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ABSTRACT  

The design of nanocatalysts by controlling pore size and particle characteristics is 

crucial to enhance the selectivity and activity of the catalysts. Thus, we have 

successfully demonstrated the synthesis of binary PdPb alloy nanocubes (PdPb NCs) 

by controlling pore size and particle characteristics. In addition, the as-obtained 

binary PdPb NCs exhibited superior electrocatalytic activity of 4.06 A mg-1 and 16.8 

mA cm-2 towards ethylene glycol oxidation reaction (EGOR) and 2.22 A mg-1 and 9.2 

mA cm-2 towards glycerol oxidation reaction (GOR) when compared to the 

commercial Pd/C. These astonishing characteristics are attributed to the attractive 
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nanocube structures as well as the large number of exposed active areas. Furthermore, 

the bifunctional effects originated from Pd and Pb interactions help to display high 

endurance with less activity decay after 500 cycles, showing a great potential in fuel 

cells applications. 

KEYWORDS: Binary PdPb nanocubes; Catalysts; Fuel cells; High performance; 

Electrooxidation 

1. INTRODUCTION 

Currently, fuel cells have attracted lots of interest due to their wide application 

prospect in our daily lives.1-2 Ethylene glycol and glycerol, due to their high boiling 

point, low toxicity, and less obvious crossover, have attracted considerable attention 

for serving as potentially alternative fuels.3-6 In the research of highly-active 

electrocatalysts towards liquid fuels, noble metal platinum has been regarded as the 

significant and commonly used material, due to its high activity.7-8 Nevertheless, there 

are some disadvantages associated with Pt such as: high cost, low durability and scare 

natural abundance, which have seriously limited its large-scale production.9-10 To 

break this bottleneck, tremendous efforts have been focused on developing an 

appropriate substitute for Pt catalysts.11-13     

Recently, well-defined Pd nanocrystals have been of vital significance for 

applications in sensing, hydrogen storage and especially in fuel cells due to its high 

activity and great tolerance to some CO-like intermediate species in the alkaline 

media.14-18 Regardless of these favorable terms, there are still some problems related 

to the Pd nanocrystals such as particle aggregation and poor durability, all of which 
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greatly impede the commercial development of fuel cells technologies.19-21 Therefore, 

considerable attentions have been focused on designing Pd or Pd-based catalysts with 

improved electrocatalytic performances.22 The most promising strategy is to alloy Pd 

with a second transition metal, for which can not only gain a higher utilization of Pd, 

but also lift the electrocatalytic performances of Pd to a higher level through the 

bifunctional, electronic or surface effects.23-24 Among them, alloying Pd with Pb has 

been demonstrated to show excellent electrocatalytic performances due to the 

geometric, and electronic effect, as well as the bifunctional mechanism.25-26 Besides, 

the incorporation of Pb into Pd could also offer high resistance to toxic CO-like 

species by weakening the bond energy of Pd-CO or by enhancing the electrooxidation 

of CO-like species.27-28 

 Along with this strategy, morphology control has also been demonstrated to be 

an advanced approach for modifying the catalytic properties of Pd nanocrystals, 

therefore, enhancing the electrocatalytic performances. Up-to-date, significant 

advances have been achieved in the fabrication of Pd-based nanocrystals with 

fascinating morphologies. A lot of Pd-based nanocatalysts with unique shapes have 

been engineered such as nanowires,29-30 nanoflowers,31-32 and nanoframes 33-35. 

Among others, the binary nanocubes with rough surface in particular, have been 

proved to expose more active areas,36-37 which promote the electron mobility and 

efficient mass transfer of liquid fuel.38 In this regard, if we can integrate the 

morphology and composition superiorities to fulfill the design of Pd-based 

nanocatalysts over size and morphology, it would greatly boost the commercial 
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development of fuel cells.39-40 

Herein, we have developed for the first time an advanced method for the synthesis 

of binary Pd2Pb alloy NCs. The key parameter for synthesizing such fascinating 

Pd2Pb NCs structures is the successful introduction of hexadecyltrimethylammonium 

bromide (CTAB) in the reaction system. In addition, the Pd2Pb NCs structures 

presented unique characteristics such as: highly-dispersed properties as well as 

synergistic effect. Furthermore, the resulted Pd2Pb NCs exhibited greatly enhanced 

electrocatalytic activities of 4.06 A mg-1 and 16.8 mA cm-2, 2.22 A mg-1 and 9.2 mA 

cm-2 towards EGOR and GOR when compared to Pd/C. Finally, the 500 cycles CV 

have also demonstrated its superior durability with negligible decay. 

2. EXPERIMETAL SECTION 

2.1 Materials and reagents  

Palladium (II) acetylacetonate (Pd(acac)2, reagent grade, 99.0%) and oleylamine 

(OAm) were all purchased from Sigma-Aldrich. Lead (II) acetate (PbAc2, analytical 

reagent, 99.5%), lead (II) chloride (PbCl2, analytical reagent, 99%), CTAB 

(CH3(CH2)15N(Br)(CH3)3, analytical reagent, 99.0%), and tetra-n-butylammonium 

bromide (TBAB, analytical reagent, 99.0%) were purchased from Sinopharm 

Chemical Reagent Co. Ltd. (Shanghai, China). Cetyltrimethylammonium chloride 

(CTAC, reagent grade, 97%) was purchased from Alfa Aesar (Shanghai, China).  

2.2 Preparation of PdPb nanocubes (PdPb NCs) 

Experimentally, OAm (5 mL), Pd(acac)2 (7.6mg), PbAc2 (2.4 mg), and CTAB (36 

mg) were added into a vial. After sonicating for 2 h, the glass vial was then transferred 
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to the oil bath and heated to 160 °C in 30 min and kept reacting at 160 °C for another 

5 h. The syntheses of Pd3Pb NCs and Pd4Pb NCs could also be prepared via changing 

the amounts of PbAc2 to 3.2 mg and 4.8 mg, respectively while keeping other reaction 

conditions the same.  

2.3 Characterizations 

The morphologies and structures of the PdPb NCs were firstly characterized by a 

HITACHIHT7700 transmission electron microscope. The FEITecnai F20 transmission 

electron microscope was also employed to record the high-angle annular dark field 

scanning transmission electron microscopy (HAADF-STEM), high-resolution TEM 

(HR-TEM), and energy-dispersive X-ray spectroscopy (EDS) mapping images. A 

Thermo Scientific ESCALAB 250 XI X-ray photoelectron spectrometer using 300 W 

Al Kα radiation was used to recorded the X-ray photoelectron spectroscopy (XPS). 

The powder X-ray diffraction (PXRD) patterns were obtained by using X’Pert-Pro 

MPD diffractometer (Netherlands PANalytical) with a Cu Kα X-ray source (λ = 

1.540598 Å). 

2.3 Electrochemical measurements 

A standard three-electrode system was employed to perform all the 

electrochemical measurements. The electrochemical active surface area (ECSA) was 

related to the surface active sites,1 Therefore the ECSA can be calculated from the 

coulombic charge for the reduction of palladium oxide using the following equation: 

ECSA= Q/0.405×Pdm.41 EGOR was conducted in 1 M KOH + 1 M EG solution and 

GOR in 1 M KOH + 1 M glycerol solution. The durability was evaluated by 
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performing the CV for 500 cycles at the sweep rate of 50 mV s-1. For comparison, the 

commercial Pd/C was used as the reference catalyst.  

3. RESULTS AND DISCUSSION 

A simple wet-chemical method has been employed to create a novel class of PdPb 

NCs with tunable compositions. The morphological and structural features of Pd2Pb 

NCs were firstly investigated employing a TEM. The typical TEM images (Figure 1a) 

and HAADF-STEM images (Figure 1b) showed that the as-obtained nanocubes are 

uniform with a high yield approaching 100%. Through statistics on the size of 50 

particles, it was found that the resulted Pd2Pb NCs followed a narrow size distribution 

with a mean diameter around 10.2 nm (Figure S1). SEM-EDS has been employed also 

to confirm the structural compositions and morphologies.  
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Figure 1. (a) TEM, (b) low-magnification HAADF-STEM, (c) SEM-EDS images, (d) 

PXRD pattern, and (e) HRTEM image. XPS spectra of (f) Pd 3d and (g) Pb 4f in 

Pd2Pb NCs. 

Figure 1c illustrates that the atomic ratio of Pd/Pb in Pd2Pb NCs is 68.4/31.6, 
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being consistent with the feed ratio. The phase crystals of the samples were 

investigated by PXRD (Figure 1d). The PXRD patterns of Pd2Pb NCs showed the 

approached face-center-cubic (fcc) structure of PdPb alloy, confirming the presence of 

PdPb alloy phase in such Pd2Pb NCs.25 In addition, the alloy phase of PdPb was 

analyzed by HRTEM (Figure 1e). It was revealed that the adjacent fringe of the NCs 

is 0.202 nm, which is associated with the Pd2Pb (111) facet, further demonstrating the 

alloy phase formation of PdPb.42 Moreover, the elemental valences and the electronic 

coupling effect among Pd and Pb were studied by XPS. As it is displayed in Figure 1f 

and g, the binding energy of Pd slightly shift to a higher degree while Pb shift to a 

smaller degree when compared with both monometals of Pd and Pb, indicating the 

occurrence of charger transfer between Pd and Pb.43 

To further investigate their properties, the Brunauer–Emmett–Teller (BET) 

measurements have also been conducted. From the N2 adsorption–desorption 

isotherms in Figure S2, we can find that the as-prepared Pd2Pb NCs possessed high 

surface area, which is consistent with the analysis of TEM. These results have 

revealed that the as-prepared Pd2Pb NCs possess a high surface area, thus exposing 

more surface active sites available for EG and glycerol. 
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Figure 2. TEM images of (a) Pd3Pb, (b) Pd4Pb NCs, SEM-EDS of (c) Pd3Pb and (d) 

Pd4Pb NCs, PXRD patterns of (e) Pd3Pb and Pd4Pb NCs, (f) XPS spectra of (e) Pd 3d 

and (f) Pb 4f for Pd3Pb and Pd4Pb NCs. 

It has been demonstrated that the composition can greatly affect the final shape of 

the nanocrystals. In this regard, we have also taken into consideration the influences 

of compositions on the morphology, and we have therefore prepared the Pd3Pb and 
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Pd4Pb NCs via the same strategy while adjusting the amount of PbAc2. Figure 2a and 

b showed that both Pd3Pb and Pd4Pb nanocrystals also displayed the typical cubic 

structure like that of Pd2Pb, demonstrating that the large-scale synthesis regardless of 

the atomic ratio variation. Through detailed statistics, it was found that the average 

diameter of the obtained Pd3Pb NCs and Pd4Pb NCs were about 12.33 nm and 10.99 

nm, respectively. (Figure S3b, d). In addition, the SEM-EDS analyses for Pd3Pb and 

Pd4Pb NCs in Figure 2c and Figure 3 have also revealed that the atomic ratios are also 

close to the theoretical values. The PXRD of Pd3Pb and Pd4Pb NCs were also 

analyzed (Figure 2d) to confirm their alloy phase. In addition, both the XRD patterns 

of Pd3Pb and Pd4Pb displayed a slight shift when compared to the standard Pd. The 

result indicates the formation of PdPb alloy phases in both Pd3Pb and Pd4Pb NCs. The 

XPS spectra (Figure 2e, f) also illustrated that both metallic states of Pd0 and Pb0 play 

predominant roles in the composite structures.28 Pd1.5Pb NCs and PdPb NCs have also 

been synthesized for comparison purposes. The morphology of the as-prepared 

Pd1.5Pb NCs and PdPb NCs are characterized by TEM (Figure S4). Pd1.5Pb and PdPb 

NCs do not have typical cubic structure, which may be ascribed to the addition of 

excess amount of lead in the synthesis reaction. Therefore, the amount of lead plays a 

significant role in the synthesis of the ideal PdPb NCs. 
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Figure 3. The SEM-EDS of (a) Pd3Pb NCs and (b) Pd4Pb NCs 

To uncover the formation mechanism, the controlled experiments regarding the 

reaction parameters have been conducted, and the intermediates from the controlled 

experiments have also been analyzed by TEM. Among all the experimental 

parameters, CTAB appears to play a crucial role in controlling the synthesis of PdPb 

NCs. This can be further demonstrated by the selective adsorption onto specific 

crystalline surfaces via the Van der Waals' forces. In addition, the addition of CTAB 

significantly decreases the growth rates as well as inducing the anisotropic growth of 

PdPb NCs with high surface active areas.44-46 Figure 4a and b showed that the 

products structures changed dramatically when substituted CTAB with CTAC. When 

CTAB was changed into TBAB, the morphology of the as-prepared samples changed 

from NCs to irregular shapes (Figure 4c, d). Therefore, it has been proved that the 

selective use of CTAB played a significant role in the high-yield production of PdPb 

NCs. The addition of PbAc2 was proven to be another significant parameter in the 

successful preparation of PdPb NCs. As seen in Figure S5, only irregular 

nanoparticles were obtained when PbAc2 was replaced with PbCl2. These results have 

revealed that the selective use of CTAB and PbAc2 was crucial for the successful 
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synthesis of the desirable PdPb NCs.  

 

Figure 4. TEM images of PdPb nanocrystals prepared in the same condition while 

replacing the CTAB with CTAC (a, b) and TBAB (c, d). 

Highly uniform PdPb NCs are expected to exhibit outstanding electrocatalytic 

performances towards fuel cells. Accordingly, we conducted the EGOR and GOR to 

evaluate their electrocatalytic properties.47-49 For comparison, the PdPb NCs with 

different compositions of Pd2Pb NCs, Pd3Pb NCs, and Pd4Pb NCs were also evaluated. 

The commercial Pd/C was also used as benchmark electrocatalysts for further 

comparison. The ECSA values of Pd2Pb, Pd3Pb, Pd4Pb and Pd/C were found to be 

24.2, 22.1, 20.5, and 16.7 m2 g-1, respectively.  
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Figure 5. CV curves of Pd2Pb NCs, Pd3Pb NCs, Pd4Pb NCs, and Pd/C catalysts in (a) 

1 M KOH solution and (b) 1 M KOH + 1 M EG solution. (c) The catalytic activities 

of these four electrocatalysts. (d) Durability comparisons of these four types of 

electrocatalysts for 500 cycles. 

The EG electrooxidation measurements were conducted in 1 M KOH + 1 M EG 

solution. Figure 5b displayed the typical CV of these four nanocatalysts. The 

oxidation peaks for the electrocatalysts were found to be at the potential around -0.05 

V. Figure 5c illustrates the mass and specific activities of Pd2Pb NCs, Pd3Pb NCs, 

Pd4Pb NCs and commercial Pd/C. The Pd2Pb NCs exhibited the highest peak current 

density value of 4.06 A mg-1 in comparison to all the investigated electrocatalysts. 

The aforementioned value is therefore, 4.23, 1.43, and 1.29 times greater than that of 

Pd/C (0.96 A mg-1), Pd4Pb NCs (2.83 A mg-1), and Pd3Pb NCs (3.15 A mg-1), 

respectively. Besides, the resulted Pd2Pb NCs also displayed superior specific activity 
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of 16.8 mA cm-2 towards EGOR which was superior than that of Pd/C (5.8 mA cm-2), 

Pd4Pb NCs (13.8 mA cm-2), and Pd3Pb NCs (14.3 mA cm-2). Moreover, the 

comparison results from Table S1 further confirmed its superior electrocatalytic 

activity towards EGOR. The superior electrocatalytic activity of Pd2Pb towards 

EGOR can be attributed to the electron and surface effect in the PdPb alloy.50 Besides, 

it has been demonstrated that the electrocatalytic activity of Pd can also be improved 

to a higher level after the incorporation of Pb because of the formation of sufficient 

oxygen species, which can react with some intermediates and release the surface 

active sites of Pd.49, 51 However, a redundant Pb will block the exposed surface active 

sites of Pd, thus lowing the activity of Pd.43 Therefore, the addition of Pb at a certain 

content (Pd : Pb = 2:1) can significantly increase the catalytic activity towards the 

EGOR. The successive CVs of 500 cycles have also been operated in 1 M KOH + 1 

M EG solution to evaluate EGOR durability (Figure S6). The results showed that the 

Pd2Pb NCs gave the highest durability. In addition, the mass activity only decayed by 

47.3 % which was much superior than those of commercial Pd/C (86.1%), Pd4Pb 

NCs (60.1%) and Pd3Pb NCs (50.1%), respectively (Figure 5d), indicating its better 

electrocatalytic durability towards EGOR. The oxidation mechanism of (CH2OH)2 is 

shown below, in which the reaction system can be oxidized to nontoxic C2O4
2− , 

showing superior electrocatalytic performances. 52-53 

(CH2-OH)2 → (CH2-OH)2(ads)                      (1) 

(CH2-OH)2(ads) → CH2OH(CHO)                    (2) 

CH2OH(CHO) → CHO(COO−)                     (3) 
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CHO(COO−) → (COO−)2                                        (4) 

 

Figure 6. CV curves of Pd2Pb NCs, Pd3Pb NCs, Pd4Pb NCs, and commercial Pd/C 

catalysts in (a) 1 M KOH + 1 M glycerol solution, as well as its (b) corresponding 

histogram. (c) Durability comparisons of these four types of electrocatalysts for 500 

cycles. (d) Nyquist plots of these four electrocatalysts operated in 1 M KOH + 1 M 

glycerol solution at the potential of -0.1 V. 

As for the GOR, the activity variations among these four different catalysts are 

also similar with that in EGOR (Figure 6a, b). Remarkably, the Pd2Pb NCs also 

showed the highest mass activity of 2.22 A mg-1 which was much greater than 

commercial Pd/C (0.69 A mg-1), Pd4Pb NCs (1.48 A mg-1), and Pd3Pb NCs (1.67 A 

mg-1). In addition, the Pd2Pb NCs also showed the highest specific activity of 9.2 mA 

cm-2, which is 2.24, 1.39, and 1.23 times higher than those of Pd/C (4.1 mA cm-2), 

Pd4Pb NCs (6.6 mA cm-2) and Pd3Pb NCs (7.5 mA cm-2), respectively. Moreover, the 
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durability measurements of these four types of electrocatalysts for the GOR were also 

conducted via repeating the CV scans of 500 cycles. As seen in Figure 4c and Figure 

S7, after the 500 successive cycles, 14.8% of the initial mass activity was maintained 

for the nanocubic Pd2Pb NCs, which is much better than those of Pd/C (2.1%), Pd4Pb 

NCs (11.0%) and Pd3Pb NCs (13.2%). Furthermore, after the 500 successive cycles, 

the compositions and shapes of PdPb NCs were largely maintained, highlighting the 

outstanding long-term stability (Figure 7, Figure S8-S10). It has been demonstrated 

that Pb could lead to the generation of ample oxygenated species and boost the 

activation of active sites of Pd. All of these fascinating properties have made Pb a 

perfect catalyst ligand.54-55 Similar to the EGOR, the main products for GOR were the 

CO3
2-, indicating the complete oxidation of glycerol. The GOR mechanism was 

shown as follows:56 

CH2OH–CHOH–CH2OH→(CH2OH–CHOH–CH2OH)ads            (5) 

(CH2OH–CHOH–CH2OH)ads + 4OH−→ (CHO)CHOH(CHO) + 4H2O + 4e−  (6)        

OH−→OH−
ads + e−                              (7) 

(CHO)CHOH(CHO) + 16OH−→ 3CO3
2− + 10H2O + 10e−  (8)     

 

Figure 7. The SEM-EDS of (a) the Pd2Pb NCs, (b) Pd3Pb NCs, and (c) Pd4Pb NCs 

after electrochemical durability test. 
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The electrochemical impedance spectroscopy (EIS) was carried out at the 

potential of -0.1 V to study their electrochemical reaction processes, where the 

diameter is a crucial parameter for evaluating the electrical conductivity of the 

as-prepared electrocatalysts.57 As seen in Figure 6d, the order of the diameter 

impedance arc (DIA) of these electrocatalysts was as follows: Pd/C > Pd4Pb NCs > 

Pd3Pb NCs > Pd2Pb NCs. The resulted Pd2Pb NCs gave the smallest electron transfer 

resistance and the best electrical conductivity, which was consistent with their 

outstanding electrocatalytic performances.58 In this work we clearly demonstrated that 

the as-obtained PdPb NCs showed a great enhancement towards electrocatalytic 

activity and reusability. The enhanced performance of the uniform PdPb NCs reported 

herein is likely to be attributed to the integration of the nanocubic structures and 

synergistic effects between the Pd and Pb.  

4. CONCLUSIONS 

In conclusion, an advanced and yet efficient strategy has been developed for the 

design of well-defined cubic PdPb nanocatalysts with a high yield. The controlled 

experiments have revealed that the preparation of PdPb NCs were CTAB-dependent. 

This new class of PdPb nanocatalysts have the distinctive characteristics of being 

ultra-uniform as well as having a nanocubic structure. Those unique characteristics 

are responsible for greatly improving the electrocatalytic performances of fuel cells 

oxidation reactions. Impressively, the optimized Pd2Pb NCs gave the best 

electrocatalytic performances towards EGOR and GOR, suggesting a great potential 

for fuel cells. The approach based on tuning the morphology of nanocatalysts can also 
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be extended to some other nanomaterials to generate nanocrystals with desirable 

nanostructures.  
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