
Archives of Control Sciences
Volume 16(LII), 2006
No. 2, pages 161–190

An introduction to interval-based constraint processing

GERRIT RENKER and HATEM AHRIZ

Constraint programming is often associated with solving problems over finite domains.
Many applications in engineering, CAD and design, however, require solving problems over
continuous (real-valued) domains. While simple constraint solvers can solve linear constraints
with the inaccuracy of floating-point arithmetic, methods based on interval arithmetic allow
exact (interval) solutions over a much wider range of problems. Applications of interval-based
programming extend the range of solvable problems from non-linear polynomials up to those
involving ordinary differential equations.

In this text, we give an introduction to current approaches, methods and implementations of
interval-based constraint programming and solving. Special care is taken to provide a uniform
and consistent notation, since the literature in this field employs many seemingly different, but
yet conceptually related, notations and terminology.

Key words: constraint programming, interval-based computation, interval consistency
techniques

1. Motivation and scope of this paper

This text grew out of the need to communicate concepts from constraint satisfaction
to people acquainted with linear and non-linear optimization techniques and conversely,
to view concepts used in global optimisation from a constraint satisfaction standpoint.
The objective of this text is to present the foundations of numeric constraint satisfac-
tion with an emphasis on interval-based consistency techniques in order to permit both
perspectives. This survey is short and necessarily biased towards the objective, but we
do point to additional literature which allows further exploration, advanced aspects and
other perspectives. It can often be observed that the presentation of original ideas is par-
allelled by the introduction of original notation, which impairs comparative presentation
and can lead to confusion. Therefore special care has been taken to provide a uniform and
consistent notation. Conceptually, we present elements from three different disciplines:
global optimisation, interval-based computation and constraint programming.

Optimisation is the general term for describing problems over continuous domains in
which the objective is to optimise an objective subject to given constraints. Local optimi-
sation techniques are able to efficiently obtain some local optimum for often large-scale

The Authors are with School of Computing, The Robert Gordon University, Aberdeen, UK. E-mail:
ha@comp.rgu.ac.uk

Thanks are due to the reviewers who helped a lot to improve this document.

162 G. RENKER, H. AHRIZ

problems, but do not necessarily find the globally optimal solution. Global optimisa-
tion, on the other hand, deals with finding the absolutely best set of admissible condi-
tions, where both the objective and constraints are formulated in mathematical terms. It
thus subsumes the ideas of linear programming, non-linear programming, mixed inte-
ger (non-) linear programming and related disciplines. For a comprehensive and detailed
survey on global optimisation, see [46].

Interval-based computation is gaining momentum as a paradigm for computing with
real numbers. Its strengths are (i) rigour – guarantees for results can be given if a ‘safe’
representation mode is used, (ii) transparency – no loss of information due to the ex-
istence and accumulation of rounding errors and (iii) technical feasibility – in contrast
to infinite-precision arithmetic, the space demands of the representation (floating-point
numbers to represent bounds) are very modest. Fast implementations of interval arith-
metic now exist (see section 4) and even come as a standard feature in some modern
compilers [51]. The benefits of this technology can thus be reaped without having to
spend time on low-level issues.

Constraint programming is, like global optimisation, a general term and it describes
a computational approach to solving combinatorial problems which has greatly matured
during the past three decades. One of its key strengths is the use of domain-specific in-
ference techniques known as constraint propagation, which exploit information inherent
in the problem to reduce a potentially vast search space. This approach is generic and
can in principle be instantiated on any domain. Propagation can fruitfully be viewed
either as a set of functions that are applied until reaching a common fixed-point (after
which no further inferences are triggered) or equivalently as rules that rewrite a system
of constraints until it is closed under rule application. A detailed and richly illustrated
treatment of these concepts can be found in [2]. Constraint processing has traditionally
been more strongly associated with finite domains, whose representation on a computer
is less of an issue. There is however no reason to restrict constraint technology to these
domains. In fact, professional constraint solvers like Ilog Solver, Prolog IV or ECLiPSe
already come equipped with interval constraint propagation facilities. Furthermore, due
to the generic nature of the propagation process, the underlying procedures are not con-
strained to be interval-based. This allows fruitful complementation of and combination
with the large corpus of techniques that are already available in (non-) linear program-
ming, global optimisation and numerical analysis. Techniques that have been developed
in the constraints community, e.g. redundant modelling or adding redundant constraints
to intensify propagation activity [53], can likewise be reused in the real-valued context.

This text is structured as follows. After a brief survey of the main concepts used
in constraint-based problem solving in section 2, we describe interval-consistency ap-
proaches in section 3. This is followed by a presentation of selected available implemen-
tations in section 4. We conclude with bibliographical remarks in section 5.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 163

2. Constraint-based problem solving of numerical problems

2.1. General approach

A constraint satisfaction problem (CSP) is traditionally denoted as a triple 〈X ,D,C 〉
of variables X , set of domains D and constraints C . Each variable x ∈ X can only take
on values from its domain Dx ∈ D. A constraint c ∈ C is a relation associated with a
subset S ⊆ X of variables called scope, such that the Cartesian product of all variable
domains for S forms a superset of c. The solution set Sol(P) of a CSP P is a subset of
the Cartesian product of all domains in D in such a way that the projection of Sol(P)
onto the scope of each constraint c ∈ C yields a subset of c, thereby ‘satisfying’ this
constraint. A constrained optimisation problem (CSOP) is a CSP in combination with
a function which maps each element of Sol(P) into a numerical value which is to be
optimised as the objective of the problem.

These problems can be solved by a variety of techniques, the choice of which de-
pends on the problem instance format. If all domains in D are finite, one of the many
available finite-domain constraint solvers can be used. Problems that involve only lin-
ear constraints (possibly with integrality conditions) can be solved with (Mixed Integer)
Linear Programming techniques such as the Simplex solver [12], alternatively a floating-
point solver (e.g. the CLP(R) language [26, 38]) can be chosen. Since in principle any
algorithm capable of solving a constraint problem could be considered as a constraint
solver, we specify as defining characteristic of constraint processing the interleaved com-
bination of constraint propagation with (exhaustive) search.

Example 2.1 (Propagation) Consider the integer CSP 〈{x,y},Dx = Dy = [1,5],x+1 <
y〉. There is no support for y = 1, y = 2 in Dx and so Dx can be pruned to [3,5]. Con-
versely, the propagation of the changed domain Dx via the constraint reduces the domain
Dy to [1,3].

This is an example of establishing arc-consistency (section 3.3.1), more sophisticated
propagation techniques (also called local consistency techniques) do exist [2]. Typically
the effects of propagation on one variable domain trigger propagations on another vari-
able domain until a stable (fixed-point) state is achieved.

2.2. Solving non-linear numerical problems

A problem common to solvers based on floating-point arithmetic (hence discussed
further below) is that the presence and accumulation of rounding errors introduce a
source of inaccuracy and possibly even incompleteness, as solutions may be missed.
In [47], a problem is reported whose solution was missed by six out of seven state-of-
the-art MILP solvers (among these CPLEX 8.00) due to rounding errors. Solving (non-)
linear numerical constraint problems as surveyed in this text can be classified into three
strategies:

1. incomplete, local or naive strategies

164 G. RENKER, H. AHRIZ

2. complete and standalone solvers

3. constraint processing based on interval arithmetic

2.3. Incomplete, local or naive strategies

Local methods to solving non-linear optimisation problems are in some cases attrac-
tive due to their computational efficiency. This comes at the expense of not being able
to (i) prove existence and uniqueness of solutions, (ii) isolate global optima in general,
and (iii) compute the entire solution set for a system of constraints [29, sec. 1.2]. For a
survey of nonlinear local optimisation see [10, chap. 2].

Naive strategies denote constraint solvers that can handle non-linear constraints
without actually solving them. The simple idea underlying these approaches is that if
a constraint is currently in a non-linear form (e.g. multiplication of two uninstantiated
variables), its evaluation is suspended until results of the ongoing solving process permit
rewriting it into a linear constraint (e.g. if one of the variables becomes instantiated). This

cmult([R1, I1], [R2, I2], [R, I]) :-
R = R1 * R2 - I1 * I2,
I = R1 * I2 + I1 * R2.

Figure 1. Multiplication of complex numbers in CLP(R)

approach is realized in the CLP(R) language [26, 38]. CLP(R) does not have a solver
for non-linear constraints, nor does it provide special interval methods. Non-linear con-
straints are simply delayed until sufficiently many variables become ground in order to
allow an evaluation as a linear constraint [38]. As an example, consider the complex
number multiplication program of figure 1. In the following goal

?- cmult([R1,2], [R2,4], [-5,10]).

R1 = -0.5 * R2 + 2.5
3 = R1 * R2

the system answers Maybe, since the nonlinear constraint R1 * R2 = 3 could not be
resolved. A similar principle underlies the naive solving algorithm discussed in [16],
which is integrated into Prolog III [15]. The algorithm maintains two sets of constraints,
one for linear constraints and one for non-linear constraints. Elementary steps of the
algorithm consist of (a) solving the set of linear constraints and (b) using the computed
results to instantiate corresponding variables in the set of non-linear constraints. If as
a consequence of (b) non-linear constraints can be reduced to a linear format, these
results are transferred to the set of linear constraints, whereupon the algorithm enters
its next iteration. This process continues until either no further change is possible or an
inconsistency is detected.

The disadvantage of the approaches in this class is that the inherent incompleteness
leads to either missing out on solutions or non-termination, as demonstrated for CLP(R)
in [35].

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 165

2.4. Complete and standalone solvers

Research in numerical analysis and global optimisation has resulted in techniques
which make it possible to obtain all solutions of a given non-linear problem. A dis-
cussion of this body of work is beyond scope of this text, for a comprehensive sur-
vey see [46]. These techniques are none the less important from a constraint-oriented
viewpoint, since ideas developed in these areas (e.g. automatic differentiation [10, chap.
3] or the use of special forms for interval-based consistency methods [29]) have in-
fluenced constraint processing techniques. For the further development of constraint-
based solvers it is therefore interesting and profitable to incorporate and exploit knowl-
edge from these areas into the solving process. Since we restrict ourselves to presenting
constraint-based approaches, we look at two symbolic computer algebra techniques that
have gained significance in constraint solving, the computation of Gröbner bases and the
cylindrical algebraic decomposition method.

The Gröbner basis of a given set of polynomial equations is essentially a simplified
set of equations enabling the test for satisfiability. Gröbner bases are canonical finite sets
of multivariate polynomials which define the same algebraic structure as the initial poly-
nomial system. The Buchberger algorithm can be used to compute Gröbner bases and
to solve a system of non-linear polynomial equations, it operates on complex numbers
and may be viewed as a generalization of Gaussian elimination [35, p. 141]. The variant
of the Buchberger algorithm used in the CAL1 system [50] performs these computations
using rewrite rules and is also capable of handling polynomial inequations. The close
proximity of the Buchberger algorithm and a standard completion procedure for rewrite
systems is emphasized in [42], exploiting the fact that polynomials can be seen as rewrite
rules for an equational theory.

Cylindrical algebraic decomposition is a method for solving systems of non-linear
inequalities which performs quantifier elimination [52]. These techniques are reviewed
with regard to improvements and implementation details in [34]. The RISC-CLP(Real)
system [35] implements a combination using improved variants of both algorithms.
Apart from determining the decidability of non-linear constraints using exact real arith-
metic, the RISC-CLP system is capable of removing non-query variables in answer con-
straints using quantifier elimination.

2.5. Constraint processing based on interval arithmetic

This class of methods is discussed at length in the subsequent sections, the com-
mon underlying principle is to encapsulate real numbers within intervals and to replace
floating-point arithmetic with interval-based computation. The representation is accurate
in that numbers are contained within ‘safely’ (outward) rounded bounds. Furthermore,
constraint propagation methods can be used that contract the initial intervals either until
an empty interval is obtained (no solution) or a minimal one is found; where ‘mini-
mal’ depends either on the granularity of the floating-point hardware or on a precision

1Contrainte avec Logique

166 G. RENKER, H. AHRIZ

bound set by the user. Existence proofs can be given for these methods such that one
is assured that a non-empty interval obtained after propagation does indeed contain a
solution. In combination with an exhaustive form of search, interval-based propagation
techniques constitute a complete, reliable and rigorous solving technique; under reason-
able assumptions, all solutions to a given problem can be obtained. Unlike some local
methods, there is no dependence on using a good starting point and additional constraints
can easily be integrated and exploited for increased propagation activity. Moreover, since
the representation is finite (‘safely’ rounded floating point numbers as interval bounds),
the convergence of these approaches can easily be verified. In summary, the advantages
of this approach are rigour of computation, completeness and declarativity of knowl-
edge representation (to an extent):- constraint programming aspires to the ‘holy grail’ of
declarative solving [3] which ideally means that the user merely has to state the prob-
lem without having to devise a special algorithm. In practice this means an increase of
freedom for the user – available propagators allow narrowing for a wide range of con-
straints. Constraint processing can already go as far as dealing with ordinary differential
equations, as documented in the sections to come.

3. Interval-based consistency techniques for problems over the Reals

As real numbers on computers are approximated by floating-point numbers (called
“machine numbers” in [33, 44]) and real arithmetic by floating-point arithmetic, the
presence and accumulation of rounding errors become inevitable.

The problems of floating-point arithmetic are well-known [19], to name a few:- cer-
tain real (and even rational decimal numbers) can at best be approximated by the IEEE
754/854 standard representation; operations involving numbers with large differences
in exponents absorb the effect of the smaller numbers (e.g. 1030 + 1.03−6 still gives
1030); catastrophic cancellation describes the situation where rounding errors eliminate
the difference between nearly equivalent numbers. The semantics of real arithmetic do in
general not carry over to floating-point arithmetic, changing the format of parenthesised
expressions into a theoretically equivalent expression can increase or decrease the over-
all error [19, sec. 3.2.1]. This entails that essential properties of elementary arithmetic
operators, such as the associativity of addition, do not necessarily always hold.

Example 3.1 Compare for instance (a + b) + c and a + (b + c) when a = 1030,b =
−a,c = 1.0 :

main() { printf("%F %F", (10.0E30 - 10.0E30) + 1.0, 10.0E30 +
(-10.0E30 + 1.0)); }
The first result correctly evaluates to 1.0, whereas rounding in the second case wrongly
yields 0.0.

With careful reformulation the results of elementary floating-point expressions can be
kept within provable error bounds [19], this practice could also be extended to estimate

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 167

accumulated rounding errors (figure 2). Such analysis becomes, however, very difficult
when many function evaluations are applied in an iterative or recursive fashion and the
number of iterations is a priori unknown – as often in constraint processing. As a re-
sult, the overall rounding error can only be vaguely guessed. Another problem is that
the IEEE standards are normative only with regard to elementary arithmetic and conver-
sion operations, for transcendental functions such as tan,exp or log no recommendations
were made due to the Table Maker’s Dilemma [19, sec. 2.1.4], i.e. there is no universally
applicable way of defining a rounding mode and hence the precision differs from im-
plementation to implementation. The consequence for constraint solving is that none of

| ?- X is float(1)/10, Y is X+X+X + X+X+X + X+X+X + X.

X = 0.10000000000000001
Y = 0.99999999999999989

Figure 2. Accumulation of rounding errors

the local consistency notions known from finite domain problem solving directly car-
ries over to real-valued CSPs. Interval-based consistency techniques avoid the problems
of floating-point computation by performing equivalence-preserving approximations of
local consistency.

3.1. Basic definitions regarding CSPs

In the following, we will first consider the definition of numerical CSPs in a for-
mat convenient for further discussion, then review the approximations of real numbers
by floating-point intervals and finally introduce common local consistency notions in
solving CSPs over the Reals.

3.1.1. Numerical constraint problems

A real-valued constraint c(x1, . . . ,xn)⊆Rn is an n-ary relation over the Reals, where
each xi (1 ¬ i ¬ n) takes on values from a domain Di ⊆ R. In the following, such n-ary
relations will be abbreviated by the special symbol ρ. The relationship between an n-
ary constraint and the domains of its associated variables is established by the notion of
projection constraints.

Definition 3.1 (Projection) The i-th projection (i ∈ 1..n) of an n-ary relation ρ⊆ Rn is
given as πi(ρ) =

{
xi ∈ Di|

(∃(x1, . . . ,xi−1,xi+1, . . . ,xn) ∈ Rn−1
)
(x1, . . . ,xn) ∈ ρ

}
.

A real-valued constraint problem P is a pair 〈C ;D〉 where C is a set of constraints in-
volving at most n variables and D is a set of domain expressions taking the form xi ∈Di
(1¬ i¬ n) where Di ⊆R is the domain of xi. Solutions to numerical constraint problems
are defined as in the general case.

168 G. RENKER, H. AHRIZ

3.1.2. General solving scheme

It is fortunate for the presentation of constraint-solving techniques that the underly-
ing search schema for this domain is very simple and based on a dichotomic, exhaus-
tive branch-and-prune principle.2 We can not present all possible search schemes here
and refer to [2] for further reference. In fact, many existing solvers for constraint prob-
lems over the Reals are based on a branch-and-prune algorithm, e.g. Numerica [29],
RealPaver [23], Newton [28] or CLIP [32]; an implementation is e.g. described in [27].
Branch-and-prune is based on the recursive invocation of two steps:

1. PRUNING the search space by applying interval consistency techniques

2. BRANCHING: generating sub-problems by bisecting the domains of a variable

The pruning step ensures, through reduction of variable domains, that certain interval
consistency notions hold (see section 3.3); branching on non-empty variable domains
creates sub-problems built from the disjoint parts of the bisected variable domain. Thus
the branching step creates a search tree ‘on the fly’, where the leaf nodes represent solved
states, i.e. intervals that where either found to be empty or which can not be narrowed
any further. The recursive invocation of pruning and branching continues until no fur-
ther narrowing of variable domains is possible or a user-defined termination criterion
was met. The problem is proven to have no solution once an empty variable domain is
encountered. A variation of this scheme is branch-and-bound search where subtrees can
be pruned away as soon as it becomes clear that the estimated gain for the objective
function is not going to improve on the current bound.

3.2. Approximating Reals by floating-point intervals

The set R of real numbers is infinite and each of its elements may have arbitrar-
ily many digits after the decimal point. In contrast, the floating-point numbers that are
available on a computer are a finite subset F of R, where each element has a fixed,
implementation-dependent precision. Additionally, the two special symbols −∞ and ∞
are used to denote real numbers which are strictly smaller (larger) than the smallest
(largest) floating-point number available in an implementation, respectively. Figure 3
illustrates these concepts.

3.2.1. Notational conventions

We use R∞ = R∪{−∞,∞} to denote R augmented by the two symbolic constants
−∞ and ∞.3 The ordering relation < is extended such that for all r ∈ R, −∞ < r < ∞.
The symbol F refers to the set of all floating-point numbers in a given implementation.
We have that F ⊂ R∞, so F is also ordered under <. For any floating-point constant
a, a+ corresponds to the smallest number in F strictly greater than a and a− denotes

2According to [46], this branching principle underlies almost all global optimization algorithms, so it is
not exclusive to constraint methods.

3The set R∞ is sometimes also called the set of extended Reals [30, sec. 4].

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 169

−∞ ∞

R

F

a a
+

bb
− r1

r1 r2

dr2ebr2ca
−

Figure 3. Real numbers R and floating-point numbers F

the largest number in F strictly smaller than a (cf. figure 3). We will further use two
functions to describe the effects of rounding.

Definition 3.2 (Rounding) The functions bc : R→ F , de : R→ F are defined for all
r ∈ R as

brc= max{s ∈ F |s¬ r}
dre= min{s ∈ F |s r}

3.2.2. Approximation in general

Informally speaking, the type of approximation embodied by the above rounding
functions incurs a loss of information. In order to describe approximation which does
not lead to such loss in a formal and generic way, approximation functions were studied
in [4, 9]. We review the most important properties of these functions before turning to
concrete instances.

Definition 3.3 (Approximation function [4]) Let D be a set and℘(D) be the power set
of D Let further apx be a function defined from ℘(D) into ℘(D). The function apx is an
approximation over D if the following properties hold for all ρ,ρ′ ∈℘(D):

1. apx(Ø) = Ø
2. ρ⊆ apx(ρ)
3. ρ⊆ ρ′⇒ apx(ρ)⊆ apx(ρ′)
4. apx(apx(ρ)) = apx(ρ)

In general, an n-ary relation ρ is approximated by the Cartesian product of the approxi-
mations of its projections.

Definition 3.4 (Approximations of n-ary relations [4]) Let apx be an approximation
function over a set D and let ρ be an n-ary relation over D. Then

apx(ρ) =
(
apx(π1(ρ))×·· ·×apx(πn(ρ))

)

The following important properties have been shown for relations ρ⊆Rn,ρ′ ⊆Rn in [9,
sec. 2].

170 G. RENKER, H. AHRIZ

apx(ρ∪ρ′) = apx(apx(ρ)∪apx(ρ′))
apx(ρ∩ρ′) ⊂ apx(ρ)∩apx(ρ′) (1)

3.2.3. Real and floating-point intervals

An important result with respect to using floating-point intervals shall be summa-
rized first. The definition of closed connected sets [30] (called convex sets in [39, sec.
2.3]) is of particular relevance here.

Definition 3.5 (Closed sets, connected sets) A basic open set of Reals is a set of the
form {x ∈ R|a < x < b} where a,b are real numbers. A set S of Reals is open if, for
every point x ∈ S, there is a basic open set Ux such that x ∈ Ux ⊆ S. A set S of Reals
is closed if its complement is open. A set S of Reals is connected if there do not exist
disjoint non-empty open sets U1 and U2 that each intersect S and for which S⊆U1∪U2.

As in [2, 30, 33], we use this definition as the basis for the definition of real intervals.

Definition 3.6 (Real interval) A real interval is a closed connected set S⊆ R.

The important result here is that the only closed connected sets of Reals are these [30,
Thm. 1]:

{x ∈ R |a¬ x} , {x ∈ R |x¬ b}
{x ∈ R |a¬ x¬ b} , andR

where a,b∈R. This entails that Ø is a closed connected set. These four closed connected
sets are grouped into the second column of table 1 and are the basis for the definition of
floating-point intervals, which also establishes the relationship with the set R∞ (similar
to [30, Def. 7]).

[x,x) = {x ∈ R |x¬ x < x} [x,x] = {x ∈ R |x¬ x¬ x}
(x,x] = {x ∈ R |x < x¬ x}
(x,∞) = {x ∈ R |x < x < ∞} [x,∞) = {x ∈ R |x¬ x < ∞}
(−∞,x) = {x ∈ R |−∞ < x < x} (−∞,x] = {x ∈ R |−∞ < x¬ x}
(x,x) = {x ∈ R |x < x < x} (−∞,∞) = R

Table 1. Real interval notation

Definition 3.7 (Floating-point interval) Let x,x ∈ F . A floating-point interval 〈x,x〉 is
one of the four real intervals [x,x], (−∞,x], [x,∞) or (−∞,∞), using the notation in table
1. The set of all floating-point intervals is denoted by I(F).

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 171

3.2.4. Rounding and representing single Reals

The rounding functions of definition 3.2 preserve equivalence with r ∈ R only in
the special case where r = brc = dre. Therefore (sets of) real numbers are usually rep-
resented by floating-point intervals [4, 8, 9, 27, 29]. As illustrated in figure 3, there are
only two possibilities to represent a real number r by a floating-point interval [39]. In
the first case, when r is equal to a floating-point number r1, no rounding is required and
the interval [r1,r1] can be used. In the other case, a real number r2 can be represented
by the floating-point interval 〈br2c ,dr2e〉. Please note that the latter case constitutes the
slight imprecision of including the interval bounds (if different from −∞ or ∞). This is
conform with the literature (e.g. [28, 29, 36]) and has the advantage of a uniform nota-
tion. Such “outward rounding” shall be used in the same manner when enclosing sets of
Reals by intervals as it is used for single numbers.

It is important to emphasize that this text refers to properly rounded interval arith-
metic [44, sec. 3.2], not exact interval arithmetic; we suppose that rounding is always
done in such a manner that the exact result (of the corresponding infinite-precision arith-
metic) is contained. We further assume that, in all operations described hereafter, the
largest possible computing error is always smaller than the minimal value for |a−a+|
where a ∈ F , cf. [14, sec. 2.2]. This simplifies the exposition but does not necessarily
reflect the practical reality, the careful reader should consider [19] and critically check
which guarantees (perfect rounding) are provided by the software at hand.

Definition 3.8 (Approximation of real numbers) Let r ∈ R. The approximation of r,
denoted appx(r), is defined as appx(r) = 〈brc ,dre〉 .

For simplicity, appx(r) is abbreviated as ←→r . Since the arguments are singletons, con-
ditions (3) and (4) of definition 3.3 do not apply to this special case; the generalisa-
tion follows below. It is important to note that condition (2) holds, since for all r ∈ R,
{r} ⊆ 〈brc ,dre〉 using the given definitions and assumptions, and condition (1) vacu-
ously holds. Concluding, for any real number r, its floating-point interval approximation
is either of the form 〈a,a〉 or 〈a,a+〉. These special intervals are called canonical inter-
vals in the literature [28, 29, 49].

3.2.5. Approximating sets of Reals

Under certain conditions, a set S ⊂ R may be representable by a real interval. For
instance, the set {−30.0,1.3,3.0} can at best be enclosed in e.g. [−30,3], but it is not
representable as an interval. Further, since bounded non-empty real intervals are only
closed for the interval operations of addition, subtraction and multiplication [30, Thm.
2], several interval operations require to use unions of intervals for the representation
of results (e.g. interval division [30, sec. 4.7] or interval exponentiation [33, sec. 5.2]).
This motivates the definition of a special set U(F) whose elements are unions of floating
point intervals [4, 8]:

U(F) = {D⊆ R |(∃〈I1, . . . , In〉 ∈ I(F)n)D =
⋃n

i=1 Ii}

172 G. RENKER, H. AHRIZ

As pointed out in [4], both I(F) and U(F) are closed under intersection. The union
approximation and hull approximation of a set can now be defined.

Definition 3.9 (Union and hull approximation of a set) Let S be a subset of R. The
union approximation of S, denoted by appx(S),4 is the least element U ∈U(F) under
the ordering of set inclusion such that U ⊇ S. The F-interval hull of S, denoted hull(S),
is the smallest (wrt. inclusion ordering) element I ∈ I(F) such that I ⊇ S.

The notion of “smallest element” in the inclusion ordering is understood with regard
to the use of outward rounding in order to preserve the computational correctness. It is
pointed out in [4, sec. 4.4] that both functions satisfy definition 3.3 and that additionally
the following properties hold:

1. appx(S)⊆ hull(S)

2. hull(appx(S))⊆ appx(hull(S)) = hull(S)

3. hull({r}) = appx({r}) =←→r

These approximations further have orthogonal strengths. Representing sets of Reals by
unions of intervals can lead to combinatorial explosion, [39, sec. 3] shows a simple
example where representing an arc-consistent domain requires the union of 104 intervals.
On the other hand, approximating a set which is not closed and connected by an interval
hull reduces the precision of returned results. Some tools, e.g. RealPaver [23], allow
users to switch between union and hull output mode.

3.2.6. Approximating n-ary relations over the Reals

An n-ary relation ρ ⊆ Rn is a subset of a Cartesian product D1× ·· · ×Dn of sets
Di ⊆R, i ∈ [1,n]. Such relations can be approximated by Cartesian products of floating-
point intervals, called F-boxes.

Definition 3.10 (F -box) An n-ary real box is a Cartesian product R1×·· ·×Rn where
for all i ∈ [1,n] Ri is a real interval. An n-ary F-box is a Cartesian product F1×·· ·×Fn
where Fi ∈ I(F) for all i ∈ [1,n].

The inclusion ordering is generalized from I(F) to its n-fold Cartesian product I(F)n.
Lemma 8 in [33] guarantees the existence of a unique least F-box for every n-ary relation
ρ⊆ Rn, such that applying definition 3.4 to the hull approximation yields hull(ρ) as the
smallest F-box containing ρ [33, Def. 9].5 This is the approach taken in [4, 9], where n-
ary relations ρ are represented by the smallest F-box containing ρ and the approximation
functions of definition 3.9 are extended by applying definition 3.4. These concepts can
furthermore be formally described in terms of (monotone) interval extensions [8, 29].

4called union(r) in [4, Def. 10].
5instead of F-box, the term “machine box” and instead of hull(ρ) the expression bx(ρ) is used in [33].

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 173

Definition 3.11 (Interval extension) An interval function F : I(F)n → I(F) is an in-
terval extension of a function f : Rn → R if f (a1, . . . ,an) ∈ F (←→a1 , . . . ,←→an) for every
(a1, . . . ,an) in the domain of f . An interval relation R ⊆ I(F)n is an interval extension
of a relation r ⊆ Rn if (∀(a1, . . . ,an) ∈ r) (←→a1 , . . . ,←→an) ∈ R.

Table 2 shows some interval extensions of arithmetic operations. The general case of
interval division is complex and we refer to [33] for an in-depth treatment. Many inter-

[a1,b1]⊕ [a2,b2] = [ba1 +a2c ,db1 +b2e]
[a1,b1]ª [a2,b2] = [ba1−b2c ,db1−a2e]
[a1,b1]⊗ [a2,b2] = [min(ba1a2c ,ba1b2c ,bb1a2c ,bb1b2c) ,

max(da1a2e ,da1b2e ,db1a2e ,db1b2e)]
[a1,b1]® [a2,b2] = [min(ba1

a2
c,ba1

b2
c,bb1

a2
c,bb1

b2
c),

max(da1
a2
e,da1

b2
e,db1

a2
e,db1

b2
e)]; if 0 6∈ [a2,b2]

Table 2. Interval extensions for arithmetic operations

val functions and relations satisfy definition 3.11, e.g. an interval function that always
returns (−∞,∞). With regard to approximation, the interest is to find such interval ex-
tensions that are optimal in the sense that there is no ‘smaller’ interval extension.

Definition 3.12 (Monotone extensions [8]) An interval function F : I(F)n → I(F) is
monotone if (∀i ∈ [1,n]) Ii ⊆ I′i ⇒ F(I1, . . . , In) ⊆ F(I′1, . . . , I

′
n). An interval relation R ⊆

I(F)n is monotone if (∀i ∈ [1,n]) Ii ⊆ I′i ⇒ [(I1, . . . , In) ∈ R⇒ (I′1, . . . , I
′
n) ∈ R].

Note how this definition relates closely to definition 3.3(3). The two preceding defini-
tions lead to a very important result, taken from [8, Thm. 5]:

Theorem 3.1 (Fundamental theorem of interval arithmetic) Let F : I(F)n → I(F)
be a monotone interval extension of f : Rn → R. Then a1 ∈ I1, . . . ,an ∈ In implies
f (a1, . . . ,an) ∈ F (I1, . . . , In). Similarly, let R⊆ I(F)n be a monotone interval extension
of r ⊆ Rn. Then a1 ∈ I1, . . . ,an ∈ In implies (a1, . . . ,an) ∈ r ⇒ (I1, . . . , In) ∈ R.

An important and simple interval extension of a function f :Rn →R or a relation r⊆Rn

is the natural interval extension [14, 27, 28], which is obtained as follows. Each occur-
rence of a constant k∈R is replaced by 〈bkc ,dke〉, each variable xi by an interval variable
Xi and each operation is replaced by its optimal interval extension. In the remainder of
the paper, natural interval extensions will be denoted by f̂ and r̂, respectively, and we
will use the interval extensions of +,−,∗,/ as shown in table 2. More sophisticated vari-
ants, such as the distributed interval extension or the Taylor interval extension [27, 28],
exist (see also [10, chap. 5]).

174 G. RENKER, H. AHRIZ

3.3. Local consistency forms

The previous section has considered the approximations of (sets of) Reals, relations
and functions by (Cartesian products of) intervals. This section extends these principles
to the approximation of local consistency in constraint problems over the Reals.

3.3.1. Approximations of arc-consistency

Most of the local consistency forms discussed below derive from (hyper-) arc con-
sistency6, which is defined as follows.

Definition 3.13 (Arc-consistency) The i-th projection πi(ρ) of an n-ary constraint ρ⊆
Rn is arc-consistent with respect to the sequence of domains D1, . . . ,Dn if for all i∈ [1,n]

Di = Di∩
{

ri |(∀ j ∈ [1,n]\{i})(∃r j ∈ D j)(r1, . . . ,rn) ∈ ρ
}

An n-ary constraint ρ⊆ Rn is arc-consistent wrt. the sequence of domains D1, . . . ,Dn if
each of its projections πi(ρ) (1 ¬ i ¬ n) is arc-consistent. A constraint problem 〈C ;D〉
is arc-consistent if each constraint c ∈ C is arc-consistent with regard to the sequence of
domains in D.

-2 -1 1 2

-1

-2

 1

 2

 Y

 X

Figure 4. Arc-consistent area for x2 + y2¬ 2

The definition of local consistency conditions leads to the algorithmic process of con-
straint propagation, which exploits knowledge inherent in constraints to reduce the vari-
able domains of the problem. Constraint propagation can generally be regarded as the
iterative application of so-called domain reduction functions known as chaotic iteration
[1]. Specific domain reduction functions (also called narrowing operators in [4, 5, 8]),

6this distinction refers to the fact that the original notion of arc-consistency [40] is limited to binary
constraints. Definition 3.13 generalises arc-consistency to the n-ary case and will be used when referring to
arc-consistency in this section.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 175

which distinguish the local consistency approximations, will be considered below. The
iterative process terminates by reaching a stable fixed-point called closure, which is char-
acterized by the property that any further application of the reduction functions will not
result in any change of the domains [1]. In the following, we will not consider the indi-
vidual details of closures and the algorithms to achieve these and point to the respective
literature instead [4, 8, 9, 14, 39]. Establishing arc-consistency on the i-th projection
πi(ρ) of a constraint ρ ⊆ Rn as per definition 3.13 leads to a new variable domain D′

i
which is a subset of the original domain Di ⊆ R.

Example 3.2 (Arc-consistent domains) Consider the constraint problem〈
x2 + y2 ¬ 2;x ∈ R,y ∈ R〉

. The arc-consistent domains for x,y form a disk in fig-
ure 4. The circular area contains infinitely many points (x,y) that satisfy the problem
constraint.

Arc-consistency on real-valued problems thus depends on the exact representation of sets
of Reals, which is generally made impossible on computers by inherently finite precision
limits. Several approximations of arc-consistency have therefore evolved, all of which
use floating-point intervals to describe variable domains over the Reals. The following
definitions will only describe the consistency condition for single projection constraints,
the extension of this condition to whole constraints ρ and entire constraint problems
〈C ;D〉 is established as per definition 3.13. The first approximation of arc-consistency
is called interval consistency, it is described in [8] and uses the union approximation of
definition 3.9.

Definition 3.14 (Interval consistency) The i-th projection πi(ρ) of an n-ary constraint
ρ ⊆ Rn is interval-consistent with respect to the sequence of domains D1, . . . ,Dn if for
all i ∈ [1,n]

Di = appx
(
Di∩

{
ri |(∀ j ∈ [1,n]\{i})(∃r j ∈ D j)(r1, . . . ,rn) ∈ ρ

})

In this case, sets of real numbers are simply represented by a union of corresponding
floating-point intervals. Such an approach is feasible only for a few problem types, e.g.
finite domain problems over integral numbers. For other types of problems establish-
ing interval consistency may lead to either combinatorial explosion or prove infeasi-
ble due to infinite variable domains. Thus, most systems compute an approximation of
arc-consistency called 2B-consistency [39, Def. 9] or hull-consistency [4, 7, 9], which
enforces the arc-consistency property only at the bounds of floating-point intervals. As
in [14], we will use the terms 2B-consistency and hull-consistency interchangeably.

Definition 3.15 (Hull consistency) The i-th projection πi(ρ) of an n-ary constraint ρ⊆
Rn is hull-consistent with respect to the sequence of domains D1, . . . ,Dn if for all i∈ [1,n]

Di = hull
(
Di∩

{
ri |(∀ j ∈ [1,n]\{i})(∃r j ∈ D j)(r1, . . . ,rn) ∈ ρ

})

176 G. RENKER, H. AHRIZ

-2 -1 1 2

-1

-2

 1

 2

 Y

 X

Figure 5. Hull-consistent area for x2 + y2¬ 2

Notice that this is a weaker condition than arc-consistency in that hull-consistent do-
mains may still contain inconsistent values.

Example 3.3 (Hull-consistency) Consider again the constraint problem〈
x2 + y2 ¬ 2;x ∈ R,y ∈ R〉

. The square area in figure 5 describes the Cartesian
product of the variable domains after enforcing hull-consistency. In contrast (cf. figure
4), the inner disk describes the arc-consistent area.

A slightly stronger variant of hull consistency is used in the tolerance propagation
scheme of [36], which requires the arc-consistency property to hold for each value within
the interval bounds. The tolerance propagation scheme is thus a combination of interval
and hull consistency notions, which entails that it may not be possible to enforce it
on certain problems. To illustrate this, consider figure 6. The arc-consistency property
holds for all points of the shaded square area, but this comes at the expense of excluding
consistent values – those which lie outside the square area and within the disk. Hull-
consistency can be enforced in a straightforward manner on primitive constraints, as
detailed in section 3.3.2. On primitive constraints, hull-consistency is almost indistin-
guishable from box-consistency (definition 3.16 below). To better compare these two
consistency notions, we use a property that has been shown in [14, Prop. 3] to hold for
the natural interval extension (cf. page 173) of n-ary constraints in which no variable
occurs more than once.7

Proposition 3.1 (Hull-consistency [14]) Let ρ ⊆ Rn be an n-ary constraint taking the
form ρ(x1, . . . ,xn) such that each variable xi occurs exactly once in ρ and is associated
with a domain Di⊆R, 1¬ i¬ n. Let further ρ̂(I1, . . . , In) be the natural interval extension
of ρ(x1, . . . ,xn) where the i-th projection of ρ̂ is the floating-point interval Ii =

〈
xi,xi

〉
.

7again, we consider 2B-consistency and hull-consistency as the same concepts.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 177

-2 -1 1 2

-1

-2

 1

 2

 Y

 X

Figure 6. Consistent tolerance propagation area for x2 + y2¬ 2

Then the i-th projection of ρ̂(I1, . . . , In) is hull-consistent iff the following relations hold
with regard to ρ:

(1) ρ̂
(

I1, . . . , Ii−1, [xi,xi
+
), Ii+1, . . . , In

)
and

(2) ρ̂
(

I1, . . . , Ii−1,(xi
−
,xi], Ii+1, . . . , In

)

The constraint ρ̂(I1, . . . , In) is hull-consistent if all its projections are hull-consistent.

We now turn to the definition of box-consistency [7, 8, 27, 28, 29], which is an even
coarser approximation of arc-consistency than hull-consistency. It can be obtained by
replacing all existentially quantified variables in definition 3.13 with the corresponding
intervals. Thus, a system of n-ary constraints is turned into a system of univariate interval
functions, which is a very convenient format for numerical methods such as the Newton
interval method (see below). As pointed out in [14], box consistency can be defined as
follows.8

Definition 3.16 (Box-consistency) Let ρ(x1, . . . ,xn) ⊆ Rn be an n-ary constraint, each
variable xi associated with a domain Di ⊆ R, 1 ¬ i ¬ n. Let further ρ̂(I1, . . . , In) be the
natural interval extension of ρ(x1, . . . ,xn) where the i-th projection of ρ̂ is the floating-
point interval Ii =

〈
xi,xi

〉
. Then the i-th projection of ρ̂(I1, . . . , In) is box-consistent iff

the following relations hold wrt. ρ:

(1) ρ̂
(

I1, . . . , Ii−1, [xi,xi
+
), Ii+1, . . . , In

)
and

(2) ρ̂
(

I1, . . . , Ii−1,(xi
−
,xi], Ii+1, . . . , In

)

8Box consistency was originally defined in [8], this definition differs slightly from the original definition.
A third variant appears in [7, sec. 4.1]. We chose only one definition to avoid confusion and to enable a better
comparison of the underlying principles.

178 G. RENKER, H. AHRIZ

The constraint ρ̂(I1, . . . , In) is box-consistent if all its projections are box-consistent.

The original definition of box consistency is parameterised by the type of interval exten-
sion to be used and thus can be instantiated to produce various narrowing operators, as
illustrated in [27, 28].

3.3.2. Comparing approximations of arc-consistency

If we denote the Cartesian product of variable domains after enforcing arc-
consistency, interval-consistency, hull-consistency and box-consistency by AC, IC,HC
and BC, respectively, [8, Prop. 4.1] presents the following inclusion hierarchy: AC ⊆
IC ⊆ HC ⊆ BC.

To compare the strengths of hull- (2B) and box-consistency more closely, we now
shortly review implementation features. Establishing hull-consistency is based on the
principles of interval arithmetic, which generally restricts the selection of domain reduc-
tion functions to interval-convex relations [4, 9].

Definition 3.17 (Interval-convexity [9]) An n-ary relation ρ⊆ Rn is interval-convex if
for every real box u and for all i∈ [1,n], πi(ρ∩u) is a real interval. ρ is F-interval-convex
if for every F-box u and for all i ∈ [1,n], πi(ρ∩u) is an F-interval.

Only few arithmetic operations are interval-convex, even the multiplication relation
needs to be represented as the disjoint union of two subsidiary interval-convex rela-
tions [9, p. 9]. Thus the principle of establishing hull-consistency is to use only a re-
stricted set of basic domain reduction functions,9 other, more complex (non interval-
convex) constraints need to be decomposed into unions and intersections of these primi-
tives. Moreover, the tight computation of interval hulls demands operations to be evalu-
ated with a precision of 1 ulp,10 which can not always be guaranteed for every elemen-
tary function [10, sec. 5.2.2].

Example 3.4 (Narrowing functions) Given the constraint x+y = z with corresponding
floating-point interval domains X ,Y and Z. The domain reduction functions for X ,Y and
Z are (primed intervals denote reduced ones):

X ′ = X ∩ (ZªY)
Y ′ = Y ∩ (ZªX)
Z′ = Z∩ (X⊕Y)

A drawback of the decomposition into constraint narrowing primitives is the dependency
problem [14], i.e. narrowing based on the composition of narrowing operators is equal
to the theoretically achievable narrowing only if each variable occurs at most once in
a constraint [4, Thm. 2]. The decomposition process generates primitive constraints by
introducing auxiliary variables, which is illustrated by the following example.

9the definition of 2B consistency in [36, sec. 2.3] also supposes that constraints are basic.
10Units in the Last Place, the absolute error of floating-point computations wrt. the last digits [19].

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 179

Example 3.5 (Multiple occurrences) Let x1 +x2 = x1 be a constraint with the floating-
point interval domains X1 = [−1,1] and X2 = [0,1]. Without decomposition, establish-
ing 2B consistency reduces X2 to [0,0], since there is no value for x1 with x2 = 1
such that the constraint holds. Decomposition of this constraint yields the system
〈x1 + x2 = x3, x1 = x3〉with X3 = [−1,1]. This decomposition now makes the considera-
tion of x1 independent from x2 and so domain reduction can not be applied as effectively.
In fact, it is straightforward to verify that application of narrowing operators (using e.g.
those from example 3.4) leaves the domains entirely unaffected, as each interval variable
bound in turn has a supporting value among the bounds of the other interval variables.

Box consistency, in contrast, does not suffer from the same problem, since its domain
narrowing is not based on interval arithmetic. Rather, an n-ary constraint of the form
f (x1, . . . ,xn) is first transformed into a univariate interval function of the variable xi (1¬
i¬ n). An interval extension of the Newton method then reduces the interval domain of
xi by computing the leftmost and rightmost interval zeros11 [14, 27]. However, as pointed
out in [7, 14, 21, 22, 32], the computation of interval zeros is a time-consuming process
and therefore [7, sec. 4.1] recommends not to use box-consistency when a constraint
involves many different variables.

Improvements on the basic algorithms The basic algorithms to enforce hull and box
consistency are called HC3 and BC3 (respectively) in [7], where improvements to these
algorithms are made. The new HC4 algorithm [7, sec. 3.2] does no longer require de-
composition when establishing hull consistency, this is automated by a traversal of an
attribute tree representing the decomposed constraints. The traversal consists of a for-
ward evaluation and a backward propagation phase during which the interval domains
of the involved variables are continuously reduced. Based on these ideas, a new hybrid
algorithm called BC4 is then introduced [7, sec. 4.2] which interleaves the computation
of hull and box-consistency. The experimental results confirm that BC4 combines the
strengths of the two consistency notions in that it outperforms both BC3 and HC3 on
nearly all of the benchmarks with a faster convergence.

This line of research into combining the strengths of different consistency techniques
is continued by Granvilliers, who proposes a branch-and-prune algorithm using a com-
bination of hull-consistency, box consistency and the interval Newton method in [22].
The combined strategy outperforms Numerica and a state-of-the-art numerical continua-
tion method on benchmarks, and it proves to be faster on average than the pruning based
on a single type of consistency. In particular, the cooperative strategy helps to avoid
slow convergence tendencies. Combined consistency strategies are also implemented in
RealPaver (cf. section 4.3), a branch-and-prune solver developed by the same author.

3.3.3. Higher-order consistencies

Higher order consistencies derive from the notion of k-consistency [18]. The ap-
proximations of arc-consistency can be described in terms of (strong) 2-consistency; the

11with regard to finite precision of computation these are often more appropriately called “quasi-zeros”.

180 G. RENKER, H. AHRIZ

following will present two notions of strong 3-consistency. These can in theory be gen-
eralized to even higher levels [39]. The principle immanent in the following definitions
of 3B and bound consistency is that a variable is instantiated to one of its floating-point
interval bounds and the remaining constraint problem is made 2B or box consistent,
respectively.

Definition 3.18 (3B-consistency [39]) Let P = 〈C ;D〉 be a CSP and x be any of the
variables in D. Let further

• P ′ be the problem derived from P by substituting [x,x
+
) for x

• P ′′ be the problem derived from P by substituting (x
−
,x] for x

The domain of x is 3B-consistent if establishing 2B-consistency on both P ′ and P ′′ does
not lead to an empty variable domain. P is 3B-consistent if all the domains in D are
3B-consistent.

This definition entails that a 3B-consistent problem is automatically also 2B-consistent.

Example 3.6 (3B-consistency [39]) Consider the following binary constraint problem
P :

〈x+ y = 2∧ y¬ x+1∧ y x;x ∈ [0.5,1],y ∈ [1,1.5]〉
Table 3 illustrates the proof that the problem is 3B-consistent. For each instantiation
of x, a 2B-consistent (unary) sub-problem can be found. The converse case of instan-
tiating y to its interval bounds and determining whether the remaining sub-problem is
2B-consistent follows analogously.

P ′ y = 1 y = 1.5 P ′′ y = 1 y = 1.5
x+ y = 2∧ x = 0.5 fail true x+ y = 2∧ x = 1 true fail
y¬ x+1∧ x = 0.5 true true y¬ x+1∧ x = 1 true true
y x∧ x = 0.5 true true y x∧ x = 1 true true

Table 3. Establishing 3B consistency

Bound-consistency [29, 49] relies on the same principle as 3B-consistency but estab-
lishes box-consistency on the remaining sub-problem.

Definition 3.19 (Bound-consistency [29]) Let P = 〈C ;D〉 be a CSP and x be any of
the variables in D. Let further

• P ′ be the problem derived from P by substituting [x,x
+
) for x

• P ′′ be the problem derived from P by substituting (x
−
,x] for x

The domain of x is bound-consistent if establishing box-consistency on both P ′ and P ′′
does not lead to an empty variable domain. P is bound-consistent if all the domains in
D are bound-consistent.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 181

A spectacular application of box and bound consistency techniques in a branch-and-
prune algorithm is documented in [49], where this approach reduced the runtime of
solving a numerical transistor modelling problem from 14 months (on 30 Sun Sparc-1
stations) to less than one hour (on a single Sun Ultra-2 station).

3.3.4. Variations to allow faster convergence

By default, interval-based consistency techniques aspire to approximate real values
during domain narrowing as close as possible, computing e.g. canonical intervals or
canonical boxes (section 3.2.4). This can be computationally very expensive and lead to
lengthy computations that in some cases may require manual termination [39, sec. 3.1].
Therefore, several relaxations of known consistency techniques have evolved, which all
permit an imprecision tolerance when computing new interval bounds. Hull-consistency
is relaxed to arc-B(w) consistency in [39, Def. 11], where w is the tolerance parameter
for the computation of new interval bounds. This means that computed results need to lie
within a tolerance interval which contains at most w floating-point numbers in between
of its bounds, which generalises the use of canonical intervals to enclose real-valued
results. Thus, 2B-consistency is equivalent to arc-B(0) consistency. In the same manner,
3B-consistency has been relaxed to 3B(w1,w2) consistency [39, Def. 13], now using two
width dimensions. Again, 3B-consistency is equivalent to 3B(0,0) consistency.

The analogue of arc-B(w) consistency for box-consistency is boxϕ-consistency [21,
Def. 4], where ϕ is the parameter limiting the width of the computed interval bounds.
Boxϕ-consistency significantly reduced the computation times with regard to computing
exact box-consistency in all of the benchmarks reported in [21, sec. 5.1]. See figure 9 for
an example of using boxϕ-consistency.

2-consistency 3-consistency

Interval-consistencyHull-consistency Box-consistency

Box-Phiarc-B(w)

3B(w1,w2)

3B-consistencyBound-consistency

Figure 7. Interval consistency techniques

3.4. The big picture

Figure 7 summarizes the different consistency notions where arrows denote concep-
tual relations (not inheritance). Concepts that are known under different names, such as
hull-, 2B- and arc-B consistency appear under a single name only.

182 G. RENKER, H. AHRIZ

4. Implementations

This section presents some implementations of solvers for non-linear constraint
problems that are based on interval consistency techniques. Table 4 surveys the avail-
ability of consistency techniques in a selection of solvers.

Language Ref Basis Hull Cons. Box. Cons. Remarks

Prolog IV [45] Prolog III •
Newton [28] Prolog •
DecLIC [21] clp(FD) • • boxϕ consistency
clp(BNR) [9] BNR Prolog •
Numerica [29] Ilog • bound consistency
RealPaver [23] C • • HC3..4, BC3..5, 3B

Table 4. Features of implementations

4.1. Jail

JAIL (“Just Another Interval Library”) [20] is an interval arithmetic library based
on clever exploitation of IEEE 754 features. The availability of JAIL is unclear, but the
same author has released an open-source library version called Gaol (“Not Just Another
Interval Library”)12 whose outstanding feature among comparable C++ libraries is the
implementation of relational interval arithmetic operators which can be used to imple-
ment constraint narrowing functions.

4.2. Numerica

Numerica [29] is a modelling language and constraint solver for (non-) linear con-
straint problems over the Reals. The constraint solver uses a branch-and-prune algo-
rithm developed earlier [27] by the authors for the Newton [28] constraint language. The
solver requires a square system13 of non-linear (in-) equations [29, p. 96]. The available
consistency techniques are box consistency and bound consistency, using the natural or
Taylor interval extensions. For optimisation problems, a branch-and-bound algorithm is
used. Previous experiences in developing the Helios modelling language as an interface
for Newton had contributed to a research prototype with features quite similar to those
available in Numerica [41]. The standalone version of Ilog Numerica is no longer avail-
able, but these and related concepts have been merged into the Solver library (section
4.7). As an example of the Numerica style, figure 8 shows the code for the Broyden
banded function problem [29, p. 89], which amounts to finding the zeros for the system

12http://sourceforge.net/projects/gaol/
13in a square system, the number of equations equals the number of unknowns.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 183

of n equations:

f (x1, . . . ,xn) = xi ∗ (2+5∗ x2
i)+1−Σ j∈Jix j ∗ (1+ x j)

where for 1¬ i¬ n, Ji = { j|max(1, i−5)¬ j ¬min(n, i+1)∧ j 6= i}.

Input:
int n : "Number of variables: ";

Constant:
range idx = [1..n];

Set:
J[i in idx] = { j in [max(1,i-5)..min(n,i+1)] | j <> i };

Variable:
x : array[idx] in [-10e8..10e8];

Body:
solve system all
[i in idx]:

0 = x[i] * (2+5*x[i]^2) + 1 - Sum(j in J[i]) x[j] *
(1+x[j]);

Figure 8. The Broyden banded function problem in Numerica

4.3. RealPaver

RealPaver14 is a constraint solver and language for problems over the Reals [23]. It
can solve systems of (non-) linear equations and (in-) equations. The solver uses a branch
and prune strategy and provides the hull- (HC3, HC4), box- (BC3, BC4, BC5) consis-
tency techniques, also combined with interval Newton, and two variants of Lhomme’s
3B consistency [39].

4.4. DecLIC

DecLIC [21] is an interval solver extension of clp(FD) [13] which provides hull, box
and boxϕ consistency as domain narrowing techniques. In DecLIC, constraints over het-
erogeneous domains (Reals, Integers and Booleans) may be used in the same program,
as well as combinations of hull and box consistency operators. The choice of which con-
sistency technique to use is left to the programmer. Figure 9 shows a simple DecLIC pro-
gram to compute the Broyden banded function. The statement box precision(0.1)
sets the parameter for boxϕ-consistency, exact box-consistency is achieved when ϕ = 0
[6, p. 154]. (To use hull-consistency instead of box-consistency, this statement needs to
be removed and the two instances of $$= be replaced by $= [21].)

14http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/

184 G. RENKER, H. AHRIZ

broyden2 :- box precision(0.1), %% box-phi
domain([X1,X2],-1,1),
X1*(2+5*X1**2) + 1 - (X1*(1+X1) + X2*(1+X2)) $$= 0 and
X2*(2+5*X2**2) + 1 - (X1*(1+X1)) $$= 0,
solve([X1,X2]).

Figure 9. The Broyden banded function problem with 2 variables in DecLIC

4.5. CLIP

CLIP [32] is an extension of GNU-PROLOG [17] which syntactically integrates in-
terval arithmetic constraints via enclosing these in curly braces. Technically, CLIP uses
an external constraint solver which is based on an interval arithmetic library, available
as open source.15 The distinguishing feature of CLIP is the combination of the ideas
underlying systems like clp(BNR) [9, 48] and Numerica in such a way that interesting
possibilities for solving real-valued problems become possible. These will be shortly
presented below. The foundation of the CLIP architecture is a set of domain narrowing
functions for primitive constraints such as e.g. arithmetic constraints and (in-) equalities.
This is very similar in concept to the (hull-consistency) approach taken in clp(BNR),
as pointed out in [32, sec. 1]. The algorithms for the elementary domain narrowing
functions were developed in [30, 33] and form the basis of the interval arithmetic li-
brary. Within the architecture of elementary domain narrowing functions integrated into
Prolog, higher-level constraint contractors are constructed by using Taylor extensions
of functions,16 which is presented in [32, sec. 4] using a univariate Taylor formula of
degree one in combination with symbolic and numerical differentiation. These exten-

Primitive Interval
Arithmetic Constraints

Functional Constraints

Analytic Constraints

Figure 10. CLP(F) Architecture

sions are taken further in [31], where a three-layer architecture of constraint solving
called CLP(F) is introduced, sketched in figure 10. The underlying assumption is that
all considered functions over the Reals are infinitely often differentiable on a given in-
terval [31, sec. 3]. Functional constraints apply to functions and comprise constraining
variables to be of type function, equivalence constraints among functions and constraints
on the range of functions. Analytic constraints extend functional constraints by three fea-

15http://interval.sourceforge.net/interval/
16this imposes restrictions such as differentiability on the class of functions that may be used.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 185

tures: an n-fold differentiation operator, an operator to evaluate a given function at any
point of an interval, and constraints on vectors of real or function variables. Analytic
constraints in combination with the other constraints can be used to construct formu-
las that specify numerical differentiation, integration as well as constraints on ordinary
differential equations (ODEs). Examples of the latter include among others initial value
problems and parameter determination problems [31, sec. 5]. For instance, to find out
where d2

dx esin(x) has a zero in the interval [0.5,1], a query as shown in figure 11 can be
used. The solving strategy for analytic constraints consists of reducing these to func-

| ?- type([F,T], function(0.5,1.0)),
identity(T), {[F = exp(sin(T)), eval(ddt(F,2),X)=0.0]}.

X = 6.6623943...e-01 ?
(5420 ms) yes

Figure 11. Analytic constraints in CLIP

tional constraints which can then be solved with interval arithmetic methods as before.
Although the analytic constraint solving approach is not always as efficient as other
methods and exhibits some limitations as stated in [31, sec. 8], it can nevertheless be
seen as a step forward into very interesting applications of constraint technology.

4.6. ECLiPSe IC Library

The IC (Interval Constraint) library of the ECLiPSe system provides a general in-
terval propagation solver which can be used to solve hybrid problems over integer and
real variables (both types of variables can be used in the same program). The IC solver
performs almost all of its computation using interval arithmetic and provides a wide
range of arithmetic, relational, non-linear and reified constraints, coupled with the facil-
ity to create user-defined constraints over Reals and Integers [11]. A standard branch-
and-prune approach is provided, as well as a stronger propagation using the Squash
algorithm [11, sec. 3.2.10].

4.7. Ilog Solver

The more recent variant of Ilog Solver [37] is able to solve non-linear problems
over the Reals using interval propagation techniques. In order to avoid errors induced by
rounding, the technique of outward rounding is used when working on intervals. Hybrid
formulations with both integer and real variables are possible.

4.8. Prolog IV

Prolog IV, being a full extension of the linear constraint-solving capabilities of Pro-
log III [15], is additionally able to solve non-linear constraints using an interval con-
straint solver. A particular and remarkable feature is the built-in possibility to compute

186 G. RENKER, H. AHRIZ

with unions of intervals instead of simple intervals. For a detailed description of the
differences between versions III and IV, see [45].

5. Conclusion and bibliographical remarks

This text has presented techniques for solving non-linear constraints over the Reals
using methods that are based on interval arithmetic. We pointed out the advantages of this
paradigm in comparison to existing approaches, demonstrated consistency techniques
and presented a selection of implementations.

We would like to close with a few references for further reading. In particular, we
recommend the recent, detailed and comprehensive COCONUT survey [10] on the state
of the art approaches for solving nonlinear constrained and optimisation problems, cov-
ering a wide range of local and complete techniques. If the interest is mainly in complete
techniques (from a global optimisation point of view), the extensive survey [46] should
be consulted. There is furthermore a comprehensive online archive for global optimi-
sation, which provides a helpful and large collection of literature, references and many
further pointers.17 General implementation aspects of interval arithmetic using floating-
point intervals with regard to mathematical properties and computational correctness
results can be found in [30].

An interesting concept is the use of solver cooperation on non-linear problems.
Benhamou has developed an abstract framework for describing the cooperation of con-
straint solvers in [5], using domain reduction functions and constraint rewriting oper-
ators. Based on this framework, Granvilliers and Monfroy introduce a parameterized
propagation algorithm in [24], which can be instantiated to known and parallel algo-
rithm instances. Monfroy presents the CoSAc architecture for solving non-linear poly-
nomial constraints in [43]. CoSAc is based upon the cooperation of three independent
solvers: a linear solver in CHR, a non-linear solver computing Gröbner bases and the
Maple computer algebra system for symbolic manipulations. The system is controlled
by a constraint and communication manager implemented in ECLiPSe. For recent sur-
veys on solver cooperation involving symbolic and interval-based approaches, see [25]
and [10, chap. 6].

References

[1] K. R. APT: From Chaotic Iteration to Constraint Propagation. Proc. 24th Int.
Colloquium on Automata, Languages and Programming (ICALP’97), P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, (Eds), 1256 LNCS, Springer-Verlag,
(1997), 36-55.

17http://www.mat.univie.ac.at/ neum/glopt.html

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 187

[2] K. R. APT: Principles of Constraint Programming. Cambridge Univ. Press, 2003.

[3] R. BARTÁK: Constraint Programming: In Pursuit of the Holy Grail. Proc. WDS99
(invited lecture), Prague, (1999).

[4] F. BENHAMOU: Interval Constraint Logic Programming. Constraint Program-
ming: Basics and Trends, Châtillon Spring School, Châtillon-sur-Seine, France,
1994, Selected Papers, A. Podelski, (Ed), 910 LNCS, Springer, (1995), 1-21.

[5] F. BENHAMOU Heterogeneous Constraint Solving. Proc. ALP’96, Alge-
braic and Logic Programming, 5th Int. Conf. Aachen, Germany, M. Hanus and
M. Rodr«“guez-Artalejo, (Eds), 1139 LNCS, Springer, (1996), 62-76.

[6] F. BENHAMOU, P. CODOGNET, D. DIAZ, F. GOUALARD, and L. GRANVIL-
LIERS: DecLIC 1.1b: User’s Guide and Reference Manual. INRIA-Rocquencourt
/ LIFO-Orléans / IRIN-Nantes, 2003.

[7] F. BENHAMOU, F. GOUALARD, L. GRANVILLIERS, and J.-F. PUGET: Revising
Hull and Box Consistency. Proc. ICLP’99, D. D. Schreye, (Ed), MIT Press, (1999),
230-244.

[8] F. BENHAMOU, D. MCALLESTER and P. V. HENTENRYCK: CLP(Intervals) Re-
visited. Proc. 1994 Int. Symp. on Logic Programming (ILPS-94), M. Bruynooghe,
(Ed), MIT Press, (1994), 124-138.

[9] F. BENHAMOU and W. J. OLDER, Applying Interval Arithmetic to Real, Integer,
and Boolean Constraints. J. Logic Programming, 32(1) (1997), 1-24.

[10] C. BLIEK, P. SPELLUCCI, L. N. VICENTE, A. NEUMAIER, L. GRANVIL-
LIERS, E. MONFROY, F. BENHAMOU, E. HUENS, P. V. HENTENRYCK, D. SAM-
HAROUD and B. FALTINGS: Algorithms for Solving Nonlinear Constrained and
Optimization Problems: The State of the Art. Project Report D1, COCONUT
Project, 2001.

[11] P. BRISSET, H. E. SAKKOUT, T. FRÜHWIRTH, C. GERVET, W. HARVEY, M.
MEIER, S. NOVELLO, T. L. PROVOST, J. SCHIMPF, K. SHEN, and M. WAL-
LACE: ECLiPSe Constraint Library Manual, release 5.8 ed. International Comput-
ers Limited and Imperial College, London, October 2004.

[12] B. D. BUNDAY: Basic Linear Programming. Edward Arnold Publishers Ltd.,
1984.

[13] P. CODOGNET and D. DIAZ: Compiling Constraints in clp(FD). J. Logic Pro-
gramming, 27(3) (1996), 185-226.

[14] H. COLLAVIZZA, F. DELOBEL and M. RUEHER: Comparing Partial Consisten-
cies. Reliable Computing, 5(3) (1999), 213-228.

188 G. RENKER, H. AHRIZ

[15] A. COLMERAUER: An Introduction to Prolog III. CACM 33, (1990), 69-90.

[16] A. COLMERAUER: Naive Solving of Non-Linear Constraints. Constraint Logic
Programming: Selected Research, F. Benhamou and A. Colmerauer, (Eds), MIT
Press, (1993), 89-112.

[17] D. DIAZ: GNU Prolog 1.2.16 User Manual, 1.7 ed. Free Software Foundation,
(2002).

[18] E. C. FREUDER: Synthesizing Constraint Expressions. Communications of the
ACM, 21(11) (1978), 958-966.

[19] D. GOLDBERG: What Every Computer Scientist Should Know About Floating-
Point Arithmetic. ACM Computing Surveys (CSUR), 23(1) (1991), 5-48.

[20] F. GOUALARD: Towards Good C++ Interval Libraries: Tricks and Traits. Proc.
4th Asian Symposium on Computer Mathematics (ASCM), Thailand, (2000).

[21] F. GOUALARD, F. BENHAMOU and L. GRANVILLIERS: An Extension of the
WAM for Hybrid Interval Solvers. J. Functional and Logic Programming, (1999).

[22] L. GRANVILLIERS: On the Combination of Interval Constraint Solvers. Reliable
Computing, 7(6) (2001), 467-483.

[23] L. GRANVILLIERS: RealPaver User’s Manual: Solving Nonlinear Constraints by
Interval Computations, for RealPaver Version 0.3. Institut de Recherche en Infor-
matique de Nantes, France, 2003.

[24] L. GRANVILLIERS and E. MONFROY: Declarative Modelling of Constraint Prop-
agation Strategies. Proc. First Biennial Int. Conf. on Advances in Information
Systems, Turkey, T. M. Yakhno, (Ed), 1909 LNCS, Springer, (2000), 201-215.

[25] L. GRANVILLIERS, E. MONFROY and F. BENHAMOU: Symbolic-Interval Co-
operation in Constraint Programming. Proc. Int. Sym. Symbolic and Algebraic
Computation (ISSAC’2001), ACM Press, (2001), 150-166.

[26] N. C. HEINTZE, J. JAFFAR, S. MICHAYLOV, P. J. STUCKEY and R.H.C. YAP:
The CLP(R) Programmer’s Manual, Version 1.2. IBM Thomas J. Watson Research
Center (Yorktown Heights, NY, USA), 1992.

[27] P. V. HENTENRYCK, D. MCALLESTER and D. KAPUR: Solving Polynomial Sys-
tems Using a Branch and Prune Approach. SIAM J. Numerical Analysis, 34(2)
(1997), 797-827.

[28] P. V. HENTENRYCK, L. MICHEL and F. BENHAMOU: Newton - Constraint Pro-
gramming over Nonlinear Constraints. Science of Computer Programming, 30(1-2)
(1998), 83-118.

AN INTRODUCTION TO INTERVAL-BASED CONSTRAINT PROCESSING 189

[29] P. V. HENTENRYCK, L. MICHEL and Y. DEVILLE: A Modeling Language for
Global Optimization. MIT Press, 1997.

[30] T. HICKEY, Q. JU and M. H. VAN EMDEN: Interval Arithmetic: From Principles
to Implementation. Journal of the ACM (JACM), 48(5) (2001), 1038-1068.

[31] T. J. HICKEY: Analytic Constraint Solving and Interval Arithmetic. Proc. 27th
ACM SIGPLAN-SIGACT Symp. Principles Of Programming Languages, (2000),
338-351.

[32] T. J. HICKEY: CLIP: A CLP(Intervals) Dialect for Metalevel Constraint Solv-
ing. Proc. Second Int. Workshop on Practical Aspects of Declarative Languages,
Boston, MA, USA, E. Pontelli and V. S. Costa, (Eds), 1753 LNCS, Springer,
(2000), 200–214.

[33] T. J. HICKEY, M. H. VAN EMDEN and H. WU: A Unified Framework for Interval
Constraints and Interval Arithmetic. Proc. Principles and Practice of Constraint
Programming - CP98, 4th Int. Conf., Pisa, Italy, M. J. Maher and J.-F. Puget, (Eds),
1520 LNCS, Springer, (1998), 250-264.

[34] J. HOLLMAN and L. LANGEMYR: Algorithms for Non-linear Algebraic Con-
straints. Constraint Logic Programming: Selected Research, F. Benhamou and
A. Colmerauer, (Eds), MIT Press, (1993), 113-131.

[35] H. HONG: RISC-CLP(Real): Logic Programming with Non-linear Constraints
over the Reals. Constraint Logic Programming: Selected Research, F. Benhamou
and A. Colmerauer, (Eds), MIT Press, (1993), 133-159.

[36] E. HYVÖNEN: Constraint Reasoning Based on Interval Arithmetic. Proc. 11th Int.
Joint Conf. on Artificial Intelligence (IJCAI-89), (1989), N. S. Sridharan, (Ed), 2,
Morgan Kaufmann, 1193-1198.

[37] ILOG. Ilog Solver 6.0, User’s Manual. France, 2003.

[38] J. JAFFAR, S. MICHAYLOV, P. J. STUCKEY and R.H.C. YAP: The CLP(R) Lan-
guage and System. ACM Trans. Programming Languages and Systems (TOPLAS),
14(3) (1992), 339-395.

[39] O. LHOMME: Consistency Techniques for Numeric CSPs. Proc. 13th Int. Joint
Conf. on Artificial Intelligence (IJCAI-93), Chambéry, France, R. Bajcsy, (Ed), 1,
Morgan Kaufmann, (1993), 232-238.

[40] A. K. MACKWORTH: Consistency in Networks of Relations. Artificial Intelli-
gence, 8(1) (1977), 99-118.

[41] L. MICHEL and P. V. HENTENRYCK: Helios: A modeling language for global
optimization and its implementation in Newton. Theoretical Computer Science,
173(1) (1997), 3-48.

190 G. RENKER, H. AHRIZ

[42] E. MONFROY: Gröbner Bases: Strategies and Applications. Proc. First Int. Conf.
on Artificial Intelligence and Symbolic Mathematical Computation AISMC-1, Karl-
sruhe, Germany, (1992), J. Calmet and J. A. Campbell, (Eds), 737 LNCS, Springer,
(1993), 133-151.

[43] E. MONFROY, M. RUSINOWITCH and R. SCHOTT: Implementing Non-Linear
Constraints with Cooperative Solvers. Proc. ACM Symposium on Applied Com-
puting (SAC-96), , K. M. George, J. H. Carroll, D. Oppenheim, and J. Hightower,
(Eds), ACM Press, (1996), 63-72.

[44] R. E. MOORE: Interval Analysis. Series in Automatic Computation, Prentice-Hall,
1966.

[45] G. A. NARBONI: From Prolog III to Prolog IV: The Logic of Constraint Program-
ming Revisited. CONSTRAINTS, 4(4) (1999), 313-335.

[46] A. NEUMAIER: Complete Search In Continuous Global Optimization And Con-
straint Satisfaction. Acta Numerica, 13 (2004), 271-369.

[47] A. NEUMAIER and O. SHCHERBINA: Safe bounds in linear and mixed-integer
programming. Mathematical Programming, 99(2) (2004), 283-296.

[48] W. OLDER and F. BENHAMOU: Programming in CLP(BNR). Proc. PPCP 1993:
Newport, Rhode Island, (1993), 228-238.

[49] J.-F. PUGET and P. V. HENTENRYCK: A Constraint Satisfaction Approach to a
Circuit Design Problem. J. Global Optimization, 13(1) (1998), 75-93.

[50] K. SAKAI and A. AIBA: CAL: A Theoretical Background of Constraint Logic
Programming and its Applications. J. Symbolic Computation, 8(6) (1989), 589-
603.

[51] SUN MICROSYSTEMS. Interval Arithmetic Solves Nonlinear Problems
While Providing Guaranteed Results. Sun Feature Stories, April 2001.
http://wwws.sun.com/software/sundev/news/features/intervals.
html.

[52] A. TARSKI: A Decision Method for Elementary Algebra and Geometry. second
revised ed. University of California Press: Berkeley & Los Angeles, (1951), p. iii.
63ff.

[53] M. H. VAN EMDEN: Algorithmic Power from Declarative Use of Redundant Con-
straints. CONSTRAINTS, 4(4) (1999), 363-381.

