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Highlights 
 Investigation of sulfate radical generating oxidants with TiO2 photocatalysis   

 HSO5
- coupled with UVA/TiO2 was the most energy efficient system  

 Addition of oxidants prolonged the life-time of the formed radicals 

 New intermediates based on consecutive hydroxyl substitutions of MC-LR were detected 

 Toxicity studies on the treated samples indicated loss of MC-LR toxic properties 

 

Abstract  

This study investigated the coupling of sulfate radical generating oxidants, (persulfate, PS and 

peroxymonosulfate, PMS) with TiO2 photocatalysis for the degradation of microcystin-LR (MC-LR).  

Treatment efficiency was evaluated by estimating the electrical energy per order (EEO). Oxidant addition 

at 10 mg/L reduced the energy requirements of the treatment by 60% and 12% for PMS and PS, 

respectively compared with conventional photocatalysis. Quenching studies indicated that both sulfate 

and hydroxyl radicals contributed towards the degradation of MC-LR for both oxidants, while Electron 

Paramagnetic Resonance (EPR) studies confirmed that the oxidants prolonged that lifetime of both 

radicals (concentration maxima shifted from 10 to 20min), allowing for bulk diffusion and enhancing 

cyanotoxin removal. Structural identification of transformation products (TPs) formed during all 

treatments, indicated that early stage degradation of MC-LR occurred mainly on the aromatic ring and 

conjugated carbon double bonds of the ADDA amino acid. In addition, simultaneous hydroxyl 

substitution of the aromatic ring and the conjugated double carbon bonds of ADDA (m/z= 1027.5) are 

reported for the first time. Oxidant addition also increased the rates of formation/degradation of TPs and 

affected the overall toxicity of the treated samples. The detoxification and degradation order of the 

treatments was UVA/TiO2/PMS > UVA/TiO2/PS>> UVA/TiO2. 

 

Keywords: cyanotoxins, intermediates, TiO2 photocatalysis, peroxymonosulfate, persulfate 
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1. Introduction 

Cyanobacteria (blue-green algae) are well known for forming blooms (cyanobacterial harmful algal 

blooms, cyano-HABs) under suitable conditions, typically influenced by nutrients, light and temperature 

[1]. Such mass occurrences cause aesthetic, physical as well as taste and odor problems, however, their 

ability to produce and excrete toxic metabolites present a major hazard to human and animal health [1]. 

Hepatotoxic microcystins are undoubtedly the most commonly occurring toxins on a global basis and 

have been responsible for many animal and human toxicoses. They are, a large group of cyclic 

heptapeptides (249 variants) produced by a growing number of planktonic and benthic genera including 

Microcystis, Anabaena, Nostoc, Plantothrix, Oscillatoria [2, 3]. Among them, microcystin-LR (MC-LR 

where L is leucine and R is arginine) is the most toxic and most frequently detected variant in surface 

waters [1, 4].  Due to its acute and chronic toxicity, the World Health Organization (WHO) established a 

guideline of 1.0 µg/L as a maximum concentration of MC-LR in drinking water supplies [5].   

The effects of climate change and anthropogenic activity are contributing to more frequent and 

prolonged blooms across the globe, adding further pressure on scarce fresh water supplies [6]. This is 

highlighted by an event in 2007, in Lake Taihu, China’s third largest freshwater lake and sole water supply 

for the city of Wuxi, where >2 million people were without drinking water for over a week due to high 

concentrations of microcystins [7]. In 2014, a similar event occurred in Toledo, Ohio where drinking 

water contained 3 times the WHO guideline value of microcystin and led to a drinking water ban for 

several days [8].  

In-lake treatment can be the first preventative measurement towards protecting human health from 

cyano-HABs [9], but there is still need for finding appropriate technologies for removing soluble 

cyanotoxins. An array of methods including conventional and emerging technologies has been tested for 

the removal of cyanotoxins. Conventional methods (coagulation, flocculation, rapid sand filtration) can 

remove cyanobacterial cells efficiently but have limited ability to remove cyanotoxins [10]. Therefore, 
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conventional chemical oxidation processes (chlorination, permanganate, UVC radiation) and advanced 

oxidation processes (AOPs) have been tested with various efficiencies [9, 11, 12].  

Among the AOPs tested, titanium dioxide (TiO2) photocatalysis has been extensively studied for 

cyanotoxins removal, since it has shown potential not only for water purification but for detoxification 

without the formation of hazardous byproducts [9, 13-20]. The reactive oxygen species (ROS) formed 

during TiO2 photocatalysis include the hydroxyl radical (HO), superoxide anion radical (O2
-•), 

hydroperoxyl radical (HO2
•), singlet oxygen (1O2), and their subsequent reactions with the target 

contaminants occur at or very near the TiO2 surface [21, 22]. Hydroxyl radicals, generated on the surface 

of the catalyst following oxidation of water from the positive holes of TiO2, are non-selective oxidizing 

species with strong oxidation potential (+2.80V) that rapidly react with most organic compounds with 

rate constants in the order of 106-1010 M-1 s-1[23]. Various studies have investigated the degradation of 

MC-LR in pure solutions or crude extracts with TiO2 photocatalysis to study the effect of specific water 

quality parameters [20, 24-26] or the properties of the photocatalyst used [18, 25, 27-30]. Solar light 

activated materials have also been tested to reduce application cost [19, 24, 27-29, 31]. Herein, sulfate 

radical generating oxidants were added as a way to reduce the energy requirements of the photocatalytic 

system for the removal of MC-LR as most of the light activated materials are not currently mass produced. 

Sulfate radicals (SO4
-) are among the strongest oxidants known for the abstraction of electrons (2.5-

3.1 V [32, 33]). They are much stronger than HO radicals (1.89-2.72 V [23]) and other commonly used 

in the drinking water industry oxidants, such as permanganate (E = 1.70 V) (41) and hypochlorous acid 

(E = 1.49 V) [34]. Sulfate radicals can be produced through homolytic dissociation of the oxidants through 

heat and radiation and e- transfer mechanisms from Fenton-like reagents [35-37]. Neta et al. (1988) 

reported that owing to their selectivity, sulfate radicals are more efficient oxidants for the removal of 

organic compounds with unsaturated bonds and aromatic constituents than the hydroxyl radicals [33].  

Yet there are limited studies on SO4
--based AOPs (compared with HO) for the degradation of recalcitrant 

organic contaminants and especially cyanotoxins [35, 38-40]. 
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Even fewer studies have investigated the effect of coupling sulfate radical generating oxidants with 

TiO2 on the removal of emerging contaminants with various light sources. Specifically, when low pressure 

UVA lamps were utilized in the UVA/TiO2/PS photocatalytic system for the removal of 2-chlorobiphenyl, 

the authors concluded that oxidant addition had a negative effect on contaminant removal [41]. When 

germicidal UV was used instead for catalyst and oxidant activation, in the UVC/TiO2/PS [42, 43] and 

UVC/TiO2/PMS [42] treatment, it was reported that oxidant addition in combination with TiO2 

significantly enhanced benzotriazole, humic acids, and heavy metals oxidation. Furthermore, simulated 

solar irradiation (SSI) has been used in the SSI/TiO2/PS treatment [44] and showed higher potential for 

the removal of the pesticide DEET compared with the SSI/TiO2/H2O2 system. PS was also coupled with 

TiO2 photocatalysts for the degradation of dyes under solar [45] and UV radiation [46].  

With current research results being conflicting and the fact that, there are no other studies on coupling 

UVA/TiO2 photocatalysis with sulfate radical generating oxidants (particularly PMS) for the removal of 

cyanotoxins, this study aimed to examine potential improvement of the photocatalytic efficiency of 

UVA/TiO2 via the addition of sulfate radical generating oxidants, unveil degradation pathways, identify 

the radicals formed, and test for the toxicity of the treated samples. To the best of our knowledge, this is 

the first study that investigates the potential use of these oxidants coupled with UVA/TiO2 for water 

purification and especially for the removal of the hepatotoxin microcystin-LR. 

2. Materials and Methods 

2.1 Reagents:  

Microcystin-LR (MC-LR) standards were purified from batch cultures of Microcystis aeruginosa as 

previously described [47, 48]. A 500 mg/L stock solution of MC-LR was prepared by dissolving 1 mg of 

solid MC-LR (FW= 995.2 g/mole) with 2 mL of ELGA® water (resistivity = 18.2 MΩ; conductivity = 0.05 

μS/cm). Different toxin concentrations (5 mg/L and 10 mg/L) were achieved by spiking specific aliquots 

(range of μL) of the 500 mg/L standard solution in ELGA® water. Titanium dioxide (P25) was purchased 
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by Evonik Industries AG, Essen, Germany. The oxidants used in this study, potassium peroxymonosulfate 

(PMS, HSO5
-), potassium persulfate (PS, K2S2O8), and the quenching agent sodium thiosulfate (Na2S2O3) 

were purchased from Sigma-Aldrich (Poole, UK). OXONE® (95%, Dupont) is the commercial name of 

the triple-salt 2KHSO5.KHSO4.K2SO4 that releases PMS during dissociation. Stock solutions of 5.2 mM 

corresponding to 1000 mg/L of PS equivalent as active ingredient were freshly prepared in MQ-H2O since 

they have limited stability [35], while a solution of 0.1 g/L sodium thiosulfate was used to quench the 

samples from all the experiments where the oxidants were added.  

2.2 Experimental set-up:  

The experiments were conducted using 10 mL solutions in 30 mL borosilicate glass vials. A xenon UVA 

lamp (480W UVA Spot 400 Lamp with spectral output 330-450 nm, Dr. Hönle, Munich, Germany) was 

used to illuminate the reactor vessel from the side at a distance of 20 cm.  The reaction solution was 

continuously stirred and oxygenated with air with a rate of 200 cm3/min.  A cooling fan was used to 

control the reactor temperature (T = 32 ± 3 C). For the treatment optimization experiments, samples (200 

μL) were taken at specific time intervals and placed in 1.5 mL Eppendorf tubes. The samples where then 

centrifuged  for 15 min at 13000 x g in a minispin centrifuge, (Eppendorf, UK) to remove the P25 TiO2 

nanoparticles and the supernatant was  placed into 100 μL  glass inserts in 2 mL HPLC vials and analyzed 

for the remaining MC-LR by HPLC. For the experiments where oxidants were used, the samples were 

quenched with 200 μL of 0.1 g/L sodium thiosulfate first and then handled as previously described. The 

solution pH was monitored at the beginning and completion of the experiments and was found to be stable 

at pH= 5.6± 0.1 for all the experiments. Raw water from the Clatto Water, Scotland, was spiked with MC-

LR and treated with all described photocatalytic systems. The chemical properties of the raw water from 

Clatto were performed at James Hutten Institute, Aberdeen, UK (Table S1). For the investigation of 

transformation products (TPs), the initial toxin concentration was increased from 5 mg/L to 10 mg/L. 

When UVA/TiO2 was examined for TP formation, sampling was performed as described before and the 

samples were analyzed with UPLC/MS/MS. When oxidants were added for TPs identification, batch 
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experiments were conducted instead for each time point (the treated volume was 10 mL) and 10 mL of 

0.1g/L Na2S2O3 were added to stop the oxidant from further reacting, the samples were first centrifuged 

(Haraeus Megafuge 40R, Thermo Scientific, UK) and then processed as described in Section 2.6. 

2.3 Ferrioxalate Actinometry:  

The intensity of the lamps was also measured with Potassium Ferrioxalate Actinometry [49]. The quantum 

yield of ferrous production at λ = 365 nm is φλ = 1.27 ± 0.02 [50].  The average light intensity from the 

lamps was (3.02 ± 0.26) ∙10-8 Einstein/s. Based on the Planck–Einstein equation E = h.c/λ  ̧where h = 

Planck constant, the quantum energy that is contained by a photon at wavelength λ = 365 nm is E365 = 

5.44 x 10-19 J/photon. Multiplication of E365 with the Avogadro’s number transforms the units in E365 = 

327,554 J/Einstein [57].  The photon flux (P365) of the reactor is obtained by multiplying the estimated 

average irradiation with the quantum energy E365 and is equal to (9.88 ± 0.85) ∙10-3 W. 

2.4 HPLC Analysis:  

MC-LR analysis was performed using Waters Alliance 2695 solvent delivery system with 2996 

photodiode array detector (Waters, Elstree, UK). Samples were separated on Symmetry C18 Column (2.1 

i.d. x 150 mm; 5 µm particle size) maintained at 40°C. Eluent was monitored by UV absorption between 

200-400 nm with detector resolution of 1.2 nm. The mobile phase constituted of ELGA® water (A) and 

acetonitrile (B) both containing 0.05% trifluoroacetic acid (TFA). Samples were separated using a 

gradient increasing from 15% to 65% B over 25 min at a flow rate of 0.3 mL min-1, followed by ramp up 

to 100% B then re-equilibration at 15% over the next 10 min. Data acquisition and processing were 

performed using Empower software (Version 2.0). MC-LR was quantified by external calibration using 

the range of 0.1– 10,0 mg/L (linear range). The method detection limit (MDL) was estimated by 

multiplying the standard deviation of multiple measurements of the lowest standard with the 

corresponding t-student for 99% confidence level, as described in 40 CFR Ch. I (7–1–11 Edition) 

document of the USEPA. The MDL for this method was  7 μg/L.  
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2.5 Electron Paramagnetic Resonance (EPR) Experiments and Hydroxyl and Sulfate Radicals 

Trapping 

EPR spectra were recorded with a Bruker ER200D spectrometer equipped with an Agilent 5310A 

frequency counter, operating at X- band (9.61 GHz). All EPR experiments were monitored through 

bespoke software based on Lab View. Samples were illuminated in situ inside the EPR cavity using a 

450W Xe- lamp (Oriel 66929), equipped with a water IR cut-off filter. The photogeneration of hydroxyl 

and sulfate radicals produced under continuous solar light irradiation (λ>240nm) of aqueous suspensions 

of the photocatalysts, were determined by EPR spin-trapping using DMPO as a spin trap for both radicals. 

Kinetic runs were performed at room temperature (25 ◦C) by recording the EPR signal intensity in three 

capillaries (20 μL each), inserted in a 5mm suprasil EPR tube.  For the spin trapping, 10 mg/L TiO2 

particles were premixed with 10 mg/L of oxidant (PS or PMS), 100 ppm of DMPO and irradiated in situ 

in the EPR cavity. The irradiation time was varied from 30 seconds up to 60 minutes to monitor the radical 

photoinduction kinetics. The photoreaction setup used was calibrated with P25 TiO2 and spin 

quantification was done by using DPPH as a spin standard. This setup produces 100 μmol HO per gram 

of irradiated P25 TiO2 [51]. Each experiment was performed in triplicates and the variation between each 

radical identification experiments was at 2 μmol spins/g TiO2 for OH● radicals and 3 μmol spins/g TiO2 

for SO4
●- radicals. 

2.6 Solid Phase Extraction of MC-LR’s photocatalytic transformation products 

The photocatalytic transformation products of MC-LR samples were concentrated using ISOLUTE ENV+ 

(100 mg; Biotage, Cardiff, UK) SPE columns on a vacuum manifold. The cartridges were conditioned 

with 10 mL of MeOH followed by 10 mL of ELGA® water. Samples obtained after photocatalysis were 

centrifuged at 4,000 x g for 20 min and the supernatants were applied to the conditioned cartridges. 

Subsequently, the cartridges were washed with 10 mL of ELGA® water and dried under vacuum for 5 

min. After drying, the cartridge was eluted with 1.5 mL of 80% methanol and analysed using UPLC-MS. 
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2.7 UPLC/MS Analysis 

Analysis of samples from the investigation of TPs formed with the three photocatalytic systems was 

performed using Acquity UPLC system with photodiode array (ACQUITY UPLC PDA) equipped with 

Tandem Quadruple Time of Flight (Xevo QToF) in series (Waters, Elstree, UK). Samples were separated 

on Acquity UPLC ® BEH C18 column (2.1 i.d. x 100 mm; 1.7 µm particle size; Waters, UK) maintained 

at 40°C. Milli-Q water (A) and acetonitrile (B) both containing 0.1% Formic acid (FA) constituted the 

mobile phase. Samples were separated using a gradient increasing from 20% to 70% B at flow rate of 0.2 

mL min-1 over 10 min, followed by ramp up to 100% B and then re-equilibration over 20%  for the next 

5 min. Eluent was monitored by UV absorption between 200-400 nm with detector resolution of 1.2 nm. 

Mass spectrometry analysis were performed in positive ion electro-spray mode (ES+), scanning from m/z 

50 to 2000 Da with a scan time of 0.25 s and inter-scan delay of 0.025 s. The capillary voltage was set at 

3.3 kV and cone voltage at 25.0 V. The source and desolvation temperatures were set to 80 °C and 300 

°C respectively. Flow rate for cone gas and desolvation gas were 50 and 400 L h-1 respectively. Low 

voltage scans were acquired a 6 V and high voltage using a ramp from 25-40 V, providing parent ion and 

characteristic fragment data respectively. Sodium iodide (2 µg/µL in 50% aqueous propan-2-ol (v/v)) was 

used as the calibrant with leucine-enkephalin (0.5 mg/L in 50% aqueous methanol (v/v)) as the lockspray.   

Instrumental control, data acquisition and processing were achieved using MassLynx software (Version 

4.1). 

2.8 Protein Phosphatase Inhibition Assay 

The toxicity of samples obtained after photocatalytic treatment of MC-LR with sulphate-radical producing 

oxidants (i.e., PMS and PS) was assessed using PP1 Inhibition Assay. This colorimetric assay measures 

the ability of the PP1 enzyme to dephosphorylation the phospho-substrate p-nitrophenyl phosphate 

(pNPP) which results in the release of phosphoric ions and the colorimetric compound, p-nitrophenol 

(yellow color). The production of the p-nitrophenol and consequently the activity of PP1 can be quantified 
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by measuring the solution absorption at λ = 405 nm.  A modified procedure of previously reported 

colorimetric assay was employed [52-54]. More info can be found in S.I. 

 

2.9. Data processing 

GraphPad Prism 5 software was utilized for the statistical analysis of the experimental data and for the 

calculation of the EEo values. The structures of the intermediates were drawn with the ChemBioDraw 

Ultra 13.0 software. 

 

3. Results and Discussion 

3.1 Effect of oxidants addition:   

Once the optimum photocatalytic conditions were determined (Section S2.1), the effects of oxidant 

addition on TiO2 photocatalysis were studied. The oxidants were added at a concentration of 0.052 mM 

corresponding to 10 mg/L of PS as active ingredient which was based on previous studies conducted by 

the authors [35]. Figure 1 summarizes the results from the addition of oxidants along with control 

experiments on the effect of UVA radiation alone, aeration, and UVA/Oxidant. UVA radiation alone had 

negligible effect on MC-LR removal as previously stated since the toxin has an adsorption maxima at λ= 

238 nm and negligible absorbance at λ= 365 nm [14, 55]. Coupling of PS with UVA radiation resulted in 

a significant reduction of MC-LR (t=60 min for CMCLR<MDL), while for equivalent concentrations of 

PMS treatment efficiency was significantly lower (t>60 min for CMCLR<MDL) [35]. However, when TiO2 

photocatalysis was coupled with the oxidants, UVA/TiO2/PMS  had a more prominent effect on the energy 

requirements and treatment time than UVA/TiO2/PS (t= 5min and t=10 min for CMCLR<MDL, 

respectively). In order to explain the differences on the efficiency of each treatment it is important to 

identify the type and mechanisms of ROS formed. Light activation of TiO2 results in the formation of 

mainly hydroxyl radicals and the superoxide anion since the system was purged with air (Eq. 1-3) [22, 
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56]. Absence of aeration reduced photocatalytic degradation (t~20 min for CMCLR<MDL) (Figure 1). PS 

and PMS can undergo homolytic dissociation of the peroxide bond from radiation or thermal activation 

and give sulfate radicals, and sulfate and hydroxyl radicals, respectively (Eq. 4-5) [35]. The oxidants can 

also act as electron acceptors of the photo-excited electron from the conduction band of the TiO2 and 

through electron transfer mechanisms to give additional sulfate and hydroxyl radicals based on the 

reactions listed below (Eq. 6-8)  [14, 57, 58]. Heat activation of oxidants did not contributed on radical 

formation because of the temperature in the reactor and the relatively short treatment times compared to 

what was reported needed in the literature [35]. On the other hand, homolytic dissociation of the peroxide 

bond of the oxidants through radiation seems to be a more probable mechanism. Even though, both 

oxidants have low absorption in the UVA range, the adsorption of PS at λ=365 nm is four times the one 

of PMS, when measured in solutions of the same concentration of active specie [36]. This indicates that 

PS has a better ability to adsorb photons compared to PMS and therefore, more radicals can be formed. 

Moreover, the EEO of the UVA/PS system was a third of the EEO of UVA/PMS which means that the 

radicals formed with the UVA/PMS treatment are not reacting with the toxin but rather with each other 

(termination reactions) to form peroxides (H2O2, S2O8
2-) (Eq.18, 21, 22) or with the remaining PMS 

(which is in excess compared to the toxin) and form peroxymonosulfate radicals (SO5
-) (Eq.11-12) that 

have significantly reduced oxidation ability and higher selectivity (redox potential 1.1 V, at pH = 7) to 

sulfate radicals. On the other hand, reaction of PS with a sulfate radical will cause the formation of another 

sulfate radical (Eq.13) which leaves the oxidative capacity of the system unaltered.  

 

TiO2          hVB
+ + eCB

-   (Eq. 1) [22] 

hVB
+ + OH-

ads       HO
ads              (Eq. 2) [22] 

O2  + eCB
- → O2

-     (Eq. 3) [22] 

HO-OSO3
-     SO4

-     + HO  (Eq. 4) [36] 

-O3SO-OSO3
-          SO4

-     + SO4
-       (Eq. 5) [36] 

radiation 

heat/radiation 

heat/radiation 
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HOOSO3
-    + e   →   SO4

-     + HO-           (Eq. 6) [59] 

HOOSO3
-    + e   →   SO4

2-     + HO              (Eq. 7) [59] 

-O3SO-OSO3
-   + e   →   SO4

-     + SO4
2-                (Eq. 8) [59] 

HO +   SO4
2-  ( HSO4

- )                                 SO4
-   ( HSO4

 )    + HO- (Eq. 9) [60, 61]  

HO- +   SO4
-                                                 SO4

2-      + HO (Eq. 10) [62] 

HOOSO3
-    + HO    →   SO5

-     + HO-     (Eq. 11) [33] 

HOOSO3
-    + SO4

-                  SO5
-     + SO4

2-  + H+ (Eq. 12) [33] 

-O3SO-OSO3
-  + SO4

-   → SO4
-    + 2SO4

2-    (Eq. 13) 

2SO5
-    -O3 SOOOOSO3

-  → {SO4
-OOSO4

-} →  2SO4
- + O2 (Eq. 14) [63] 

O2
- + HOOSO3

-   → SO4
-    + HO- + O2   (Eq. 15)   

O2
- + HOOSO3

-   → SO4
2-    + HO- + O2  (Eq. 17)   

O2
- + -O3SO-OSO3

-  →   SO4
-     + SO4

2-  + O2  (Eq. 18)     

HO  + HO                                  H2O2      (Eq. 19) [23] [62] 

H2O2 + eCB
- → HO + HO- 

    (Eq. 20) [57] 

H2O2 + O2
-  → HO + HO- + O2   (Eq. 21) [57] 

SO4
-   +  SO4

-             S2O8
2-   (Eq. 22) [64] 

2SO5
-  →  S2O8

2- + O2 
      (Eq. 23)  [63] 

When UVA/TiO2 was coupled with sulfate radical generating oxidants for the removal of MC-LR, PMS 

reduced the EEO by ~60% compared to conventional photocatalysis while PS had a slight reduction on the 

EEO (~12%). During these treatments, all three previously mentioned radical formation mechanims from 

the oxidants have contributed. Activation of oxidants through e- transfer mechanisms (from the 

photoexcited e- of the titania’s conduction band (Eq. 6-8, 19) and the superoxide anion (Eq. 15-17, 20) 

appears to be the mechanism with the most significant contibution on radical formation in the 

k = 1.18 x 106 M-1sec-1 

k = 8.9 x 108 M-1sec-1 

k < 1 x 107 M-1sec-1 

k = 4.6 x 107 M-1sec-1 

k = 1 x 1010 M-1sec-1 

ACCEPTED M
ANUSCRIP

T



 14 

UVA/TiO2/Oxidant treatments. In general, the easiness which an e- is transferred to the lower unoccupied 

molecular orbital (LUMO) of peroxide oxidants is a measurement of its oxidizing properties [65]. Based 

on the LUMO properties of the oxidants their energy follows the order H2SO5 < H2S2O8 [65], which 

means, that PMS accepts e- more easily than PS and this may be the reason why it outperformed the latter 

when coupled with TiO2 photocatalysis. To conclude the efficiency order of the tested treatment is 

UVA/TiO2 < UVA/TiO2/PS < UVA/TiO2/PMS. 

 To test whether this order sustains under realistic treatment conditions, the three photocatalyitc 

systems were applied to raw water from the Clatto reservoir in Dundee, Scotland. The water was first 

characterized for its chemical properties, spiked with MC-LR and then treated. Though the EEO for all 

systems significantly increased, the efficiency order remained the same and UVA/TiO2/PMS has energy 

savings of 30 % vs 10% for UVA/TiO2/PS (Figure S4). Water matrix components such as TOC, alkalinity, 

and nitrogen-containing compounds are known to react competitively with MC-LR for radical utilization, 

which explains the five and ten fold increase of the EEO compared to ELGA® water [24].  

3.2 Radical identification:   

The primary radicals formed from the enhanced photocatalytic systems can be potentially identified 

through the use of probes that selectively quench each type of radical [18, 42, 58]. The study of Fotiou 

and coworkers comprises a good example of use of such probes for the identification of ROS formed 

during UVA and visible light activated photocatalysts [18]. In this study, isopropanol (iprOH) and tetra-

butyl alcohol (TBA) were used as probes. Isopropanol can significantly scavenge hydroxyl radicals with 

a rate of kiprOH,HR= 1.9 × 109 M-1∙ s-1 [23] and sulfate radicals with rate  kiprOH,SR=  8.0 × 107 M-1∙ s-1 [62].  

In contrast, TBA scavenges hydroxyl radicals with rate of kTBA,HR =  6.0 × 108 M-1∙ s-1  [23] whereas its 

scavenging rate for sulfate radical is 103 times less [42, 58]. Based on which probe has the biggest effect 

on the degradation rates of the target contaminant, it can be concluded whether one or both radicals have 

contributed to the degradation [42, 58]. Specifically, isopropanol can react with both types of radicals 

with the same rate, while TBA preferentially reacts with sulfate radicals. Persulfate radicals (SO5
•-), react 
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slowly with alcohols at rates <103 M-1∙ s-1, therefore their contribution to the degradation efficiency is 

considered negligible [33].  The probes were added to the UVA/TiO2/PS and UVA/TiO2/PMS systems at 

a [probe]/[oxidant]=10,000 molar ratio which was 10 times that of the cited literature [42, 58]. Based on 

the results of Figures S5 and S6 the addition of these probes did not give a clear indication on which type 

of radical contributed the most towards the degradation of MC-LR under our experimental conditions. 

This may be due to the fact that the previous studies quenched the effects of photocatalysts under various 

light sources or the oxidants but not their combination that tricks additional mechanisms for ROS 

formation.  

  It was therefore decided to use EPR spin-trapping that is eminently suited to selectively identify and 

quantify the photogeneration of hydroxyl and sulfate radicals [66]. The results depicted in Figure 2 

represent the radicals formed during treatment with UVA/TiO2, UVA/TiO2/PS (Figure 2A), 

UVA/TiO2/PMS (Figure 2C), UVA/PS  (Figure 2B), and UVA/PMS (Figure 2D). The amount of radicals 

formed with photocatalytic processes (conventional and enhanced) were significantly more than during 

photolysis of the oxidants. When UVA/TiO2 was applied there was a sharp formation of short-lived 

hydroxyl radicals that peaked the first 10 min of irradiation and completed within the first 20 minutes 

treatment. On the other hand, when oxidants where added there was a continues flow of radicals formed 

that had a delayed maxima between 20 and 30 minutes depending on the type of radical formed and 

oxidant used. This means that the presence of oxidants prolonged the lifetime of radicals, thus allowed 

for bulk diffusion and reaction with MC-LR. Since the treatment conditions chosen were not optimal for 

the toxin to adsorb onto the catalyst surface, the addition of oxidants not only compensated on that by 

providing additional radicals (quantitatively) but it also allowed for more radicals to reach the target 

molecule. Another interesting observation was that sulfate radicals were consistently detected at lower 

concentrations than hydroxyl, even during the homolytic dissociation of PS which generates only sulfate 

radicals. This means that a percentage of the formed sulfate radicals readily reacted with water to produce 

hydroxyl radicals (Eq.10). Moreover, the second order rate constant of this reaction is higher to the 

equivalent one of a hydroxyl radical producing a sulfate radical (Eq. 9). Based on the above and the data 
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depicted in Figures 2B & 2D, activation of PMS from the photo-excited e- (and e-transfer mechanisms in 

general) results in the formation of sulfate radicals (Eq. 6 & Eq.15) because of the significant increase in 

the amount of sulfate radicals produced with the UVA/TiO2/PMS system vs. UVA/PMS.   

3.3 Degradation pathways of MC-LR from conventional and enhanced photocatalysis:  

Following the discussion in Section S2.2 on structural elucidation of the transformation products (TPs), 

the latter ones were organized into various degradation pathways. All the pathways and most of the 

proposed structures of the TPs were observed for all treatments, at varying rates of TP formation and 

degradation (Table S1). 

1. MC-LR → Product 3A-C → Product 4A-C 

2. MC-LR → Product 3D ↔ Product 3E 

3. MC-LR→ Product 2A→ Product 1 

4. MC-LR→ Product 3F ↔ Product 3G 

     Product 4G ↔ Product 4H 

The first pathway shows the single and double hydroxyl substitution of the aromatic ring, the second one 

the formation of enol-MC-LR (m/z 1011.5, 3D) and its isomerization to the more stable tautomer ketone-

MC-LR (m/z 1011.5, 3E), while the third indicates how hydroxyl addition to the diene bonds can lead to 

the cleavage of part of the ADDA chain. The forth pathway is believed to be mainly taking place during 

the TiO2/UVA/Oxidant treatment because more free radicals are available in the system that can attack 

any part of the toxin, even the ones that have increased shielding from the nearby functional groups. The 

double bond of the Mhda amino acid of the cyclic structure can go through hydroxyl substitution and the 

formation of the more stable ketone tautomer and the same time the aromatic ring of the ADDA amino 

acid can get hydroxylated. Since numerous TPs were detected it was important to ensure that treatment 

resulted in detoxification. 

 

3.4  Inhibition studies based on the PP1 Enzyme 

↓ ↓ 
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To assess the ability of the tested treatments to perform water detoxification, an assay based on the 

inhibition of protein phosphatase PP1 enzyme was employed [15] since microcystins are known for 

inhibiting PPs [67].  Standard solutions of MC-LR (3-1000 μg/L) were prepared to form the inhibition 

curve of the toxin with the PP1 enzyme (Figure S11). The 50th percentile of PP1 inhibition (IC50) was 

determined at 7.4 μg/L of MC-LR. Due to the low IC50 determined, our method is considered highly 

sensitive. Samples from the conventional and enhanced photocatalysis, collected at different time points, 

were analyzed with the PP1 assay. Figure 3 depicts the percentage of the enzyme inhibition prior to 

treatment (control) and after allowing 5 min (Figure 3a) and 60 min (Figure 3b) of reaction time. The 

initial concentration of MC-LR used was sufficient to completely inhibit PP1. Application of UVA/TiO2 

photocatalysis had a slight effect of the percentage of inhibition at the initial stages of degradation (Figure 

3a), however by the end of treatment only a small percentage of the enzyme activity was still inhibited. 

UVA/TiO2/PS exhibited similar behavior, however after the first 10 min of treatment (data not shown) 

the enzyme activity was recovered. The UVA/TiO2/PMS was most successful with complete removal of 

toxicity after 5 min of treatment. Though, MC-LR removal was completed within 15 min, 10 min, and 5 

min for UVA/TiO2, UVA/TiO2/PS, and UVA/TiO2/PMS, respectively for UVA/TiO2 longer treatments 

were needed for detoxification. The amino acid in MC-LR that has been associated with its toxic 

properties (without itself being toxic) is the ADDA [67, 68]. As previously mentioned the TPs detected 

mainly involved alteration of the unsaturated carbon bonds of the ADDA, through hydroxylation and 

isomerization.  These structural alterations may have caused reduction of toxicity because of changes in 

the hydrophobicity and orientation of the ADDA chain which hinders its proper binding with the PP1 

enzyme [67, 68]. Towards the end of the treatment, the ADDA chain was cleaved (m/z = 835) (at different 

rates based on the treatment applied, Table S1) and therefore no PP1 activity inhibition was observed.  

 

4.  Conclusions 

To conclude, the addition of the oxidant PMS and PS greatly enhanced the photocatalytic degradation of 

MC-LR and reduced the energy requirements of the photocatalytic reactor. Though PS showed higher 
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activation with UVA radiation alone, when coupled with TiO2 photocatalysis, the UVA/TiO2/PMS 

treatment was found to be more energy efficient than the corresponding UVA/TiO2/PS treatment. The 

addition of oxidants initiated an array of side reactions that resulted in the formation of additional radical 

species from what are detected with conventional TiO2 photocatalysis. EPR spectra revealed that the 

presence of both oxidants extended the life-time of ROS enabling them to continuously diffuse through 

the bulk layer and reach the target-cyanotoxin. Focusing on unveiling the initial stages of MC-LR 

degradation with conventional and enhanced photocatalysis, new transformation products with m/z = 

1027.5 were detected that correspond to two hydroxyl substitutions of the unsaturated carbon bonds of 

the toxin. Highly sensitive toxicity tests at the end of treatment proved complete water detoxification 

when oxidants where coupled with TiO2 photocatalysis compared to conventional photocatalysis. The 

cost of electricity in EU for non-household use at 0,121 €/kWh [69], while the oxidant cost of 1.14 

USD/kg for PS [70] and 1.30 USD/kg for PMS [71]. This means that addition of 10 mg/L equivalents of 

PS will have an extra cost for the facility of 1.6 $cents/m3 and 2.33 $cents/m3 water treated for PS and 

PMS, respectively, which is not prohibitive for treatment facilities considering the energy savings as seen 

in the case of Clatto WTW. 
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Figure 1: Degradation of 5 mg/L of MC-LR with various photocatalytic treatment processes based on 

the PS and PMS oxidant. (Experimental Conditions:  P365= 9.88 mW, Oxidant 0.052 mM, TiO2 10 mg/L, 

pHSQ= 5.6, total treatment time shown = 30 min) 
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Figure 2: Photocatalytic generation of DMPO-OH (black squares), DMPO-SO4
- (red squares) radicals 

as a function of time with: A) UVA/TiO2/PS, B) UVA/PS, C) UVA/TiO2/PMS, and D) UVA/PMS. 
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Figure 3: Effect of treatment type on the overall sample toxicity following (a) 5 min and (b) 60min of 

reaction time. (Experimental Conditions: Co= 10 mg/L, P365= 9.88 mW, PS 0.052 mM, PMS 0.052 mM, 

TiO210 mg/L, pHSQ= 5.6) 
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Table 1: Structures of reaction intermediates of MC-LR with TiO2 based photocatalyst 

No Structure m/z Compound Other Technologies Reference 
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TiO2_p = TiO2 particles 

TiO2_f = TiO2 films 

# Displayed structures A-D were observed by [38] or [55]. 
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