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Effective underwater sensing is crucial for environmental protection and sustainable energy transitions, par-
ticularly as we face growing challenges in marine ecosystem monitoring, resource management, and the need
for efficient energy infrastructure. To support these efforts, we propose a multimodal sensing approach that
enhances underwater detection and distance estimation by combining affordable sonar technology with stereo
vision-based depth cameras. Our method integrates the Ping 360 single-beam sonar for target detection and
distancemeasurement with depth refinement from the Intel RealSenseD455 camera. A promptable segmentation
model automates sonar target detection, overcoming challenges such as acoustic noise and shadowing without
requiring large labeled datasets. Depth images from the stereo camera are enhanced using a Depth-Anything
model, addressing underwater-specific issues like noise, missing regions, and light attenuation, achieving
accurate depth maps for distances up to 1.2 meters underwater. By leveraging multimodal sensing, this approach
not only improves underwater robotics for navigation, manipulation, and exploration but also plays a key role
in monitoring and maintaining energy infrastructure, such as offshore wind farms and underwater pipelines.
Accurate, real-time sensing of these installations ensures more efficient operations, minimizes the environmental
impact, and aids in the sustainable management of ocean resources. This enables better energy production and
resource utilization, which are essential for a smarter and more sustainable energy transition.

Key words: underwater multi-modal sensing; image fusion; depth refinement; sonar image analysis

Citation: Hamidreza FARHADI TOLIE, REN Jinchang, Md Junayed HASAN, et al. Effective Marine Monitoring
with Multimodal Sensing and Improved Underwater Robotic Perception towards Environmental Protection and
Smart EnergyTransition[J]. Journal ofGeodesy andGeoinformationScience, 2024, 7(4): 19-35.DOI: 10.11947/j.JGGS.
2024. 0403.

1 Introduction

The ocean plays a vital role in controlling the
global climate, supporting diverse life forms, and
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providing renewable resources. However, increasing
challenges like climate change, overfishing, and pol-
lution are threatening the stability of these ecosys-
tems[1]. To better understand and protect the ma-
rine environment, it is essential to use advanced
monitoring technologies. Multimodal sensing sys-
tems, incorporating both sonar and optical imaging,
enable comprehensive underwater mapping and as-
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sessment. These technologies provide valuable in-
sights into ocean features, water quality, and the
overall health of marine ecosystems, facilitating im-
proved environmental protection and resource man-
agement. Additionally, advancements in underwa-
ter robotics have transformed our ability to moni-
tor vast and remote oceanic regions. Equipped with
cutting-edge sensing technologies, these robots can
navigate and collect data from previously inacces-
sible areas, significantly enhancing the accuracy of
marine assessments.

Leveraging artificial intelligence for data process-
ing, enables robotic systems to detect changes in
marine environments, which is vital for protecting
biodiversity and fostering sustainable seabed en-
ergy projects. Together, multimodal sensing and en-
hanced robotic capabilities are essential for develop-
ing smart energy solutions and ensuring the respon-
sible use of ocean resources. This includes managing
fisheries[2] to safeguard vulnerable species and ad-
vancing renewable energy development[3] including
but not limited to automated inspection and con-
dition monitoring.

However, underwater exploration and task exe-
cution have long posed significant challenges due
to the complex nature of the subsea environment.
Historically, human divers have been tasked with
conducting inspections, maintenance, and object
retrieval, often at great personal risk[4]. However,
with advances in technology, Remotely Operated
Vehicles (ROVs) and Autonomous Underwater Ve-
hicles (AUVs) have taken over many of these re-
sponsibilities[5]. These vehicles rely heavily on op-
tical sensors for navigation and perception. Unfor-
tunately, the underwater world presents unique ob-
stacles such as poor visibility, light scattering, and
water turbidity, which severely limit the effective-
ness of traditional optical sensors[6].

To overcome these challenges, the integration
of multiple sensing modalities has emerged as a
promising approach for enhancing underwater per-
ception[7]. One such advancement is the use of
depth cameras, which provide accurate 3D mea-
surements of the environment, crucial for under-

standing object shapes, distances, and dimensions.
Despite their benefits, depth cameras face consid-
erable limitations in underwater environments, par-
ticularly in conditions of low visibility where optical
sensors struggle to perform effectively.

In these scenarios, sonar-based systems, which
rely on acoustic signals rather than light, offer a
reliable alternative. Sonar can provide precise dis-
tance measurements even in murky or dark envi-
ronments, making it an invaluable tool for under-
water object detection and obstacle avoidance[8].
Multi-beam sonar systems, for example, can gener-
ate detailed 3D maps of underwater surroundings,
but their high cost often limits their use. In con-
trast, Single-Beam Sonar (SBS) systems are more
cost-effective, though they can suffer from noise and
shadowing effects that hinder their ability to pro-
vide detailed object-specific information.

Recognising the strengths and limitations of
both optical and acoustic sensing systems, our re-
search explores the potential of multi-modal sens-
ing for underwater applications. By integrating
stereo camera modules with sonar systems, we aim
to leverage the complementary strengths of these
two modalities. This combination allows for im-
proved perception, particularly in scenarios where
one modality alone might struggle—such as when
optical sensors are affected by water conditions or
when sonar systems provide insufficient detail.

Rather than focusing solely on the development
of a prototype, this work emphasises the potential
of this multimodal approach to improve underwa-
ter object detection, depth and range measurement,
and control. Through the collection and analysis of
data from both the stereo camera and sonar mod-
ules, we demonstrate how combining these modal-
ities can enhance perception in underwater envi-
ronments. While we outline a potential prototype
for future demonstration, the core of our work lies
in proving the efficacy and advantages of this inte-
grated sensing system.

Herein, we aim to develop more robust and re-
liable underwater sensing technologies, paving the
way for improved haptic sensing and robotic control
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in challenging subsea conditions.

1.1 Current research gap

Despite significant advancements in underwater
sensing technologies, several gaps remain in the ef-
fective utilisation of multimodal systems, particu-
larly in stereo vision and sonar integration for un-
derwater object detection and distance estimation.

1) Limitations of depth image refinement tech-
niques: Most depth image refinement techniques
currently rely on color image- or adjacent pixel-
based refinements, which are particularly ineffec-
tive in underwater environments where light scat-
tering, colour distortion, and shadow regions de-
grade the quality of captured data. Techniques such
as those proposed by CHEN et al.[9] and MAT-
SUO et al.[10], though useful in air-based scenarios,
struggle underwater due to the more pronounced
effects of noise, missing regions, and non-uniform
colour distributions. Moreover, deep learning-based
approaches such as those by ZHANG and WU[11]

that aim to refine depth images often fail to ad-
dress the underwater-specific noise characteristics,
especially when large portion of data is missing. Ex-
isting methodologies also tend to focus on enhanc-
ing edge detection and noise reduction without fully
addressing the unique challenges posed by the un-
derwater environment, leaving a gap in robust and
reliable depth estimation.

2) Challenges in sonar-based target detection:
While sonar systems like the Ping 360 offer a cost-
effective solution for underwater sensing, current
research primarily focuses on navigation and ob-
stacle avoidance. Target detection in single-beam
sonar systems remains under-explored due to inher-
ent limitations such as acoustic shadowing, speckle
noise, and low resolution[9]. Most existing object
detection methods, as seen in KIM et al.[12] and
MCKAY et al.[13], are tailored to imaging sonar
systems, which have better spatial resolution as well
as shape information helping to distinguish between
various objects. However, these methods often over-
simplify sonar data when converting it into image-
like outputs, ignoring the complexities of acous-

tic data and reducing their real-world applicabil-
ity. Additionally, machine learning models for sonar
data are typically trained on high-quality data,
which may not reflect the noisy and low-resolution
reality of single-beam systems like the Ping 360.
This results in performance degradation when ap-
plied to practical underwater environments, leav-
ing a significant research gap in single beam sonar-
based target detection.

(3) Absence of multimodal integration: Although
there has been considerable progress in stereo and
sonar technologies individually, the integration of
these sensing modalities for underwater applica-
tions remains largely unaddressed. Existing stereo
vision models, including StereoNet[14] and PSM-
Net[15], demonstrate accurate depth estimation in
controlled environments but struggle in underwa-
ter scenarios where the reliance on RGB-based re-
finements fails due to colour distortion and scat-
tering. On the other hand, sonar systems excel at
depth perception but lack detailed object informa-
tion. The absence of a cohesive system that lever-
ages the strengths of both stereo vision and sonar
for underwater object detection and distance estima-
tion represents a significant gap in current research.

1.2 Contributions

To address the aforementioned gaps, our research
proposes an integrated approach that combines
stereo vision with single-beam sonar data to en-
hance underwater object detection, distance esti-
mation, and noise reduction.

1) Multimodal sensing approach: We propose
a novel framework that integrates stereo camera
modules with the Ping 360 sonar, leveraging the
complementary strengths of optical and acoustic
sensors. By combining the 3D spatial awareness of
stereo vision with the reliable range detection of
sonar, we enhance the accuracy of underwater ob-
ject detection, especially in scenarios where either
modality alone would fail. This integrated approach
addresses challenges in murky water and limited ob-
ject detail in sonar, enabling more reliable monitor-
ing of marine ecosystems. Such improved sensing
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is essential for environmental protection and sus-
tainable management of ocean resources, support-
ing tasks like habitat preservation and seabed as-
sessments for renewable energy projects.

2) Advanced depth image refinement: To over-
come the limitations of traditional pixel-based
depth refinements, we propose a method that
combines RGB-based relative depth images with
recorded depth data for more accurate measure-
ments in underwater environments. Unlike previ-
ous techniques that fail in these conditions, our ap-
proach leverages both modalities to generate more
complete and reliable depth maps. This refinement
supports better environmental assessments, helping
detect changes in oceanic features and ecosystems,
which is critical for protecting biodiversity and fa-
cilitating sustainable energy infrastructure, such as
offshore wind or tidal energy installations.

3) AI-enhanced sonar target detection: We ad-
dress the challenges of single-beam sonar-based tar-
get detection by proposing an AI-based method
for automating the distance estimation of multiple
objects in real-time sonar data. Instead of relying
on conventional object detection methods, we em-
ploy a promptable segmentation model that can de-
tect target objects based on their presence, even in
noisy and shadowed environments. This AI-driven
approach enhances the ability to monitor vulnera-
ble marine species and track changes in underwater
habitats, ensuring more responsible resource man-
agement and aiding the sustainable development of
subsea energy projects.

4) Prototype and real-world validation: While
our primary focus is on demonstrating the poten-
tial of multimodal sensing, we aim to develop a sim-
plified prototype that integrates stereo vision and
sonar modules. This prototype will serve as a prac-
tical proof-of-concept, showcasing the viability of
multimodal sensing for underwater object detection
and manipulation tasks. By validating our approach
in real-world scenarios, we contribute to the devel-
opment of more effective and affordable underwater
monitoring systems, which are crucial for both en-
vironmental conservation and supporting the tran-

sition to smarter, sustainable energy solutions.

2 Relevant Backgrounds

In this section, we will discuss about the neces-
sary backgrounds of the selected sensor models, and
relevant technical details for our proposed method-
ologies.

2.1 Sensor details

2.1.1 Intel RealSense D455 camera
The Intel RealSense D455 camera integrates

stereoscopic depth sensors, an RGB sensor with a
resolution of 1280 × 800 at a frame rate of 30 frames
per second, and an infrared (IR) projector. By util-
ising these three sensors, the camera generates a
depth map by detecting IR light reflected from ob-
jects in the scene. Compared to traditional stereo
vision systems, the inclusion of IR light allows the
RealSense camera to operate effectively even in low-
light conditions, which can be beneficial for under-
water applications.

Technically, depth images are formed using stereo
vision algorithms. The IR projector emits invisible
structured IR rays into the scene, which helps to
enhance depth perception. Stereo vision algorithms
then compute the correlation between each pixel
from the left and right cameras using an onboard
processor, generating a depth image. It is impor-
tant to note that the depth image records the dis-
tance from the camera plane to the object plane, not
the diagonal distance to the objects[16]. As demon-
strated in Fig. 1, although the diagonal distances to
objects vary, the depth distance remains the same
for all four objects.

While the RealSense D455 camera is known for
its accuracy in both indoor and outdoor environ-
ments, its performance significantly declines in un-
derwater settings. This is primarily due to the re-
fraction of IR light in water, which causes distor-
tions. Moreover, the camera itself is not waterproof,
requiring the use of an external waterproof hous-
ing, which introduces additional refraction. These
factors lead to noisy depth images with significant
missing regions[17]. As an example, Fig. 2 illustrates
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Figure 1 Schematic diagram of the depth and range
(diagonal distance) from the camera plane
to the objects

RGB image Depth image

Figure 2 Sample RGB and depth images captured
within the water tank

depth images captured in our experimental water
tank. As seen, the depth images suffer from outliers,
noise, and missing regions, making it challenging to
accurately determine the shape and dimensions of
objects.
2.1.2 Blue-robotics Ping 360 sonar

For sonar data acquisition, we utilised the Ping
360 sonar, a mechanical SBS designed for localising
targets and inspecting underwater structures by de-
tecting sound wave reflections[18]. The sonar oper-
ates through a publicly available API[19], providing
flexibility in data collection. The Ping 360 offers a
scanning range between 0.75 m and 50 m, with a
full 360◦ scanning sector, and adjustable voltage gain
levels (low, medium, and high), making it a versatile
tool for underwater exploration and tracking.

However, during operation, the Ping 360 gener-
ates substantial noise near the sonar head due to
the rotational motion of the transducer[18]. This re-
sults in a consistent noise zone extending approxi-
mately 0.25 m around the sonar head, which must
be accounted for when analysing the sonar data.

3 Methodology

3.1 Promptable segmentation for distance
measurement from sonar

The Ping 360 sonar system includes a graphical
interface that allows users to establish connections,

monitor real-time data, and record sonar readings.
Additionally, it offers a distance axis for estimating
the proximity of objects. However, for more precise
distance measurements and to eliminate the need
for manual interpretation, we propose integrating
Artificial Intelligence (AI) to automate the process.
By employing AI, the system can not only identify
objects within the sonar image but also measure
distances to multiple objects simultaneously.

Traditionally, object detection methods such as
those in Literatures [20]—[23] use bounding boxes
to identify objects, while segmentation models[24-26]

aim to pinpoint exact object locations. However,
these methods assume distinct object shapes, mak-
ing them less effective for SBS data, which typically
captures object presence without detailed shape in-
formation. In addition, the availability of training
data is limited, and the noise and shadowing zones
prevalent in underwater environments pose further
challenges. As a result, we propose the use of ad-
vanced promptable segmentation methods to im-
prove detection accuracy.

The proposed methodology is outlined in Fig. 4.
Initially, statistical properties and region labeling
of the sonar image are used to generate segmenta-
tion prompts, which are then fed into the state-of-
the-art Segment-Anything Model (SAM)[28] along
with the recorded sonar data to localise objects or
targets. Based on the generated mask, the system
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Figure 3 (a) Illustration of the sonar sensor positioned at 0◦ horizontally, with the transducer head aligned
along the x-axis. The expected vertical and horizontal coverage of the transmitted pulse is depicted,
along with the scan area (represented by the blue rectangular box) in a hypothetical tank[18]; (b) Raw
sonar data from a 102◦ scan of an empty tank, with a boundary detected at approximately 1.50 meters.
The left axis represents intensity values (I) ranging from 0 to 255, displayed in a polar coordinate
system; (c) Converted polar representation of the raw data in (b), where the tank boundary is clearly
visible at 1.50 meters. This format is typically used by the sonar interface software and is commonly
employed in AI-driven research for analysing sonar data. All figures are provided for demonstration
purposes.
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Figure 4 General framework of the proposed methodology using SAM[27]

calculates the diagonal distance to the detected ob-
ject, taking the sonar’s characteristics into account.
The SAM model is preferred over simple region la-
beling due to its ability to more accurately capture
complete object boundaries. For example, during
our trials, single objects with partial colour coat-
ings were sometimes detected as separate objects

through basic region labeling. SAM, however, over-
comes such issues by accounting for regional con-
nectivity, leading to more accurate object identifi-
cation and distance measurements. The subsequent
subsections explain the prompt generation and dis-
tance measurement processes in detail.
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3.1.1 Prompt generation
In the experimental setup, data points from each

angle were recorded as intensity values I ranging
from 0 to 255, with each point corresponding to a
segment of the total scanned distance. For instance,
with a maximum distance Dmax = 2 meters and
1200 samples, each sample point represents approx-
imately 0.001 67 meters. Data within 0.25 meters of
the sensor head and beyond 1.40 meters (based on
the tank setup) were excluded as unreliable. Statis-
tical thresholding was then applied to the Region
Of Interest (ROI), retaining intensity values where
I was greater than or equal to 2×µ+σ (empirically
determined), thereby filtering out noise. The mean
intensity µ and standard deviation σ for each angle
were calculated using the following equations

µ =
1

N ′

N ′∑
i=1

Ii (1)

σ =

√√√√ 1

N ′ − 1

N ′∑
i=1

(Ii − µ)2 (2)

Where N ′ represents the number of samples
within the ROI.

The denoised data was then transformed from
Cartesian to polar coordinates for further analysis,
using the following equations

r =
√
x2 + y2 (3)

θ = arctan
(y
x

)
(4)

To generate the input prompts for the SAM al-
gorithm, we employed Python’s scikit-image region-
props function, which identifies potential regions in
the filtered image. Regions smaller than 600 pix-
els (based on empirical testing) were considered
noise or shadowing zones and discarded. The cen-
tral points of the remaining regions were used as
input prompts for the SAM algorithm.
3.1.2 Sonar based distance measurement

To compute the distance between the sonar and
detected objects, we used the identified object
masks within the sonar image. First, a bounding
box was drawn around each object based on the
mask coordinates. The center point of the closest

edge (bottom-most along the x-axis) was then lo-
cated, and the distance d was calculated using the
following equation

d =
√

(Xo
c −Xs

c )
2 + (Y o

c − Y s
c )

2 (5)

Where (Xo
c , Y o

c ) and (Xs
c , Y s

c ) represent the cen-
ter points of the object and the sonar sensor, re-
spectively.

Once d was computed in terms of pixel distance,
we converted the value into centimeters. Given that
each centimeter in the sonar image corresponds to 6
pixels (based on a maximum range of 200 centime-
ters across 1200 samples per angle), the distance
d was divided by 6 to obtain the actual distance
measurement in centimeters.

3.2 Stereo depth refinement using depth-
anything

The framework for the proposed depth refine-
ment strategy is illustrated in Fig. 5. The left and
right infrared (IR) cameras of the RealSense system
are used to capture the scene, and a depth map is
generated based on RealSense’s stereo vision tech-
nology. Additionally, we incorporate the recently
introduced Depth-Anything method to produce a
pseudo disparity image, which provides relative dis-
parity information. Since our goal is to refine the
depth data generated by the RealSense camera, we
utilise the camera’s baseline and focal length to con-
vert the pseudo disparity into relative depth values
as follows

relative depth =
baseline × focal length

pseudo disparity (6)

For the RealSense D455 camera, the baseline and
focal length are 95 mm and 1.88 mm, respectively.

As shown in Fig. 5, the generated relative depth
image is clear of noise, and object shapes are
well defined. To estimate accurate absolute depth
values, we map the relative depth values to the
RealSense-generated absolute depth data. Sample
points with varying intensity values are selected
from the relative depth image, and their corre-
sponding absolute depth values are obtained from
the RealSense depth image. To minimise the error
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Figure 5 Framework of the proposed refinement strategy[29]

between the estimated and actual depth values, we
fit a polynomial curve to the sample points. The
curve fitting is described by the following polyno-
mial equation

f(x) = a6x
6+a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0

(7)

Where
6∑

i=1

ai are the coefficients determining the

influence of each power of x, while a0 represents the
curve’s constant term at x = 0. These coefficients
are determined by solving a least-squares problem
using data points from the sample images.

3.3 Stereo depth refinement using BasNet

In addition to the SAM, we have also tried
to refine the depth images using saliency maps
as they assist in identifying visually interested
object regions[30]. To this end, we have utilized
the Boundary-Aware Salient Network (BasNet)[31],
that excels at detecting salient objects within RGB
images by focusing on object boundaries, making
it particularly effective for this task. By generating
saliency maps, BasNet identifies and highlights the
most prominent objects in a scene. In this paper,
the obtained saliency maps are applied as masks to
the corresponding depth images, effectively filtering
out background noise. This process allows us to bet-
ter distinguish the depth information of the objects
of interest, ensuring that the refined depth images
are not only more accurate but also more focused

on the relevant parts of the scene. The flowchart for
depth refinement using BasNet is depicted in Fig. 6.

To enhance the performance of saliency detec-
tion, we first preprocess the RGB images by apply-
ing denoising techniques to generate higher-quality
inputs for the BasNet model. Specifically, we utilize
Principal Component Analysis (PCA)[32] to extract
the first principal component from RGB images.
This approach effectively captures the most signif-
icant features while filtering out noise. By reduc-
ing the noise in RGB images, PCA allows saliency
detection to concentrate on the objects of inter-
est more effectively. The first principal component
acts as a denoised representation of the original
RGB image, preserving essential information while
enhancing the clarity and focus of the image for
subsequent processing. Next, these denoised RGB
images are fed into BasNet to generate the corre-
sponding saliency maps, which highlight the most
visually prominent regions in the images. To fur-
ther refine the saliency detection results, we apply
the OTSU thresholding method[33] to the saliency
maps. OTSU is an effective technique for automat-
ically determining an optimal threshold by maxi-
mizing the variance between foreground and back-
ground regions. Additionally, OTSU is adaptive,
making it suitable for handling images with vary-
ing illumination and contrast, ensuring consistent
performance across different visual conditions. This
step converts the continuous saliency values into
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Figure 7 Schematic diagrams of the testing environments

binary masks that precisely segment the objects of
interest from the background. The sample gener-
ated results from denoising the RGB images to gen-
erating object masks, are illustrated in Fig. 6.

4 Further Discussions and Analysis

4.1 Experimental setup

To integrate the sonar and stereo vision-based
sensing, we have placed both of these sensors in
a water tank shown in Fig. 7(a). The experiments
took place within a glass water tank measuring

60 × 60 × 150 cm3 (height × width × length),
with tank walls 1 cm thick. The water level reached
28 cm in height. To enhance reflection quality at-
tributable to the tank’s glass structure, acoustic
foams were affixed to its interior walls and the cam-
era was attached to the exterior wall. Then, the
stereo camera is attached to the exterior wall and
the sonar was places inside the tank in an altitude
of 10.5 cm from the tank’s floor. However, to test
each of the sensing modalities separately, we have
conducted experiments with each of them individ-
ually as shown in Fig. 7(b) and (c).
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To validate our depth refinement strategy, we con-
ductedexperiments inourwater tankusingtwometal
pipes and a bucket to capture depth images by plac-
ing these objects at the distances of 60 cm to 120 cm.
Depth images were then used to evaluate the accu-
racy of our distance predictions compared to ground-
truth distances. The reported distance values repre-
sentdepth,whichcorrespondstothestraight-linedis-
tance from the camera plane to the object plane. For
the sonar, we have conducted experiments using two
objects, a uniform and a bent pipe shown in Fig. 8, to
evaluate the performance in diagonal distance mea-

surement using the proposed SAM-based approach.

4.2 Sonar-related experimental details

To assess the performance and accuracy of the
proposed approach, we first conducted a set of ex-
periments with a bent pipe, as illustrated in Fig. 8.
The goal was to identify the optimal gain setting for
the Ping 360 sonar. The bent pipe was positioned
at diagonal distances of 50, 70, 90, and 110 cm from
the sensor, and data were collected at three different
gain levels: low, medium, and high. The resulting
sonar images are shown in Fig. 9. Based on the ob-
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servations from the experiments, the following con-
clusions were made:

1) Low gain produced images with less noise, but
the reflections from the object were too weak for
clear identification.

2) High gain produced strong reflections from the
object, but the images became excessively noisy,
and the shadowing zone was exaggerated, leading
to potential object misidentification.

3) Medium gain provided the best results, yield-
ing clearer object identification and more accurate
distance measurements across the test cases.

4) The appearance of shadow zones was influ-
enced by the sensor’s altitude and its viewing angle
(whether straight or tilted). At a lower altitude of
10 cm with a straight field of view, an object placed
50 cm away produced more shadowing compared to
other distances.

Next, to evaluate the performance of SAM in
terms of object identification and distance measure-
ment, we measured the distances of the bent pipe
using the medium gain setting and placed it at var-
ious distances. The measured results are presented
in Tab. 1. Based on the data, the measurement er-
ror varied between 0.17 and 1.33 cm, demonstrating
high accuracy in object localization and distance
estimation. Similarly, experiments were conducted
using a uniform pipe (shown in Fig. 8), which was
placed at the same distances. The corresponding
results are shown in Tab. 2, with an absolute error
range of 0.33 to 1.0 cm.

The following general observations were made
during the experiments:

1) Although the Ping 360’s optimal range is be-
tween 0.75 and 50 m, it still provides reliable data
for objects located between 0.5 and 0.75 m.

2) A single Ping 360 sensor is insufficient to deter-
mine the precise shape or dimensions of an object.

3) With the proposed approach applied to Ping
360 data, diagonal object distances can be automat-
ically measured with a maximum error of 1.5 cm.

4) Using a Tesla T4 GPU on Google Colab, the
average processing time per sonar image was ap-
proximately 2.5 seconds.

4.3 Stereo vision-related experimental re-
sults

To validate the depth refinement strategy, exper-
iments were carried out in a water tank using two
metal pipes and a bucket to capture depth images.
These images were subsequently used to assess the
accuracy of the predicted distances relative to the
ground-truth distances. The reported distances rep-
resent depth, defined as the straight-line distance
from the camera plane to the object plane, as shown
in Fig. 1. The key observations from the experi-
ments are as follows:

1) The infrared technology used in the RealSense
camera allows it to capture depth images effectively,
even in low-light conditions.

2) The operational distance range of the Intel
RealSense camera in the underwater setup is
between 60 and 120 cm.

3) Depth measurement accuracy decreased by ap-
proximately 30% in the underwater environment,
requiring a compensation factor of 1.30.

4) The error rate decreased as objects were po-
sitioned farther away, dropping to less than 1% of
the ground-truth distance for distant objects.

5) The measured distances were influenced by the
object’s shape and the camera’s viewpoint.

6) The refined depth images allowed for the re-

Table 1 Distance measurement results for the
bent pipe at different distances

Ground truth/cm 50 70 90 110
Measured distance/cm 48.67 69.83 91.0 111.33

Absolute Error/cm 1.33 0.17 1.0 1.33

Table 2 Distance measurement results for the
uniform pipe at different distances

Ground truth/cm 50 70 90 110
Measured distance/cm 51.0 70.67 90.33 111.0

Absolute Error/cm 1.0 0.67 0.33 1.0
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construction of more visually accurate 3D images
of the underwater scene.

Fig. 10 presents the RGB image, the depth im-
age captured by the RealSense camera, the refined
depth image generated using the Depth-Anything
model, and the refined depth image using the
BasNet-based approach. While the depth image
from the RealSense camera lacked detailed infor-
mation about the environment, the refined depth
images effectively highlighted the target objects. As
seen in Fig. 10, although the BasNet-based refine-
ment approach produces prominent results by re-
moving noise, it fails to identify objects in distance
such as the left pipe of the depth image in the sec-
ond row of the Fig. 10. Hence, we have conducted
depth measurement only by applying the Depth-
Anything-based refinement approach.

By applying the proposed Depth-Anything-based
refinement strategy—mapping relative depth values

to absolute depth data—and taking into account
that depth refers to the straight-line distance from
the camera to the object plane, we were able to
provide detailed depth information for the objects
of interest. The measured ground-truth and com-
pensated depth values for each experimental setup
are reported in Tab. 3.

From the results, we observed that the Intel Re-
alSense D455 camera provided depth measurements
with an absolute error of approximately 1 cm in the
given experimental setup. Fig. 11 presents the rela-
tive and absolute error values. The minimum error
was found for objects placed between 65 and 100 cm
from the camera, suggesting that positioning the
camera within this range on a robotic arm would
minimize error during robotic manipulation. Fur-
thermore, the relative error decreased as the object
distance increased, demonstrating the camera’s po-
tential for accurate distance measurement at longer

RGB Realsense depth image Depth refinement using

Depth-Anything

Depth refinement using

BasNet

EXP #1

EXP #2

EXP #3

EXP #4

EXP #5

Figure 10 RGB, RealSense depth, and relative depth images captured under five different experimental settings
with objects placed at varying distances
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Table 3 Distance measurement results for objects in various experiments

Experiment Object Ground-truth depth/cm Compensated
measured distance/cm Absolute error/cm

EXP #1 Left pipe 84.0 83.7 0.3
EXP #1 Right pipe 97.5 98.2 0.7
EXP #2 Left pipe 84.0 83.7 0.3
EXP #2 Right pipe 61.5 62.5 1.0
EXP #3 Left pipe 84.0 83.7 0.3
EXP #3 Right pipe 64.8 63.8 1.0
EXP #3 Bucket 92.5 93.0 0.5
EXP #4 Left pipe 84.0 85.0 1.0
EXP #4 Right pipe 60.7 59.9 0.8
EXP #4 Bucket 104.3 105.3 1.0
EXP #5 Left pipe 84.0 83.7 0.3
EXP #5 Right pipe 60.7 59.9 0.8
EXP #5 Bucket 120.5 119.6 0.9
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Figure 11 Diagrams showing the relative and absolute depth measurement error

ranges.

5 Contribution Analysis

This section analyzes the proposed contributions
of our research and evaluates the extent to which
these goals have been achieved based on the ex-
perimental results, with a focus on how these ad-
vancements contribute to the protection of marine
ecosystems.

5.1 Multimodal sensing approach

This contribution has been successfully achieved.
The experimental results demonstrate that the mul-
timodal sensing approach effectively compensates

for the limitations of each sensor. The sonar pro-
vided reliable distance measurements in underwater
conditions where stereo cameras struggled, while
stereo vision contributed detailed spatial aware-
ness. By integrating AI for automating target de-
tection within sonar images, this approach offers
enhanced accuracy and robustness, significantly
improving underwater sensing[27]. These advance-
ments are crucial for ecosystem protection, as they
enable more precise monitoring of marine habitats,
facilitating the detection of changes or threats to
biodiversity, such as habitat degradation or over-
fishing.
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5.2 Advanced depth image refinement

The proposed depth refinement strategy has been
successfully implemented and validated through ex-
periments. The results indicate that the Depth-
Anything-based[34] refinement approach effectively
generates accurate and reliable depth images, ad-
dressing common challenges such as noise and miss-
ing regions. The refined depth images significantly
improved measurement accuracy, particularly when
objects were positioned at optimal distances from
the camera, as reflected in the reported error mar-
gins[29]. This improvement in depth accuracy is es-
sential for monitoring underwater ecosystems, as it
allows for more detailed assessments of seafloor to-
pography and habitat structure, which are key to
maintaining healthy marine environments.

5.3 AI-enhanced sonar target detection

The implementation of a promptable segmenta-
tion model, along with statistical signal threshold-
ing, allowed for precise target detection and dis-
tance estimation within sonar data. The experimen-
tal findings show that the medium gain setting pro-
vided the optimal balance between noise reduction
and object detection accuracy. The AI-driven mod-
els enhanced the precision of these measurements,
achieving a maximum error of only 1.5 cm in di-
agonal distance measurements, validating the effec-
tiveness of this approach. By improving the ability
to detect and track objects in complex underwater
environments, this contribution aids in the mon-
itoring of endangered species, habitat restoration
efforts, and tracking human activities that could
harm sensitive ecosystems, such as illegal fishing or
underwater construction.

5.4 Prototype and real-world validation

The research successfully demonstrated the po-
tential of the multimodal approach in controlled ex-
perimental settings. The experiments with both the
Ping 360 sonar and Intel RealSense D455 camera
provided tangible evidence of the system’s capabil-
ities. However, the description of a fully functional

prototype and its testing in diverse real-world sce-
narios requires further elaboration. While the ex-
perimental results are promising, additional testing
in more varied and challenging underwater condi-
tions is necessary to ensure the broader applicabil-
ity and robustness of the proposed system. By ex-
tending this validation to real-world environments,
the system could play a critical role in environmen-
tal monitoring, enabling more accurate data collec-
tion in remote or sensitive regions, which is key to
protecting marine ecosystems from further degra-
dation.

5.5 Summary

In summary, the research has successfully ad-
dressed most of the proposed contributions. The
integration of stereo vision with sonar and the ad-
vanced depth image refinement techniques repre-
sent significant progress in underwater sensing. The
AI-enhanced sonar target detection further high-
lights the innovative nature of this work. These im-
provements in sensing accuracy and object detec-
tion directly support ecosystem protection by en-
abling more effective monitoring and management
of marine environments. Nevertheless, while the ex-
perimental results validate the core concepts, fur-
ther development and testing in real-world environ-
ments are essential to fully realize the potential of
the proposed system in supporting both environ-
mental conservation and sustainable resource man-
agement.

6 Conclusion

In conclusion, we have evaluated the usability of
stereo vision-based depth measurement in under-
water environments and explored the potential of
the Intel RealSense D455 camera for depth estima-
tion. Recognizing the limitations of stereo vision
underwater, we proposed a multimodal sensing ap-
proach that integrates sonar and depth cameras to
enhance underwater target detection and distance
estimation. Specifically, we introduced a prompt-
able image segmentation method applied to single-
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beam sonar images using the Ping 360 sonar for
target detection and distance measurement. Our
experiments demonstrated the effectiveness of this
approach, particularly with a medium gain setting,
in accurately identifying objects and measuring dis-
tances in complex underwater conditions.

To further improve depth estimation, we uti-
lized the Depth-Anything model to refine the depth
images captured by the stereo camera, addressing
underwater-specific challenges such as noise, miss-
ing regions, and light attenuation. The refinement
process, which included polynomial curve fitting,
enabled the RealSense camera to produce high-
quality depth maps for robotic operations within a
range of 60 to 120 cm underwater. Our results val-
idate the effectiveness of this integrated strategy,
paving the way for more precise and reliable op-
erations in subsea environments, with applications
in underwater navigation, manipulation, and explo-
ration.

The achieved improvements in sensing and de-
tection also have broader implications for environ-
mental conservation and sustainable resource man-
agement. By enhancing the precision of underwater
sensing, our approach supports better monitoring of
marine ecosystems, aiding in the protection of bio-
diversity and the assessment of underwater energy
infrastructure. This is crucial for advancing sustain-
able energy projects, such as offshore wind farms
and tidal energy, ensuring they operate efficiently
while minimizing their environmental impact.

For future work, we aim to further improve depth
accuracy by enhancing RGB image through ex-
tracting noise free features[35] for segmentation and
assigning consistent depth values to object pixels
using recorded data. This can be achieved through
existing segmentation methods[36] or by applying
change detection techniques[37-39] that incorporate
temporal information and directional guided fil-
ters[40-41]. Expanding this multimodal framework
in real-world, dynamic underwater conditions will
be critical for advancing both environmental pro-
tection and the smart energy transition.
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