsupervised means using computational strategies like feature
subtraction or similarity measures [37]. Within supervised
learning frameworks, constructing differences between two
temporal feature representations is a primary step. Common
approaches involve combining feature maps from different
times through subtraction, addition, or direct concatenation
to generate a feature map that reflects temporal changes.
However, these conventional fusion methods sometimes fail
to comprehensively and finely express all differences between
the two feature maps, limiting their representational power.

To address the challenges in RSCD, researchers have pro-
posed a series of innovative solutions. For instance, Lee et
al. [38] introduced a local similarity attention module for
learning difference features. LSS-Net uses cosine similarity
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Fig. 1. Architecture of the proposed ChangeDA. Depth Add and Depth Attn are two methods for infusing depth information into feature maps. FDFE refers
to the differential feature pyramid extracted from bi-temporal features at the same level after passing through the DFE module. FAAFF denotes the feature
maps obtained by cross-level feature fusion of the differential feature pyramid. 2D CD and 3D CD results are generated through different branches of the
network.

to measure the feature differences between input images,
enabling the network to better utilize content information
in the image sequence, thereby improving the accuracy of
urban land change detection. The ChangerEx [39] network
employs FDAF, an innovative differential feature extraction
method, to learn differential feature mappings. Specifically,
it first estimates the pixel offset between the two temporal
images, then aligns the bitemporal feature maps, and finally
extracts difference information through subtraction, explicitly
highlighting changed regions to improve detection accuracy.
After concatenation via 3D convolutions, AFCF3DNet [40]
directly processes the bi-temporal images. By leveraging the
internal fusion characteristic of 3D convolutions, it acquires
the fusion features of the bi-temporal images, and thus the
difference information is implicitly obtained. SEIFNet [41]
enhances the feature representation ability for changed objects
through its ST-DEM module. Specifically, the ST-DEM is
composed of the subtraction and connection branches. These
two branches jointly capture the global and local change
information, strengthening the extraction of change features.
FFBDNet [42] extracts the difference information using the
FIFM module. The features are initially enhanced by the
FIFM through the interleave fusion, followed by addition and
subtraction to obtain the difference features from the interacted
ones.

Despite efforts to enhance network expressiveness through
various modules [43], [44], leading to positive outcomes, these
networks still rely on the framework of semantic segmentation.
In differential feature extraction, they primarily enhance the
network’s feature expression through basic techniques such
as cosine similarity, feature subtraction, or concatenation.
Since they do not sufficiently emphasize and design targeted

modules for learning change features, these methods struggle
to effectively capture and distinguish different patterns and
subtle changes, leading to limitations in performance when
handling complex RSCD tasks.

To enhance the saliency of change features in feature maps
and accurately delineate changed regions, we developed the
Difference Feature Extractor (DFE). This innovative algorithm
deeply analyzes subtle changes within various semantic re-
gions across bitemporal remote sensing images. By integrating
a combination of optical flow consistency verification, feature
subtraction, and cosine similarity into its differential feature
extraction strategy, DFE provides an advanced perspective for
bitemporal remote sensing imagery change detection. As a
core component of ChangeDA, DFE enables us to effectively
distill change features from bitemporal feature pyramids, pre-
cisely capturing the differences between two remote sensing
images.

III. METHOD

A. Architecture Overview

In this study, we propose ChangeDA, as depicted in Fig. 1,
a framework that innovatively extracts and integrates informa-
tion from original images using a multi-task learning approach.
ChangeDA focuses on exploiting the synergy of different yet
complementary information within the RGB image. It contains
visual characteristics like color, texture, and edges, along with
implicit depth information. In the multi-task learning process,
the network learns from both these aspects simultaneously.
For example, in building change analysis, visual features
help initially identify and locate building structures, and the
depth information is crucial for precisely understanding height
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differences and three-dimensional alterations. By jointly lever-
aging this information, ChangeDA can achieve better results
in RSCD.

To evaluate the superiority of ChangeDA, we will con-
duct comparisons with multimodal networks on multimodal
datasets. We aim to demonstrate that without relying on tra-
ditional multimodal data combinations (from different sensor
types), our network can achieve better results, highlighting its
unique design and contribution to the RSCD field. Through
meticulously designed differential feature extraction and cross-
level feature fusion modules, it presents a novel and efficient
solution for RSCD. Our framework consists of four main
components: a multi-task encoder, a depth infusion module,
a differential feature extraction module, and a decoder based
on cross-level feature fusion.

In the first part, we employ a Siamese image encoder
(ResNet18) to process dual-temporal remote sensing images in
parallel, generating multi-level feature maps with decreasing
spatial resolution. Simultaneously, a Siamese depth encoder
is used to obtain depth maps. This process not only captures
the basic structure and depth information of the images but
also lays a multi-scale foundation for subsequent analyses.
The second component, the Depth Infusion Module (DIM),
integrates depth maps with multi-level feature maps. By in-
corporating the third-dimensional depth aspect into the two-
dimensional visual features, this step significantly enhances the
model’s spatial understanding and detail discernment capabili-
ties, enabling it to analyze scene changes from a more enriched
dimensional perspective. The third part utilizes the Differential
Feature Extraction (DFE) module to transform these depth-
enriched multiscale feature maps into differential feature maps
that focus on revealing temporal differences between the dual-
phase images. Finally, in the fourth part, through the Adaptive
All-feature Fusion (AAFF) module, cross-level fusion of the
differential feature maps is performed, followed by the pre-
diction of the fused features. This strategy facilitates effective
integration of features across different levels, markedly im-
proving the model’s accuracy and generalization performance
in complex changing scenarios.

B. Multi-task Encoder

The multi-task encoder of ChangeDA comprises an image
encoder and a depth encoder, both utilizing Siamese sub-
networks with shared weights to extract representative infor-
mation within a consistent feature space. The image encoder
employs ResNet18 to process the original images and generate
a feature pyramid (F1 to F4) for each temporal phase.

The depth encoder takes the multi-scale feature pyramid (F1

- F4) produced by the image encoder as the input. Inspired
by the AdaBins algorithm [15], we refine the feature maps
using a fusion and upsampling strategy. This approach can not
only strengthen the model’s understanding of the global scene
structure but also significantly enhance its depth inference
capability across diverse scenes by integrating the cross-level
feature information. Leveraging these fused high-level fea-
tures, we implement a dynamic binning technique combined
with a depth center prediction approach. This mechanism

enables ChangeDA to output the depth maps that match the
spatial resolution of the coarsest level F1, ensuring meticulous
and accurate depiction of the depth information for each pixel.
It provides a nuanced representation for scene understanding
in three-dimensional perspective. The underlying formula is as
follows:

depth map = Depth Encoder(F1, F2, F3, F4) (1)

where Depth Encoder represents the depth encoder and
depth map denotes the extracted depth map.

In the depth encoder, the multi-scale features F1 to F4

are initially processed via a Feature Pyramid Network (FPN)
to obtain Fd. The FPN enhances the expressive capability
of multi-scale features, making Fd richer in information and
aligning its spatial resolution with F1. Next, Fd is fed into a
Mini Vision Transformer (mViT) to get F ′

d, ensuring effective
association and transformation of features across different
levels and capturing long-range dependencies and cross-scale
information. This process can be described as follows.

Fd = FPN(F1, F2, F3, F4) (2)

F ′
d = mV iT (Fd) (3)

Subsequently, the different dimensional features of F ′
d are

processed separately to obtain bin widths w and bin proba-
bilities p. Here, we define b to represent a bin, which serves
as a division interval in the depth domain for categorizing
depth values. Specifically, bi represents the right boundary
of the i-th bin. There are a total of n bins, and the bin
centers are denoted as c. Finally, the depth value for each
pixel is calculated by multiplying and summing the bin centers
ci and their corresponding probabilities pi. This process is
broadcasted to each pixel to generate the final depth map,
depth map, as detailed below.

w = Softmax(MLP (F ′
d[0, :])) (4)

p = Softmax(PW (C3×3(Fd)) · PW (F ′
d[1 :, :])) (5)

ci =
bi
2
+

i−1∑
j=1

bj (6)

depth map =

n∑
i=1

ci ⊙ pi (7)

Here,C3×3 denotes a 3×3 convolutional layer, PW() stands
for Point-Wise convolution, · represents matrix multiplication,
and ⊙ represents broadcasting multiplication.
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Fig. 2. (a) Structure of the DFE module. (b) Implementation details of the DFE and AAFF modules applied to the bi-temporal feature pyramids FA and
FB , which are produced by the DIM module, in ChangeDA.

C. Depth Infusion Module

During the feature extraction process in the image encoder,
as the network depth increases, the size of the feature maps
decreases while the number of channels increases. Shallower-
level feature maps (such as F1) excel at capturing edge and
texture information of images, whereas deeper-level feature
maps (F2 to F4) encompass more abstract and rich semantic
content. Capitalizing on this characteristic, our proposed DIM
adopts a hierarchical fusion strategy: at the initial F1 layer,
depth information is explicitly incorporated into the feature
representation through a direct depth add operation; for the
more deeper layers F2 to F4, a depth attn mechanism is
employed, which subtly and dynamically embeds depth per-
ception within the features, aiming to finely harmonize depth
information with semantic understanding, thereby further op-
timizing the expressiveness and precision of change detection.

Through the DIM’s fusion of multi-task information, the
model’s scope for recognizing details and overall structure
in remote sensing scenes is expanded, promoting multidi-
mensional enhancement of image features under the multi-
task learning framework. The ingenuity of this approach
lies in how the integration of depth maps complements the
inadequacies of conventional texture and semantic features,
especially in revealing subtle changes in three-dimensional
spatial structures, such as minute variations in surface object
heights that are otherwise difficult to discern directly in
two-dimensional image comparisons. Depth data, along with
textural and semantic features, validate and reinforce each
other, collectively elevating the accuracy and robustness of
change detection, ensuring the model can make accurate and
reliable judgments amidst various environmental changes. The
specific formula is illustrated as follows.

DIM(depth map, Fi) =


Depth Add(depth map, Fi)

i = 1
Depth Attn(depth map, Fi)

i = 2, 3, 4
(8)

Depth Add(depth map, Fi) = R(C3×3(Fi))+

CA(R(C3×3(depth map)))
(9)

Depth Attn(depth map, Fi) = softmax(QKT
i )Vi + Fi

(10)

Q = PW (depth map) (11)

Ki = PW (Fi) (12)

Vi = PW (Fi) (13)

Where R represents the ReLU activation function, and
CA() signifies channel attention mechanism. The depth add
operation takes F1 and the depth map as inputs, with the
depth map first being mapped through a convolution to match
the dimensionality of the input feature map. Afterwards, it
undergoes adaptive adjustment via channel attention before
being added to the feature map, thus explicitly imbuing depth
information into the feature representation.

For depth attn, which operates on F2 through F4 along
with the depth map, a residual cross-attention mechanism
is employed to implicitly infuse depth information into the
higher-level feature maps. Here, Q represents the depth map
after undergoing Point-Wise convolution, while Ki and Vi

denote the key and value components respectively, resulting
from applying Point-Wise convolutions to the input features
Fi.
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D. Differential Feature Extractor

The essence of RSCD involves effectively identifying and
leveraging subtle variations between bi-temporal images, with
a primary goal being the suppression of unchanged infor-
mation while highlighting changes [45]. Traditional methods
often rely on single-dimensional comparisons, such as basic
pixel-level difference analysis, but these are frequently limited
by environmental variation interference and neglect of deeper
feature changes. Moreover, while some studies have attempted
to guide change detection using semantic understanding, these
strategies are often hindered by computational burdens and
error propagation or lack direct interpretability in practical
applications.

For bi-temporal features, differences are primarily man-
ifested in three aspects: numerical discrepancies between
pixels, dissimilarities in pixel feature vectors, and semantic
differences. When addressing pixel-level differences in bi-
temporal images, directly subtracting dual-phase images can
effectively highlight variations in higher-level feature maps
due to their relative stability. However, this approach is less
suitable for shallower-level feature maps, as they may exhibit
varied representations of the same object across time due to
varying lighting, viewpoints, and other external factors during
image capture, leading to subtraction results that inadequately
reflect actual changes and necessitate more meticulous analysis
to distinguish real alterations from environmental interference-
induced false positives. Regarding differences in pixel feature
vectors, calculating cosine similarities between bi-temporal
features offers a good solution, providing an effective mea-
sure of dissimilarity. When it comes to extracting semantic
differences, the traditional method of first classifying and then
differencing the information is computationally intensive and
prone to error accumulation.

Building on these insights, we innovatively designed the
DFE module to precisely capture and decipher change infor-
mation within remote sensing imagery. This module initially
computes the absolute differences between features of the
dual-time phases and employs PW convolution to adaptively
map these difference features, optimizing the distribution of
information across channels. This effectively discriminates
non-substantive changes introduced by differing acquisition
conditions, particularly crucial when handling shallower-level
visual features. Subsequently, we integrate cosine similarity
analysis to gauge the degree of matching between pixel-level
feature vectors in bi-temporal feature maps, further refining the
precision of change feature identification. To delve deeper into
semantic changes, we introduce an optical flow consistency
checking module, which evaluates forward and backward
optical flows generated from bi-temporal features based on
their consistency scores, accurately pinpointing regions where
changes in remote sensing objects occur.

In the optical flow consistency check, particular attention
is given to mismatched areas, as they typically indicate key
dynamic changes in the scene. Specifically, when bidirectional
optical flows fail to exhibit expected consistency, this usually
signifies the disappearance of existing objects, the emergence
of new objects, or significant object displacements. In RSCD

tasks, these mismatches are interpreted as strong indicators
of changing objects rather than simple environmental dis-
turbances or computational errors. Therefore, we leverage
this observation, using the detection of inconsistencies in
bidirectional optical flows as potent evidence for identify-
ing semantic change objects. By implementing a reasonable
threshold strategy to distinguish normal errors from abnormal
mismatches, our system accurately identifies changing objects
in complex dynamic environments without being misled by
transient illumination changes or similar textures.

In summary, the computational steps of DFE are outlined
as follows:

FDFE = CA(concat(Fsub, Fcos, Fconsis)) (14)

Fsub = PW (abs(Fa − Fb)) (15)

Fcos = Fx×sigmoid(1− cosine similarity(Fa, Fb)) (16)

Fconsis = Fx × sigmoid(Consistant(Flow make(Fa, Fb),

F low make(Fb, Fa)))
(17)

Fx = FPN(concat(Fa, Fb)) (18)

Here, FDFE represents the ultimate differential feature after
concatenating outputs from three distinct feature difference
extraction modules (Fsub, Fcos, Fconsis) and passing them
through a Channel Attention (CA) module. Fsub signifies the
discrepancy in pixel values, where Fa and Fb denote the
feature maps of dual-phase images, having integrated textural,
semantic, and depth information; Fa corresponds to the initial
temporal phase, while Fb represents the subsequent temporal
phase. PW() denotes point-wise convolution; the absolute
difference between the bi-temporal features Fa and Fb, post
point-wise convolution mapping, constitutes Fsub.
Fx represents the fused bi-temporal features. Following

concatenation of features Fa and Fb, they are integrated with
multi-level information through a Feature Pyramid Network
(FPN), yielding Fx. Fcos embodies the dissimilarity in pixel
feature vectors; cosine similarity is computed between Fa and
Fb, the complement of 1 is taken, and then normalized through
a sigmoid function before being multiplied with Fx to obtain
Fcos.
Fconsis signifies the disparity in pixel semantic informa-

tion. By employing the optical flow extraction algorithm
Flow make, forward and backward optical flows are obtained
from Fa to Fb and vice versa. These flows are then input into
the forward-backward consistency check algorithm Consistent.
The magnitude of the output, reflecting the inconsistency
between the forward and backward optical flows, is normalized
via a sigmoid function to represent the probability of changed
areas. This probability map is subsequently multiplied with
Fx, resulting in Fconsis.
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Fig. 3. (a) Structure of the AAFF module. (b) Structure of the MS-DAM module within AAFF.

E. Adaptive All Feature Fusion

AAFF is dedicated to the cross-level fusion of the differ-
ence feature pyramid from FDEF , driving accurate change
detection. This process permeates from deeper-level features
to lower ones, leveraging semantic understanding to guide the
selective fusion of textural and contour details in the shallower-
level features. Specifically, when deeper-level features indicate
no significant changes in an area, the system reduces the
incorporation of shallower-level features from that region;
conversely, if signs of change are present, it reinforces the
integration of edge details. The visual manifestation of this
fusion strategy is depicted in Figure. 3. After applying AAFF,
the network performs the final prediction utilizing a large-
sized feature map that integrates depth information, semantic
content, and edge detail, resulting in highly accurate change
detection outcomes.

The detailed structure of AAFF begins with the application
of a double upsampling technique to map the deeper-level
features to match the resolution of the shallower-level ones.
Subsequently, PW convolution aligns the number of channels,
ensuring consistency across different levels in both spatial and
channel dimensions, thus laying the groundwork for profound
information interaction. The specific formula is as follows,
where PW() denotes Point-Wise Convolution, B stands for
Batch Normalization, and δ represents the ReLU activation
function, with F

′

1 and F
′

2 being the deeper-level and shallower-
level features after alignment in spatial dimensions and chan-
nel numbers, respectively.

F
′

1 = δ
(
B
(
PW

(
Fhigh2×
input

)))
(19)

F
′

2 = δ
(
B
(
PW

(
F low
input

)))
(20)

During the fusion phase, we initiate the integration of
deeper- and shallower-level features through an element-wise

addition operation, laying the groundwork for subsequent fine-
grained processing. Subsequently, the core component—the
Multi-Scale Dynamic Attention Module (MS-DAM)—comes
into play. This module comprises dual subsystems: the Multi-
Scale Spatial Attention Mechanism (MS-SAM) and the Multi-
Scale Channel Attention Mechanism (MS-CAM). MS-SAM
leverages multi-scale dilated convolutions to capture rich spa-
tial context, particularly enhancing edge sharpness and tex-
ture details. Meanwhile, MS-CAM employs adaptive pooling
strategies at the channel level to cluster information, assigning
weights to each channel that reflect its discriminative power,
thereby balancing global and local information. The detailed
formulations are as follows.

Fcoarse = F
′

1 + F
′

2 (21)

MDA(F ) = MCA(MSA(F )) (22)

MSA(F ) = C1,1([C1,1(F ), C3,1(F ), C3,6(F ), C3,12(F )])
(23)

MCA (F ) = F × σ (CL (F )⊕ CG (F )) (24)

Ca,b (F ) = δ (B (Convk=a×a,d=b (F ))) (25)

CL (F ) = B (PW (δ (B (PW (F ))))) (26)

CG(F ) = CL(G(F )) (27)

Where Fcoarse denotes the features after preliminary in-
tegration, MDA() represents the operation of MS-DAM,
MSA() corresponds to MS-SAM, MCA() to MS-CAM,
Conv(k=a×a,d=b) denotes a convolution operation with a
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kernel size of a × a and a dilation rate of b, ⊕ signifies
element-wise broadcast addition, and × symbolizes element-
wise multiplication.

MS-DAM, by synthesizing the attention weights generated
by MS-SAM and MS-CAM, dynamically adjusts the con-
tributions of individual features, realizing intelligent feature
selection. In the ultimate adaptive feature enhancement phase,
based on the computed weights, an element-wise weighted
fusion operation is executed on F1 and F2, ensuring the
output features maintain profound semantic comprehension
while precisely preserving crucial detail information. This sig-
nificantly enhances the model’s accuracy in change detection
within complex scenarios. The specific algorithmic description
is as follows.

FAAFF = MDA (Fcoarse)×F
′

1+(1−MDA (Fcoarse))×F
′

2

(28)
Where + denotes element-wise addition, and FAAFF repre-

sents the final output feature.

F. Prediction Head and Loss Function

In RSCD, distinct prediction heads are employed for deter-
mining 2D and 3D CD maps using the final features FAAFF

obtained from previous steps.
For 2D CD, the primary objective is to detect areas that have

experienced changes. This is achieved by first upsampled the
output features to align with the dimensions of the original
input, followed by using a Fully Convolutional Network
(FCN) to classify each pixel as either changed or not. The
FCN module ultimately generates the final 2D prediction
map R2d ∈ R2×H×W . The 2D change detection task is
considered as a binary classification problem to differentiate
between changed and unchanged pixels, using the Binary
Cross-Entropy (BCE) loss function below:

Loss2D = − 1

N

N∑
i=1

[ωcgi log(pi) + ωu(1− gi) log(1− pi)]

(29)
Here, i represents the i-th pixel. pi ∈ [0, 1] is the predicted

probability of the i-th pixel belonging to a certain category.
gi ∈ {0, 1} is the ground truth value, with gi = 0 indicating
unchanged and gi = 1 signifies changed. ωc and ωu are the
weights for the changed and unchanged categories, respec-
tively. N is the total number of pixels in the image.

For 3D CD, the depth values associated with changed pixels
are crucia, with a different method used to process the feature
map. Initially, the final feature map FAAFF is upsampled to
generate the initial outputs using an FCN. A tanh activation
function is then used to produce the final 3D prediction map
R3d ∈ RH×W . The Mean Squared Error (MSE) loss function
is utilized to quantify the difference between the predicted and
actual depth values, given by:

Loss3D =
1

N

N∑
i=1

(zi − ẑi)
2 (30)

Here, zi represents the predicted depth value of the i-th
pixel, and ẑi is the actual depth value. When performing joint
2D and 3D CD, the overall loss function Loss is defined as
a weighted combination of the 2D and 3D loss functions as
follows:

Loss = ω2DLoss2D + ω3DLoss3D (31)

In this equation, ω2D and ω3D are the weights assigned to
the 2D and 3D loss functions, respectively. If only 2D CD is
being performed, ω3D is set to 0.

IV. EXPERIMENTAL RESULTS

A. Experiment Details

A series of meticulously planned comparative experiments
are set to comprehensively assess the performance of the
proposed ChangeDA model across diverse scenarios. For the
single-modal dataset experiments, the intention is to validate
how the incorporation of depth information and each module
impacts the model’s performance. To this end, ChangeDA
will be benchmarked against several leading deep learning
approaches that have exhibited remarkable performance on
single-modal datasets. In the multimodal dataset experiments,
the objective is to illustrate that the ChangeDA model can
outperform multimodal networks relying on DSM-RGB inputs
even when only bi-temporal images are used. A selection of
DSM-RGB multimodal change detection algorithms will be
chosen for comparison. Through these experiments, we en-
deavor to establish that the ChangeDA model can maintain su-
perior detection capabilities without relying on supplementary
modal information, thus highlighting its practical application
advantages.

The proposed ChangeDA is constructed using the PyTorch
framework and trained on a setup with an Intel(R) Core(TM)
i9 - 13900KF CPU of the 13th generation and an NVIDIA
GeForce RTX 4090 GPU. The AdamW optimizer is adopted
to direct the optimization process, accompanied by a constant
weight decay of 0.05 to alleviate overfitting. For the loss
function, different hyperparameters are set according to the
task. When ChangeDA only performs 2D CD tasks, the loss
function is a standard BCE loss with ωc = 0.5, ωu = 0.5, ω2D

= 1, and ω3D = 0. When ChangeDA conducts the multi - task
of 2D CD and 3D CD, following the hyperparameter weight
convention on the dataset, ωc = 0.05, ωu = 0.95, ω2D = 1, and
ω3D = 1. All models are trained for 160,000 iterations across
diverse datasets. Data augmentation strategies such as random
cropping, flipping, and photometric distortion are uniformly
applied to bolster generalization.

B. Evaluation Metrics

To assess the network’s performance, we employ a set of
key metrics that provide a comprehensive evaluation against
the ground truth. For 2D CD, we use the following metrics:
Precision (Prec), Recall (Rec), F1-score (F1), Intersection
over Union (IoU), and Overall Accuracy (OA). For 3D CD,
we introduce two additional metrics: Root Mean Squared
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TABLE I
CONFUSION MATRIX.

Predicted Results

Ground Truth Changed Unchanged

Changed TP FN
Unchanged FP TN

Error (RMSE) and Change-specific Root Mean Squared Error
(cRMSE). The formulas for these metrics are as follows:

Prec =
TP

TP + FP
(32)

Rec =
TP

TP + FN
(33)

F1 =
2·Prec·Rec

Prec+Rec
(34)

IoU =
TP

TP + FN + FP
(35)

OA =
TP + TN

TP + TN + FP + FN
(36)

RMSE =

√√√√ 1

n

n∑
i=1

(∆̂Hi −∆Hi)2 (37)

cRMSE =

√√√√ 1

nc

nc∑
i=1

(∆̂H
C

i −∆HC
i )2 (38)

Here, TP, FP, TN, and FN represent True Positives, False
Positives, True Negatives, and False Negatives, respectively.
Their confusion matrix is illustrated in Table I. n is the total
number of pixels, nc is the number of changed pixels, ∆̂Hi

is the predicted depth change, and ∆Hi is the ground truth
depth change. ∆̂H

C

i and ∆HC
i represent the predicted and

ground truth depth changes for changed pixels, respectively.
Precision measures the accuracy of predicting positive

classes, aiming to minimize false positives. Recall emphasizes
the ability to capture actual changes, striving to reduce false
negatives. The F1-score, as a harmonic mean of precision and
recall, balances the two, providing a more robust measure of
the model’s performance. IoU quantifies the spatial overlap
between predicted and ground truth labels, offering an intuitive
measure of localization accuracy. OA provides a holistic
view of the correct classifications, reflecting the proportion
of correctly classified pixels out of all pixels.

RMSE measures the average magnitude of error between
predicted and ground truth depth changes across all pixels,
providing a general measure of depth prediction accuracy.
cRMSE focuses on the depth errors only for pixels where ac-
tual changes occur, making it particularly useful for assessing
errors in critical change regions.

C. Benchmark Methods

To validate the superiority of our proposed ChangeDA
model, a series of meticulously planned comparative exper-
iments have been conducted across diverse scenarios. The
benchmark methods are divided into two categories based on
the type of datasets they are mainly applied to: single-modal
and multi-modal datasets.

For single-modal dataset comparisons, we selected a series
of well-known methods: BIT [46], ICIFNet [47], DDLNet
[48], CDNet [49], ISNet [50], STANet [51], MFATNet [52],
FHD [53], ChangerEx [39], ChangeFormer [54], IFNet [55],
LRNet [56], CGNet [57], C2FNet [58], HCGMNet [59],
DTCDSCN [60], SNUNet [61], HANet [62], P2V [63], L-
UNet [64], AFCF3DNet [40], SEIFNet [41], FFBDNet [42],
HMCNet [65], and DARNet [66]. These methods are widely
recognized for their performance on single-modal datasets.

In the context of multi-modal dataset comparisons, sev-
eral representative methods have been selected: SUNet [61],
ChangeFormer [54], MTBIT [33], CSCLNet [34], and MMCD
[8]. MTBIT and CSCLNet are multi-task learning networks
that use bi-temporal optical images to perform both 2D CD
and 3D CD tasks. Originally single-task networks, SUNet
and ChangeFormer have been adapted by incorporating a 3D
output head, inspired by MTBIT, to handle both 2D CD and
3D CD using bi-temporal optical images. MMCD, on the other
hand, is a multi-modal network specifically designed to extract
and analyze information from pre-DSM and post-RGB data.

D. Datasets

Single-modal Datasets:
LEVIR-CD dataset serves as a pivotal benchmark for

building change detection, providing 637 pairs of very high-
resolution (0.5 meters per pixel) remote sensing images at
a size of 1024×1024 pixels. Spanning a period of 5 to 14
years, it focuses on documenting extensive land-use shifts,
particularly in building advancements across diverse structures
such as villas, skyscrapers, garages, and warehouses. Accurate
annotations differentiate altered and unmodified building areas,
totaling over 31,333 instances of changes. Following the
dataset’s guidelines, the evaluation setup includes 445 image
pairs for training, 64 for validation, and 128 for testing.

S2Looking dataset, compiled between 2017 and 2020, is
tailored for rural building change detection utilizing high-
resolution satellite imagery. It comprises 5,000 image pairs at
a resolution of 0.5 to 0.8 meters per pixel within a 1024×1024
frame, presenting 65,920 annotated change instances. This
dataset serves as a comprehensive resource for in-depth re-
mote sensing studies. In alignment with the dataset’s official
structure, our study adopts the designated partitioning: 3,500
pairs for training, 500 for validation, and 1,000 for testing.

WHU-CD dataset is a significant public asset for building
change detection, presenting a high-resolution (0.2 meters per
pixel) aerial image pair covering an expansive 32,507×15,354
pixel area. Due to the absence of official segmentation in-
structions, a preprocessing method involving cropping into
non-overlapping 512×512 pixel patches was adopted. These
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Fig. 4. Performance Comparison of Various Methods on LEVIR-CD Dataset: (a) Number of Parameters (M), (b) Floating Point Operations (G).

patches are then randomly allocated to form a dataset support-
ing rigorous assessment, divided into 2,153 for training, 270
for validation, and another 270 for testing.

SYSU-CD dataset is a cornerstone in urban change analysis,
compiling 20,000 pairs of high-resolution aerial images at
256×256 pixels. Chronicling Hong Kong’s urban evolution
from 2007 to 2014, it encompasses a wide range of trans-
formations, including new building construction, suburban
growth, pre-construction groundwork, vegetation shifts, road
enhancements, and maritime infrastructure development. It
systematically segments into a training set of 12,000 image
pairs, a validation set of 4,000 pairs, and a test set of
4,000 pairs, adhering to standard practices for algorithmic
evaluations.

Multi-modal Dataset:
3DCD dataset is an essential resource for detecting changes

in urban environments, specifically focusing on the historical
center and surrounding commercial areas of Valladolid, Spain.
This dataset comprises 472 pairs of high-resolution optical
orthoimages and corresponding DSMs, sourced from two dis-
tinct aerial surveys conducted in 2010 and 2017. Additionally,
it features 472 2D CD maps that document alterations to
structures and 472 3D CD maps illustrating height variations
between the survey periods. The dataset is meticulously parti-
tioned to support rigorous assessment, divided into 320 pairs
for training, 42 pairs for validation, and 110 pairs for testing.
Notably, the training subset encompasses elevation changes
ranging from -25 to 35 meters, capturing a wide spectrum of
urban transformations.

E. Performance Comparison on Single-modal Datasets

As shown in Tables II-V, we have thoroughly evaluated
ChangeDA across four single-modal datasets (LEVIR-CD, S2-
Looking, WHU-CD, and SYSU-CD), with - symbols denoting
missing data from the original papers. Analyzing the met-
rics, ChangeDA demonstrates superior performance across all
datasets, with notable improvements in IoU/F1 scores com-
pared to previous state-of-the-art (SOTA) models: increases of
0.86%/0.50%, 1.19%/1.07%, 2.69%/1.53%, and 2.44%/2.00%

TABLE II
QUANTITATIVE RESULTS ON THE LEVIR-CD DATASET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD. ALL RESULTS ARE DESCRIBED AS
PERCENTAGES. (%)

Model Backbone Prec Rec F1 IoU OA

CDNet ResNet18 83.61 84.14 83.87 72.21 98.35
DTCDSCN SE-Res34 88.53 86.83 87.67 78.05 -

STANet ResNet18 92.49 85.80 89.02 80.20 98.92
BIT ResNet18 90.65 87.53 89.48 80.86 98.95

SNUNet UNet++ 91.31 88.67 89.97 81.77 98.99
HANet - 91.21 89.36 90.28 82.27 99.02

MFATNet ResNet18 91.85 88.93 90.36 82.42 99.03
ChangeFormer MiT-b1 90.83 90.18 90.50 82.66 99.04

HMCNet - 91.68 89.82 90.74 83.05 99.07
AFCF3DNet - 91.35 90.17 90.76 83.08 -

SEIFNet ResNet18 92.49 89.46 90.95 83.40 99.09
LRNet VGG16 92.19 90.00 91.08 83.63 99.10

FFBDNet EfficientNet 92.28 89.98 91.11 83.67 -
FHD ResNet18 91.97 90.32 91.14 83.72 99.10

ChangerEx ResNet18 92.97 90.13 91.53 84.38 99.15
HCGMNet VGG16 92.96 90.61 91.77 84.79 99.18

ChangeDA ResNet18 93.67 90.92 92.27 85.65 99.22

TABLE III
QUANTITATIVE RESULTS ON THE S2-LOOKING DATASET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD. ALL RESULTS ARE DESCRIBED AS
PERCENTAGES. (%)

Model Backbone Prec Rec F1 IoU OA

STANet ResNet18 38.75 56.49 45.97 29.84 -
DTCDSCN SE-Res34 68.58 49.16 57.27 40.12 -

HANet - 61.38 55.94 58.54 41.38 99.04
CDNet ResNet18 67.48 54.93 60.56 43.43 -

BIT ResNet18 72.64 53.85 61.85 44.77 -
C2FNet VGG16 74.84 54.14 62.83 45.80 99.22

ChangeFormer MiT-b1 72.82 56.13 63.39 - -
HCGMNet VGG16 72.51 57.06 63.87 46.91 99.22

FHD ResNet18 74.09 56.71 64.25 47.33 -
CGNet ResNet18 70.18 59.38 64.33 47.41 99.20

ChangerEx ResNet18 71.64 60.07 65.35 48.53 99.23

ChangeDA ResNet18 72.26 61.45 66.42 49.72 99.25
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TABLE IV
QUANTITATIVE RESULTS ON THE WHU-CD DATASET. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD. ALL RESULTS ARE DESCRIBED AS
PERCENTAGES. (%)

Model Backbone Prec Rec F1 IoU OA

SNUNet - 75.03 92.31 82.77 70.61 98.22
BIT ResNet18 82.04 89.74 85.71 75.00 98.62

SEIFNet ResNet18 87.01 85.77 86.39 76.04 98.90
DARNet - 84.20 89.85 86.93 76.89 98.75
HANet - 88.30 88.01 88.16 78.82 99.16
ICIFNet ResNet18 90.79 87.58 89.16 80.43 99.01

DTCDSCN SE-Res34 90.15 89.35 89.75 81.40 -
IFNet VGG16 93.78 87.13 90.33 82.37 99.14

DDLNet ResNet18 91.56 90.03 90.56 82.75 99.13
HCGMNet VGG16 92.08 93.93 90.31 85.33 99.45

P2V - 94.18 90.91 92.52 86.07 99.32
LRNet VGG16 95.11 90.04 92.51 86.06 99.47
CGNet VGG16 94.47 90.79 92.59 86.21 99.48

FFBDNet EfficientNet 93.60 92.95 93.27 87.39 -
AFCF3DNet - 93.47 92.69 93.58 87.93 -

ChangeDA ResNet18 96.45 91.91 94.12 88.90 99.54

TABLE V
QUANTITATIVE RESULTS ON THE SYSU-CD DATASET. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD. ALL RESULTS ARE DESCRIBED AS
PERCENTAGES. (%)

Model Backbone Prec Rec F1 IoU OA

HANet - 78.71 76.14 77.41 63.14 89.52
C2FNet VGG16 75.44 80.67 77.97 63.89 89.25
CDNet ResNet18 79.34 77.29 78.30 64.34 89.90
ISNet ResNet18 76.41 80.27 78.29 64.44 90.01

SNUNet - 83.58 75.87 79.54 66.02 90.79
L-UNet - 81.24 78.08 79.63 66.15 90.58

HCGMNet VGG16 86.28 74.15 79.76 66.33 91.12
CGNet VGG16 86.37 74.37 79.92 66.55 91.19

FFBDNet EfficientNet 84.48 76.15 80.10 66.81 -
IFNet VGG16 80.98 79.37 80.17 66.90 90.74

ICIFNet ResNet18 83.37 78.51 80.74 68.12 91.24
DARNet - 83.04 79.11 81.03 68.10 91.26
SEIFNet ResNet18 84.81 79.98 82.32 69.96 91.90

ChangeDA ResNet18 86.01 79.72 82.74 70.56 92.16

on LEVIR-CD, S2-Looking, WHU-CD, and SYSU-CD, re-
spectively, highlighting significant and meaningful advance-
ments.

In the detailed breakdown, our experiments on the LEVIR-
CD dataset, a benchmark for high-resolution urban change
detection, reveal that ChangeDA excels. It surpasses leading
models such as HCGMNet, ChangerEx, and FHD across all
metrics. The algorithm, leveraging deep feature enhancement
and adaptive aggregation strategies, achieves remarkable im-
provement over prior baselines. Specifically, it attains 93.67%
precision, 90.92% recall, 92.27% F1 score, 85.65% IoU, and
99.22% overall accuracy, setting new performance standards
and demonstrating high precision and efficiency in complex
urban landscape change detection.

Turning to the challenging S2-Looking dataset, our algo-
rithm continues to demonstrate robust detection capabilities,
particularly in detecting rural building changes. Relative to top
models like ChangerEx, CGNet, and HCGMNet, our model
makes a substantial leap in F1 score to 66.42% and raises
IoU to 49.72%, indicating heightened sensitivity in identifying

small-scale changes and in high-density areas. The algorithm
also sees a marked increase in recall to 61.45% (+1.38%), sig-
nificantly reducing missed detections in practical applications,
further validating its comprehensiveness and practical utility.

On the WHU-CD dataset, our algorithm shines in dense
urban construction detection, with precision reaching 96.45%,
F1 score climbing to 94.12%, and IoU hitting 88.90%. This re-
inforces its strength in handling high-density building changes
and reiterates its effectiveness and adaptability in complex
urban scenarios.

Confronted with the diverse targets and intricate changes
in the SYSU-CD dataset, the algorithm maintains strong
performance. Its F1 score rises to 82.74%, IoU to 70.56%,
outperforming algorithms such as ICIFNet, DARNet, and
IFNet, illustrating broad applicability and high reliability
across different target types, thereby affirming its robustness
and efficiency in real-world applications.

In Figs. 5-8, we visually compare the test results of
ChangeDA against recent classic algorithms on the LEVIR-
CD, S2-Looking, WHU-CD, and SYSU-CD datasets. Using
color-coding – green for TP, black for TN, yellow for FP,
and red for FN regions – these visualizations compellingly
demonstrate that ChangeDA achieves exceptional detection
outcomes across varying datasets and scenarios, closely align-
ing with ground truth annotations and underscoring its superior
performance.

F. Performance Comparison on Multi-modal Dataset

We compare the performance of the ChangeDA with other
representative methods on the multi-modal 3DCD dataset, with
the quantitative results presented in Table VI, including those
from the SUNet, ChangeFormer, MTBIT, MMCD, CSCLNet,
and our ChangeDA, using both 2DGT and 2DGT + 3DGT for
supervised learning.

For the 2D CD task, ChangeDA with 2DGT + 3DGT
for traning achieves an F1 score of 63.52 and an IoU of
46.54. Compared to the multi-modal network MMCD, which
has an F1 score of 41.33 and an IoU of 26.05, ChangeDA
shows significantly improved performance. This indicates that
ChangeDA can effectively leverage the depth information
estimated from bi-temporal optical images, even without the
direct DSM data, demonstrating the effectiveness of its depth
estimation network. Among other multi-task learning networks
like CSCLNet, ChangeDA outperforms them slightly in terms
of both F1 and IoU, achieving SOTA performance in multi-
task learning scenarios.

When considering only 2D GT for supervbised training of
the ChangeDA in the 2D CD single-task, it attains excellent
results with an F1 score of 65.73 and an IoU of 48. 95, the
best among all compared algorithms. This highlights the strong
adaptability and excellent performance of the ChangeDA
model even in a simpler supervision setting.

In the 3D CD task, ChangeDA with 2DGT + 3DGT for
training achieves an RMSE of 1.20 and a cRMSE of 4.78.
Compared to MMCD, which has an RMSE of 1.76 and a
cRMSE of 4.86, ChangeDA shows better performance with
a lower RMSE and a slightly lower cRMSE. Additionally,

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3532468

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Robert Gordon University. Downloaded on January 28,2025 at 12:01:54 UTC from IEEE Xplore.  Restrictions apply. 



13

Fig. 5. Visualization results of different methods on the LEVIR-CD Dataset. The green, yellow, black and red colors represent TP, FP, TN and FN.

TABLE VI
QUANTITATIVE RESULTS ON THE 3DCD DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Model Year Input Supervision Params (M) 2D CD 3D CD

F1(%) IoU(%) RMSE(m) cRMSE(m)

SUNet 2021 RGB 2DGT+3DGT 27.9 52.39 35.50 1.47 5.04
ChangeFormer 2022 RGB 2DGT+3DGT 29.7 41.00 25.78 1.58 5.13

MTBIT 2023 RGB 2DGT+3DGT 13.1 63.28 46.29 1.31 5.52
MMCD 2024 DSM+RGB 2DGT+3DGT 11.7 41.33 26.05 1.76 4.86

CSCLNet 2024 RGB 2DGT+3DGT 26.9 63.10 46.09 1.24 4.97

ChangeDA 2024 RGB 2DGT 30.2 65.73 48.95 - -
ChangeDA 2024 RGB 2DGT+3DGT 31.7 63.52 46.54 1.20 4.78

ChangeDA outperforms other multi-task learning networks
such as SUNet, ChangeFormer, and CSCLNet in 3D CD tasks.

Fig. 9 provides a visual comparison of different models
on the 3D CD dataset. The first three rows show the 2D
CD results, where SUNet, ChangeFormer, MTBIT, MMCD,
and CSCLNet exhibit misclassifications or missed detections.
In contrast, ChangeDA (Ours) aligns more closely with the
ground truth, with fewer misclassifications and missed de-
tections. The last three rows display the 3D CD results,
where ChangeDA also demonstrates higher similarity to the
ground truth, showcasing its advantage in 3D change detection.

Overall, these results confirm that ChangeDA performs well in
both 2D and 3D change detection tasks, outperforming other
methods.

G. Model Complexity

We evaluate the model complexity of various algorithms
on the LEVIR dataset for predicting a 256×256 image from
two aspects: i.e. the number of parameters (Params) and the
number of floating-point operations (FLOPs). The values of
Params and FLOPs are directly related to network complexity.
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Fig. 6. Visualization results of different methods on the S2Looking Dataset. The green, yellow, black and red colors represent TP, FP, TN and FN.

TABLE VII
MODEL COMPLEXITY COMPARISONS ON THE LEVIR-CD DATASET. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Model Params(M) FLOPs(G) F1

CDNet 14.33 21.52 83.87
IFNet 50.44 82.26 87.58

DTCDSCN 41.07 7.21 87.67
DSIFN 50.46 50.77 88.42
STANet 16.89 6.43 89.02

BIT 17.99 15.17 89.48
DMINet 6.24 14.55 89.90
SNUNet 12.03 54.83 89.97
HANet 3.03 14.07 90.28

ChangeFormer 29.75 21.18 90.50
HMCNet 19.61 23.54 90.74

AFCF3DNet 17.54 31.72 90.76
SEIFNet 27.91 8.37 90.95
LRNet 48.71 92.23 91.08

FFBDNet 2.85 7.81 91.11
FHD 11.83 10.43 91.14

ChangerEx 11.39 5.95 91.53
HCGMNet 47.32 318.41 91.77

ChangeDA 30.25 23.49 92.27

The relevant values of all compared methods are listed in Table
VII. For a visual comparison, scatterplots are presented in Fig.
4.

Among these algorithms, CDNet has relatively low Params
and FLOPs due to its simple design, but its F1 score is
quite low, indicating its poor performance. On the other hand,
LRNet has very high Params and FLOPs, but its performance
is not the best. Our algorithm, ChangeDA, has the Params
of 30.25M and FLOPs of 23.49G, achieving an F1 score of
92.27%, which shows that ChangeDA strikes a good balance
between the model complexity and performance.

H. Ablation Studies

1) Differential Information Constituents in DFE Composi-
tion: During our ablation study conducted on the LEVIR-
CD and S2Looking datasets, focusing exclusively on the
Difference Method without incorporating depth information,
we initially performed a comparative examination of the per-
formance of three standalone modules designed for extracting
change information—Consis, Cos, and Sub. As shown in Table
VIII, the empirical results highlighted that our innovatively
devised optical flow consistency estimation algorithm (Consis)
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Fig. 7. Visualization results of different methods on the WHU-CD Dataset. The green, yellow, black and red colors represent TP, FP, TN and FN.

excelled when deployed individually, setting a strong baseline
for subsequent evaluations.

Building on this robust foundation, we incrementally inte-
grated Consis with the other two modules for capturing differ-
ential information, Cos and Sub. Each integration contributed
to a steady enhancement in performance. Significantly, the
system’s performance peaked when Consis, Cos, and Sub were
collectively utilized for differential information extraction, cor-
roborating our initial theoretical assessments. This underscores
that our DFE module, by synthesizing discrepancies in pixel
values, spatial similarities across pixel channels, and semantic
differences at the pixel level, is capable of comprehensively
and deeply elucidating the variation characteristics between
bi-temporal feature maps, thereby enhancing the accuracy and
comprehensiveness of change detection.

2) Mechanisms for Depth Infusion into Feature Maps: In
the designed experiment, we systematically investigated the ef-
fects of integrating depth information using varying strategies
across different network levels. The experimental outcomes are
summarized in Table IX, where F1-F4 denote the feature maps
produced at four successive stages of the backbone. Here,
”A” signifies depth add, ”B” represents depth attn, and ”N”
denotes no depth infusion. Initially, all four stages of feature

maps underwent uniform treatment with the addition of depth
information via the depth add method. We observed a marked
improvement in network performance due to the inclusion of
depth information.

Proceeding further, we delved into determining the most
effective approach for depth integration. Beginning with the
highest level feature map, F4, we progressively shifted towards
employing the attention mechanism (depth attn) for implicit
depth fusion, culminating in its exclusive application across
all stages. The empirical evidence revealed that the network
achieved its optimal state when shallow-level feature map
F1 was augmented with depth through the straightforward
depth add technique, while deeper feature maps F2 to F4
benefited from the subtler depth integration facilitated by the
depth attn mechanism.

These findings not only validate our hypothesis that, in the
shallower network layers where feature maps predominantly
embody edge and texture details, the direct supplementation
of depth values via A enhances such features effectively;
conversely, in the deeper layers rich in semantic information,
the B strategy of implicitly blending depth through attention
mechanisms is more conducive to exploiting depth cues. The
synergy of these two approaches thus realizes the pinnacle of
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Fig. 8. Visualization results of different methods on the SYSU-CD Dataset. The green, yellow, black and red colors represent TP, FP, TN and FN.

TABLE VIII
ABLATION STUDY ON DIFFERENT METHODS OF ACQUIRING DIFFERENTIAL MAPS ON THE LEVIR-CD AND S2LOOKING DATASETS. Y REPRESENTS THE

USE OF THE FEATURE EXTRACTION METHOD, AND N REPRESENTS NO USE.

Method LEVIR-CD S2Looking

Consis Cos Sub Prec / Rec / F1 / IoU / OA Prec / Rec / F1 / IoU / OA

Y N N 92.17 / 90.19 / 91.17 / 83.77 / 99.11 72.62 / 59.99 / 65.70 / 48.92 / 99.24
N Y N 91.91 / 90.29 / 91.10 / 83.65 / 99.10 66.75 / 64.50 / 65.61 / 48.82 / 99.18
N N Y 91.48 / 90.57 / 91.02 / 83.53 / 99.09 72.54 / 60.11 / 65.74 / 48.97 / 99.24
Y Y N 91.95 / 90.93 / 91.44 / 84.23 / 99.13 73.38 / 59.47 / 65.70 / 48.92 / 99.25
Y N Y 92.09 / 90.93 / 91.50 / 84.34 / 99.14 72.45 / 60.28 / 65.81 / 49.04 / 99.24
Y Y Y 92.61 / 90.76 / 91.68 / 84.63 / 99.16 72.19 / 61.24 / 66.27 / 49.56 / 99.25

TABLE IX
ABLATION STUDY OF THE DEPTH INFUSION METHODS AT DIFFERENT STAGES ON THE LEVIR-CD AND S2LOOKING DATASETS. F1-F4 REPRESENT

FEATURE MAPS AT STAGES 1-4, A DENOTES DEPTH ADD, B DENOTES DEPTH ATTN, AND N DENOTES NO DEPTH INFUSION.

Method LEVIR-CD S2Looking

F1 F2 F3 F4 Prec / Rec / F1 / IoU / OA Prec / Rec / F1 / IoU / OA

N N N N 92.61 / 90.76 / 91.68 / 84.63 / 99.16 72.19 / 61.24 / 66.27 / 49.56 / 99.25
A A A A 93.17 / 90.54 / 91.83 / 84.90 / 99.18 73.03 / 60.83 / 66.37 / 49.67 / 99.25
A A A B 92.56 / 90.83 / 91.69 / 84.65 / 99.16 70.51 / 62.47 / 66.25 / 49.53 / 99.23
A A B B 93.18 / 90.04 / 91.59 / 84.48 / 99.16 71.52 / 61.32 / 66.03 / 49.29 / 99.24
A B B B 93.67 / 90.92 / 92.27 / 85.65 / 99.22 72.26 / 61.45 / 66.42 / 49.72 / 99.25
N B B B 92.61 / 90.16 / 91.37 / 84.11 / 99.13 66.59 / 64.83 / 65.70 / 48.92 / 99.18
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Fig. 9. Visualization results of different methods on the 3DCD Dataset. The first three rows show the 2D CD results, and the last three rows display the 3D
CD results.

TABLE X
ABLATION STUDY OF THE CHANGEDA MODULES ON THE LEVIR-CD AND S2LOOKING DATASETS, WITH METRICS INCLUDING IOU AND F1-SCORE.

BASELINE: CHANGEDA IMAGE ENCODER WITHOUT DEPTH ENCODER, DFE: DIFFERENTIAL FEATURE EXTRACTOR, DIM: DEPTH INFUSION MODULE,
AAFF: ADAPTIVE ALL FEATURE FUSION, SUB: SUBTRACTION, CONCAT&CONV: CONCATENATION AND CONVOLUTION.

Model Encode Difference Decode LEVIR-CD S2Looking

Baseline Image Encoder Sub Concat&Conv 84.31/91.48 48.80/65.59
Baseline+DFE+AAFF Image Encoder DFE AAFF 84.63/91.68 49.56/66.27
Baseline+DIM+AAFF Image / Depth Encoder Sub AAFF 84.95/91.86 49.68/66.38
Baseline+DIM+DFE Image / Depth Encoder DFE Concat&Conv 84.41/91.55 49.03/65.80
Baseline+DIM+DFE+AAFF Image / Depth Encoder DFE AAFF 85.65/92.27 49.72/66.42

performance optimization.
3) Evaluating Component Effectiveness: We selected the

LEVIR-CD and S2Looking datasets to conduct systematic
ablation experiments on the key innovative components of our
proposed ChangeDA model: Depth Infusion Module (DIM),
Differential Feature Extractor (DFE), and Adaptive All Feature
Fusion (AAFF). The experimental outcomes are summarized
in Table X, where comparisons of IoU and F1-scores under
various module combinations visually illustrate the individual
contributions of each module to the model’s performance. In-
corporating DIM, DFE, and AAFF modules in different com-
binations onto the Baseline significantly improved network
performance, thereby validating the value of each innovation.

Specifically, removing the DIM led to a decline in IoU by
1.02% and in F1-score by 0.59% on the LEVIR-CD dataset,
and by 0.16% and 0.15% respectively on the S2Looking
dataset. These decreases highlight the critical role of depth

information in accurately detecting vertical structural changes
in remote sensing imagery across both datasets. In compar-
ison to the DFE module, relying solely on Sub for change
information decreased the IoU by 0.70% and the F1-score by
0.41% on the LEVIR-CD dataset, demonstrating that change
information extracted solely based on pixel differences fails to
meet the complexity of remote sensing change detection tasks,
necessitating the incorporation of additional channel similarity
and semantic difference information. Moreover, employing
Concat&Conv alone for fusing different feature maps in the
decoding phase resulted in a reduction of IoU by 1.24%
and F1-score by 0.72% on the LEVIR-CD dataset, and by
0.69% and 0.62% respectively on the S2Looking dataset.
These findings indicate that adaptive fusion is crucial for
processing multi-level feature maps, ensuring the network can
selectively leverage semantic information from higher-level
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Fig. 10. Network visualization using images from the LEVIR-CD dataset as example: (a) The input image, (b) Multi-level feature maps FA and FB generated
by the Image Encoder, (c) Multi-level feature maps DA and DB after passing through DIM, (d) Multi-level differential feature maps DFEwo obtained from
the original FA and FB through DFE, (e) Multi-level differential feature maps DFE obtained from DA and DB after passing through DFE; (f) Feature maps
AAFFwo and prediction map Predwo after processing DFEwo through AAFF, (g) Feature maps AAFF and prediction map Pred after processing DFE
through AAFF; (h) and (i) Result images Outputwo and Output, showing the comparisons between the prediction maps Predwo and Pred with the Ground
Truth, where green, yellow, black, and red colors represent TP, FP, TN, and FN, respectively.

feature maps and rich textural details from lower ones for
accurate predictions.

The complete ChangeDA model, with its modules synergis-
tically interacting and complementing each other’s strengths,
achieves optimal performance, thereby confirming the model’s
innovativeness and superiority.

I. Network Visualization

To qualitatively observe the role of each module in
ChangeDA, we selected a pair of bi-temporal images from
the LEVIR-CD dataset and visualized feature maps at different
stages to visually demonstrate the shifting areas of attention
during the network’s operation. As shown in Fig. 10, starting
with the dual-phase images ImgA and ImgB [Fig. 10(a)], we
initially derive bi-temporal feature maps FA and FB through
a backbone network [Fig. 10(b)]. Thereafter, the DIM module
infuses these feature maps with depth information, generating
new maps DA and DB [Fig. 10(c)]. With depth information
incorporated, it becomes clear that the network directs en-
hanced focus toward taller objects. [Fig. 10(e)] presents the
differential feature maps produced by the DFE module, which,
through careful comparison of the depth-augmented features
DA and DB , effectively emphasizes zones of notable change
in building clusters while reducing emphasis on areas with
minimal variation, such as roads and land. Following this, the
AAFF module adaptively merges these cross-level differen-
tial feature maps and executes an integrated prediction [Fig.
10(g)], highlighting the model’s superior discriminatory power.
Specifically, the central tower, with its consistently unchanged

structure and position across time, is precisely identified by se-
mantic features, thus avoiding excessive attention to this stable
area. Upon integrating lower-level features that emphasize lo-
cal details, the model prudently disregards the tower, avoiding
misidentification. Conversely, for the dynamically changing
sections of the lower building complexes, the model astutely
amplifies the integration of fine-grained features like edge
contours, ensuring precise demarcation of change boundaries.
This balance between maintaining stability around the tower
and sensitivity to variations in building clusters exemplifies
the model’s precision and nuanced handling.

In highlighting the DIM module’s contribution, we contrast
the outcomes from processing feature maps through the DFE
module without depth information [Fig. 10(d)] against those
following DIM pre-processing [Fig. 10(e)]. We note that
feature maps devoid of depth information tend to prioritize
unchanged terrain and roads, whereas those post-DIM pro-
cessing are more attuned to actual regions of transformation.
Advancing further, by applying the AAFF module to fuse
and predict based on these contrasting scenarios, we attain
prediction outcomes both without [Fig. 10(f)] and incorpo-
rating [Fig. 10(g)] depth information integration. Fig. 10(h)
(absence of DIM) and Fig. 10(i) (with DIM) present the
comparison of prediction outcomes against Ground Truth, with
green signifying TP, red denoting FN, and yellow indicating
FP. Through meticulous analysis, we conclude that integrating
DIM markedly improves the comprehensiveness and precision
of object recognition, effectively decreasing false positives by
reducing mispredictions of unmodified areas and minimizing
false negatives by capturing more true changes. This compar-
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ative finding directly affirms the significant effect of the depth
information fusion strategy on boosting model performance
and curtailing both false alarms and missed detections, solidly
endorsing the critical role of the DIM module in enhancing
the accuracy of remote sensing image change detection.

V. CONCLUSION

In this paper, we introduced ChangeDA, a depth-augmented
multi-task network designed to enhance the effectiveness of
RSCD. ChangeDA leverages depth information extracted from
optical images to improve the detection of subtle changes
and structural details in three-dimensional space. The multi-
task learning framework enables depth estimation to act as an
auxiliary task, sharing feature maps with the primary change
detection task. This synergy boosts the accuracy of depth
estimation and refines the granularity and detail of change
detection, significantly improving overall performance. The
network uses a DIM to integrate depth information into the
dual-temporal feature maps, enhancing the network’s ability
to perceive changes over time. The DFE focuses on extracting
differences between these feature maps, aiding in the precise
localization of changes. The AAFF optimizes the fusion of
multi-source features, ensuring that the most relevant infor-
mation is emphasized during change detection. Our exper-
imental results on prominent single-modal and multi-modal
datasets demonstrate the robust adaptability and effectiveness
of ChangeDA. Compared to state-of-the-art single-modal net-
works, ChangeDA captures detailed and subtle changes more
effectively due to the integration of depth information. When
evaluated against multi-modal networks, ChangeDA shows a
competitive edge in handling both 2D and 3D change detection
tasks, thanks to its innovative design and effective use of multi-
task learning.
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