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Abstract

A well-known paradigm for optimisation is the evolutionary algorithm (EA). An EA main-

tains a population of possible solutions to a problem which converges on a global optimum

using biologically-inspired selection and reproduction operators. These algorithms have

been shown to perform well on a variety of hard optimisation and search problems.

A recent development in evolutionary computation is the Estimation of Distribution

Algorithm (EDA) which replaces the traditional genetic reproduction operators (crossover

and mutation) with the construction and sampling of a probabilistic model. While this can

often represent a significant computational expense, the benefit is that the model contains

explicit information about the fitness function.

This thesis expands on recent work using a Markov network to model fitness in an

EDA, resulting in what we call the Markov Fitness Model (MFM). The work has explored

the theoretical foundations of the MFM approach which are grounded in Walsh analysis

of fitness functions. This has allowed us to demonstrate a clear relationship between the

fitness model and the underlying dynamics of the problem. A key achievement is that we

have been able to show how the model can be used to predict fitness and have devised

a measure of fitness modelling capability called the fitness prediction correlation (FPC).

We have performed a series of experiments which use the FPC to investigate the effect of

population size and selection operator on the fitness modelling capability. The results and

analysis of these experiments are an important addition to other work on diversity and

fitness distribution within populations.

With this improved understanding of fitness modelling we have been able to extend the

framework Distribution Estimation Using Markov networks (DEUM) to use a multivariate

probabilistic model. We have proposed and demonstrated the performance of a number

of algorithms based on this framework which lever the MFM for optimisation, which can

now be added to the EA toolbox. As part of this we have investigated existing techniques

for learning the structure of the MFM; a further contribution which results from this is

the introduction of precision and recall as measures of structure quality.

We have also proposed a number of possible directions that future work could take.
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Chapter 1

Introduction

Evolutionary computation (EC) is a long standing area of research in computer science.

Inspired by concepts taken from Darwinian biological evolution, it encompasses a class of

general purpose algorithms which can be applied to a large range of different problems. The

framework typically includes a population of candidate solutions to a problem, a means of

selection to distinguish between high and low quality solutions and a means of variation

or reproduction to create new solutions using information learned from those previously

seen. A number of different paradigms exist within the concept of EC - some of the most

well-known are Genetic Algorithms (GAs) (Holland 1975, Goldberg 1989c), Evolution

Strategies (Rechenberg 1973, Schwefel 1981, Back, Hoffmeister & Schwefel 1991) and Evo-

lutionary Programming (Fogel 1962, Fogel 1964, Koza 1992). Further to these are a num-

ber of related techniques such as the Learnable Evolution Model (LEM) (Michalski 2000),

Ant Colony Optimisation (Dorigo & Gambardella 1997), Particle Swarm Optimisation

(Eberhart & Kennedy 1995), Differential Evolution (Price, Storn & Lampinen 2005), Ar-

tificial Immune Systems (De Castro & Timmis 2002, Dasgupta 1998) and the Estimation

of Distribution Algorithm (Larrañaga & Lozano 2002) or EDA.

EDAs retain the selection and variation concepts common to genetic and other evolu-

tionary algorithms, but replace the biologically inspired versions of variation with the

construction and sampling of a probabilistic model. A topic which has recently be-

come of widespread interest is fitness modelling (Schmidt & Lipson 2008, Lima, Pe-

1
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likan, Sastry, Butz, Goldberg & Lobo 2006, Orriols-Puig, Bernadó-Mansilla, Sastry &

Goldberg 2007, Sastry, Lima & Goldberg 2006, Pelikan & Sastry 2004, Jin 2005), which

has been used in a number of different contexts.

Fitness models have been used as a surrogate fitness function for problems where

evaluation of a solution is time-consuming (Lim, Jin, Ong & Sendhoff 2008, Sastry et al.

2006, Ong, Nair, Keane & Wong 2004). They are also becoming more commonly used

to improve traditional genetic operators in hybrid algorithms (Lima, Sastry, Goldberg &

Lobo 2005, Abboud & Schoenauer 2002, Jin & Sendhoff 2004, Rasheed & Hirsh 2000,

Rasheed, Vattam & Ni 2002, Zhang & Sun 2006, Zhang, Sun & Tsang 2005). A further

approach is taken by the EDA Distribution Estimation using Markov networks (DEUM)

(Shakya 2006, Shakya, Brownlee, McCall, Fournier & Owusu 2009, Shakya & McCall 2007)

in the optimisation of discrete problems. In DEUM, a probabilistic fitness model based

on a Markov network (or Markov random field) is built and directly sampled to generate

individuals with a high probability of being high in fitness.

In general terms fitness modelling may be viewed as a tool to improve the performance

of the EC approach to problem solving. This thesis will explore the concept in detail by

looking at a number of strands related to fitness modelling, including factors which affect

the quality of fitness model, how the model may be used to reveal underlying information

about the fitness function, and how it may be used for function optimisation. The work

here focuses on the Markov fitness model as used by the DEUM framework but will be of

interest to the wider EC community for a number of reasons:

• The impact of genetic operators, population size and model complexity on fitness

modelling capability reinforces similar work using alternative fitness models, taking

us closer to an understanding of the factors which affect general fitness models

• A new set of algorithms for optimisation which may be added to the EC toolbox

• Investigation of techniques for learning model structure and measures for the accu-

racy of the learned structure will be of relevance to any work on algorithms incor-

porating learning of the structure for an undirected graphical model
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We now move on to discuss the key objectives for this research.

1.1 Research Objectives

The primary objective of this research is to explore the use of Markov network fitness

modelling in improving the evolutionary approach to problem solving. This can be broken

into several parts:

1. Extending the fitness model of the existing DEUM algorithm to use a multivariate

structure

2. Development of fitness prediction as a measure of quality for Markov network fitness

models

3. Investigation of the factors affecting fitness model quality - particularly relationships

between variables, population size and selection operators

4. Manual analysis of the fitness model for different fitness functions

5. Direct sampling of the fitness model for optimisation

6. Learning the model structure from data and the effect of structure learning on fitness

modelling and optimisation

1.2 Thesis Outline

The thesis is divided into nine chapters.

Chapter 2 describes the existing work which forms the background to this research.

It first looks at evolutionary computation and estimation of distribution algorithms, par-

ticularly those using Markov networks. It then goes on to look at fitness modelling and

different applications which make use of it. The chapter concludes with a summary of the

benchmark fitness functions where are referred to throughout the thesis.

Chapter 3 investigates three aspects of the Markov network fitness model (MFM).

First, it describes in detail how the MFM is constructed. It then describes the fitness
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prediction capability of the MFM and outlines a measure of fitness model quality based

on statistical correlation. The chapter then looks in detail at the relationship of the model

with the fitness function and how it may be used to understand underlying patterns in

the fitness function.

Chapter 4 investigates the effect of population size on the quality of model and the

tradeoff between model quality and complexity of the model structure.

Chapter 5 investigates the effect of different approaches to selection on the quality of

model and draws conclusions as to the effect of selection on EC in terms of the information

about fitness distributed throught the population.

Chapter 6 continues and extends existing work sampling the fitness model directly

to optimise a number of benchmark fitness functions.

Chapter 7 builds on the previous chapter on optimisation by using models with a

structure learned from the population rather than supplied by the user.

Chapter 8 discusses possible directions of new research which could continue from

this starting point. This includes the use of Markov network fitness model in hybrid

algorithms such as a guided hillclimber, possible efficiency improvements and further lines

of investigation into the effective use of fitness modelling.

Chapter 9 draws together and sums up the original work contained in this thesis.



Chapter 2

Literature Review

Estimation of Distribution Algorithms (EDAs) and fitness modelling have been receiving

an increasing amount of interest over the past decade. In this chapter, we explore the

background to our research by presenting a summary of existing work in evolutionary

computation and EDAs. This will include some definitions of terminology which we will

use throughout the thesis. We will then discuss recent advances in fitness modelling and

its applicability. The chapter concludes with a review of benchmark functions which we

will be using in experiments described in subsequent chapters.

2.1 Evolutionary Computation

The field of evolutionary computation has seen a great deal of interest and growth over

the past few decades. It brings together a number of biologically inspired ideas in-

cluding Genetic Algorithms (GAs) (Holland 1975, Goldberg 1989c), Evolution Strate-

gies (Rechenberg 1973, Schwefel 1981, Back et al. 1991) and Evolutionary Programming

(Fogel 1962, Fogel 1964, Koza 1992). Further to these are a number of related techniques

such as the Learnable Evolution Model (LEM) (Michalski 2000), Ant Colony Optimisation

(Dorigo & Gambardella 1997), Particle Swarm Optimisation (Eberhart & Kennedy 1995),

Differential Evolution (Price et al. 2005) and Artificial Immune Systems (De Castro &

Timmis 2002, Dasgupta 1998). Interesting results have also been achieved by combin-

ing genetic operators with other methods such as local search in the memetic algorithm

5
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(Moscato 1989) and, more recently, by adaptation to multiobjective problems (Deb 2001).

The principle of a genetic algorithm is based on that of Darwinian biological evolution

– a population of chromosomes (each a candidate solution to the problem being solved)

is maintained within which evolves a good chromosome. The classic genetic algorithm

(Goldberg 1989c, Mitchell 1998, Vose 1999) has each chromosome encoding a solution as

a string of bits which yields a particular fitness value when applied to the problem. It is

helpful to think of a genetic algorithm as searching a landscape where the fitness translates

to height and the different chromosome values determine coordinates.

Based on the terminology used in (Larrañaga, Etxeberria, Lozano & Penã 1999), a

fitness function F (X) for a set of discrete random variables X1,X2...Xn is represented

as F (X) = F (X1,X2...Xn) with the fitness for a single solution or chromosome x being

represented as f(x) = f(x1, x2...xn).

The evolution starts with a random population and moves through a sequence of

generations by selecting a number of chromosomes or individuals (normally biased towards

those with a high fitness) and generating new ones by mutating (randomly altering) and

recombining parts of the old ones. Gradually the population begins to converge, meaning

that the individual chromosomes in the population are highly similar to each other. The

algorithm is normally stopped once convergence is detected, or a particular number of

fitness evaluations have been completed, or once a chromosome of a certain fitness level

has been found.

2.1.1 Example

This is best illustrated with an example. A commonly used benchmark problem for ge-

netic algorithms is onemax; the fitness F (X) is simply equal to the number of 1s in the

individual. This is explicitly defined in (2.1).

F (X) =
n

∑

i=1

Xi (2.1)

The optimal solution for this problem over n variables is an individual of all 1s giving

a fitness of n. For a problem size of 5 variables, a GA could run as shown in Figure 2.1.1.
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1. Generate a population of individuals at random and evaluate the fitness of each.
11001 F (x) = 3
00111 F (x) = 3
10100 F (x) = 2
10000 F (x) = 1
00101 F (x) = 2

2. Select two of the fittest individuals:
11001 F (x) = 3
00111 F (x) = 3

3. Pick a random point to cross over the individuals (here we choose between the third
and fourth bits) and combine them to generate two offspring:
11001 ⇒ 11011

00111 ⇒ 00101

4. Give each bit a small probability of being mutated (inverted) - here the third bit of
the second individuals is the only one to be mutated (this may increase or decrease
the individual’s overall fitness)
11011

00001

5. Insert the offspring into the population in place of the two parent individuals and
evaluate their fitness:
11011 F (x) = 4
00001 F (x) = 1
10100 F (x) = 2
10000 F (x) = 1
00101 F (x) = 2

Figure 2.1: An example run of a genetic algorithm on the onemax problem

We can see that each individual is a string of bits, each bit representing a variable in the

problem. This is is referred to as a bit string encoding. The set of possible solutions to

the problem is known as the search space.

The example shows one iteration of the genetic algorithm with a very small popula-

tion; this iteration results in an improvement to the best fitness within the population (3

increases to 4) but also the replacement of a individual with fitness 3 with one of fitness 1.

This is due to the stochastic nature of the algorithm. The general trend over many itera-

tions would be the population filling with higher and higher fitness chromosomes. At the

same time poorer ones will also be created and then have a high chance of being discarded

by the selection operator. Much work has been done to find selection, recombination and
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mutation operators which give better performance for given problems.

2.2 Estimation of Distribution Algorithms

The evolutionary concept has been adapted and optimised in many ways from this basic

model. One direction which has grown in recognition over the past decade has been to

remove the stochastic recombination and mutation operations for generating a popula-

tion. Instead, a probabilistic model of the fitter members of the population is built and

sampled to generate a new population. This technique has become known as Estimation

of Distribution Algorithms (EDAs) or Probabilistic Model Building Genetic Algorithms

(PMBGAs). In this section we present a survey of work in this area.

2.2.1 Terminology

EDAs are typically categorised by the complexity of their probabilistic model structure

(Pelikan, Goldberg & Lobo 1999). Probabilistic Graphical Models (PGMs) represent a

powerful means of describing the probabilistic models employed by EDAs and it is worth

defining some terminology related to EDAs and PGMs before moving on. A PGM can be

separated into two components; structure and parameters.

The structure represents the interactions between variables in the problems. Figure

2.2 illustrates some simple PGMs for a problem with four variables. The variables are

represented by nodes on the graph and connected by edges which represent direct interac-

tions between them. The rightmost graph in the figure also shows three-way interactions

Figure 2.2: EDAs are typically classed as univariate, bivariate or multivariate
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in colour. A clique is a set of mutually connected nodes on the graph, which represents

a set of variables which all directly interact with each other. A maximal clique is any

clique whose component variables do not also form part of a larger clique. Clique sizes

of one and zero are permitted; these represent single independent variables and param-

eters not associated with a variable respectively. The parameters are a set of potential

functions which are associated with cliques on the graph. Generally these represent the

importance of particular interactions or variables and consist of a set of conditional or

marginal probabilities.

EDAs are typically grouped by the order of the maximum clique sizes which occurs

in their graphical model (Larrañaga & Lozano 2002, Pelikan, Goldberg & Lobo 1999).

These groupings are represented by the three graphs in Figure 2.2 and are univariate

(no interactions), bivariate (interactions between variable pairs only) and multivariate

(higher order interactions). PGMs use two broad groups of graphs; those illustrated are

undirected graphs specify interaction or mutual dependency between variables. These are

known are Markov Random Fields or Markov Networks. Directed acyclic graphs, known as

Bayesian Networks, specify directed dependencies between variables. In Markov networks

variables depend only on their immediate neighbours on the graph, a property known as

Markovianity. This is in contrast to directed models such as Bayesian networks where one

variable depends on a hierarchy of ancestors (this property requires the model to be acyclic

to allow sampling). In the context of Markov networks the concept of a clique becomes

important because a variable’s neighbours are those with which it shares membership of

cliques.

Rather than the conventional univariate, bivariate and multivariate classes, we propose

that an alternative means of classifying the algorithms is into those using univariate,

directed and undirected probabilistic models. We will adopt this latter approach as the

work in this thesis focuses on undirected approaches to probabilistic modelling and it is

logical to group other algorithms using an undirected model together.
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2.2.2 Univariate EDAs

2.2.2.1 Population Based Incremental Learning (PBIL)

Population Based Incremental Learning (Baluja & Caruana 1995) computes and samples

marginal probabilities to move from one generation to the next. The marginal probability

of each variable taking the value 1 is updated (or incremented) each generation. These

probabilities are then sampled to generate the next population. The set of probabilities is

called a probability vector. PBIL is defined in Algorithm 2.1.

Algorithm 2.1 Population Based Incremental Learning (PBIL)

1: Set all values in probability vector (PV) to 0.5
2: while Stopping criteria is not met do
3: Sample PV to generate population p
4: Evaluate p
5: Select a subset σ of p
6: for each variable Xi do
7: Calculate marginal probability p(Xi) within σ
8: end for
9: Increment each pi in the probability vector according to (2.2)

10: end while

Each probability pi in the probability vector is updated according to (2.2), where α is a

constant known as the learning rate, p′(Xi) is the new marginal probability of variable Xi

and ρ(Xi) is the marginal probability for Xi computed from the set of sampled individuals.

p′(Xi) = (1 − α)p(Xi) + αρ(Xi) (2.2)

Convergence occurs when the probabilities in the PV reach 0 or 1, after which there

will be no variation in the generated individuals. The combination of probability vector

and learning rate allows for control over the rate of convergence. Calculation of marginal

probabilities is a lightweight task and consequently PBIL has little algorithm overhead.

However, it can be easily trapped by deceptive problems (de Bonet, Isbell Jr. & Viola 1997)

owing to its lack of consideration for interactions between variables.
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2.2.2.2 Univariate Marginal Distribution Algorithm (UMDA)

The Univariate Marginal Distribution Algorithm was proposed in (Mühlenbein & Paaß

1996). It differs from PBIL in having no probability vector or learning rate parameter,

simply generating the individuals using the marginal probabilities from the preceding

generation. It has been observed that UMDA can be viewed as a specific instance of

PBIL, with the learning rate set to 1.0. (Larrañaga & Lozano 2002).

2.2.2.3 Compact Genetic Algorithm (cGA)

In developing the compact Genetic Algorithm (Harik, Lobo & Goldberg 1997), Harik

observed that a genetic algorithm’s population can itself be viewed as a probabilistic

model. Similar to PBIL, a probability vector is maintained but rather than generating a

whole population only two individuals are generated from it. These are then subjected to

a tournament (similar to tournament selection (Goldberg & Deb 1991)). This is one of

the most space-efficient evolutionary algorithms, with no requirement for storing a large

population. It has been shown to compare favourably with a simple genetic algorithm in

the paper referenced above.

2.2.2.4 Distribution Estimation Using Markov Random Fields (DEUM)

Algorithm 2.2 DEUMpv

1: Set all values in probability vector (PV) to 0.5
2: while stopping criteria is not met do
3: Sample PV to generate population p
4: Evaluate p
5: Select a subset σ of p
6: Form an equation for each individual in σ as in (2.3)
7: Solve the resulting system of equations to determine each αi

8: Use zero temperature Metropolis algorithm to sample distribution and generate an
individual

9: Update PV in the same way as for PBIL
10: end while

One further EDA which has recently been developed is DEUM which will be looked

at in more detail as it forms the foundation this research. DEUM uses a Markov Random

Field or Markov network (Li 1995) to model the energy distribution across the fitness
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function, rather than marginal probabilities of selected individuals. Two major univariate

variants of DEUM have been publicised: DEUMpv (Shakya, McCall & Brown 2004b) uses

a probability vector similar to PBIL and DEUMd (Shakya 2006, Shakya & McCall 2007,

Shakya, McCall & Brown 2005b, Shakya, McCall & Brown 2005c) uses a Gibbs sampler

to directly sample the MRF and generate a new population.

Both approaches use a Markov network to model the distribution of energy across the

set of variables in the problem (energy has a negative log relationship with fitness). The

set of individuals selected from the population in a generation are used to build a set of

equations (energy functions) relating fitness to the variables, as in (2.3).

n
∑

i=0

αixi = − ln(f(x)) (2.3)

To maintain mathematical symmetry in the energy function variable values 0 and 1

are substituted by -1 and +1. The system of equations is solved using singular value

decomposition (Lucey 1984) to find the unknown α values which specify the distribution.

DEUMpv uses a zero-temperature Metropolis method to sample the distribution and gen-

erate an individual which the probability vector is incremented towards in the same way

as PBIL. The sampler is biased to minimise the energy of the generated individual; this

means that the individual has an increased probability of being high in fitness compared

to a randomly generated one. In this respect the algorithm moves the probability vector

and hence the population towards areas of the search space that have a high probability

of containing the global optimum. DEUMpv runs as shown in Algorithm 2.2.

DEUMd runs in a similar fashion but removes the probability vector and replaces steps

8 - 9 by running a Gibbs sampler on the model represented by the αi values to generate

a new population. This runs as specified in Algorithm 2.3.

The Gibbs sampler computes marginal probabilities for each variable using (2.4), where

T is a temperature constant which can be used to vary the sampler’s convergence. Wi is

an energy function for the set of cliques which contain the variable xi - we will return to

discuss this in more detail in Chapter 3. Again the goal of the Gibbs sampler is to generate

an individual which has a high probability of being low in energy, which is equivalent to
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Algorithm 2.3 Gibbs Sampler

1: for each individual xo in the population do
2: Set g = 0 and set initial value for temperature T
3: repeat
4: Set xtmp = xo

5: Pick a variable xo
i (either at random or according to a specified scheme)

6: Compute marginal probability distribution for xo
i according to (2.4)

7: Sample distribution to obtain new value for xo
i

8: Increase g by 1
9: until xtmp = xo or g = limit

10: end for

being high in fitness.

p(xi = 1) =
1

1 + e2Wi/T
(2.4)

2.2.3 Learning Model Structure

2.2.3.1 General Approaches

In Section 2.2.1 we discussed the two aspects of probabilistic graphical models: structure

and parameters. The univariate EDAs in the previous section, have a fixed structure

with no interactions so only learn the model parameters. As we move on to EDAs which

consider interactions between variables, a brief discussion of structure learning is required.

There are two approaches to finding the structure of a graphical model. The first,

known as search+score, is similar to that used in the BOA (Pelikan, Goldberg & Cantú-

Paz 1999). A scoring metric provides a means of evaluating the quality of the structure and

two such metrics have been used in EDAs. Bayesian metrics (Cooper & Herskovits 1991,

Heckerman, Geiger & Chickering 1995) compute a marginal likelihood of the structure

with respect to the data (the set of selected solutions). Minimum Description Length

(Rissanen 1978) metrics give a higher score to models which take a smaller space to

represent while maximising the number of regularities in the data (selected solutions)

which they include. In addition to the scoring metric, an algorithm is required to search

through the space of possible structures. This problem is itself NP-hard (Chickering,

Geiger & Heckerman 1994) and consequently many EDAs use a simple approach with low

overhead such as a greedy algorithm to find a suitable Bayesian network structure.
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Rather than testing complete structures, the second method of structure learning in-

dependence tests looks at individual relationships in turn. Pairs of variables are subjected

to a statistical independence test to determine whether they are independent of each other.

There are many methods which may be used to determine such independence; examples

of this are the joint entropy of the pair as used in MIMIC (de Bonet et al. 1997) and

the Chi-square independence test (Marascuilo & McSweeney 1977), as used in BMDA

(Pelikan & Mühlenbein 1999) and MN-FDA (Santana 2003a). Each starts with a fully

connected graphical model and removes edges where the independence score is below some

threshold. We now describe these two independence tests as well as a related structure

learning algorithm.

2.2.3.2 Information Entropy

H(Xi) =

n
∑

xi=1

p(xi)logbp(xi) (2.5)

H(Xi,Xj) =
n

∑

xi=1,xj=1

p(xi,j)logbp(xi,j) (2.6)

Shannon’s Information Entropy (Shannon 1948) is one measure used in structure learn-

ing, and was first used for EDAs by MIMIC (de Bonet et al. 1997), discussed further in

Section 2.2.4.1. Entropy is essentially a measure of randomness; the marginal entropy

H(X) of a discrete random variable Xi of base b which can take one of n values is given

in (2.5). The joint entropy of a pair of variables Xi and Xj is given in (2.6). The theory

used here is that if a sample is taken of high fitness individuals, and within that sample

one variable can be predicted accurately given another variable (e.g. in a binary string

they are generally always equal or always opposite), there is some kind of relationship

between the two. Thus if a pair of variables have a low joint entropy among the selected

part of the population, there is likely to be an interaction between them. Marginal en-

tropy can be used to choose a variable to be treated as independent. Further discussion of

probability can be found in (Feller 1957). The above description of entropy should be suf-

ficient for the summaries presented here; other means of structure building more specific
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to each algorithm are described in detail in the papers referenced with each algorithm’s

description.

2.2.3.3 Chi-square Test

The Chi-square (χ2) test is a comparison between the joint distribution of a pair of vari-

ables and the product of their marginal distributions. If these are equal then the variables

are said to be independent; though normally some threshold is used to reduce the effects

of noise. A typical threshold would be 3.84, where the variables are said to be 95% in-

dependent (Boslaugh & Watters 2008). For each possible interaction, the test between a

pair of variables Xi and Xj is calculated over all possible values xi and xj as in (2.7).

χ2
i,j =

∑

xi,xj

(p(xi, xj) − p(xi)p(xj))
2

p(xi)p(xj)
(2.7)

Chi-square may also be extended to test higher order interactions by testing for con-

ditional probabilities. In (Santana 2003a) the threshold for the Chi-square test was kept

low to capture a large number of possible interactions. The resulting network was then

refined by setting a maximum number of interactions involving each variable and where a

variable exceeded this limit removing the interactions with the lowest Chi-square score.

2.2.3.4 Linkage Detection Algorithm

(Heckendorn & Wright 2004) describes a technique known as the Linkage Detection al-

gorithm (LDA) which also fits into the category of independence tests. For bivariate

interactions, the change in fitness of a chromosome is measured while flipping two bits

separately and together. If the sum of the fitness changes when flipping separately is dif-

ferent to the change when flipping together, there deemed to be a relationship between the

variables. This method can be expanded to higher levels of interaction but its complexity

grows rapidly with the level of interaction. In fact, the number of possible interactions of

order k in a set of n variables is given in (2.8).
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





n

k






=

n!

k!(n − k)!
(2.8)

The learned network is likely to be noisy and potentially very dense as there is no

threshold - a tiny difference between the fitness changes will register as an interaction.

This can be mitigated by the introduction of such a threshold.

An alternative to directly learning high-order interactions from the data is to use an

independence test algorithm to find all bivariate interactions, then use a deterministic

clique-finding algorithm such as Bron and Kerbosch (Bron & Kerbosch 1973) which uses

graph theory to locate maximal cliques.

2.2.4 EDAs using a Directed Model

2.2.4.1 Mutual Information Maximization for Input Clustering (MIMIC)

MIMIC (de Bonet et al. 1997) uses a chain model for the distribution structure where

one variable is independent. Each remaining variable is then conditionally dependent on

another according to an ordering learned by the algorithm. A greedy heuristic employing

Shannon’s Information Entropy (Shannon 1948) is used to build the chain for this ordering

with the aim of minimising the Kullback-Leibler divergence (Kullback 1987) between the

model and the true distribution; this is incorporated into the workflow of MIMIC given in

Algorithm 2.4.

The chain model which MIMIC uses can be written as:

p(x) = p(xπ1
|xπ2

)p(xπ2
|xπ3

) . . . p(xπn−2
|xπn−1

)p(xπn)

Where {π1, π2, . . . , πn}is a permutation of the numbers {1, 2, . . . , n}, effectively a chain

of the variables. Here:

1. xπn is independent

2. xπj
is dependent on xπj+1

for 1 ≤ j < n
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Algorithm 2.4 MIMIC

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p, all individual with a higher than median fitness
4: Determine entropy of all variables using σ
5: Add variable with lowest marginal entropy to start of chain (the independent vari-

able)
6: while chain does not contain all variables do
7: Determine pairwise conditional entropy, given the last variable to be added to

chain, for remaining variables
8: Add the variable with the lowest conditional entropy to chain
9: end while

10: Generate new population to replace p:
11: for all individuals do
12: Sample marginal probability from σ for independent variable
13: Sample conditional probabilities of subsequent variables in the chain
14: end for
15: end while

MIMIC was an important development in the field of EDAs, allowing interactions

between variables to be considered for the first time. Unfortunately, while it performs

well on test problems, real world problems rarely have the chain structure which MIMIC

requires for optimal performance (Baluja, Davies 1997). However, this does not negate

its importance in the broader context of EDAs; in particular, the approach to discovering

and using these interactions has been extended and adapted in other algorithms such as

COMIT, which we now move on to.

2.2.4.2 Combining Optimizers with Mutual Information Trees (COMIT)

COMIT (Baluja & Davies 1997a, Baluja & Davies 1997b) is a development of MIMIC using

a tree-structured Baysian network rather than a chain. A maximum weight spanning tree

(MWST) algorithm (Chow & Liu 1968) is used to find the tree, again using entropy

values to find variable interactions. An interesting difference is that COMIT also uses

a hillclimber to optimise individuals it generates. It runs as shown in Algorithm 2.5.

COMIT has been applied successfully to a number of different problems such as scheduling

and optimisation and its approach to combining two simpler algorithms is of particular

relevance to this research.
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Algorithm 2.5 COMIT

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p
4: Build tree using MWST algorithm
5: Compute conditional probabilities within tree
6: Sample M individuals from the distribution determined by tree
7: Use best of the new individuals as start points for a fast search such as a hillclimber
8: The best individuals obtained overall are substituted back into the population
9: end while

2.2.4.3 The Bivariate Marginal Distribution Algorithm (BMDA)

BMDA (Pelikan & Mühlenbein 1999) is a development of UMDA described previously. It

uses a forest model – a set of mutually independent trees – and uses Chi-square statistics

to find interactions. It runs as shown in Algorithm 2.6. The use of a structure which allows

many independent variables (“root” nodes) means that BMDA can effectively model both

univariate and bivariate problems; MIMIC and COMIT assume that only one of the vari-

ables is independent which can inhibit performance on problems with many independent

variables. Of particular interest here is the method used for constructing the tree using a

statistical dependency test; this will be revisited in Chapter 7.

Algorithm 2.6 BMDA

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p
4: Create a set S of all variables, and an empty graph G
5: Remove a variable arbitrarily from S and add to G as a root node
6: while S still contains variables do
7: while Dependencies over a previously defined threshold exist do
8: Remove variable with the highest dependency between itself and the variables

in S add it to G
9: end while

10: Remove a variable arbitrarily from S and add to G as a further root node
11: end while
12: Use σ to calculate marginal probabilities for root nodes variable, and conditional

probabilities for variables dependent on them
13: Sample these probabilities, generating individuals which are inserted back into the

population
14: end while
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2.2.4.4 The Bayesian Optimization Algorithm (BOA)

BOA (Pelikan, Goldberg & Cantú-Paz 1999) uses a Bayesian network to represent the

problem structure. BOA employs the Bayesian-Dirichlet metric (though other metrics

may be used) to measure the quality of the Bayesian network and a greedy algorithm to

search the space of possible networks. At each generation, the marginal and conditional

probabilities of a set of selected individuals are stored in the Bayesian network and used

to generate new individuals. BOA is shown in Algorithm 2.7.

Algorithm 2.7 BOA

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p
4: Estimate Bayesian Network from σ
5: Sample Bayesian Network to generate new population and replace p
6: end while

BOA has also been extended in numerous ways; perhaps the most notable is Hierar-

chical BOA (Pelikan & Goldberg 2000), which has been shown to work well on a number

of traditionally “hard” problems including MaxSAT and the Ising problem (Pelikan &

Goldberg 2003). The Estimation of Bayesian Networks Algorithm or EBNA (Etxeberria

& Larrañaga 1999) is another EDA which uses Bayesian networks.

2.2.5 EDAs using an Undirected Model

2.2.5.1 The Extended Compact Genetic Algorithm (EcGA)

EcGA (Harik 1999) employs a different approach to most other multivariate EDAs; it as-

sumes that interdependent variables can be combined into groups which are independent

of each other. BMDA also takes this approach but with a directed structure with multiple

independent trees. In EcGA a greedy algorithm performs the grouping, starting with a

group for each variable and pairing together groups if it will reduce the overall complex-

ity of the model. Complexity in this case is defined in terms of entropy and minimum

description length of the model; this is explained in more detail in Harik’s paper and in

(Larrañaga & Lozano 2002). Once arranged into groups, the algorithm treats each group
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as an independent variable and runs in a similar fashion to the original cGA.

A disadvantage of this approach is that, in most real-world problems, most if not all

variables are part of a connected graph of interactions (ie not in distinct groups). The

balance between model accuracy and computational complexity is an area of extensive

research in itself. The benefit of the reduced complexity of the ECGA’s structure building

algorithm compared to that of other multivariate EDAs is likely to be highly problem-

dependent.

2.2.5.2 The Factorised Distribution Algorithm (FDA)

FDA (Mühlenbein, Mahnig & Rodriguez 1999) estimates a Boltzmann distribution. The

basic FDA requires that the graphical structure in the form of an additive decomposition

of the problem function (ADF) be supplied – it does not learn the structure itself. This is a

set of potential functions which define the cliques in the probabilistic model, a Markov net-

work, closely related to the clique potential functions which we discuss in Chapter 3. The

distribution specified by the Markov network is factorised into a junction tree; a product

of marginal and conditional probabilities in which cliques are divided into residuals and

separators. (Residual variables are dependent on separator variables) This junction tree is

sampled to generate new individuals. The Markov network structure must satisfy what is

called the running intersection property (Lauritzen 1996) to allow this factorisation. FDA

is summarised in Algorithm 2.8.

Algorithm 2.8 FDA

1: Using given ADF calculate junction tree, comprising bi (residuals) and Ci (separators)
2: Generate initial random population p of size M
3: while stopping criteria is not met do
4: Select subset σ of p using Boltzmann selection
5: Estimate the conditional probabilities p(xbi

|xci
) from σ

6: Generate M new individuals according to the distribution
7: end while

FDA has proved a versatile algorithm and a good foundation for many others building

on its framework. The more recent Learning FDA (Mühlenbein et al. 1999) does not

require the structure of the problem to be supplied to the algorithm. Two algorithms
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which remove the requirement for the graphical model to satisfy the running intersection

property are the Mixture of Trees FDA (Santana, Ochoa & Soto 2001) and the Markov

Network FDA (Santana 2003a) which we now move on to look at in more detail.

2.2.5.3 Markov Network Factorized Distribution Algorithm

(Santana 2003a) describes the Markov Network Factorized Distribution Algorithm. MN-

FDA learns an independence graph from data using statistical independence tests. This

graph is then refined to limit its density by removing edges that connect nodes having

more than a specified number of incident edges. The Bron and Kerbosch algorithm (Bron

& Kerbosch 1973) is used to find the maximal cliques on the dependency graph; each of

these are given a weight related to the original dependency test values.

The maximal cliques and associated weights are passed to a deterministic algorithm

which constructs an ordered junction graph. The junction graph is a graph where each

node corresponds to a maximal clique in the dependency graph, and nodes are connected

by edges if they share a common node in the dependency graph. Marginal probabilities

for each clique in the junction graph are computed from the population and sampled to

generate a population for the next generation.

Like Learning FDA, although the underlying probabilistic model is undirected (a

Markov network) this is converted to a directed graph (in this case the junction graph)

for parameter sampling. The key difference is that the junction graph in MN-FDA allows

a larger range of structures to be represented than is the case for that used by Learning

FDA, so the model can more closely fit the true probability distribution for the problem.

2.2.5.4 Markov Network Estimation of Distribution Algorithm

MN-EDA (Santana 2005) further extends the work on MN-FDA by replacing the junction

graph with a Kikuchi approximation of the distribution. This is itself an approximation to

a Gibbs random field and in this respect is more closely related to the work described in this

thesis. The Hammersley-Clifford theorem describes the relationship between the Gibbs

random field and the Markov network: if p is a Gibbs field defined on an independence
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graph G, p is Markovian with respect to the graph.

The Kikuchi approximation is taken from statistical mechanics where is was developed

as a means to approximate the free energy in many-body systems. The energy is approxi-

mated as a function of a set of marginals; MN-EDA uses the set of maximal cliques on the

dependency graph to determine these marginals. The Kikuchi approximation to the dis-

tribution satisfies the local Markov property which simplifies the sampling process. New

individuals are generated from the distribution by use of a Gibbs sampler and reinserted

into the population.

This approach allows for the representation of all interactions learned at the depen-

dency test stage, in contrast with the earlier FDA variants which were unable to do this.

(Santana 2005) describes this as allowing messy factorisations of the graph. Further work

on MN-EDA was presented in (Santana, Larrañaga & Lozano 2006), where an algorithm

for learning the Kikuchi approximation using the expectation-maximization approach is

presented.

MN-FDA and MN-EDA follow the same overall workflow, outlined in Algorithm 2.9.

Algorithm 2.9 MN-FDA and MN-EDA

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p
4: Learn an independence graph G from the data in σ
5: If necessary, refine the graph G
6: Find the set of maximal cliques C in G
7: if MN-FDA then
8: Derive a junction graph from C
9: Calculate marginal probabilities for the JG

10: Sample from JG to generate a new population and replace p
11: else if MN-EDA then
12: Construct a clique based composition of G
13: Find marginal probabilities for the regions of the decomposition (this constitutes

the Kikuchi approximation)
14: Sample Kikuchi approximation to generate a new population and replace p
15: end if
16: end while
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2.2.5.5 Markovianity Optimisation Algorithm

MOA (Shakya & Santana 2008a, Shakya & Santana 2008b) exploits the local Markov

property of the Markov network to give more efficient function optimisation than can be

achieved by estimating and sampling the full distribution. The undirected structure can

be estimated in a number of ways, including those used in MN-FDA and MN-EDA. In

(Shakya & Santana 2008a, Shakya & Santana 2008b) a cross-entropy measure is used to

test for dependency between variables. The local Markov property means that each vari-

able is dependent solely on its immediate neighbours in the dependency graph, requiring

computation of only the conditional probabilities. A Gibbs sampler is used to repeatedly

sample these probabilities for each variable to generate an individual; this is run repeatedly

to generate a new population.

The workflow of MOA is given in Algorithm 2.10.

Algorithm 2.10 MOA

1: Generate random initial population p
2: while stopping criteria is not met do
3: Select a subset σ of p
4: Estimate structure of Markov network from D
5: for all Xi do
6: Estimate local Markov conditional probabilities p(xi|Ni) as defined by the undi-

rected structure
7: Sample p(xi|Ni) to generate a new population and replace p
8: end for
9: end while

2.2.5.6 Is-DEUM

An extension to the univariate DEUM called Is-DEUM (Shakya, McCall & Brown 2006,

Shakya & McCall 2007) adds bivariate interactions to the Markov network used in the

algorithm. Is-DEUM assumes a fixed Ising model and has been benchmarked on instances

of the Ising spin glass problem (Kindermann & Snell 1980).

The DEUM framework has recently also been extended to incorporate higher order

interactions (Brownlee, McCall & Brown 2007) and learning the relationships between

variables (the structure of the Markov network) (Brownlee, McCall, Shakya & Zhang
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2009, Shakya et al. 2009). These topics will be revisited in Chapters 6 and 7.

2.2.6 Graphical Summary of Discrete EDAs

It is helpful for comparison to show the characteristics of the different EDAs on a table,

with a visual representation of their respective probabilistic graphical models. This is

presented in Table 2.1.

2.2.7 Continuous EDAs

The EDAs described in the previous section all operate on discrete problems. Considerable

research has also been done into EDAs operating in a continuous domain. It is logical to

suppose that in the case of continuous variables something is lost when representing them

by a relatively small number of bits; though there is a counter-argument that a larger

range of problems may be represented by a string of bits. Genetic Algorithms using real

and integer values have been shown to work well in many cases (Davis 1991) and the

same is true for EDAs. Many of the elementary EDAs such as UMDA, PBIL and MIMIC

have been adapted to encodings such as integers and real numbers; a good summary

can be found in (Larrañaga & Lozano 2002). Multivariate EDAs for continous problems

include real-coded hBOA (Ahn, Ramakrishna & Goldberg 2004), as well as a number

based on Gaussian models including EMNA (Larrañaga & Lozano 2002), RECEDA (Paul

& Iba 2003), EEDA (Wagner, Auger & Schoenauer 2004), ED-EDA (Dong & Yao 2008b)

and BUMDA (Peña, Aguirre & Rionda 2008).

The Iterated Density Evolutionary Algorithm (IDEA) (Bosman & Thierens 2000,

Bosman & Thierens 1999) is a general framework which has also been used in discrete

problem domains, but is well known for implementations in continuous domains. IDEA

has two main characteristics; in each generation only individuals better than the worst

from the previous generation are selected, and only part of the population is replaced at

a time. Several different distributions can be used within the framework including the

Gaussian distribution. The histogram distribution is perhaps one of the simpler to ex-

plain. Here, rather than measuring probabilities of 0s or 1s, the possible range of values
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Algorithm (Origina-
tors)

Model Complexity and
Notes

Graphical Representa-
tion of Structure

PBIL (Baluja, Caru-
ana), cGA (Harik,
Lobo, Goldberg),
UMDA (Mühlenbein
and Paass), DEUMd
(Shakya, McCall,
Brown)

Univariate - probabil-
ity vector or marginal
probabilities

MIMIC (de Bonet,
Davies)

Bivariate chain (di-
rected) - conditional
probabilities

COMIT (de Bonet,
Davies)

Bivariate trees (di-
rected) - conditional
probabilities

BMDA (de Bonet,
Davies), BOA (Pelikan,
Sastry, Goldberg),
EBNA (Etxeberria,
Larrañaga)

Bivariate forest /
Bayesian networks
(directed) - conditional
probabilities

FDA (Mühlenbein,
Mahnig)

Boltzmann Distribu-
tion with Triangulated
Model (undirected,
sampled as directed)

EcGA (Harik)

Marginal Product
Model (undirected)
marginal probabilities
of variable groups
(undirected)

Ising-DEUM (Shakya)
Markov network with
lattice structure (undi-
rected)

MN-EDA (Santana),
MOA (Santana and
Shakya), General
DEUM (Shakya)

Markov network (undi-
rected)

Table 2.1: Graphical Summary of Discrete EDAs
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is divided into bins and a histogram used to count the number of individuals within each

bin. New individuals are generated to match the distribution of values represented by

each histogram.

2.2.8 Hybrid EDAs

A number of hybrid approaches which combine EDAs with other algorithms have also

been researched (Zhang, Sun & Tsang 2007). The argument for such hybrids is that

a less computationally expensive probabilistic model may be used, which will allow the

algorithm to locate a highly fit individual but not necessarily reach the global optimum

because of errors in the simplified model. A simple algorithm or heuristic is used to

make the final step towards the global optimum. (Sun, Zhang, Li & Yao 2008, Zhang,

Sun, Tsang & Ford 2004) uses a local search algorithm to improve the solutions sampled

from a probabilistic model, using Lamarckian evolution rather like a memetic algorithm

(Moscato 1989).

(Zhang & Sun 2006, Zhang et al. 2005, Zhang, Sun, Tsang & Ford 2003) present

hybrids which work in the opposite direction. Rather than a simple hillclimber being used

to improve the inviduals generated by an EDA, a probabilistic model is used to improve

a simpler algorithm by guiding it - in this case by guiding mutation. This allows the

mutation operator to select variables for mutation to values that are likely to improve

fitness. Guided crossover and mutation operators in a modified version of eCGA are

described in (Lima et al. 2005).

(Peña, Robles, Larrañaga, Herves, Rosales & Pérez 2004) proposes an algorithm which

falls between these approaches. In GA-EDA, some individuals in the population are gen-

erated by sampling a probability distribution, and others are generated by traditional

crossover and mutation operators.

2.3 Fitness Modelling

The ultimate aim of an evolutionary algorithm is optimisation; finding an optimal solution

or set of solutions to a specific problem. This is achieved by building a model of the
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fitness function. This model can take a range of forms from being implicitly contained

in a population to being explicitly defined as a response surface or similar. In general

the algorithm only needs to model a part of the fitness function to efficiently optimise -

modelling the complete fitness function represents a complex problem in itself.

The traditional evolutionary algorithm employs a coarsely grained approach to mod-

elling the fitness function. In selecting a set of high fitness individuals and generating

new individuals based on this set we are reclassifying the individuals as simply “high fit-

ness”. Selection of a larger proportion of high fitness individuals relative to low fitness

ones and incorporation of information about low fitness individuals (negative selection)

are approaches which help to mitigate this. However, once a set of individuals has been

selected, their fitness relative to each other is still ignored by the algorithm. Maintain-

ing a fine-grained distinction between individuals such as the raw fitness values or fitness

ranks could allow the algorithm to make more intelligent choices when generating new

individuals which we desire to have a high fitness.

Interest has been growing in algorithms which expand on this idea by attempting

to build an explicit model of the fitness function. Aside from the potential to directly

generate higher fitness individuals this can be used as a surrogate for an expensive fitness

function (Lim et al. 2008, Sastry et al. 2006, Ong et al. 2004) particularly with applications

where a human is performing the fitness evaluations such as evolutionary art (Romero &

Machado 2007). It may also be used to guide genetic operators (Lima et al. 2005, Abboud

& Schoenauer 2002, Jin & Sendhoff 2004, Rasheed & Hirsh 2000, Rasheed et al. 2002,

Zhang & Sun 2006, Zhang et al. 2005) or to provide useful information about the fitness

function.

A number of approaches to fitness modelling have been employed beyond treating the

population or an EDA’s probabilistic model as an implicit model of fitness. An EA may

use fitness inheritance (Chen, Goldberg, S.-Y.Ho & K.Sastry 2002, Pelikan & Sastry 2004,

Sastry, Goldberg & Pelikan 2001, Smith, Dike & Stegmann 1995) (passing of fitness values

from parents to offspring) to reduce the number of fitness evaluations; though this still

does not involve the construction of an explicit fitness model. More explicit models of
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fitness can be constructed by using techniques such as artificial neural networks (Jin &

Sendhoff 2004) and machine learning techniques such as those used by LEM (discussed in

Section 2.3.1). The algorithm presented in (Poš́ık & Franc 2007) models a contour line on

the fitness landscape between high and low fitness individuals which the authors describe

as a special case of the Learnable Evolution Model (LEM) (Michalski 2000). (Miquélez,

Bengoetxea & Larrañaga 2004) describes an algorithm which groups individuals of similar

fitness into classes which are then passed to Bayesian classifiers that can be sampled to

generate individuals of high fitness. (Schmidt & Lipson 2008) uses coevolution as a means

to generating fitness predictors efficiently. Further to these, polynomial regression or the

fitting of a response surface has also been used to construct a model of fitness (Zhou,

Ong, Nguyen & Lim 2005). The work described in this thesis bears some similarity to

this; the Markov fitness model is in effect a response surface for the fitness function. A

key difference is that this work concentrates on discrete fitness functions whereas (Zhou

et al. 2005) concentrates on continuous fitness functions.

A comprehensive literature survey of fitness modelling for evolutionary computation

was presented in (Jin 2005).

2.3.1 LEM

The Learnable Evolution Model or LEM (Michalski 2000) is a framework for optimisation.

Like other evolutionary approaches it incorporates a population from which fit individuals

are selected. LEM operates in two modes resulting in an interesting hybrid algorithm which

can employ the strengths of traditional evolutionary computation and machine learning.

In Darwinian Evolution mode it employs the biologically-inspired genetic reproduction

operators. In Machine Learning mode LEM learns a set of inductive hypotheses that

specify the features which make certain individuals fitter than others. This information is

then used to generate new individuals. LEM may be argued to be a more general version

of an EDA - the probabilistic model of an EDA forming the hypotheses of LEM. It is

important to this work because by learning features which distinguish fit individuals from

unfit ones it effectively builds a model of the fitness function.
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LEM switches between the two modes dependent on a mode termination criterion

which is preset by the user in much the same way as an evaluation count limit in a

GA. The fitness function may be either discrete or continuous and the learning may also

incorporate multiple populations from multiple generations. The workflow of LEM is given

in Algorithm 2.11.

Algorithm 2.11 LEM

1: Generate random initial population p
2: while stopping criteria is not met do
3: Alternate between modes starting step 4 and step 10
4: Machine Learning mode:
5: repeat
6: Derive extrema: divide population into an H-group (high fitness) and an L-group

(low fitness); conventional selection may be used to choose these groups and it is
acceptable for an individual to be in both groups

7: Create a hypothesis: use a machine learning method to create a set of hypotheses
that distinguish the two groups

8: Generate a new population using the hypotheses describing the H-group
9: until some condition is met

10: Darwinian Evolution mode:
11: repeat
12: Apply selection
13: Apply mutation and crossover to generate a new population
14: until some condition is met
15: end while

2.4 Benchmark Functions

A number of test problems are commonly used for benchmarking evolutionary algorithms.

Like the algorithms themselves they may be classified according to the complexity of rela-

tionships between their variables. These problems are rather contrived in their nature but

designed to allow prediction of an algorithm’s performance on similar real-world problems.

They are also designed to have specific properties such as known interactions between vari-

ables. It should be made clear that an algorithm which performs well on one problem will

not necessarily perform well on another.

All functions described here assume a bit string representation and are consequently

discrete optimisation problems. Further problems can be found in (Larrañaga & Lozano
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2002, de Bonet et al. 1997, Harik et al. 1997) and throughout the literature. Those de-

scribed here are chosen primarily for two reasons. Firstly, all functions have been used

as benchmarks for other evolutionary algorithms and with the exception of the biocontrol

and Huygens probe problems (section 2.4.8 and 2.4.9) all have been used for benchmark-

ing EDAs. This is important as it allows comparisons to be made which have revelance

to the wider community. Secondly, the functions have chosen to cover a wide range of

underlying structures: univariate (onemax), directed chain (4 and 6 peaks), order-2 and 3

undirected interactions (checkerboard, Ising and MAXSAT), higher order undirected in-

teractions (trap and royal road) and real-world functions (biocontrol and Huygens probe).

This is important as we consider multivariate models of fitness and particularly as we

look at the underlying features of fitness functions in Chapter 3 and structure learning in

Chapter 7.

2.4.1 One Max

This is one of the simplest and most commonly used benchmarks; a good description of

OneMax can be found in Mitchell’s textbook on GAs (Mitchell 1998). In this problem the

fitness is simply the number of bits with the value 1, expressed formally in (2.9).

f(x) =

n
∑

i=1

xi (2.9)

This is a classic univariate problem as there are no interactions between variables –

each one has an independent and equal contribution to the overall fitness. The fitness

landscape is a smooth curve towards the global optimum with no local optima. The

optimal solution is all xi = 1, with f(x) = n.

2.4.2 4- and 6-peaks

The 4- and 6-peaks problems are described in Baluja’s paper introducing PBIL (Baluja &

Caruana 1995) and de Bonet’s paper on MIMIC (de Bonet et al. 1997) respectively. They

are functions designed to trap algorithms with a simple view of the problem’s structure by

giving a large fitness increase only when a complete chain of variables take on a specified
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value. Otherwise, a variant of onemax is used to award values which tend away from the

true global optimum, deceiving an algorithm which can not find the chain. An algorithm

which includes interactions between variables in solving the problem should be able to

detect this feature and avoid the trap. The 4-peaks function is described in (2.10).

f(x) = MAX(o(x), z(x)) + REWARD (2.10)

Where:

• z(x) = Number of contiguous zeros ending in position 100

• o(x) = Number of contiguous ones starting in position 1

REWARD =















100 if o(x) > T and z(x) > T

0 otherwise

(The Threshold T is a parameter of the problem)

In 4-peaks, the global optima are a string of T + 1 1s followed by all 0s or T + 1 0s

preceded by all 1s; local optima are strings of all 0s or all 1s. In this problem, an algorithm

which does not heed relationships between variables will tend towards building a string of

all 1s or 0s.

6-peaks is a modified version of 4-peaks, with an additional copies of the two global

optima in 4-peaks that have 0s and 1s exchanged; T + 1 0s followed by all 1s and T + 1 0s

preceded by all 1s.

2.4.3 Royal Road

This problem is described in (Mitchell 1998). Variables are arranged into groups which

only contribute to the total fitness when all members of the group are 1. For example,

using a group size of 4: 1100000011111011 would score a value of 4, as only the third set

of variables are all 1. Originally designed to observe the behaviour of genetic algorithms,

this problem introduces a simple relationship between groups of variables. It has been
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studied in the context of EDAs (Brown, Garmendia-Doval & McCall 2002). It can be

modified using a permutation such that the logical groups of variables are distributed

throughout the bitstring, rather than being composed of neighbouring bits. The instance

of the function we will be using is expressed formally in (2.11).

f(x) =
∑

i

ciδi(x) where δi(x) =















1 if x ∈ si

0 otherwise

(2.11)

Here, si is a member of a list of schemas defining the blocks, and ci is a coefficient

given with each schema. Essentially this is a weighting given to each block, which allows

different blocks do be given different influences on fitness. In the example given in the text

above, and through this thesis, this would be equal to the block length. This means that

all blocks have the same weighting. To aid interpretation of results, through this thesis

the problem is modified slightly so that the optimum for alternate groups are set to 1 and

0.

2.4.4 Checkerboard

The checkerboard problem (Baluja & Davies 1997b, Larrañaga & Lozano 2002) introduces

bivariate interactions into a test problem. Chromosomes are a square number of bits in

length; they represent the rows of a s x s grid concatenated into one string. The objective

is to realise a grid with a checkerboard pattern with alternating 1s and 0s; thus each 1

should be surrounded by 0s and vice versa, not including corners. Formally this is written

as in (2.12).

f(x) = 4(s − 2)2 −
s−1
∑

i=2

s−1
∑

j=2

{δ (xij , xi−1j) + δ (xij, xi+1j) + δ (xij, xij−1) + δ (xij , xij+1)}

(2.12)

Where δ is Kronecker’s delta function,
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δij =











1 if i = j

0 if i 6= j

(2.13)

In this thesis we will also be making use of a simplified version of this problem, 1D

checkerboard. Rather than a grid, the variables are kept in the chain which makes up the

bit string. Where a neighbouring pair of variables are opposite in value, 1 is added to the

fitness. This is defined formally in (2.14). The optimum for this 1D Checkerboard is a

string of alternating 1s and 0s.

f(x) =
n−1
∑

i=1

δ(xi, xx + 1) (2.14)

2.4.5 Ising Spin Glasses

The general Ising spin glass problem (Kindermann & Snell 1980) is defined by an energy

function over a set of spin variables σ = {σ1, σ2, . . . , σl} and a set of coupling constants h

and J as in (2.15).

H(σ) = −
∑

i∈L

hiσi −
∑

i<j∈L

Jijσiσj (2.15)

Here L is a lattice of n sites, and each coupling constant hi and Jij relate to a single

spin σiand pair of spins σiand σj respectively. Each spin variable can either be +1 or -1.

In the context of binary EDAs, the coupling constants are also restricted to +1 and -1,

although in the general case this restriction is removed. The objective of the problem is

to find a configuration of coupling constants which minimises the energy H. The structure

of the problem can be a 1-dimensional chain, 2-dimensional grid, or of a higher order; a

property which adds to its usefulness in testing algorithm.

A good description of the Ising problem can be found in (Pelikan & Goldberg 2003),

where it is used in testing the hierarchical BOA algorithm.
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2.4.6 Trap-κ

The trap functions (Pelikan 2002) are designed to deceive evolutionary algorithms into

converging on a local optimum. This is particularly a problem for algorithms which do

not consider interactions between variables. The trap function of order k is defined in

(2.16). It computes fitness by dividing the bitstring into blocks similar to Royal Road.

f(x) =

n/k
∑

i=1

trapk(xbi,1 + ... + xbi,k) (2.16)

Each block (xbi,1,+... + xbi,k) gives a fitness, calculated as in (2.17), where u is the

number of 1s in the block of k bits. Trap-5, which is the specific instance used in this

thesis, has k = 5, fhigh = 5 and flow = 4.

trapk(u) =















fhigh if u = k

flow − uflow

k−1 otherwise

(2.17)

The functions are designed to mislead or trap algorithms which do not account for

interactions between variables. As u increases, fitness decreases, which leads the algorithm

away from the global optimum. Algorithms which do find interactions should be able to

determine that groups of k variables being switched to all 0 improves fitness. The functions

are commonly referred to as Trap-k functions - in this thesis we use k to represent cliques

so will refer to Trap-k as Trap-κ functions.

2.4.7 Maximum Satisfiability (MAXSAT)

The Maximum Satisfiability or MAXSAT Problems are described in (Johnson 1973). The

problem is defined as the search for a set of values which maximise the number of satisfied

clauses in a fixed predicate logic formula. Many real-world problems can be mapped on

to MAXSAT, including the well-known graph colouring problem. It is known to be NP-

complete in its general form. MAXSAT is particularly useful for experiments in modelling

high order interactions as each instance of the problem uses a known predefined structure;

each clause translates to a clique on the dependency graph. In the 3-CNF variant of the
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problem each clause consists of three variables, expressed in conjunctive normal form.

3-CNF MAXSAT has already been used to benchmark the EDA hierarchical Bayesian

Optimisation Algorithm (hBOA) (Pelikan & Goldberg 2003) - that work made use of the

SATLIB resource (Hoos & Stützle 2000) which provides a collection of a large number of

sample MAXSAT problems.

Encoding MAXSAT for evolutionary algorithms is a straightforward task. The candi-

date solutions are bitstrings in which each bit encodes a predicate variable in the formula.

An individual’s fitness is equal to the number of satisfied clauses given the predicate values

in it.

An example is helpful to illustrate this. A particular 5 variable, 3 clause instance

3-CNF MAXSAT problem has the set of predicates in (2.18).

(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x̄4) ∧ (x3 ∨ x̄4 ∨ x5) (2.18)

The individual x = {11011} would satisfy the first and third clauses, so would have a

fitness of 2.

2.4.8 Bio-control in Mushroom Farming

When mushrooms are produced in commercial quantities, the quality and yield of the

mushroom crop can be seriously damaged through infestation by sciarid flies. Sciarid

fly larvae are known to feed on the mycelium in the casing layer of mushroom causing

crop production to significantly decline. An important weapon in combatting sciarid fly

is the use of the nematode worm, Steinernema feltiae, which feeds on sciarid larvae thus

reducing the problem. Nematode worms are sold commercially for bio-control of sciarid

flies on mushroom farms.

(Fenton, Gwynn, Gupta, R.Norman & J.P.Fairbairn 2002) gives a dynamic mathe-

matical model which expresses the life cycle of Sciarid larvae in the presence of periodic

dosing with nematode worms. A number of genetic algorithms have been applied to the

problem of finding an optimal set of intervention points for this model in (Godley, Cairns

& Cowie 2007a, Godley, Cairns & Cowie 2007b, Godley, Cowie & Cairns 2007). Each
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chromosome is a string of 50 bits, each bit representing a point at which a possible inter-

vention of nematodes may occur. The function is a bang-bang control problem, in that

interventions of worms are either applied or not applied at any given time slot. The global

optimum is unknown but typical optima found by the genetic algorithms in the referenced

papers have a large dose of nematode worms applied early on with short bursts later in

the life cycle of the larvae.

2.4.9 Huygens Probe Function

The Huygens Probe Function (MacNish 2005) is a real valued function designed for bench-

marking algorithms, and used as part of a competition at the 2006 Congress on Evolution-

ary Computation. The object is to find the lowest point on a simulated lunar landscape

using only 1000 function evaluations and it is this restriction which is of interest here.

Algorithms which use fitness modelling to reduce the number of function evaluations offer

the potential to perform well on this problem.

The landscape is fractal generated; this means that zooming in on a small area of the

landscape reveals similar levels of varation in fitness. According to the developers of the

function this scale invariance continues to the limit of IEEE 64-bit floating point resolution

so the function does not (effectively) “bottom out”. This means that the algorithm has to

keep a highly delicate balance between exploration and exploitation. A typical landscape

is illustrated in Figure 2.3 and the concept of scale invariance is illustrated in 2.4. The

function takes an X and Y coordinate (both floats) and returns a float representing the

height.

The natural representation for this problem in EA would be for an individual to com-

prise two floating point variables, one for each coordinate. In the experiments described

in this thesis, the two values are encoded to a bitstring representation which is converted

to a float just before evaluation. This fits the problem to the algorithm; it would be likely

be more effective to adapt the algorithm to deal with floating point variables and this is

discussed in Chapter 8.
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Figure 2.3: Visual representation of a Huygens Probe function lunar landscape

Figure 2.4: Scale invariance of Huygens Probe function



Chapter 3

Fitness Modelling with Markov

Networks

In this chapter we look at how a Markov network may be used to model the distribution

of fitness (expressed in terms of energy) over the variables of a problem, using what we

will call the Markov Fitness Model (MFM). Optimisation is the end-goal for evolutionary

algorithms in general; typically for optimisation we do not seek to model the whole fitness

function but a subset of it which will allow the algorithm to locate regions of high fitness

and the global optima. In Chapters 6 and 7 and in the previous work on optimisation

using the MFM (Shakya 2006, Shakya et al. 2006, Shakya et al. 2005b, Shakya et al. 2005c)

discussed in Chapter 2, the distribution modelled by the MFM is sampled to generate

individuals which probably have a high fitness. The sampler performs a series of mutations

on an individual which are biased according to a marginal probability calculated from the

probabilistic model. To find the global optimum by direct sampling in this manner it is

only necessary that the MFM models high fitness areas of the fitness function. In addition

to direct sampling the information about fitness contained within the MFM can also be

used to gain better understanding of the fitness function. This requires a model which

approximates a much wider range of the fitness function. In order to achieve effective

optimisation through either of these routes we need to understand the factors which affect

how closely the MFM can approximate parts of the fitness function and develop techniques

38
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to measure the approximation. This chapter will provide the necessary terminology and

measures which will allow us to go on to explore two of the major factors affecting the

model (population size and selection) in Chapters 4 and 5.

The chapter is divided in to three sections. The first describes the MFM and provides

some definitions which will be used through the rest of the thesis. The second section

explores the fitness prediction capability of the MFM and defines a measure of this capa-

bility called the fitness prediction correlation. This is followed by a description of a series

of experiments with results demonstrating the application of this measure to the MFM

generated for the benchmark problems. The third section section moves on to compare

the MFM parameters calculated to features of the benchmark problems considered.

3.1 From univariate to multivariate

Structure is the set of interactions or dependencies between variables in the probabilistic

model used by an EDA. Previous work in EDAs using a Markov network was described in

the literature review; that work used a univariate model structure within the DEUM frame-

work (Shakya, McCall & Brown 2005a, Shakya et al. 2005c, Shakya et al. 2004b, Shakya

et al. 2005b). This was extended to allow for bivariate interactions which occur in the 2D

Ising problem (Shakya et al. 2006). This section uses Walsh analysis to provide the neces-

sary expressive power to take the theoretical DEUM framework up to a full multivariate

model. Specific examples are given for up to a trivariate model and experiments demon-

strating optimisation with up to a trivariate model are presented in Chapter 6. This is

followed by some definitions related to model structure which will be referred to through

the rest of the thesis.

3.1.1 Walsh functions

The grounding for this approach lies in the Walsh analysis of fitness functions, originally

presented in (Bethke 1980), further in (Goldberg 1989a, Goldberg 1989b) and (Thierens

1999a, Thierens 1999b). Walsh functions are a set of rectangular waveforms taking two

amplitude values, +1 and -1. Similar to the use of Fourier transforms representing for
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analogue waveforms, Walsh functions may be combined linearly to represent any fitness

function based on a bit string representation. Haar functions have been proposed (Khuri

1994) as a more efficient alternative to Walsh functions for representing fitness functions.

Walsh functions have also been used in the theoretical analysis of epistasis (linkage) in

evolutionary algorithms (Heckendorn & Whitley 1999). We now describe how Walsh

functions can be used as the basis for the Markov Fitness Model.

For discrete problems, an individual x made up of random variables encoded as a bit

string can be expressed as:

x = x1, . . . , xn xi ∈ {0, 1} (3.1)

The variables xi may be represented in a graphical model, in which a clique is a fully

connected subset of {x1 . . . xn} which can be defined:

K ⊂ {1, . . . , n} = Sn (3.2)

We refer to the number of variables within a clique K as its degree, represented |K|.

The set of Walsh functions WK(x) for increasing degrees of K are defined in (3.3) to (3.5).

K = ∅ W∅(x) ≡ 1 ∀ x (3.3)

K = {i} Wi(x) =















1 xi = 1

−1 xi = 0

(3.4)

For K ⊆ |1, . . . , n|, |K| > 2, WK(x) =
∏

i∈K

Wi(x) (3.5)

In 3.3 we define what we call the zero clique; that is, a term which is not associated

with any of the variables. 3.4 defines the singleton cliques which represent each variable

xi. Finally, in 3.5 we are able to define any clique which consists of more than one

variable. This gives us the vocabulary to describe the Markov Fitness Model precisely. The

relationship between the energy distribution U(x), fitness f(x) and the problem variables

for the general case is defined in (3.6).
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U(x) = − ln(f(x)) =
∑

K

αKWK(x) (3.6)

where each αK is a parameter associated with a clique on the Markov network. The

set of αK completely define the distribution. The model can incorporate all multivariate

interactions, although in practice this will be limited by available space and processing

power as the number of terms in the model for n variables will grow by order O(2n). We

can exclude cliques by setting the corresponding αK to zero. The αK values are calulated

by substituting the values for xi and f(x) from a population into (3.6) for each individual,

forming a set of equations which can be solved to find the αK . In the experiments through

the rest of the thesis we use singular value decomposition (Press, Flannery, Teukolsky &

Vetterling 1986) to solve the system of equations, as described in (Shakya 2006).

We will now use αK to refer to the model coefficients in general; we can specify αK

for specific cliques by listing the variables in the clique in place of K. Thus the coefficient

for a 2-clique K = {i, j} is αij.

3.1.2 Chain Model

It is useful to explore this further with two specific models which are used by algorithms in

later chapters. Firstly we look at the chain model, which incorporates explicit interactions

between variables which neighbour each other within the bit string encoding. It could be

argued that this model has some similarity to the way variable relationships are implicitly

defined in a genetic algorithm which uses single or two point crossover. Such a GA

maintains the ordering of neighbouring variables in the bitstring when applying values to

them. A directed chain was used as the basis of the probabilistic model in one of the early

EDAs, MIMIC (de Bonet et al. 1997).

Like the 2D Ising model structure, the chain is a bivariate structure as each interaction

is limited to two variables. The structure is illustrated in Figure 3.1. We now describe

the energy function for the chain structure and give an example of how it is applied to a

specific individual in a population.

The chain structured model for a problem of n variables has the general energy func-
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tion:

U(x) = α0 +
n

∑

i=1

αixi +
n−1
∑

i=1

αijxixj (3.7)

where each α is a parameter associated with a clique on the Markov network, α0 is a

constant representing the zero-clique of background energy in the Markov Network, n is

the number of variables in each individual and xi represents the value of variable i in the

solution x. As in the set of Walsh functions, −1, 1 are used as the values of xi in place of

0, 1 to ensure arithmetical symmetry between values. Redefining the energy function in

terms of Walsh functions gives us:

U(x) =
∑

k

αKWK(x) where αK 6= 0 ∀















|K| = 0, 1

K = i, i + 1(1 6 i < n)

(3.8)

For the individual represented in Figure 3.1 the energy function would be as defined in

(3.9). For the formula based on Walsh functions the cliques with non-zero αK are k = ∅,

{1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}.

U(x) = α0 + α1x1 + α2x2 + α3x3 + α4x4 + α5x5

+ α12x1x2 + α23x2x3 + α34x3x4 + α45x4x5

(3.9)

An individual x = {11001} which for some fitness function has a fitness of 2 would

have the energy function shown in (3.10).

x4x3x2x1 x5

1001 0

Figure 3.1: Relationships between variables in a chain structure
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− ln(2) = α0 + α1 + α2 − α3 − α4 + α5 + α12 − α23 + α34 − α45 (3.10)

Techniques for learning the chain structure (essentially just an ordering of the variables)

are discussed in Chapter 7. Otherwise, we use a fixed chain which uses the ordering of

variables defined by the encoding of the fitness function.

3.1.3 3-CNF MaxSAT Model

The model structure for 3-CNF MAXSAT is more complex than than a chain or other

bivariate structure, including terms for three-way (trivariate) interactions. A sample 3-

CNF problem is given in (3.11); recall from Chapter 2 that a fitness function based on

this has the fitness equal to the number of satisfied clauses. The negations may be ignored

when considering the relationships between predicate variables giving us the undirected

graphical structure shown in Figure 3.2. Here, the nodes (blue) are the variables, edges

between them are 2-way or bivariate interactions and the coloured triangles are 3-way

(which we call trivariate) interactions.

(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x̄4) ∧ (x3 ∨ x̄4 ∨ x5) (3.11)

The sets of interactions are derived directly from the structure of the given MAXSAT

problem instance. The general energy function for 3-CNF MaxSAT is defined in (3.12).

x1

x3

x5

x2

x4

Figure 3.2: Relationships Between Predicate Variables
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U(x) = α0 +

n
∑

i=1

αixi +

n
∑

i=1

n
∑

j=1

αijxixj +

n
∑

i=1

n
∑

j=1

n
∑

k=1

αijkxixjxk (3.12)

where as in section 3.1.2 each α is a parameter associated with a clique on the Markov

network, α0 is a constant representing the zero-clique of background energy in the Markov

Network, n is the number of variables in each individual and xi represents the value of

variable i in the solution x. As before, {−1, 1} are used as the values of xi in place of

{0, 1}. (3.12) can be represented in terms of Walsh functions as shown in (3.13).

U(x) =
∑

K

αKWK(x) where αK 6= 0 ∀|K| ≤ 3 (3.13)

For a five bit individual using the structure in 3.2 the energy function is defined in

3.14. The cliques with non-zero αK are K = ∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3},

{1, 4}, {2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 3, 4}, {3, 4, 5}.

U(x) = α0 + α1x1 + α2x2 + α3x3 + α4x4 + α5x5

+ α12x1x2 + α13x1x3 + α14x1x4 + α23x2x3

+ α34x3x4 + α35x3x5 + α45x4x5

+ α123x1x2x3 + α134x1x3x4 + α345x3x4x5

(3.14)

An individual x = {11011} would have fitness 2, and consequently would have the

energy function shown in (3.15).

− ln(2) = c + α1 + α2 − α3 + α4 + α5 + α12 − α13 + α14 − α23

− α34 − α35 + α45 − α123 − α134 − α345

(3.15)

3.1.4 Types of Model Structure

We can now make some definitions with regard to model structures which we will make

use of through the rest of this thesis. We express the structure in terms of cliques which
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specify the Walsh functions for the MFM, and refer to the example 3-CNF formula from

Section 3.1.3. When building the Markov network there are a number of scenarios which

may occur:

1. Full model structure - the structure includes all possible interactions up to a specified

level of complexity. That is, the αK are non-zero for all K below a particular degree.

The number of interactions present in the full model structure grows by 2n in general

and for the example 5-bit structure the full model will have 32 parameters including

the univariate terms and the constant (the order-1 and order-0 cliques).

2. Perfect model structure - the structure includes exactly those cliques which are

present in the underlying fitness function as well as any subcliques. Only those

cliques have non-zero values for their associated αK . This is the subset of the in-

teractions present in the full structure which influence the absolute fitness value. In

the 3-CNF MAXSAT example these are: x1x2, x1x3, x1x4, x2x3, x3x4, x3x5, x4x5,

x1x2x3, x1x3x4, x3x4x5. These interactions are required to perfectly fit the model

to the fitness function. This is only possible for predefined test problems where the

interactions are explicitly defined. In the case of onemax, there are no interactions

(that is, the model has only non-zero αK for |K| ≤ 1). For the 2D Ising problem

an interaction exists wherever there is a coupling between two spin variables. In the

case of 3-CNF MAXSAT, each clause of three variables results in the addition of a

3-way interaction, and three pairwise interactions. In the example given in Section

3.11 the perfect model will have 16 parameters in total including the univariate and

constant terms.

3. Imperfect model structure - the structure is missing some or all of the interactions

present in the perfect model structure and may include some additional interactions

which are not present in it. This is the likely situation for a structure inferred from

a population of individuals. It is not always essential to construct a perfect model

of the fitness function to optimise; often coefficients will be required in the model to

reflect small changes in fitness that have no effect on the ranking of individuals by
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fitness. In Chapter 7 we will use measures borrowed from the information retrieval

community - precision, recall and the F-measure (Witten & Frank 2005) - to measure

the differences between imperfect and perfect structures. This is similar to the

concept of unnecessary interactions (Hauschild, Pelikan, Lima & Sastry 2007). This

is not to be confused with the related idea of benign and malign interactions (Kallel,

Naudts & Reeves 2000). These terms are used to describe whether the infuence of an

interaction on fitness has a positive or negative correlation with the combined effect of

its component parts. Spurious correlations (Mühlenbein & Mahnig 2000), (Santana,

Larrañaga & Lozano 2007) are also related to this, but are false relationships in the

model resulting from selection rather than interactions present in the fitness function

but not required for optimisation. In the 3-CNF MAXSAT example, the model may

have anything from 1 up to 31 parameters including the constant. It is useful to

define two specific instances of imperfect structure:

3.1. Decimated model structure - we will use this term to refer to an imperfect

structure which has been created by removing a fixed percentage of the cliques

where |K| > 1 (that is, cliques representing interactions). The cliques are

chosen for removal at random.

3.2. Filtered model structure - the structure is restricted to all interactions of a

particular degree. A simplified structure will in turn also be an imperfect

structure. We can relate common terms from the EDA community to structures

specified in terms of cliques with non-zero αK values:

3.2.1. Univariate - αK 6= 0 ∀ |K| 6 1

3.2.2. Bivariate - αK 6= 0 ∀ |K| 6 2

3.2.3. Trivariate - αK 6= 0 ∀ |K| 6 3

3.2.4. Multivariate - αK 6= 0 ∃ |K| > 2

All structures will fall in to one of these categories. If a structure is not full it will either

match the perfect structure precisely or if it does not it will be classed as an imperfect

structure.
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3.1.5 Structure sizes

(Shakya et al. 2006) makes some definitions related to the construction of the MFM which

we will also make use of. If the number of parameters in the model is N (this is equal

to |K|) and the number of individuals taken from the population to estimate the model

parameters is M then there are three situations:

1. A Under-specified system, where M < N

2. A Precisely-specified, where M = N

3. A Over-specified, where M > N

We will make use of these terms through the rest of this thesis.

3.2 Fitness Prediction Correlation

As discussed in the introduction to this chapter and in greater detail in Chapter 6 one

approach to optimisation using the MFM is to directly sample the distribution to generate

individuals which have a high probability of being high in fitness. Sampling techniques

such as the Gibbs sampler described in (Shakya 2006, Shakya et al. 2006) and Chapter 6

generate an individual by starting with a randomly generated individual and performing

a series of mutations on it which are biased in the direction of high fitness (low energy)

by the MFM. For this reason it is important to know how effectively the model is able

to predict the change in fitness for an individual after mutation. It is interesting to look

at both short and long distance mutation, which reflect the state of an individual at the

beginning and end of a run of the sampler. In this section we develop two related measures

of fitness prediction capability for the MFM which will be extensively used for analysis

of fitness modelling in later chapters. These are the Cr and Cm values, which are both

variants of what we call the fitness prediction correlation or FPC, which we now move on

to describe.

We have already seen in (3.6) that the MFM relates fitness and raw variable values in

the following expression:
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− ln(f(x)) =
∑

k

αKWK(x)

By estimating the parameters (αK) values we have a model, the MFM, which ap-

proximates the fitness function based on a sample population. As has been described in

Chapter 2 we can then optimise using this model by computing and sampling marginal

probabilities for each variable (the DEUM framework). There are a range of other uses

for the fitness modelling capability as discussed in Section 2.3 such as surrogate fitness

functions (Sastry et al. 2006) or guided genetic operators (Abboud & Schoenauer 2002, Jin

& Sendhoff 2004, Rasheed & Hirsh 2000, Rasheed et al. 2002, Zhang et al. 2005). Here,

we use fitness prediction as the basis for a measure of how closely the MFM is modelling

the fitness function. The premise is that if the model can accurately predict the fitness of

an “unseen” individual it is a reasonably good fit to the fitness function. An alternative

measure of model quality could be the least-square error output from SVD after comput-

ing the αK but this is less desireable because it simply measures how closely the model

reflects the fitnesses of the existing population, not unseen individuals as is the case for

using fitness prediction.

Predicting the fitness of individuals is simply a reversal of the process used to estimate

the αK . The bitstring of a given individual is encoded as before so that for each xi, 0 is

coded as -1 and 1 coded as 1. These values are substituted into the energy function to give

a predicted energy U(x) for the individual. The predicted fitness can then be calculated

as in (3.16).

f(x) = e−U(x) (3.16)

We now move on to discuss how this fitness prediction capability can be used in

conjunction with a statistical correlation to measure fitness modelling capability.
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3.2.1 Correlations

Initial studies on this (Brownlee et al. 2007, Brownlee, McCall, Zhang & Brown 2008)

used the product moment correlation coefficient (Lucey 1984) to compare the predicted

fitness values of a population with the true fitness values. This is calculated as shown in

(3.17).

r =

m
∑

i=0

(xi − x)(yi − y)

√

√

√

√

m
∑

i=0

(xi − x)2
∑

(yi − y)2

(3.17)

where x is an independent variable (in this case a true fitness value), y is a dependent

variable (here a predicted fitness value), x and y are the means of x and y respectively

and M is the number of data points (here the population size). This serves as a useful

measure, but in reality an evolutionary algorithm’s primary objective is optimisation. For

discrete optimisation, it is only necessary to rank individuals in order of relative fitness.

Thus we conclude that a rank correlation measure such as Spearman’s rank correlation

coefficient (Lucey 1984) is more appropriate. This is calculated as shown in (3.18).

R = 1 −

6

m
∑

i=0

d2
i

√

√

√

√

m
∑

i=0

M(M2 − 1)

(3.18)

where d is the difference between ranks of corresponding values and M is the number

of pairs of rankings.

Correlation coefficients range from -1 to +1. A value of +1 is said to be a perfect

positive correlation which here would represent a model which perfectly fits the fitness

function f(x). A value of -1 is a perfect negative correlation; essentially the model is

perfectly fitting −f(x). A value of 0 represents no correlation; that is, the model has no

correlation with the fitness function at all. Values between these extremes indicate strong

and weak correlations with any absolute value greater than 0.7 being generally regarded



3.2. Fitness Prediction Correlation 50

as a strong statistical correlation (Rowntree 1981).

We use the rank correlation coefficient as a measure for the fitness prediction capability

of the MFM; what we call the fitness prediction correlation or FPC. As discussed at

the start of this section we are interested in two aspects of fitness modelling capability:

how closely the model can predict change in fitness for individual over long and short

mutations (that is, individuals which have respectively had many and a small number of

bits mutated). The first translates into the ability of the model to predict the fitness of

randomly generated individuals; it follows that if this is a strong correlation then the MFM

is closely modelling the general fitness function. This is useful information for situations

where the model may be used as a surrogate for the fitness function or directly sampled

for the global optimum is in DEUMd (Shakya et al. 2006, Shakya et al. 2005b). We will

refer to the FPC which measures the correlation between predicted and true fitnesses for

randomly generated individuals as Cr.

The second aspect of fitness modelling capability we are interested in is how the ability

of the MFM to predict fitness of solutions “near to” those in the current population. This

is important in the context of the proximate optimality principal (Glover & Laguna 1997)

which assumes that good solutions have similar structure. Based on this idea, EAs will

generally move to a population which closely resembles at least part of the current one.

Related work on fitness of neighbouring solutions is described in (Collard, Verel & Clergue

2004). To measure this we develop a second FPC measure, Cm. This is the correlation

between predicted fitness and true fitness for individuals which are a Hamming distance of

1 from the population use to estimate the MFM. In general we would expect that Cm > Cr

because it should be easier to model the fitness of individuals which are similar to those

already seen than randomly generated individuals. In effect, Cm measures how well the

MFM correlates with the area of the complete fitness function which includes the existing

population. The two FPC measures may be calculated by the procedure in Algorithm 3.1.

The fitness prediction correlation is not to be confused with the fitness distance corre-

lation (Jones & Forrest 1995) - this is a measure of the difficulty of problems for EAs and

is completely unrelated.
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Algorithm 3.1 Calculation of fitness prediction correlations

1: Generate random initial population p
2: Evaluate p
3: Select a subset σ1 of p
4: Use σ1 to build MFM
5: for all individuals in σ1 do
6: Mutate one bit in the individual
7: Use MFM to predict fitness of individual
8: Use fitness function to determine true fitness
9: end for

10: Calculate the correlation coefficient between the predicted and true fitnesses (Cm)
11: Generate random population σ2 equal in size to σ1

12: for all individuals in σ2 do
13: Use MFM to predict fitnesses
14: Use fitness function to determine true fitness
15: Calculate the correlation coefficient between the predicted and true fitnesses (Cr)
16: end for

3.2.2 Experiments

We now move on to a series of experiments following the procedure outlined in the pre-

vious section. These show the FPC values calculated using Spearman’s rank correlation

coefficients over a number of different fitness functions. This serves to illustrate the way in

which we will discuss FPC values in later sections of the thesis. The benchmark functions

and parameter settings used in these experiments are chosen using the knowledge gained

in the experiments described in Chapters 4 and 5. They have been specifically chosen to

demonstrate a range of conditions which give different FPC values; fitness functions with

the different levels of structure, imperfect and perfect model structures, and under- and

over-specified systems to estimate the model parameters. Table 3.1 lists the parameters

used for each of the experiments, and the resulting Cm and Cr values. In this table, “Fit

Fcn” is the benchmark problem used in each experiment: these comprised standard one-

max, 2D Ising and 3-CNF MAXSAT. The bitstring length (problem size n) is given in

brackets. “Structure” refers to the set of interactions used in the MFM - here the struc-

tures are fixed to univariate, bivariate and trivariate with the specific variations of each as

described in the descriptions of each fitness function in the literature review. “Pop Size”

is the number of individuals in the starting population. “Selected” is the number of indi-

viduals selected using standard truncation selection. Finally the two different FPC values
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(Cm and Cr) are given, using the two different correlation measures. Each experiment was

repeated 100 times and the mean FPC value over those repeats is reported with standard

deviation in brackets.

Fit Fcn Structure Pop
Size

Selected Cm Cr

Onemax
(100)

Uni 200 110 0.9939
(0.0012)

0.9956
(0.0028)

Onemax
(1000)

Uni 200 110 0.1736
(0.1045)

0.2301
(0.0894)

2D Ising
(100)

Uni + Bi 400 320 0.9277
(0.0231)

0.6615
(0.0822)

2D Ising
(100)

Uni 400 320 0.4791
(0.0426)

0.0021
(0.0541)

MAXSAT
(100)

Tri + Bi
+ Uni

2000 1700 0.9985
(0.0001)

0.9985
(0.0004)

MAXSAT
(100)

Tri + Uni 600 550 0.6129
(0.0591)

0.1494
(0.0618)

Table 3.1: FPC Experiments

Firstly we can see that the FPC values vary considerably across the different experi-

ments. We can see that in several of the experiments the two values are very close to 1;

this indicates that in some circumstances the model of fitness fits extremely closely to the

fitness function. We will investigate the factors which influence this in more detail over

the following chapters. In all experiments bar one the Cr value is lower than the Cm value

- this is because it is easier to predict fitnesses of neighbours to individuals already seen

(those individuals used to build the model). The exception to this is the 1000 bit onemax

with a population size of 200; the reason for the unexpected result is likely to be because

this is a highly underspecified population size. We will discuss this issue in more depth in

Chapter 4.

3.3 Features of the underlying fitness function

In this section we investigate in more depth the nature of the fitness model being con-

structed. In particular we will be looking at the coefficient values created for specific
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problems and the relationship these have with the underlying features of the problem.

This relationship enables us to use the fitness model not only for optimisation but also

to gain greater understanding of how the fitness function distributes fitness over the vari-

ables. We will look at eight problems: onemax, binval, 1D and 2D checkerboard, 4 peaks,

royal road, trap-κ and bio-control in mushroom farming. Recall from Section 3.1.4 that

when we refer to coefficients (alpha values) we can describe them as being univariate or

bivariate: this is in reference to the number of variables in the clique on the MFM.

When sampling the energy distribution, minimising energy is equivalent to maximising

fitness (Brown et al. 2002). For the univariate terms this means that a positive αi will

require a negative value for V (xi) to minimise the energy contribution from that term.

This equates to xi (the ith bit) being set to 0. Likewise, a negative αi value indicates the

ith bit should be set to 1 to minimise the contribution from that term. This picture is

complicated by the addition of bivariate and multivariate terms to the model. In the same

way as above, we can determine that a positive αij value indicates that the two bits xi

and xj associated with it should be opposite in value, to minimise the contribution from

the term involving V (xij). Similarly, a negative αij indicates that they should take the

same value. Therefore univariate alpha coefficients directly influence the value a bit takes

and bivariate alpha coefficients create a positive or negative binding interaction between

the values of neighbouring bits. In general, this can be expressed as in (3.19).

αK > 0 needs WK(x) < 0 (3.19)

αK < 0 needs WK(x) > 0

It becomes harder for a human to visualise the implications of a particular alpha value

with increasing clique size above |K| = 2 so we will only discuss univariate and bivariate

problems in this section.

In each of the experiments we follow the procedure in Algorithm 3.2.

For this study the constant will be omitted from the reported alpha values in each

case because it simply provides a correction for the absolute fitness value of individuals.

In this section we focus only on what the model can tell us about the dynamics of the
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Algorithm 3.2 Experimental procedure

1: Generate random population p
2: Select a subset σ of p
3: Use σ to build MFM
4: Display values for each coefficient in the MFM
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Figure 3.3: Coeffient values for the onemax problem

underlying fitness function; information about the ideal values and interactions between

variables that affect the ranking of individuals not their absolute fitness.

3.3.1 Onemax

First we will look at the classic univariate problem onemax. The MFM for this problem

has only univariate alphas, and we know that the optimum will be all variables set to

1. The population size used in this example was 200 with a selection size of 120. The

resulting coefficient values are shown in Figure 3.3.

It can be seen that all the coefficients are given negative values of approximately the

same magnitude, and all have a similar standard deviation. When sampling this model to

generate new individuals the sampler has a choice of allocating either +1 or -1 (1 or 0 in

the bitstring) to each variable xi. In order to minimise energy it will give each variable a

value of +1 making each term in the energy function will be negative. This fits with the

dynamics of the problem, where each variable has the same influence on the overall fitness

and the global optimum has all variables set to 1. This demonstrates a clear relationship

between the MFM and optimisation as the global optimum can be directly related to the

model parameters. This model is given in (3.20).
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Figure 3.4: Coeffient values for the BinVal problem

Optimum : xi = 1 ∀ i

αK < 0 ∀ |K| = 1 (3.20)

αK = 0 ∀ |K| > 1

3.3.2 BinVal

A variant of onemax called BinVal (Droste, Jansen & Wegener 2002) can be used to

illustrate the importance of the coefficient magnitude. In this problem, each bit has twice

the contribution to fitness that the bit immediately to its right has - the bitstring is

treated as a binary number. The previous experiment was repeated with exactly the same

parameters, with only the fitness function changed.

We can see that now the magnitude of each coefficient corresponds with the impact on

fitness of the associated variable. The coefficients are all still negative indicating that the

optimum is still a string of all 1s. The model, given in (3.21), is as in the previous section.

Optimum : xi = 1 ∀ i

αK < 0 ∀ |K| = 1 (3.21)

αK = 0 ∀ |K| > 1
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These results demonstrate that the MFM cannot only tell us about the likely charac-

teristics of the optimal solution, but also gives us additional information about the relative

importance of each variable.

3.3.3 Checkerboard

We now move on to a problem which introduces a simple set of bivariate interactions to the

model. 1D checkerboard suits a chain structure model and rather than being concerned

with absolute values of variables the problem centres only on the values of variables relative

to that of their immediate neighbours in the chain. Specifically, higher fitness is achieved

when neighbouring variables are opposite in value. This experiment comprised a 100 bit

1D Checkerboard problem; the population size was 300 and the number selected was 220.

Figure 3.5 shows the univariate and bivariate alpha values for the 1D checkerboard

problem. We can see that the univariate alpha values are all close to zero and the standard

deviations are large with respect to their mean value indicating that they vary widely over

each individual model. When allocating values to each variable the sampler will be free

to set each to either +1 or -1; because the coefficients are close to zero these terms will

have a negligable effect on the overall energy of the individual. This is exactly what

would be expected because the 1D Checkerboard fitness function uses relative rather than

absolute variable values in computing fitness. Thus the univariate alphas have varying
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(b) Bivariate alphas

Figure 3.5: Coefficient values for the 1D Checkerboard problem
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values clustered about zero indicating that each variable’s absolute value is unimportant.

The bivariate alpha values are completely different. They are all positive and of ap-

proximately the same magnitude, and we can conclude that this is indicative of two points.

Each bivariate alpha is associated with one interaction between a pair of variables. As for

the onemax problem, the similar magnitude indicates that each of these interactions have

a similar impact on the overall fitness. In addition to this, positive values for bivariate

alphas indicate that the variables must be opposite in value (as we know from the defini-

tion of the problem). When running the sampler to find the optimum for the problem, we

know that each xi can only be set to either +1 or -1. Each bivariate term is of the form

in (3.22).

αijxixj (3.22)

Clearly, if xi = xj and αij > 0 then the overall term will be positive. To minimise

energy, the sampler will set xi and xj to be opposite in sign so that the overall term is

negative. In this way we can see again that there is a clear relationship between the MFM

and the global optimum.

2D Checkerboard as proposed in (Baluja & Davies 1997b) has a more complex struc-

ture, organised in a 2D lattice like a checkerboard. Interactions occur between neigh-

bouring squares on the checkerboard without wrapping around at the edges. Again the

population size used was 300 and selection size was 220. Here the problem size is 25 bits

(a 5x5 lattice) to make it easier for the reader to see the effect which occurs.

As before we see that the univariate alphas are all close to zero, indicating that the

absolute values of variables has no effect on fitness. Also similar to 1D checkerboard, the

bivariate alphas are all positive indicating that neighbouring variables should be oppo-

site in value; this again shows the relationship between the MFM and optimisation. In

contrast, the magnitude of these is not approximately equal - half of the alpha values

are approximately double the magnitude of the others. When we look closely at the par-

ticular alpha values which are high, we see that they are the ones in the middle of the

lattice (that is, neither of the variables they are associated with is on the edge of the
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Figure 3.6: Coefficient values for the 2D Checkerboard problem
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Figure 3.7: Model structure for 25 bit 2D Checkerboard Problem - numbers beside inter-
actions correspond to those on the horizontal axis in Figure 3.6b

checkerboard). These are dashed and coloured red in Figure 3.7. We would expect these

to have a greater influence on fitness than those near the edge because if they break the

constraint of neighbours not matching, their neighbours will also be affected. Thus we

can see that the model is placing greater importance on these alphas. This shows that the

MFM provides us with more information about the fitness function than simply pointing

us in the direction of the global optimum. In Chapter 6 we will demonstrate the sampling

of the MFM for optimisation of these two problems.
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Figure 3.8: Coefficient values for the 4-peaks problem

The general model for both 1D and 2D checkerboard is given in 3.23.

Optimum : xi 6= xj ∀ {i, j}

αK ≈ 0 ∀ |K| = 1 (3.23)

αK > 0 ∀ |K| = 2

αK = 0 ∀ |K| > 2

3.3.4 4 Peaks

Four peaks was an early test problem for EDAs considering variable interactions and con-

sequently is useful to observe the effect of such interactions on the model. This experiment

was performed using a 100 bit 4-peaks problem with T = 10. The initial experiments on

4-peaks (de Bonet et al. 1997) were performed using the MIMIC algorithm which uses

a chain structure - so the same structure was used here. Population size was 300 and

selection size was 220.

We can see a clear trend for both sets of alpha values. Both sets have a length of

“Don’t care” alphas for the middle 80 or so variables and interactions. This is because the

problem is specifically designed to mislead a genetic algorithm by encouraging the build

up of a chain from either end. In the initial population, few individuals if any are likely

to have a long chain of 0s or 1s to get the award. The higher fitness individuals will have
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a short run of 1s or 0s at the appropriate end of the chain; these will influence the αK

for |K| = 1. The deceptive nature of the problem is designed for algorithms that pick up

these absolute values of variables but ignore interactions (that is, that the variables are in

a chain).

We can see that the bivariate alpha values are negative at each end of the chain which

would indicate that a chain of equal-valued variables is preferred. When running the

sampler to generate new individuals for optimisation, the xi pairs being equal would make

each term negative, minimising overall energy. The univariate alphas are negative for the

first few variables and positive for the last few - this fits with the optimal solutions for the

problem which comprise a chain of all 1s with a short chain of 0s at the end. The trend this

follows is described in (3.24). Clearly for this problem, the MFM does not have enough

information to point towards a global optimum as was the case with the preceeding fitness

functions; this is a demonstration of the point made at the beginning of this chapter that

we are only approximating part of the fitness function, not its entirety. There is however a

clear indication that sampling the MFM will generate higher fitness individuals than the

random starting population which would represent the first generation in an evolutionary

algorithm.

Optimum : xi = {−1, 1} ∃ i

xi 6= x{i + 1} ∀ i

αK 6= 0 ∀ |K| = 1 (3.24)

αK < 0 ∀ |K| = 2

αK = 0 ∀ |K| > 2

3.3.5 Royal Road

As described in Section 2.4.3, the fitness function here is slightly modified to make any

observed effects clearer. The specific instance here has a block size of 4. Rather than the

optimum of every group of four bits being 1111, groups alternate between 1111 and 0000.
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We can see a clear pattern in both the univariate and bivariate alpha values, although

it is set against a background of larger standard deviations than for the previous fitness

function. The reason for this wider variation of values is likely to be a combination of the

higher complexity of the problem coupled with a smaller likelihood that groups of four

equal bits will appear in population. This is the reason that a larger population size is

used for this problem. The univariate values reflect the alternating patterns of 0 and 1

groups, and the magnitude indicates that each bit is determined to have a similar influence

on fitness. The bivariate alpha values are largely negative; this reflects the strings of bits

which must be of the same value. As the sampler generates a new individual, it will set

neighbouring xi to be equal and when this is multiplied by the negative αi the overall

term will be negative reducing overall energy and consequently increasing fitness. Close

observation reveals that every fourth bivariate alpha is close to zero; these fall on the

boundaries between blocks. This shows the close relationship between the global optimum

and the MFM. The model is described more precisely in (3.25).
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Figure 3.9: Coefficient values for the Royal Road problem
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Optimum : xi = −1, 1 ∃ i

xixi+1 < 0 ∀ {i, i + 1}(i 6= n mod 4)

αK 6= 0 ∀ |K| = 1 (3.25)

αK ≈ 0 ∀ k = {i, i + 1}(i = n mod 4)

αK < 0 ∀ k = {i, i + 1}(i 6= n mod 4)

αK = 0 ∀ |K| > 2

3.3.6 Trap-κ

Recall that the trap functions are designed to deceive evolutionary algorithms that do not

consider interactions between variables. Figure 3.10 shows the alpha values of a MFM for

a 100 bit Trap-5 problem, again using the chain structure. Population size was 600 and

number selected was 400.
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Figure 3.10: Coefficient values for the Trap-5 problem

The MFM here clearly shows the deceptive nature of the problem. The univariate

alphas are largely positive, indicating the local optimum with all bits set to 0. The

bivariate alphas show a similar pattern to that seen with the Royal Road problem - though

largely negative (indicating chains of equal valued variables) the alpha representing the

boundary between groups of five bits is close to zero. This shows that the model has
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learned the importance of the interactions between variables within each group of five,

and is a substantial step toward overcoming the deceptive problem. Of particular note is

that this is achieved using a model restricted to bivariate interactions, whereas intuition

might suggest that five way interactions would also be required. The model learned here

is summerised in (3.26).

Optimum : xi = 1 ∀ i

xi = xj ∀ {i, j}(i 6= n mod 5)

αK 6= 0 ∀ |K| = 1 (3.26)

αK ≈ 0 ∀ k = {i, i + 1}(i = n mod 5)

αK < 0 ∀ k = {i, i + 1}(i 6= n mod 5)

αK = 0 ∀ |K| > 2

3.3.7 Bio-control in Mushroom Farming

This problem differs from the others investigated in this section by being a real-world

problem without a predefined set of variable interactions. The purpose of choosing this

problem is to show the information about the fitness function that may be gained for a

real-world problem. The application of DEUM to fitness modelling and optimisation of

this problem is presented in (Brownlee, Wu, McCall, Godley, Cairns & Cowie 2008).

As we saw in Section 2.4.8, this problem features a 50-bit encoding where each bit

represents a decision to apply or not apply bio-control on a particular day. As a bang-

bang control problem where the representation relates to a time-series, the chain model is

again an appropriate structure. The chain-based MFM used here has 50 univariate alphas

and 49 bivariate alphas for the interactions between each day and the one following it.

This is defined in (3.27).

αK 6= 0 ∀















|K| = 0, 1

k = {i, i + 1}(1 6 i < 50)

(3.27)
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Figure 3.11: Coefficient values for the Bio-control problem

Figure 3.11 illustrate the mean values of these coefficients after modelling the initial

population over each of 100 runs of the algorithm. Error bars on each graph show one

standard deviation. An addition to this graph over the previous ones in this section

is the expected lifecycle of the sciarid larvae. Population size was 120 individuals - in

this experiment no selection was used. A more detailed discussion of choice of selection

operator is given in Chapter 5.

We note from Figure 3.11 that the coefficient values have very small standard devi-

ations, so there is a very strong signal-to-noise ratio in the coefficients produced from

randomly-generated initial populations. We now interpret the model coefficients in terms

of the practical problem. We see that the alpha coefficients are predominantly positive,

indicating that intervention should not take place most of the time. As with the previous

examples, xi will be set to -1 by the sampler to minimise energy, this represents setting the

bit to 0. However from days 5 to 10 the univariate coefficients are predominantly negative

indicating that intervention should take place in this period - xi will be set to +1 by the

sampler to minimise energy. We can also see that this matches the predicted point at

which the larval population should significantly grow. Beta coefficients are predominantly

negative indicating that, at most points in the treatment period, control should not switch.

The relates xi will be opposite in sign to minimise energy in the sampling process. As

this coincides with alpha coefficients that indicate no intervention, it is clear that inter-
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vention should not take place on these days. Positive beta coefficients, indicating a switch

of control, are mainly concentrated around the same point of the treatment period where

intervention is indicated by the alpha coefficients, indicating that the control will switch

on and off again during this period.

This analysis shows that essential information about the dynamics of the control system

is detected by the model even from random initial populations. A mushroom farmer

presented with this information alone could implement a dosing schedule that is close to

optimal.

3.4 Summary

This chapter has given us the necessary terminology and theory to extend the existing

DEUM framework to incorporate multivariate interactions of any order. Previous work

had demonstrated the framework using an MFM with univariate structure and the 2D

lattice of the Ising problem. A major contribution of the thesis is that here we have

demonstrated how the model may related to Walsh functions which may be used to rep-

resent any bitstring encoded fitness function with interactions of any order. We have also

been able to give two specific examples using structures not previously used for the MFM

- the chain structure and the trivariate structure of 3-CNF MAXSAT.

We have developed a measure of fitness prediction capability termed the Fitness Pre-

diction Correlation. When conducting optimisation, sampling the MFM to generate new

individuals requires that the MFM is able to predict the change in fitness resulting from

mutations. We will use this measure over the coming chapters to discuss the fitness pre-

diction capability of the MFM in a number of contexts.

Finally, Section 3.3 has shown that given the right structure the parameters of the

MFM show a clear link with the global optimum and other underlying features of a fit-

ness function after relatively few fitness evaluations. This is an important addition to

previous work using the MFM for optimisation within the DEUM algorithm as analysis

of the parameters in this way has not been conducted for any fitness function. The only

information supplied to the algorithm in each of the experiments was the model structure
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to be used - often a simple structure such as the chain model - and the fitness values

for individuals by an essentially black-box function. The αK parameters of the resulting

model can be demonstrated to have a clear and direct relationship with the variables in

the fitness function, proving that the MFM can be used to build an accurate model of

a fitness function. As well as allowing us to better understand the MFM, this property

can help us to see the characteristics of fitness functions. Potential applications for this

include decision support tools and specialised genetic operators which are guided by the

αK values to target changes to specific variables that are known to have a large influence

on fitness.



Chapter 4

Effect of population size on fitness

model

There are many factors which affect the performance of an evolutionary algorithm such as

population size, selection operator, reproduction operators and encoding. Similarly, there

are many factors which affect how closely the probabilistic model relates to the fitness

function. In turn this has an influence on the effectiveness of the fitness model as a tool

for optimisation or analysis of the fitness function. In Chapter 3 we described the fitness

prediction correlation (FPC) as a means of measuring the fitness modelling capability of

the model. In this chapter we will use this measure to investigate the effect of population

size on the quality of fitness model constructed as well as the effect of changing the

interactions which are included in the model structure. The chapter will explore two

general questions. Firstly, how the population size relates to the quality of the model;

this is directly related to the effort required to learn a model which closely approximates

the fitness function. Secondly, what the trade-off is between model complexity and model

quality; essentially whether in reducing the model complexity we can still retain a good

model of fitness by using more fitness evaluations to estimate the model parameters. Both

of these are factors in determining the computational cost of building a model with a

strong correlation with the fitness function.

67
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Algorithm 4.1 Effect of Population Size Experiments

1: for each population size do
2: Generate random initial population p
3: Use p to build MFM
4: Calculate FPC values Cm and Cr

5: end for

4.1 Experiments

Each of the experiments described here follow the procedure in Algorithm 4.1. The

range of population sizes are relative to the size of the MFM. Specifically, this is the

number N of αK (unknowns) present in the model which is equal to the number of Walsh

functions. Every experiment looked at a range of population sizes. Recall from Chapter

3 the definitions of under-, over-, and perfectly- specified systems - the sizes used these

experiments cover each of situations. These were chosen after preliminary results indicated

that the largest change in FPC values occurred around the point at which population size

exceeded N , the transition from under- to over-specified.

Below N , population sizes of N multiplied by 0.5, 0.8, 0.9, 0.95, 0.97, 0.98, 0.99 were

used. Above N , population sizes of N multiplied by 1.01, 1.02, 1.03, 1.05, 1.1, 1.2, 1.5

and 2 were used. In addition to these, additional population sizes of N ± {1, 2, 3} were

used to provide extra detail around the transition from under- to over-specified.

In assessing the computational cost to build the model we can also vary the number of

model parameters. Recall from Chapter 3 that we have several classes of model structure

- full, perfect and imperfect, as well as filtered and decimated which are special cases

of imperfect structure. Full structures grow in size exponentially with the number of

variables, which renders the resulting model extremely expensive to compute. Thus we

will not consider full structure in this chapter. The experiments will look at the other

structure types. The perfect structures are derived from the problem definition and the

imperfect structures are created by removing some cliques from the perfect structures to

produce either decimated or filtered structures. We will define each structure in terms of

the Walsh functions which specify the set of cliques in the model.

One final thing to note is that these experiments do not use selection; the entire
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population is used to estimate the model parameters. Full discussion of this issue will take

place in Chapter 5.

We now move on to the experiments, divided into the different benchmark functions

used. In addition to this, for each benchmark function we looked at a range of different

problem sizes n, problem size being the number of variables in the problem. To allow an

appropriate balance between the space taken by figures and text the full set of results for

all experiments are presented in Appendix B. For each experiment, a subset of the result

graphs in the appendix for specific problem sizes are duplicated alongside the discussion

on the results for ease of reading. As each run was repeated multiple times, we give mean

figures with standard deviations. To ensure this was valid, the statistical package SPSS

was used to perform the Shapiro-Wilk test for normality on the result sets. A selection of

results intended to show a spread across benchmark functions, problem sizes, population

sizes and structure types is shown in Table 4.1. Figures below 0.005 indicate a statisically

significant probability that the data is not normal; all figures are above these so we can

use the mean and standard deviation.

Experiment Cm normality Cr normality

Onemax 1000 bit, pop size 0.5N 0.587 0.086

Onemax 1000 bit, pop size 2N 0.992 0.974

2D Ising 100 bit, perfect structure, pop size 2N 0.109 0.107

2D Ising 100 bit, univariate structure, pop size 2N 0.204 0.600

Maxsat 100 bit, perfect structure, pop size 2N 0.309 0.006

Table 4.1: Shapiro-Wilks normality test results

4.2 Onemax

4.2.1 Structure

First we look at the onemax problem, which has a univariate structure. The perfect model

structure for a univariate problem was given in Chapter 3 and repeated in (4.1). There is

one term for the zero clique and one term for each variable xi. This gives us N = n + 1,

where N is the number of αK in the model and n is the number of variable xi in the
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problem.

U(x) = − ln(x) =
∑

K

αKWK(x) |K| < 2 (4.1)

4.2.2 Results

We look at nine different sizes n of onemax ranging from 10 bits to 1000 bits; all are shown

in Appendix B in Figures B.1 to B.9. Illustrated here in Figure 4.1 are the results for

n = 10 bits and n = 1000 bits.

The graphs in Figure 4.1 shows the fitness prediction correlation values over the range

of different population sizes. The Cm and Cr values are computed as described in Chapter

3. The values are averaged over 30 runs and error bars indicate one standard deviation.

We would expect that the correlation between true and predicted fitness for mutated

individuals (Cm) is higher than that for randomly generated individuals (Cr) because of

their similarity to the individuals used to build the model. We can see that this is the

case for each of these results. We can also see a clear pattern over all the instances of

onemax; at the point at which the population size exceeds the number of αK in the model

there is a rapid increase in both FPC values. This is the point at which the number of

knowns in the system of energy equations matches then exceeds the number of unknowns.

Prior to this point both FPC values are between 0 and 0.6; this means there is only a

very weak positive correlation between true fitnesses and those predicted by the model

which indicated that the model is not closely fitted to the fitness function. Beyond this

point both values rise to close to 1 (typically over 0.95, always over 0.6), a strong positive

correlation which indicates that the model is very closely fitted to the fitness function.

The increase in FPC values becomes sharper with increasing problem size. The high

correlations between predicted fitnesses and true fitnesses are important because when we

come to directly sampling the model for optimisation the MFM must be able to accurately

predict the influence on fitness of mutations. High Cr values show that even after many

mutations (equivalent to a randomly generated individual) the MFM can still accurately

predict the fitness of an individual. An experiment illustrating this in practice is presented
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Figure 4.1: FPC against population size for onemax problems
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Figure 4.2: Summary of FPC against population size for onemax problems

in Section 6.2 alongside the discussion on directly sampling the MFM for optimisation.

We summarise the results for the series of experiments on onemax in Figure 4.2. This

figure is intended to show the overall trend across the transition from under-specified to

over-specified. We plot the minimum and maximum Cm and Cr across all problem sizes

at population sizes 0.9N and 1.1N . We can again see the sharp increase in Cm and Cr as

population size exceeds N . This style of summary graph will be used to present the results

in subsequent experiments; the individual graphs for all problem sizes in each experiment

can be found in Appendix B.

4.3 1D Checkerboard

4.3.1 Structure

Figures 4.3 and B.10 to B.27 shows the results for the 1D checkerboard problem. The

perfect structure for this problem is a chain; this was also given in Chapter 3 and is

repeated in (4.2). The model includes both bivariate and univariate terms; this means
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that N = 1 + n + (n − 1) = 2n.

U(x) = α0 +
n

∑

i=1

αixi +
n−1
∑

i=1

αijxixj (4.2)

As this problem also has interactions between variables we can repeat the experiment

with filtered model structures that have some of the cliques removed. This will allow us

to compare the models to determine the influence that the interactions have on fitness

modelling capability, as well as seeing if the relationship between FPC and population

size is the same independent of model structure. For this 1D checkerboard we ran the

experiments with two filtered structures; one with all singleton cliques (|K| = 1) removed

and one with all 2-cliques removed (|K| = 2). We will refer to these as the bivariate model

and univariate models respectively, indicating the cliques which remain in the structure.

4.3.2 Results

In Figure 4.3 we give the summarised results for experiments on 1D checkerboard with

each of the three model structures. The experiments on 1D checkerboard were run over

the same set of problem sizes as for onemax, with the omission of n = 1000 which was

omitted due to limitations on computational resource. We see a similar effect to that seen

for onemax: Cm is higher than Cr for small populations but the mean values for both are

still below 0.55 (and below 0.3 for larger instances) indicating a poor fitness model. As

the population size increases to then exceeds N both values jump rapidly over 0.6. Again

this increase becomes sharper with increasing problem size. The Cr of 0.6 achieved with

a population size of 1.1N does not represent as strong a correlation between predicted

and true fitnesses as that seen for onemax - it indicates that the model often incorrectly

predicts the change in fitness caused by mutations. This is likely to have an adverse affect

on the sampler which uses mutations for optimisation and we see in Section 6.3.1 that

population size must be increased to 2N to achieve effective optimisation. When using a

univariate model - one with all interactions removed - we can see that Cm values follow

the same trend as displayed with the perfect model structure although with a greater

variation in magnitude across problem sizes. Cr values remain below 0.15 irrespective of
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population size which indicates that the model is able to accurately predict fitness for

neighbouring individuals but not randomly generated ones. This is because mutation of

one bit will have an effect on fitness and the model can predict the likely change using

the absolute variable values. In contrast, to predict the fitness of a randomly generated

individual the model must account for the relative values of variables by using interactions

between them. This is better explained by referring to the associated energy functions.

In (4.3) we show the subset of the terms in the energy function which relate to a variable

xi, when using a perfect structure. We can see that the total energy (and hence fitness)

is influenced by the value of xi and its immediate neighbours in the chain. If we remove

the terms for the neighbouring variables, we can predict the direction of change in overall

energy if xi changes as the other two terms will either cancel out or add to the value of

the first term. However, if any of the neighbours also change this will no longer be the

case.

U(xi) = αixi + αi−1,ixi−1xi + αi,i+1xixi+1 (4.3)

Figure 4.3d shows the FPC values for increasing population size with a univariate

structure with n = 500 bits. This shows an additional trend not visible in the summary;

with the univariate structure the Cm values decrease as the population size moves towards

2N. This could be attributed to conflicting information being present in the population

as to the effect of each variable. As the population size increases, the number of xi = 0

and xi = 1 will tend towards equality so the αi will tend towards zero and the model will

become unable even to make fitness predictions as described in the previous paragraph.

(in Section 3.3.3 we saw that the model stores most of the information about fitness for

1D checkerboard in the bivariate terms; these having non-zero values in comparison to the

near-zero values of the univariate terms)

With only bivariate terms present in the model structure, both FPC values follow the

same pattern as shown by the perfect model structure. In absolute terms the population

is now smaller as N is lower (not having any univariate terms in the model). This result

combined with that for the univariate model would indicate that although the univariate
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(b) Univariate model structure
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(c) Bivariate model structure
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(d) Univariate structure on 500 bit problem

Figure 4.3: Summary of FPC against population size for 1D checkerboard problems

terms are helpful in building a good model of fitness for this problem, they are not needed

to accurately predict the fitness of randomly generated individuals. This is an interesting

result as the model with univariate terms filtered out is less expensive to build, of particular

relevance for optimising real-world problems where a large number of interactions may exist

but not need to be included in the model for efficient optimisation (a similar effect was

seen comparing univariate and multivariate algorithms on a problem with a large number

of interactions in (Brownlee, Pelikan, McCall & Petrovski 2008)).

Before moving on, it is also worth noting that for both benchmark functions we have

considered so far the rapid increase in fitness prediction capability as M exceeds N becomes

sharper with increasing problem size n. This is likely to be a result of the least-squares

fitting used by SVD to compute the αK values. For these experiments, as n increases, so
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do the absolute values of N and M and with a larger number of variables over which to

blanace the error it becomes easier for SVD to stably fit the αK .

4.4 2D Ising

4.4.1 Structure

The next set of experiments looks at the 2D Ising problem, which has a 2D lattice structure.

The model for an l x l instance of the problem is given in (4.4) (note that the lattice

structure requires us to use a slightly different notation for the variables, where a variable

in row i and column j of the lattice is xij). The number of parameters in the perfect model

is N = 3n + 1. As before each experiment was run 30 times at each problem size; each

repeat used a randomly selected instance of Ising from the set we discussed in Chapter 2.

The problem sizes n are different to those for the previous problems because the variables

must be arranged into a square. As well as the perfect model structure, we look at a

filtered structure with only univariate terms (that is cliques with |K| > 1 are removed).

We also look at two decimated structures, with a random 10% and 50% of cliques with

|K| = 2 removed.

U(xi) = α0 +

l
∑

i=1

l
∑

j=1

(αijxij + αij,(i+1)jjxijx(i+1)j + αij,i(j+1)jxijxi(j+1)) (4.4)

4.4.2 Results

The results for these problems are shown in Figures 4.4 and B.28 to B.36. In common

with the results for the other problems, with the perfect model structure as the population

size increases above N both Cm and Cr increase towards 1. This means that the MFM

can accurately predict the change in fitness caused by mutations and the sampler will be

able to generate solutions of higher fitness during optimisation; this was demonstrated in

(Shakya et al. 2006) and is shown alongside structure learning in Chapter 7. This is only

possible because the perfect structure is supplied to the algorithm; at the point that the
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population size exceeds N the system of energy functions becomes fully specified and the

model parameters can be estimated accurately. For populations smaller than N , we see

Cm values between 0.5 and 0.8 (a moderate to strong positive correlation), in contrast

with the low Cm values calculated for other fitness functions with population sizes less

than N . Though the Cr values at 0.2-0.3 are also higher than for many of the other

fitness functions studied, little conclusion can be drawn for Cr as these values represent

a statisically insignificant correlation between predicted and true fitnesses. The result of

this is that the Gibbs sampling approach used for optimisation in Chapter 6 and 7 does

not work until the population size is increased beyond N individuals; it requires the MFM

to be able to predict changes in fitness after many mutations. This is shown in Section 6.2.

We see the same effect with a 10% decimated model structure; though Cr values are lower

with the decimated model as it is less able to as accurately account for all interactions

present in the problem.

When using a MFM with a 50% decimated structure or only univariate terms we see

little if any increase as M exceeds N . Cm is above 0.4, and over 0.7 for larger problem

sizes; the removal of interactions from the model results in the correlation for randomly

generated individuals staying close to zero regardless of population size. The unusually

high values for Cm can be attributed to a specific characteristic of the relationship between

2D Ising and the Markov network, which we now move on to explore.

4.4.3 Behaviour around M=N

In addition to the summaries, the result for the experiment using a perfect structure on

400 bit 2D Ising problems is also given in Figure 4.5. Provided for comparison with the

similarly structured 2D checkerboard problem, the full set of figures for which are B.64 to

B.72. This is included to illustrate a trend only seen with 2D Ising within the benchmarks

used for these experiments.

The correlations deteriorate very sharply as the population size nears the model size

and then improve sharply again. This is not observed with the similarly-structured 2D

checkerboard problem. The probable reason for this difference in behaviour lies in the
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(a) Perfect model structure
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(b) 10% decimated model structure
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(c) 50% decimated model structure
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(d) Univariate model structure

Figure 4.4: Summary of FPC against population size for 2D Ising problems
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(b) 2D Checkerboard

Figure 4.5: Comparison between 2D Ising and 2D checkerboard for 400 bit instances with
perfect model structure
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fact that the forms of the Ising problem fitness function and the general Markov network

model are algebraically identical (the Walsh trasformations of the Ising problem match

the structure of the Markov network). When solving an underspecified system, the SVD

algorithm balances out variation in fitness not attributed to variation in the population

uniformly across the population. In the case of individuals that are one-step mutations

away from those solutions used to construct the model, it is unsurprising that there should

still be a strong correlation with fitness, given the closeness in form of the model and fitness

function. For the same reason however, when the number of solutions is very close to the

model size, the model will be prone to overfitting to the particular population and so even

small mutations may result in poor correlation with the change in resulting fitness. When

solving an overspecified system, SVD performs a least squares fit of the model. Once

beyond the overfitting point, this gives very good correlations.

4.4.4 SVD Type

A possible cause for the effect being observed with 2D Ising may be an instability in the

SVD implementation. For this reason the experiments were repeated with two other SVD

implementations; COLT (Hoschek 2004) and NETLIB SVDPACK (Berry, Do, O’Brien,

Varadhan 1993). As fitting and error minimisation are performed by the SVD routine it

is likely that this would be the source of any potential error. It would be unlikely that any

problem would arise from the backsubstitution routine which substitutes the energy values

into the singular value decomposition to find the αK - common to all three algorithms.

Figure 4.6 shows the results of the experiment detailed in section 4.4 carried out on the

64 bit 2D Ising problem using NETLIB SVDPACK and COLT respectively. NETLIB

SVDPACK failed when the system became overspecified. However, the anomaly for Ising

was in the underspecified part of the results so for comparison this is unimportant.

We can see that the results show the same pattern and conclude that the difference

in behaviour observed for the Ising problems can be attributed to the strong similarity

between model and fitness function, or at least is in some way specific to the problem

rather than the implementation of SVD.
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(a) COLT SVD
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(b) NETLIB SVD

Figure 4.6: FPC against population size for 64bit 2D Ising problems using a full model
and different SVD implementations

4.5 MAXSAT

4.5.1 Structure

Figures 4.7 and B.73 to B.99 shows the results for a range of 3CNF MAXSAT problems.

Again the experiment was repeated 30 times at each problem size. For this problem, each

repeat used a different randomly selected instance of MAXSAT from the repository at

SATLIB (Hoos & Stützle 2000). The problem sizes were thus restricted to those with

corresponding instances available at SATLIB and for experiments involving a more dense

model structure the larger instances had to be omitted due to available computational

resources (for example - with the perfect structure the experiment stopped at n = 100).

The perfect structure is defined in (4.5); the 3-cliques are derived from the 3 variable

clauses in each instance of the problem. The number of 3-cliques is the same for each

instance at a given problem size, but the number of 2-cliques can vary dependent on

the number of pairs of variables which occur in more than one clause together. Thus

the value of N and the corresponding absolute population sizes varied for experiments

where the bivariate interactions were included in the structure. We ran the experiments

on three imperfect model structures. Again a univariate structure is used (with cliques

where |K| > 1 removed) to see the effect of removing all interactions. A structure with

only trivariate and univariate terms (that is cliques where |K| = 2 removed) is tried
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to determine the effect of removing non-maximal cliques. Also, a structure with 50%

decimation is included; in this half of the cliques where |K| > 1 are removed.

U(x) =
∑

K

αKWK(x) where αK 6= 0 ∀|K| ≤ 3 (4.5)

4.5.2 Results

For the perfect model structure, we see a similar effect to that found with onemax and

checkerboard, with an even sharper jump - for M < N both Cm and Cr values are below

0.05 whereas for onemax Cm was noticeably positive (0.2-0.3). This is likely caused by

the greatly increased complexity of the MAXSAT problem; it is harder to build a model

which closely fits the fitness function. For M > N both Cm and Cm are greater than 0.99

indicating a very strong positive correlation between the model and the fitness function.

This means that the MFM is able to predict fitness changes for an individual after many

mutations and this is employed for optimisation in Chapter 6.

When using a model which only includes univariate and trivariate terms we see the

same effect for both FPC values, but neither reach the same absolute level. Cm rises to

over 0.5 (and higher for larger problem sizes) but Cr does not rise over 0.3. This indicates

that although the bivariate interactions effectived duplicate the trivariate interactions they

are still important for building a model of fitness which strongly correlates to the fitness

function. The patterns are very similar for the 50% decimated model.

With the univariate model Cm values follow a similar trend to that seen for the uni-

variate model on 1D checkerboard; they increase from under 0.2 to over 0.5. Again this

is because the univariate model can be used to predict the fitness change for a single bit

mutation with a reasonable accuracy. The Cr values follow a similar pattern but do not

reach a particularly high value, especially when compared to the results for the perfect

structure. This illustrates the importance of the higher order interactions in modelling

the fitness of this more complex problem.
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(a) Perfect model structure
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(b) Trivariate + univariate model structure
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(c) Univariate model structure
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(d) 50% decimated model structure

Figure 4.7: Summary of FPC against population size for 3-CNF MAXSAT problems

4.6 Trap-κ

4.6.1 Structure

In Figures 4.8 and B to B.114 we see the results for a Trap-κ problem, in this instance

with κ = 5. This problem is of interest at this point because the structure contains more

complex interactions than the previous problems. Groups of κ variables must be set to 0;

so the absolute value of a variable is important, as is its value relative to the others in its

group. This means that the model has the potential to require up to κ-order interactions.

For these experiments, it is difficult to identify a perfect structure. Including all possible

interactions to order 5 would result in a model with a large number of αK to find for even

small problem sizes (remember from Chapter 3 that the number of interactions grows

by O(2n)). Thus we use a structure which is likely to be imperfect but is a best-guess
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at a close match to the perfect structure. We refer to this as an order-5,2,1 structure,

which includes a term for each group of 5 bits as well as set of terms representing a chain

structure and terms for the individuals xi and contant. This is defined formally in (4.6),

where bl are the blocks of 5 xi.

U(x) = α0 +

n
∑

i=1

αixi +

n−1
∑

i=1

αi,i+1xixi+1 +

n/k
∑

l=1

αlbl (4.6)

We also ran the experiment on filtered versions of this structure. A bivariate + uni-

variate structure in which cliques with |k| = 5 were removed; a bivariate structure in

which cliques with |K| = 5 and |K| = 1 were removed and a univariate structure in which

cliques with |K| > 1 were removed.

4.6.2 Results

We can see that the effect observed for other problems is still present in that there is an

increase in both FPC values over the under-specified to over-specified transition. Figure

4.8e has been included to show that the Cm values begin to decrease gradually with

the population size beyond 2N, an effect similar to that shown for the 1D Checkerboard

problems. In addition to this the Cr value gradually increases beyond M = 2N , rather

than reaching a plateau as seen for the other fitness functions. These experiments allowed

the population size to increase to 7N to allow observation of this effect, which can be seen

in the detailed figures in Appendix B. Another point of interest is that around M = N

there is a similar drop in FPC values as that seen for 2D Ising. This is not accompanied

by the high Cm values with low populations seen with 2D Ising so is unlikely to be because

of a high correlation between the fitness function and the Markov network as it the case

for 2D Ising. It is presumably an artifact produced by the least squares fitting of SVD,

but this would require much deeper investigation to determine.

There appears to be little difference between the model using a chain structure and

that with the extra terms for groups of 5 bits. It reveals that these extra cliques do

little to improve the fitness modelling capability. This may be because this is still not

a perfect model as there are no 3- and 4-cliques; as we saw with MAXSAT, removing
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subcliques results in a poorer model of fitness, although with the 1D checkerboard function

the opposite was true: the model had higher FPC values when univariate terms were

omitted. It could then be argued that the terms representing links between groups of 5

are superfluous and that the chain model have enough expressive power to represent the

trap function.

It can be seen that the purely univariate model fits the fitness function more closely

than the model with only bivariate terms, and reaches the highest Cm values obtained

in the experiments. This is counter-intuitive for a deceptive problem with inter-variable

interaction, especially having seen the results of the previous experiments fitting univariate

models to multivariate fitness functions. This can be explained by remembering the nature

of the trap-κ problem: it is essentially a variant of onemax, with fitness increasing linearly

as groups contain more 1s, with the exception of all 0s in a group being given a high

fitness. What can be seen here is that with a univariate model the MFM is able to sort

most individuals by fitness well, with only those containing all 0 groups being incorrectly

predicted. In contrast, the MFM including only interactions and not absolute variable

values is able to identify that individuals containing all 0 groups should have higher fitness

but is not able to distinguish between the suboptimal groups. This is an important

observation: it reinforces the idea of the proximate optimality principal (Glover & Laguna

1997), that neighbouring solutions will have a similar fitness.

With none of the structures do we see Cr as close to 1.0 as we do with the other fitness

functions studied. This means that the MFM is unable to as accurately predict changes

in fitness over many mutations which means it is less likely to find a global optimum by

running a Gibbs sampler on the MFM to convergence. The higher Cm values do indicate

that the MFM can predict changes in fitness for single mutations; this could be useful for

other approaches to optimisation such as a guided mutation operator.

4.7 Dropoff with Model Decimation

The preceeding experiments have outlined the influence of population size and model

structure on the fitness modelling capability of the MFM. We have seen that the Cm, the
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(a) 5,2,1 model structure
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(b) Bivariate + univariate model structure
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(c) Bivariate model structure
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(d) Univariate model structure

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

(e) 5,2,1 model structure on 100 bit Trap-5

Figure 4.8: Summary of FPC against population size for Trap-5 problems
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fitness prediction capability for mutated individuals, can be high with an imperfect model

that has many interactions removed. Cr was typically much lower with imperfect than

for perfect model structures. To explore this further, we repeated the experiments for

100 bit Ising and 100 bit MAXSAT as an increasing portion of the structure is removed

from the model. This means that a proportion of the cliques with K > 1 were selected at

random and had their αK fixed to zero. The proportion was increased in each iteration

of the experiment to show the dropoff in both FPC values. Figure 4.9 shows the fitness

prediction correlations as an increasing portion of the structure is removed from the model.

Both experiments were performed using a population size of 1.1N. We can see that fitness

prediction for randomly generated individuals falls away quickly, and more slowly for

mutated individuals. This indicates that the model can still have a close fit to the fitness

function with a much smaller number of αK , especially if we only want to model fitnesses of

neighbouring solutions to the population. This will be useful in reducing the computational

complexity for estimating the model parameters.

4.8 Dropoff with Mutation

Cm values are computed for individuals which are only a Hamming distance of 1 from

those in the current population. Having seen that Cm values for univariate models are

in general high it is also useful to know how much mutation will prevent a univariate

model being able to accurately predict fitness. Figure 4.10 shows the fitness prediction

capability of a univariate model on 100 bit Ising and 100 bit MAXSAT for increasing levels

of mutation for each individual. Again both were performed using a population size of

1.1N. The FPC for a random individual is included and is low for both fitness functions

- this is because there are no interactions on the model and it is unable to accurately

predict fitness for randomly generated individuals. We can see that as we approach 50%

of the bits being mutated the fitness predication ability falls to the level for randomly

generated individuals. This is as we would expect; with a bit string representation any

pair of individuals will on average differ by 50% of the bitstring, so compared to the current

population any individual with half of the bits mutated could be considered “random”.
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(a) 100 bit 2D Ising
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(b) 100 bit MAXSAT

Figure 4.9: FPC against proportion of interactions removed from model
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The model’s fitness predictions correlate strongly with the true fitnesses of individuals

up to a Hamming distance of around 2-3 and with a weaker correlation up to around a

distance of 10 bits. These results show that even a model with many interactions missing

from the structure can still model neighbouring solutions to those already seen.

4.9 Summary

The results of the experiments described in this chapter give us an important insight into

fitness modelling using the Markov network approach. We have made two major contribu-

tions through this chapter. Firstly we now know that, at least for the benchmark functions

used here, there exists a strong and quantifiable relationship between the structure of the

MFM and the effort required to estimate parameters for a model with strong correlation

to fitness. Secondly, again in the context of the benchmark functions used here, we have

observed that the ability of the MFM to predict changes in fitness for an individual is

highly dependent on the MFM’s structure.

Where we are able to supply the perfect stucture for the MFM, the fitness prediction

capability remains low until the number of individuals in the population used for estimating

model parameters exceeds the number of those parameters. Where we use an imperfect

model we can generally build an MFM which can accurately predict the fitness change

resulting from single mutations (a high Cm value) but in general it is unable to accurately

predict fitness over many mutations (low Cr value). Cr has been shown to increase for

trap-5 by using a large population of 7N individuals. In contrast to this, by increasing the

population size beyond N for some benchmark functions (1D checkerboard, 2D Ising and

trap-5) with imperfect structures we see a fall off in Cm value. This is possibly caused

by conflicting information about fitness being present in the larger population which the

model cannot incorporate because of the imperfect structure. This is related to recent work

(Ashlock, Bryden & Corns 2008) in the genetic programming community which indicates

that a small population is better at solving some problems.

The fitness prediction capability has a direct impact of the usefulness of the MFM

for optimisation (explored further in Chapters 6 and 7). When sampling the MFM, we
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(b) 100 bit MAXSAT

Figure 4.10: FPC against number of mutations for univariate models
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need to be able to accurately predict changes in fitness caused by mutations to be able

to generate individuals nearer to the global optimum. These findings allow us to now say

with some certainty that there is a minimum population size required to build a useful

model which is directly related to the model complexity. In terms of fitness evaluations,

this effort is low compared with that typically expended by model building algorithms on

these problems. However, the model building costs are high, principally because of the

computation required for SVD (Press et al. 1986), and in the cases demonstrated here the

structure is supplied to the algorithm. This is important in considering the overhead for

any algorithm using the MFM approach and particularly when deciding the complexity of

the probabilistic model to use. We have also seen the importance of the model structure in

building a model which correlates closely to the fitness function. Model structures, which

are missing a considerable number of the interactions that would be present in a perfect

structure, can still give a model which shows a reasonable ability to predict fitness over a

small number of mutations. This will be important later as we move on to look at using

the model for optimisation with a structure learned from data, which is unlikely to match

the perfect model.



Chapter 5

Effect of Selection on Fitness

Modelling

In this chapter we consider another factor which affects the quality of fitness model; the

selection operator. In Chapter 3, we saw that one of the features which distinguishes EDAs

from other evolutionary methods is that an explicit probabilistic model of the problem is

created which can be analysed to reveal underlying information about the problem itself.

This chapter makes further use of the Fitness Prediction Correlation (FPC) described in

Chapter 3 as a measure of model quality to explore the effect that the selection operator

has on the construction of the probabilistic model. From this we may infer clues as to the

nature of the operator itself; what it does to the information about fitness contained in

the population and what is lost or gained by the use of selection.

Most evolutionary algorithms apply a distinct selection operator so that a subset of the

population is chosen for recombination or model building. The Markov fitness model is a

probabilistic distribution which is monotonically related to the fitness function and because

of this selective pressure is directly built in to the model. This means that construction of

the MFM does not require an explicit selection operator, although one may still be used.

Previous work on DEUM (Brownlee et al. 2007, Shakya 2006, Shakya et al. 2006, Shakya,

McCall & Brown 2004a) varied in the use or absence of selection prior to building the

model - in each case it was determined empirically whether selection was beneficial. This

91
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Algorithm 5.1 Effect of Selection Experiments

1: for each selection operator, and each selection proportion do
2: Generate random initial population p
3: Select a subset σ of p
4: Use σ to build MFM
5: Calculate FPC values Cm and Cr

6: end for

chapter will examine this issue systematically.

5.1 Selection Operators

The selection operator being examined here is truncation selection (Mühlenbein & Schlierkamp-

Voosen 1993), frequently used in EDAs (Larrañaga & Lozano 2002). It selects the fittest

ϕ∗M solutions from the population, where 0 ≤ ϕ ≤ 1 and M is the population size. Trun-

cation selection selects a solution only once (unless it is duplicated in the population), and

there is zero probability of poor fitness individuals being selected, in contrast to operators

such as tournament selection (Goldberg & Deb 1991).

Here we use four related variants of truncation selection. We call the standard trunca-

tion selection top selection. Bottom selection selects the least fit ϕ ∗M and top & bottom

selection selects the fittest (ϕ/2) ∗ M and least fit (ϕ/2) ∗ M . The fourth operator is

created implicitly; the number of selected solutions may be varied to change the selective

pressure and when the number selected equals the population size, we effectively have no

selection.

5.2 Experiments

The experiments all follow the procedure given in Algorithm 5.1. Considering the

discussion on specified and underspecified models in Chapter 4, it is important that the

number of individuals used to build a model remains constant. This is achieved by choosing

the proportion of the population that will be selected, then generating a population of

suitable size (1.1N) to result in the chosen number being selected. This allows us to

observe the effects of selection on the model building without matters being confused by
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the under/over-specification issue. In all experiments, the proportions p of the population

selected were 0.01, 0.02, 0.05, 0.1, 0.2, 0.28, 0.5, 0.67, 0.83 and 1 (that is, no selection).

To illustrate: the model for 100-bit 2D Ising has 301 parameters - 100 univeriate terms,

200 bivariate interactions and the constant. To keep the system over-specified, 1.1N (331)

individuals are selected to build the model in all experiments. The population size is

altered so that 331 individuals are always selected - which means that to achieve a selected

proportion of 0.01 the starting population must be 33100 individuals, and to achieve a

selected proportion of 1.0 (no selection) the starting population will be 331 individuals.

Each experiment was repeated 30 times and the mean and standard deviation for each

FPC calculated. Each experiment presented here looks at a range of instances of a number

of different fitness functions. Similar to Chapter 4, the results are presented in Appendix

C with a subset presented here for ease of reading.

5.3 Perfect Model Structures

5.3.1 Outline

Recall from Section 3.1.4 the different types of structure which may be used to build the

model. We will look at both perfect and imperfect structures in this chapter, with the

series of experiments in this section using a perfect model structure. We will look at

imperfect model structures in section 5.4.

In Chapter 4 we saw that population size is an important factor in building the model

and defined the concepts of fully specified and underspecified models. That is, where the

number of individuals used to build the model is greater than and less than N, the number

of terms in the MFM. In this chapter we will look at both situations.

5.3.2 Results Using Fully Specified Models

Firstly we look at the univariate problem, onemax, over a range of different problem sizes

n from 10 bits to 1000 bits. There are no interactions between variables and the MFM

includes only univariate terms. Recall from Chapter 4 that this means the perfect model
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has a total of N = n + 1 parameters including the constant. The results are shown in

Figures 5.1 and C.1 to C.9.

A pattern is visible across the 9 problem sizes, though it is less clear for the two

smallest sizes where the standard deviations exceed the gap between most of the plots on

the graphs. Indeed, in this and most of the other experiments in this chapter the FPC

values for small problem sizes are often close to zero and have large standard deviations

in comparison to the results for larger problem sizes. This is likely caused by a lack of

diversity among the selected individuals caused by the small number of variables and high

selective pressure.

We can see that the MFM has a strong positive correlation with the fitness function

(note the values on the y-axis); Cr is always higher than 0.8 and comes close to 1. Top

selection yields the best model quality, which falls off as the proportion of the population

selected increases. Bottom selection shows a similar trend, starting with a slightly lower

Cr. In contrast, top & bottom selection results in the poorest model which improves as a

larger proportion of the population is included. Cm is consistently close to 1 in all cases.

Figures 5.2 and C.10 to C.18 show the results for a 2D Ising Spin Glass problem.

Here problem instances have interactions between pairs of variables, giving a model size of

N=3*ProblemSize+1 (a term for each variable, a term for each interaction and a constant

term). As we saw in Chapter 4, this problem exhibits unique properties in the context of

fitness modelling with Markov networks.

We see the same trends appearing as with onemax; top selection gives values of over

0.95 for both Cm and Cr. These fall toward 0.95 and 0.5-0.7 respectively as the proportion

of solutions selected approaches 1. Bottom selection gives values over 0.9 and 0.8 for Cm

and Cr and follows the same gradual decrease. Top & bottom selection gives the lowest

values - 0.95 for Cm and around 0.5 for Cr - with Cm remaining level and Cr gradually

increasing toward 0.5-0.07 as more of the population is selected. Again we see the effect

becoming more pronounced as the problem size increases.

Results for the 3-CNF MAXSAT problem are presented in Figures 5.3 and C.19 to

C.25. Recall from Chapter 4 that N varies because of differing numbers of bivariate
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Figure 5.1: FPC against selection proportion for fully specified OneMax problems
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Figure 5.2: FPC against selection proportion for fully specified 2D Ising problems
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interactions in each instance, so the population size and number of individuals selected

were varied accordingly.

We see similar results to those for the onemax problem, though with all correlation

values considerably closer to 1. Again top selection gives the best Cr values, while bottom

selection follows a similar trend, slightly lower. Top & bottom selection gives the lowest

values for Cr. Also like onemax, Cm values are consistently close to 1 for all selection

types, and for the smallest problem sizes the FPC values are low with a small selected

proportion because of a lack of diversity in the population.

5.3.3 Analysis

In this section we have seen that - for the benchmark functions used - with a perfect model

structure and a selected population large enough to give a fully specified system, use of

the traditional top selection operator will produce a model very closely fitted to the fitness

function. More interestingly, the similar Cm and Cr values would indicate that a model

with almost the same fitness modelling capability was obtained by selecting the poorest

part of the population. A model with high fitness prediction capability was also obtained

by selecting the entire population, equivalent to not having any explicit selection operator.

It is also worth observing the strong correlations seen between predicted and true fitness

for random individuals - particularly for random individuals - showing the strength of the

MFM approach to modelling fitness.

Conventional wisdom from the EA context would have us expect that top selection

would give a better model. However, when building a model of the fitness function and

attempting to predict fitness of randomly generated individuals we might speculate that

there would be more information in the full population, resulting in higher Cm and Cr

values without selection. From the results this is not the case and the model improves

considerably by removing even a small proportion of the population (selection of 80%

rather than 100%). It is possible that there is a trade-off - with the full population there is

too much information and SVD is unable to correctly minimise the error; this being reduced

by discarding a small number of solutions (selection of a high proportion). Another reason
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Figure 5.3: FPC against selection proportion for fully specified MaxSAT problems



5.3. Perfect Model Structures 99

could be that because the population is randomly generated, there is some duplication

and redundancy, meaning that the true number of individuals needed to achieve a full

specified system is larger than N or even 1.1N as used in the experiments. By introducing

a small selective pressure, the design of this experiment requires a larger population to be

generated which would avoid this problem. This factor could be counterbalanced in future

work by the use of a larger population, or by using experimental design in generating the

population.

5.3.4 Results Using Underspecified Models

As illustrated in Chapter 4, an underspecified MFM does not generally model the fitness

function well. However, some of the earlier experiments with DEUM such as those outlined

in (Shakya et al. 2005c) have produced good results with what we have now determined to

be too small a population for obtaining a fitness model with a high FPC. One possibility

here is that selection can be used to focus the model on important parts of a population

- reinforcing the limited information content of a small population.

The first experiment in this section looks at results for the onemax problem, shown in

Figures 5.4 and C.26 to C.33. Here, the number of solutions selected equals 0.1N; under-

specified. Recall from Section 5.2 that this is not to be confused with the proportion of

the population selected - we are always selecting 0.1N solutions but change the population

size so this represents selecting different proportions of the population. 0.1N is chosen as a

population size that is an order of magnitude smaller than the point at which the system

becomes fully specified and the results from Chapter 4 would indicated that such a small

population will produce very low FPC values. Indeed, for the two smallest problem sizes

(10 and 20 bits) the starting population was so small (1 and 2 individuals respectively)

that it frequently resulted in SVD failure and a useless model. Where this occurred the

run was terminated and does not influence the mean value shown on the graph; for the

size 10 problem this means that there were no results to report and it is omitted from the

figure.

One point of particular note is that when using top selection, the fitness prediction
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Figure 5.4: FPC against selection proportion for 0.1N under specified onemax problems
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capability for random individuals at some points appears better than that for mutated

individuals similar to those in the selected set, though set against a background of large

standard deviations. The explanation for this is likely to lie in the best-fit behaviour

of SVD, used to construct the MFM, when supplied with such a heavily underspecified

system. Looking at the Cr values separately, we see that Cr appears to be highest when

using top selection, top & bottom selection gives a correlation of approximately zero

between true and predicted fitnesses, and bottom selection shows an inverse correlation

with true fitness. This is perhaps a result in keeping with intuition - that selecting the

fittest individuals results in the best model of fitness.

Perhaps most interesting in this context is that when selecting a small proportion of

the population, top & bottom selection produces a model with a higher fitness modelling

capability than top selection and bottom selection. Given the large standard deviations

we cannot read anything further into this.

Figures 5.5 and C.34 to C.42 give results for the 2D Ising problem. Again the number

of solutions selected equals 0.1N.

Here we see a similar trend to that seen for onemax but with less noise. Top selection

gives a higher Cr (around 0.4 and falling) than the other operators, which gave Cr ≈ 0 for

top & bottom selection and no selection, and Cr ≈ −0.4 for bottom selection. Results for

Cm show that top & bottom selection produces the best model of fitness out of the four

operators - for larger instances of the problem Cm starts at around 0.9 and falling to 0.8 as

the proportion selected increases. Top selection and bottom selection give similar results

to each other - Cm at around 0.5 which increases as a larger proportion of the population

is selected.

Figures 5.6 and C.43 to C.49 show the results for 3-CNF MAXSAT with a selected

proportion of 0.1N.

Here we can see selection exerting a strong influence on the quality fitness model

produced. Top selection gives values for both Cr and Cm over 0.4, whereas top & bottom

selection and bottom selection give close to zero and -0.4 correlations respectively. The

strong influence of selection here is likely to be a reflection of the problem’s complexity -
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Figure 5.5: FPC against selection proportion for 0.1N under specified 2D Ising problems
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Figure 5.6: FPC against selection proportion for 0.1N under specified MaxSAT problems
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with so little information in the problem, emphasis of strong solutions is required to build

a good model of fitness.

5.3.5 Analysis

In contrast to the overspecified MFMs in the previous section, with an underspecified

MFM the selection operators produce result more in keeping with intuition. Top selection

is important in building the general fitness model - Cr values only approach strong positive

correlation when using this operator. In this context, this means that the fitness model is

able to accurately predict fitness of a randomly generated individual (not necessarily high

in fitness), as opposed to only the change in fitness over a few mutations. In contrast, no

selection and top & bottom selection produce models with Cr close to zero. Bottom selec-

tion produces a model which appears to be inversely correlated with the fitness function -

this latter result does still show that there is useful information about fitness in the fitness

function. When observing the model’s ability to predict fitness of neighbouring solutions,

the results would indicate that any selection operator is better than having no selection

which gives Cm values of near zero. Top & bottom selection gives the highest Cm values -

this would indicate that this operator is able to sharpen the information already present

in the population without completely discarding either poor or fit solutions.

5.4 Imperfect Model Structures

5.4.1 Outline

We now move on to experiments using imperfect model structures. Here the MFM does not

include all the terms required to perfectly model the fitness function and as in Chapter 4 we

specify the structure in terms of the cliques retained in or removed from the model. Such

structures are important because they are comparable with structures built by learning

algorithms such as independence tests, which will inevitably miss some interactions.



5.4. Imperfect Model Structures 105

5.4.2 Experimental Results

In these experiments we cannot investigate onemax because it has no variable interactions

to omit. Thus we begin by revisiting the 2D Ising problem.

The results shown in Figures 5.7 and C.50 to C.58 are produced using the univariate

model applied to the Ising problem (that is, only retaining cliques where |K| < 2). In

parallel with the findings in Chapter 4 we can see that ignoring interactions between vari-

ables results in a poor model compared to those in Section 5.3. Cr values regardless of

selection type are all close to 0 indicating that the model is unable to predict fitness of

random solutions. For the smaller instances of the problem the Cm values are also low

- rarely exceeding 0.4 indicating that the model has a weak positive correlation with the

fitness function. However, for the larger problems (256 bit upward) all three selection

operators we have Cm values over 0.6. This increases to between 0.7 and 0.8 for top selec-

tion and top & bottom selection of approximately half of the population. This indicates

that modelling of nearby solutions is good but prone to error. The three operators give

similar results, with top selection giving the highest Cm values, followed by top & bottom

selection. Bottom selection gives a lower Cm value than no selection. Again the results

for small instances of the problem are much less clear - the small population and small

number of variables resulting in low diversity and a poor model.

In Figures 5.8 and C.59 to C.76 we show results for decimated models applied to the

Ising problem. This included two experiments; one with 10% of the cliques with |K| = 2

removed from the model structure and one with 50% of the cliques with |K| = 2 removed.

The same trends are visible for both, though with the 50% decimated model the FPC

values are lower overall that for the 10% decimated model.

Top selection gives a model with strong positive Cm and Cr values (0.98-0.99). Bottom

selection also gives a good model of fitness, though with lower Cm and Cr values, beginning

at around 0.95 and 0.8 respectively. Top & bottom selection gives a model with a Cm of

0.4-0.8 and Cr of 0.4-0.5. The values for these three operators converge to those for no

selection with Cm and Cr of 0.6-0.95 and 0.6 respectively.

In Figures 5.9 and C.77 to C.85 we see a univariate model applied to the 3-CNF
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Figure 5.7: FPC against selection proportion for a fully specified 400 bit 2D Ising problems
with univariate model structure

MAXSAT problem (that is, a model with |K| < 2). With all of the interactions missing

from the model and a problem which has bivariate and trivariate interactions, we would

expect the Cr value to be poor for all forms of selection. This is indeed the case, with

Cr never exceeding 0.3. In contrast with the results for 2D Ising the highest Cr was with

top & bottom selection, with less than half of the population selected - the other selection

operators mostly give Cr around 0.2. More interesting is the result for fitness prediction

on mutated individuals. A similar amount of information about fitness is gained using

either top selection or bottom selection, both showing Cm values well within one standard

deviation of each other; the best results are found when using top & bottom selection,

particularly with a small proportion of the population where for most of the problem

instances the Cm was over 0.9.

In Figures 5.10 and C.86 to C.94 we see the same problem with all univariate and

trivariate interactions included in the model (that is, all cliques with |K| = 2 have been

omitted). Again we see that top & bottom selection yields a more accurate fitness model
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Figure 5.8: FPC against selection proportion for fully specified 400 bit 2D Ising problems
with decimated model structures
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Figure 5.9: FPC against selection proportion for fully specified 150 bit MaxSAT problem
with univariate model structure

of neighbouring solutions than the other two methods, while Cr values are low (0.4 and

lower) for all selection operators.

5.4.3 Analysis

As with underspecified systems with perfect model structures, when we use an imperfect

structure with a fully specified system we also see an improvement in model quality by

using some form of selection. For the Ising problem, top selection gives the best model;

for MAXSAT, top & bottom selection gives the best results. As might be expected, the

models are unable to predict fitness of random individuals; however with appropriate

choice of selection operator the model shows a strong correlation between predicted and

true fitness values of solutions near the existing population. This effect was also observed

to a limited extent for underspecified systems. The ability to predict the change in fitness

of individuals following a mutation is potentially useful for incorporating the MFM into

algorithms employing short-distance mutation for optimisation. We will make use of this
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Figure 5.10: FPC against selection proportion for fully specified 150 bit MaxSAT problem
with trivariate and univariate model structure

in an evolutionary version of DEUM applied to Ising problems in Chapter 7.

In the wider context of EAs we believe that this complements the other work which

shows that algorithms which include information from the high and low fitness areas of the

population can yield better performance. The algorithm presented in (Poš́ık & Franc 2007)

models a contour line on the fitness landscape between high and low fitness individuals

which the authors describe as a special case of the Learnable Evolution Model (LEM)

(Michalski 2000). LEM uses machine learning techniques to determine the features which

distinguish high and low fitness individuals. The key difference between those works and

this is that following selection the MFM incorporates the fitness values directly into the

model, allowing it to be used with more diverse operators such as selection of the whole

population. (Miquélez et al. 2004) describes an algorithm which groups individuals of

similar fitness into classes which are then passed to Bayesian classifiers that can be sampled

to generate individuals of high fitness. That paper also raises two other possibilities

for making use of individuals of all fitnesses; weighting the individuals by fitness when
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building the model and adding fitness as an extra variable to be passed to the probabilistic

model. This latter approach is discussed in detail in (Miquélez, Bengoetxea, Mendiburu

& Larrañaga 2007) and bears some similarity to the MFM concept but continues to make

use of a Bayesian classifier (directed network) rather than an undirected network. That

work also concentrates on continuous problems in contrast to the discrete problems looked

at in this thesis.

The results presented here show that the MFM also benefits from being supplied with

individuals from high and low fitness parts of of the population. Indeed, the results

which show a strong correlation between the model and the fitness function for bottom

selection and top & bottom selection would indicate that there is considerable information

about fitness in the poorer parts of a population. This information could be beneficial to

reproduction operators (whether they be probabilistic models or more traditional genetic

operators) if they were designed to incorporate this information about fitness.

The results also indicate that selection plays an important role in gathering fitness

information from the population. This is particularly so for the experiments which show

top & bottom selection to give a model more strongly correlated with the fitness function

than the other selection operators. This indicates that selection is able to sharpen to

fitness information within the population by only supplying the high and low (rather than

mid) fitness individuals for building the model. The MFM approach is able to make use of

this by incorporating the fitnesses directly into the model; other algorithms which estimate

a distribution from selected individuals would need to be modified to make use of top &

bottom selection.

As the model is unable to perfectly or closely fit the fitness function it is not likely

that sampling it as a surrogate for the fitness function will reach a global optimum of

the fitness function. The main impact of this is that a different approach to optimisation

using the MFM concept would need to be employed. Rather than building the model once

then sampling it to find the optimum as in previous work (Brownlee et al. 2007, Shakya

et al. 2006, Shakya et al. 2005b) we can use the ability to model neighbouring populations

to push the population gradually towards the optimum. In summary, reverting to a more
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typical evolutionary approach. In this case, population size becomes more important as

the number of function evaluations to create a population is multiplied by the number

of generations - this means an underspecified system is more likely to be the norm. To

conteract the effects of a small population and imperfect model, selection is more likely to

play a bigger role and the results here will be useful in matching a selection operator to a

given situation.

5.5 Summary

This chapter has described a series of experiments that investigate the effect of different

approaches to selection on the ability of the MFM to model fitness for certain benchmark

functions. We have seen that while the traditional truncation selection often results in a

good fitness model, in the MFM approach comparable fitness models can also be produced

when selecting different parts of the population (or indeed all of it). From the results

presented here, it is clear that selection is particularly important when the fitness model is

unlikely to perfectly match the fitness function. This is the case when variable interactions

have been learned from data rather than given as part of the problem, which particularly

relevant for later work in this thesis looking at optimisation of problems without the

structure being supplied to the algorithm. An explanation for this behaviour may be that

dependent on the fitness function, higher fitness individuals could be more similar to each

other than lower fitness individuals. Thus the individuals in the mutated population will

be similar to more of the individuals in the selected population than would be the case for

a poorer selected set.

In situations where the model structure is imperfect, selection improves the ability

of the algorithm to accurately model neighbouring areas of the search space - aiding

the movement towards a global optimum. This shows that a well-tuned computationally

cheap selection operator can be used to improve the accuracy of a model with a simpler

structure. The results also show that selection can improve the fitness modelling capability

of the MFM with an underspecified system, which results from using a smaller population.

An optimisation algorithm employing the Markov fitness model could use a well-chosen
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selection operator to improve the fitness modelling capability of a more computationally

efficient model structure with an underspecified population size, in place of the large

computational expense required to build a model with a perfect structure and overspecified

population. This information will be useful in developing more efficient optimisation.

We have also seen that in some circumstances the pure “top selection” operator can

result in a model less closely fitted to the fitness function than that resulting from a “top

& bottom selection” which selects and equal number of high and poor fitness solutions.

“Bottom selection” and even selection of the whole population also result in models that

show a strong positive correlation with the fitness function. This is in line with other work

on selection - from the introduction of operators like tournament selection to more recent

work on EDAs. It reinforces the idea that a considerable improvement in the performance

(in this case the fitness modelling capability of the model) may be obtained by correct

choice of selection operator.

In summary, the main contributions we can make based on the results from this chapter

are as follows. For the benchmark functions tested, if the MFM is supplied with a perfect

structure and a large enough population to be fully specified, then any of the selection

operators tried here will result in a model which can predict fitness well. When the

population is smaller (underspecified) then the standard top selection gives the best model,

with the other operators resulting in models with no or a negative correlation to fitness.

With an imperfect structure, again the top selection operator produces a good model in

most cases, but for MAXSAT the selection of both top and bottom parts of the population

gives the best model.

It will be interesting to extend this work to cover a much larger range of problems,

to determine more precisely when the different approaches to selection should be used.

It will also be useful to look at the effects of other selection operators such as fitness

proportionate selection and tournament selection.



Chapter 6

Optimisation using Fixed

Structure Markov Networks

We have seen over the previous chapters that a Markov network may be used to build a

Markov Fitness Model (MFM) with a close correlation to the fitness function. Function

optimisation has been one of the driving purposes for research in evolutionary computation

and so this represents an important area to look at in more detail. The DEUM framework

(Shakya et al. 2006, McCall, Petrovski & Shakya 2008, Shakya et al. 2005b) uses the

Markov fitness model for optimisation. It has been successfully applied to the optimisa-

tion of a range of objective functions when provided with the structure of known variable

interactions. Two problems used for benchmarking DEUM have been onemax (Shakya

et al. 2005b) and the Ising spin glass problem (Shakya et al. 2006). In this chapter we

first describe an existing approach to sampling the MFM to find solutions of probable high

fitness, taken from those papers. Our contributions are to incorporate different structures

within the algorithm to those used previously and changes to the operation of the Gibbs

sampler including its cooling scheme. We then discuss the impact of the fitness model

quality as defined by the Cr measure on optimisation; this gives us a new way of theo-

retically analysing the algorithm. In the remainder of the chapter we apply the DEUM

framework to a number of benchmark functions it has not been previously applied to. In

the experiments described in this chapter, problem-specific information is supplied to the

113
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algorithm in the form of a fixed structure which specifies the interactions present between

variables. This is similar to the technique originally used by the Factorized Distribution

Algorithm (Mühlenbein et al. 1999) which requires the additively decomposable function

for a problem to be supplied to the algorithm. Chapter 7 will go on to look at optimi-

sation without this requirement where the structure is instead learned by analysis of the

population.

6.1 Sampling the MFM

6.1.1 Probability Vector

To generate a new population the DEUM framework can employ a number of sampling

techniques. Earlier versions of DEUM used a PBIL-style probability vector; subsequently

this was replaced by direct sampling of the Markov network. The PBIL-style probability

vector as used by DEUMpv (Shakya et al. 2004b) can be discounted for use with a multi-

variate model. This is because it implicitly factorises the model to a univariate structure

by only storing a marginal probability distribution for each variable. Even if the marginal

distributions are updated using a multivariate model, when they are sampled to generate

new individuals the interactions have already been lost. A matrix of conditional probabil-

ities can be used in place of the probability vector to allow interactions to be stored. This

would rapidly grow in space complexity and instead we now discuss how the probability

vector can be completely replaced by direct sampling from the Markov network with an

appropriate cooling scheme.

6.1.2 Gibbs Sampler

In (Shakya et al. 2005b) a zero-temperature Metropolis method was used to directly

sample the Markov network. In (Shakya et al. 2006) it was found that the Gibbs sampler

performed better than the zero-temperature Metropolis sampler on larger Ising problems.

The Gibbs sampler can be fine-tuned for different problems using a cooling rate coefficient

and because of this is the technique used in all of the experiments described in this chapter.

The Gibbs sampler repeatedly samples marginal probabilities for individual variables with
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the aim of reducing the energy of the individual and thus increasing its fitness. This

continues until no further reduction in energy is possible or until a maximum number of

iterations is reached. For each variable xi the marginal probability of that variable taking

the value 1 is given by:

p(xi = 1) =
1

1 + e2ωi/T
(6.1)

where T is a temperature constant and ωi is an energy function for all the cliques

which contain xi, defined in terms of Walsh functions WK(x):

ωi =
∑

K⊃{i}

αKWK(x) (6.2)

The temperature T falls over the run of the Gibbs sampler according to a cooling

scheme. The temperature at iteration g is defined in (6.3). τ is the cooling rate parameter

which allows us to control the convergence rate of the sampler.

Tg =
1

τg
(6.3)

In the work described here, we have made methodological changes to the implementa-

tion of the algorithm used in (Shakya et al. 2006). These were found empirically to yield

better results. Firstly, in some of the experiments we now adopt the exponential cooling

scheme proposed by Kirkpatrick in (Kirkpatrick, Gerlatt & Vecchi 1983) in place of (6.3).

The scheme starts with an initial temperature To, and at iteration g the temperature is

given by:

Tg = λTg−1 (6.4)

where λ is a constant in the range 0 < λ < 1. This scheme was found to give better

results than the cooling scheme described in (Shakya et al. 2006) for some problems; the

description of each experiment makes clear which cooling scheme was used.

Secondly, the Bitwise Gibbs Sampler used in (Shakya et al. 2006) is modified so that
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bits are now sampled at random rather than in a raster scan. The sampler runs until no

further improvement to the current individual or a problem-dependent maximum number

of iterations have completed. This change was made to remove any implicit bias towards

certain optima caused by always sampling the bits in the same order. We call the resulting

sampler the Random Walk Gibbs Sampler, and its workflow is given in Algorithm 6.1. This

is used in all of the optimisation experiments presented in this chapter.

Algorithm 6.1 Random Walk Gibbs Sampler

1: for all individuals xo in the previous population do
2: Set g = 0 and set initial value for T
3: repeat
4: Set xtmp = xo

5: Pick a variable xo
i at random

6: Compute marginal probability distribution for xo
i according to (6.1)

7: Sample distribution to obtain new value for xo
i

8: Increase g by 1
9: until xtmp = xo or g = 10000

10: Terminate with answer xo

11: end for

6.1.3 DEUM with Gibbs Sampler

Algorithm 6.2 DEUM with Gibbs sampler and fixed structure

1: Set structure of Markov network depending on problem
2: Generate an initial population, p, of size M with uniform distribution.
3: while stopping criteria not met do
4: Select a subset σ, the fittest |σ| members of p
5: Calculate the Markov Network parameters by making a maximum likelihood esti-

mation from the selected population
6: Calculate Cm and Cr

7: repeat
8: Run Gibbs sampler to sample a new individual from the Markov network
9: until |σ| individuals or an optimal individual is generated

10: if single-generation DEUM then
11: Terminate with the fittest solution found in step 7
12: else
13: Replace poorest |σ| in p with population generated in Step 7
14: end if
15: end while
16: Terminate with the fittest solution found over complete run

Incorporating the Gibbs sampler into DEUM gives us Algorithm 6.2. At Step 4, se-
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lection is not used if it was found to result in a poorer fitness model. Step 6 is not a

functional part of the algorithm but in the experimental results where the FPC values

are reported this is the point in the algorithm’s run at which they were calculated. This

procedure is adapted throughout this chapter depending on the problem. Step 10 repre-

sents a parameter chosen before the algorithm runs: in many of the experiments, once the

MFM is built using a large enough population, repeatedly sampling the model will yield

the global optimum. In this case there is only a single generation to the algorithm (which

we refer to here as single-generation DEUM ). Single-generation DEUM may be likened to

simulated annealing (Kirkpatrick et al. 1983), although rather than repeatedly calling the

fitness function we make repeated use of the fitness model instead.

6.2 Fitness modelling and optimisation

Chapters 3 to 5 have given us a theoretical and experimental background to the factors

involved in building a model of fitness which closely correlates to the fitness function. In

this chapter we wish to use the fitness model for optimisation and it is important to realise

the link between fitness prediction capability and optimisation. This section describes an

experiment that demonstrates a clear link between the fitness prediction capability and

the optimisation capability of the algorithm.

The approach for this experiment follows the same template as the population size

experiments in Chapter 4. We run the DEUM optimisation described in Section 6.1.3

for multiple population sizes which cover both underspecified and overspecified systems.

Alongside the fitness prediction correlation we also consider the proportion of 30 runs

which successfully found a global optimum (that is, the success rate of the optimisation

algorithm). The algorithm runs for a single generation, finishing with repeated runs of the

Gibbs sampler. The temperature used for the Gibbs sampler was computed using (6.3).

Parameters for the algorithm on both problems are the same with the exception of the

cooling rate parameter which is set to 0.005 for onemax and 0.0005 for Ising. The rate

for Ising is the same as that used in (Shakya et al. 2006) and the rate for onemax was

determined by increasing the rate (while keeping all other parameters fixed) until a 100%
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success rate was achieved.

This experiment differs slightly from those in Chapter 4 in that truncation selection is

used to properly reproduce the results given in (Shakya et al. 2006). Thus the horizontal

axis of these graphs is the size of the selected set and not the starting population size.

To maintain the same selective pressure in all experiments, the desired size of σ was

determined and the initial population was generated to be four times this size.

6.2.1 Results

First we look at the results for a 100 bit onemax problem in Figure 6.1a. Here, the Cm and

Cr are plotted on the left vertical axis against increasing number of individuals selected

|σ|. As we saw in Chapter 4 both values show a rapid increase as |σ| exceeds N . Plotted

on the right vertical axis is the success rate of the optimisation stage of the algorithm.

We can see that while the population remains underspecified there are no runs which find

the global optimum. At the point where |σ| exceeds N , alongside the jump in fitness

prediction capability we see a similar jump in problem solving capability which remains

high as the selected set grows even larger. The results for the Ising problem in Figure 6.1b

show a similar leap in problem solving capability, although there is one instance where the

global solution is found by the algorithm with an underspecified system. This may be a

random occurence or could be attributed to the unique properties of the Ising problem in

the context of fitness modelling, discussed in Chapter 4.

Figure 6.2 shows the dropoff in fitness prediction capability caused by removing parts

of the model structure at random, together with the corresponding dropoff in optimisation

capability. The success rate drops very quickly, indicating that where we have an imperfect

model structure we are also unlikely to be able to use the single-step version of DEUM.

These results demonstrate a strong link between the fitness modelling capability dis-

cussed in previous chapters and optimisation capability. They highlight an important

drawback to the single-step DEUM approach; the system of equations must be fully spec-

ified using a near-perfect structure to produce a model which can be directly sampled to

find the global optimum. Typically where the algorithm fails in both cases the Gibbs sam-
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(a) 100 bit onemax
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(b) 100 bit Ising

Figure 6.1: Effect of population size on FPC and optimisation capability
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Figure 6.2: Effect of structure decimation on FPC and optimisation capability

pler is producing locally optimal individuals very close in fitness to the global optimum.

This confirms the previous observation that the model is still providing useful information

about the fitness function. The logical progression of this is that to develop a general

purpose optimisation algorithm employing Markov network fitness modelling we will need

to consider additional techniques to enhance the approach by making use of these locally

optimal solutions. The foremost of these would be the use of multiple generations (making

a true evolutionary algorithm within the DEUM framework).

In the rest of this chapter we see a mixture of both approaches. The benchmark

problems with a known structure employ the single step version of the algorithm; the

biocontrol problem in Section 6.3.4 is a real-world black-box problem which needs the

additional power of the multi-generation algorithm.
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6.3 Optimisation Experiments

In this section, we run a number of experiments applying DEUM to different problems

and comparing its performance to that of other algorithms. The object of this series of

experiments was to demonstrate the application of DEUM to optimisation problems of

an increasing level of complexity. The novelty in this work is the presence of a number

of different bivariate and multivariate models, whereas previous work used a univariate

model or in one instance a 2D lattice (Shakya et al. 2006).

Each sub section describes an application of the algorithm to a particular fitness func-

tion. Detailed descriptions of the fitness functions can be found in Chapter 2 - here the

summary of each experiment begins with a short description of the aspects relevant to op-

timisation. The algorithms which DEUM are compared with are then described with the

reasons for their selection. Then follow the results with a table showing a detailed break-

down of the performance of DEUM and a graph comparing it with the other algorithms.

The detailed results for DEUM are arranged in a table which depicts:

• PS - The problem size (number of variables).

• FE - The number of fitness evaluations required by DEUM to find an optimum,

including evaluation of the initial population and the population produced by the

Gibbs sampler, averaged over the 30 runs.

• FE-SD - The corresponding standard deviation for the number of fitness evaluations.

• IT - The average number of iterations of the Gibbs sampler - each iteration contains

one marginal probability calculation.

• IT-SD - The standard deviation of Gibbs sampler runs

• SR - The success rate; the percentage of runs which found the global optimum.

• Cr - The mean FPC of the model for a population of randomly generated individuals

given for comparison.

• Cr-SD - The corresponding standard deviation of the FPC.
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In the graphical comparisons of algorithms the error bars represent one standard devi-

ation in the set of results. In both the FE and IT figures the means only include successful

runs to avoid being skewed by the unsuccessful runs in which the Gibbs sampler was

restarted 10 x population size times. This also applies to the graphical comparison of

the different algorithms. Each sub section then ends with an analysis of the results. The

last experiment (Bio-control in Mushroom Farming) goes into some more detailed analy-

sis of the finishing population and the effects of seeding the population to provide some

additional comparisons with other algorithms applied to the problem.

6.3.1 1D Checkerboard

First we start with the chain structured problem 1D checkerboard. This is a simplification

of the 2D Checkerboard problem used for benchmarking in (Baluja & Davies 1997b),

designed to be easier to solve because it has half as many interactions. The model has

one term for each variable and a coupling term between neigbouring variables. We saw

in Chapter 4 that with a large enough population and bivariate structure a good model

of fitness can be obtained for this problem. In Chapter 3 we saw that the parameters

estimated for the chain model can be analysed manually to determine the global optimum

for the problem.

6.3.1.1 Algorithms used for Comparison

Here we compare against a run using UMDA, MIMIC and hBOA. UMDA was chosen to

demonstrate the performance of an EDA using a univariate model on this problem. It was

chosen in preference to other univariate EDAs because the implementation of hBOA was

used includes UMDA and this allowed for a fairer comparison, using exactly the same code

base for those algorithms. MIMIC uses a chain structure which should closely match the

structure of the problem - consequently, MIMIC should perform well on this problem. To

mitigate the effect of premature convergence, a mutation operator was added to MIMIC

which flips bits in newly generated individuals. hBOA is chosen as an algorithm with

sophisticated structure learning which has been demonstrated to perform well on higher
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order problems. We do not compare with univariate DEUMd because as we saw in the

previous section, even slight decimation of the model (removing a few interactions) greatly

reduces the optimisation capability. Univariate DEUM includes no interactions and cannot

be expected to perform as well as implementations which do include some structure.

6.3.1.2 Method

We start by defining the model structure used by DEUM to solve this problem; we used

the chain structure as defined in Chapter 3. For reference, this is repeated in (6.5).

U(x) = α0 +

n
∑

i=1

αixi +

n−1
∑

i=1

αijxixj (6.5)

This experiment is repeated over a number of different problem sizes, from 10 bits up

to 200 bits. We use the Algorithm 6.2 with no explicit selection operator and populations

of 1.1N and 2N individuals (where N is the number of terms in the energy function). The

single-generation version of the algorithm is used; the model is repeatedly sampled using

a Gibbs sampler until an optimal individual is found. The Gibbs sampler temperature

is calculated using (6.3) with a cooling rate parameter τ of 0.01. This was found by

repeatedly running the algorithm with cooling rates from 1 to 0.0001, then choosing the

setting at which most runs ended successully finding the global optimum. To determine

the optimal parameters for the other algorithms each was run on the 100 bit version of

the problem with a range of different values for selection pressure for both tournament

and truncation selection. The bisection technique (Pelikan 2005) was used to determine

optimal population size. The bit-flip probability for the mutation operator added to

MIMIC was determined by repeatedly running the algorithm with values from 0.0001 up

to 0.5 and choosing the value which gave algorithm the highest success rate.

6.3.1.3 Results

During the parameter setting phase of the experiments it was clear that regardless of

selection type and population size (populations of up to 106 individuals were tried), UMDA

was unable to find the optimum for this problem.
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Table 6.1 shows the experimental results of the performance of DEUM on differently

sized instances of the 1D Checkerboard problem using a population size of 1.1N to estimate

the model parameters. The number of function evaluations required to find an optimum

is also represented graphically alongside that of MIMIC and hBOA in Figure 6.3. MIMIC

shows very large variations in run time; the lack of error bars on the 100 bit point for

MIMIC is because there was only one successful run so standard deviation was zero. At

200 bits none of the MIMIC runs found the optimum.

PS FE FE-SD IT IT-SD SR Cr Cr-SD

10 98 24 962 1326 57 0.615 0.145

20 205 43 5363 6157 47 0.733 0.100

50 512 80 15772 15771 67 0.883 0.045

100 1109 288 53730 65202 43 0.941 0.013

200 2617 389 267834 120644 43 0.967 0.010

Table 6.1: Performance of DEUM on 1D Checkerboard Problem

These results are poor even on the small instances of the problem: although the number

of function evaluations required are low for the successful runs, the success rate is lower

than 50% for most sizes of the problem that were tried. The Cr values are also lower than

those seen for other problems (see later sections in this chapter), and based on the results

in Chapter 4, a higher value for the fitness prediction capability for this problem could

be obtained by increasing the population size to 2N . Thus the experiment was repeated

with the increased population size and the results are given in Table 6.2. We can see that

with the increased population size, the algorithm was able to successfully find the global

optimum for all instanced of the problem.

PS FE FE-SD IT IT-SD SR Cr Cr-SD

10 156 3 343 224 100 0.870 0.063

20 316 3 660 522 100 0.937 0.016

50 801 10 1733 1819 100 0.975 0.006

100 1620 27 6715 6309 100 0.986 0.003

200 3408 172 70762 56158 100 0.993 0.002

Table 6.2: Performance of DEUM on 1D Checkerboard Problem with Population Size 2N
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Figure 6.3: Performance of DEUM on 1D Checkerboard Problem

PS SR

10 100

20 79

50 2

100 1

200 0

Table 6.3: Success Rate for MIMIC on 1D Checkerboard Problem

6.3.1.4 Analysis

The poor performance of UMDA is the expected behaviour as the univariate probability

distribution does not account for the crucial interactions between neighbouring variables

in the bitstring. MIMIC uses a chain structure and might be expected to perform well on

this problem; however despite also running the algorithm with very large populations and

a range of other parameter variations this was not the case. The success rate after 100

independent runs for MIMIC is shown in Table 6.3. For the successful runs, MIMIC was

able to use relatively few function evaluations. In contrast hBOA was able to solve all of

the problems given a large enough population although this came at the cost of using a

large number of function evaluations.

The important result of this experiment for us is that DEUM was able to successfully

optimise the problem with a large enough population. We saw in Chapter 4 that a pop-
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ulation size of 1.1N was enough to build a model which closely fitted to the probability

distribution, although for the 1D Checkerboard problem the fitness prediction capability

of the model continued to rise with population size up to and over 2N . There is clearly

an additional dynamic to the problem - perhaps that has no univariate element at all -

which affects the construction of the model from a random population. This is borne out

in the optimisation success rate increasing to 100% when the population reaches this size.

It is also important to note the substantial overhead of DEUM using an overspecified

system with perfect structure - the reason the experiments did not include larger instances

of the problem. This is because the memory requirement and model build time for a fully

specified system at best grows by O(N3) with the number of model parameters (which in

this case grows linearly with the problem size) and sufficient resources were not available

to accomodate the algorithm. For illustration, on the 2 GHz machine available, to build

a single model for a 100 bit instance of the problem (201 model parameters) took around

10 seconds. The 200 bit instances took around 100 seconds each; further doubling the

problem size resulted in a similar tenfold increase in time, and this was multiplied up

by the number of repeated runs of the algorithm for parameter setting and statistically

significant results. In contrast, hBOA was able to solve the problem up to size 1000 bits

- albeit with a very large population (11200 individuals) - taking minutes in contrast to

hours.

6.3.2 2D Checkerboard

2D Checkerboard is very similar in structure to the 2D Ising problem; the structure is also

a 2D lattice, although it does not wrap around at the edges. The optimum is always a

grid of alternating 1s and 0s rather than being dependent on the specific instance of the

problem.

6.3.2.1 Algorithms used for comparison

We compare to the results found for runs of hBOA and UMDA. UMDA is again chosen as

an algorithm with small overhead and with the simplest probabilistic model (univariate)
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and hBOA is chosen as an algorithm with a multivariate model which has already been

shown to work well for a similar problem (2D Ising).

6.3.2.2 Method

Again we start by defining the model structure used for this problem. In the general

energy function for the 2D Checkerboard problem we have a constant, a term for each of

the variables xi, and a term for the bivariate interactions. This is repeated in (6.6) for

reference.

U(xi) = α0 +

l
∑

i=1

l
∑

j=1

(αijxij + αij,(i+1)jxijx(i+1)j + αij,i(j+1)xijxi(j+1)) (6.6)

Nine sizes for the problem were used from 16 bits up 400 bits. The single generation

version of Algorithm 6.2 was run on each problem 30 times with different random starting

populations. The model was built by using standard truncation selection to select the top

25% of the population, and the population size was chosen so that the number of individ-

uals selected was always 1.1N (giving an overspecified system). The selection proportion

of 25% represents a balance between having a high selective pressure and not needing to

have a huge population in order to still select 1.1N individuals. It was chosen in light of

the results in Chapter 5 which show that (at least for the benchmark functions tried there)

with a perfect structure and fully specified system a high selective pressure will result in an

MFM with a high fitness prediction capability. The Gibbs sampler temperature coefficient

was computed using (6.3) with τ = 0.005. The sampler was limited to 2000 iterations.

6.3.2.3 Results

Table 6.4 shows the experimental results of the performance of DEUM on differently sized

instances of the 2D Checkerboard problem. The number of function evaluations required

to find an optimum is also represented graphically in Figure 6.4.
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PS FE FE-SD IT IT-SD SR Cr Cr-SD

16 121.05 0.23 447.26 196.31 63 0.912784 0.115555

25 213 0 558.18 161.63 73 0.989496 0.006504

36 333 0 623.64 190.82 83 0.993608 0.006333

49 477 0 813.63 307.81 80 0.9966 0.002237

64 649 0 805.48 100.7 90 0.996742 0.002844

100 1073 0 1019.26 253.59 90 0.998135 0.00116

256 2973 0 1305.63 285.12 100 0.999357 0.000225

324 3817 0 1734.83 602.3 77 0.999411 0.000178

400 4769 0 1560.27 440.76 87 0.999436 0.000235

Table 6.4: Performance of DEUM on selected instances of the 2D Checkerboard Problem
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Figure 6.4: Fitness evaluations required by DEUM and hBOA to solve instances of the
2D Checkerboard Problem

6.3.2.4 Analysis

As in the experiments on 1D checkerboard, this has show that DEUM is able to solve a

bivariate problem with a smaller number of function evaluations than hBOA, albeit with

a higher overhead.

One striking aspect of the results are that most of the FE values have a standard

deviation of zero. This is because the runs in which the algorithm found the global

optimum almost always did so with ths first run of the Gibbs sampler. This used one

function evaluation to compute the fitness of the newly generated individual. The structure
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was the same size N for all runs in a particular instance of the problem, meaning that the

number of selected individuals was always 1.1N and thus the population was the same size

4.4N . This meant that the number of evaluations ǫ required to find the global optimum

was constant and as defined in (6.7).

ǫ = 4(1.1N + 1) (6.7)

6.3.3 3-CNF MaxSAT

We now move on from bivariate problems to a problem with interactions of a higher

order: 3-CNF MAXSAT. We saw in Chapter 2 that this problem also shows interactions

between groups of three variables, and in Chapter 4 we saw that the three-way “trivariate”

interactions are also important for building a good model of fitness.

6.3.3.1 Approaches used for comparison

Pelikan’s work in (Pelikan & Goldberg 2003) combined a deterministic hillclimber GSAT

(Selman, Levesque & Mitchell 1992) with the multivariate EDA hBOA and compared

the results to those for plain GSAT and for WalkSAT. GSAT starts with a randomly

generated solution and runs in a steepest descent search, flipping the one bit the improves

the solution most in each iteration. If it fails to find an optimum it is restarted with

a new random solution. WalkSAT extends GSAT by adding random mutations - each

iteration it either performs the greedy step of GSAT or chooses at random one bit from

those present in unsatisfied clauses and mutates it. The probability p of choosing the

greedy step or random mutation is a parameter of the algorithm which may be varied to

improve performance on a particular instance of MAXSAT.

It was shown that WalkSAT outperformed hBOA+GSAT on the randomly generated

3-CNF MAXSAT problems that we will be looking at here; though both easily outper-

formed GSAT alone. Graph colouring problems translated into MAXSAT have more

complex structure and less randomness; on these hBOA+GSAT did much better than

both GSAT and WalkSAT. We do not look at the translated graph colouring problems
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here as the increased size of the test problems (500 variables) increases the model parame-

ter learning time of DEUM considerably when using as fixed complete model structure as

these experiments do. These will be worth returning to if a means of reducing the model

building time is found.

The results for hBOA and WalkSAT presented in (Pelikan & Goldberg 2003) are used

here for comparison with DEUM.

6.3.3.2 Method

Recall from Chapter 3 that the energy function for 3-CNF MaxSAT for each individual

can be expressed as:

U(x) =
∑

K

αKWK(x) where αK 6= 0 ∀|K| ≤ 3 (6.8)

The single generation version of Algorithm 6.2 was run on the set of 3-CNF benchmark

problems obtained from SATLIB (Hoos & Stützle 2000). The problem sizes were 20, 50, 75,

100, 125 and 150 (as used in previous chapters and (Pelikan & Goldberg 2003)) On each size

of problem, the algorithm was repeated on 20 different instances selected at random from

the set held by SATLIB. Each instance tested belongs to the phase transition region, the

point at which the problems tip from generally solvable instances to generally unsolvable.

At this point the number of clauses is equal to the number of predicates multiplied by 4.3.

Each instance tested is from the set of those proven to be solvable.

The temperature for Gibbs sampler was computed using (6.4). The cooling rate pa-

rameter λ was 0.995 for problems up to size 100 and 0.999 for the larger problems. The

sampler ran for a maximum of 10000 iterations. The population size used in each case

was 1.1N , and no explicit selection operator was used.

6.3.3.3 Results

As in previous sections, Table 6.5 shows the experimental results of the performance of

DEUM on differently sized instances of the MAXSAT problem. Like before, the number of

function evaluations required to find an optimum is also represented graphically in Figure
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Figure 6.5: Performance of DEUM on MAXSAT Problem

6.5. This is the mean number of evaluations required to estimate model parameters plus

the number required to confirm the true fitness of individuals generated by repeated runs

of the Gibbs sampler.

PS FE FE-SD IT IT-SD SR Cr Cr-SD

20 533 22 5.27x106 6.87 x104 100 0.9970 0.0011

50 1626 82 1.58 x107 1.87 x105 100 0.9984 0.0004

75 2980 608 2.49 x107 1.85 x105 100 0.9988 0.0002

100 3667 507 3.40 x107 1.17 x105 100 0.9992 0.0001

125 5151 826 4.32 x107 1.99 x105 65 0.9993 0.0001

150 6853 1510 5.25 x107 1.51 x105 70 0.9994 0.0001

Table 6.5: Performance of DEUM on MAXSAT Problem

6.3.3.4 Analysis

Previously hBOA had been tested on the same set of problems and had been reported to

perform comparably with the MAXSAT-specific solver WalkSAT, when hBOA was used

in a hybrid with the deterministic hillclimber GSAT. From Table 6.5 we can see that

DEUM without GSAT requires significantly fewer fitness evaluations than reported for

the hBOA+GSAT hybrid. For example, to solve instances of the problem at size 100

bits, DEUM requires an average of 3667 evaluations. This compares to 105 evaluations for
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hBOA + GSAT, although it must be noted that hBOA also learned the structure whereas

it was supplied to DEUM in these experiments. DEUM also compares favourably with

WalkSAT, which was reported to require 104 evaluations. The decreasing success rate with

larger problems is most likely caused by the Gibbs sampler, which is partly dependent on

the random start and is highly dependent on an optimal cooling rate and run time. In

(Pelikan & Goldberg 2003) WalkSAT and hBOA were reported to have 100% rate on these

instances of the problem. In addition, DEUM’s overhead with the larger instances (for

example, a 150 bit MAXSAT instance has around 2500 parameters in the MFM) meant

that in contrast to hBOA’s run time which could be measured in minutes, DEUM required

several hours to build a single model.

6.3.4 Bio-Control in Mushroom Farming

Recall from Chapter 2 that the biocontol problem is a bang-bang control problem; the

string of variables is a time series of points at which an intervention may or may not occur.

It is a black box problem in that the structure of variable interactions is not as clearly

defined as in the other fitness functions looked at in this chapter. In addition, the optimal

fitness value is unknown, in contrast with well-known benchmark functions. Consequently

we take a modified approach for this problem, returning to the use of evolution rather

than the single step algorithm.

6.3.4.1 Method

DEUM has been applied to this problem using a univariate model (Wu, McCall, Godley,

Brownlee & Cairns 2008); there it demonstrated comparable performance with the genetic

algorithm approaches.

In this section this is extended to incorporate bivariate interactions, using a fixed

chain model as described in Chapter 3. The motivation for this is the encoding used by

the problem. As the bit string is a time series it is conceivable that neighbouring bits -

which represent consecutive interventions - will have an interdependency. We incorporate

these interactions in the model by adding α terms for each neighbouring pair of bits - the
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same chain model as we used for the 1D checkerboard problem. As a reminder, the chain

model has the energy function shown in (6.9).

U(x) = α0 +
n

∑

i=1

αixi +
n−1
∑

i=1

αijxixj (6.9)

The algorithm adopts the multi-genetaion version of the workflow in Algorithm 6.2. No

explicit selection operator is used. Note here the difference to the workflow when applying

DEUM to the other problems in this chapter - here a true evolutionary approach is used

with multiple generations. With the other benchmark problems, the optimal fitness is

known and as the algorithm was able to find individuals with this fitness in one generation

- there was no justification in running for further generations. Here, the optimal fitness is

unknown and it is worth running the algorithm for longer to keep improving fitness.

Further to this, the structure of the problem (that is, the relationships between vari-

ables) is also unknown and although the chain model follows the time series structure of

the encoding used by the fitness function, there are likely to be further interactions and

the model is unlikely to be a perfect fit. This is borne out by results from the chapter

on fitness prediction correlation - for this problem after one generation the model has a

Cr value of 0.8 rather than the values extremely close to 1.0 which we see for MaxSAT.

This means that the model has some mismatches with the fitness function and the Gibbs

sampler is unlikely to find the global optimum. This can be mitigated by allowing the

algorithm to develop the model as the population focuses on areas of high fitness over

several generations.

To compare the effectiveness of different approaches as closely as possible, we set up

parameters to be identical wherever possible, using the original source code for TinSSel

from the authors. One key difference is the population size: for DEUM this was set to 120

(1.2N). We take parameters for TinSSel from (Godley, Cairns & Cowie 2007a) noting in

particular that a population size of 50 allows TinSSel fewer fitness evaluations over 200

generations than we allow for DEUM with a population of 120. However, both algorithms

had converged by 200 generations on each experimental run. All parameters used are

detailed in Table 6.6. The genetic algorithm using TInSSel adopts the same two-stage
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mutation operator as detailed in (Godley, Cairns & Cowie 2007a). DEUM replaces these

operators with modelling and sampling.

Parameter TInSSel DEUM

Population size 50 120

Length of individual 50 50

Maximum generations 200 200

Selection operator Truncation Whole population

Crossover probability 1 N/A

Mutation probability 0.05 N/A

Cooling rate N/A 0.95

Intervention Penalty P 50 50

Table 6.6: Experimental parameters

6.3.4.2 Results: Comparison by fitness

First we report the performance of each algorithm in terms of the quality of solutions

reached after 200 generations. Running beyond this point yielded no further significant

observations. Each algorithm was run with randomly generated initial populations oper-

ating with different values of initialisation control µ, from 4 to 50 possible interventions.

(Below 4 both algorithms perform poorly as there is not enough information for either to

detect good intervention points) We ran each algorithm 100 times for each value of µ.

In (Godley, Cairns & Cowie 2007a) population seeding was described as a means of

improving the performance of genetic algorithms applied to this problem. In Figure 6.6 we

see the best fitness found by each algorithm for different starting conditions. Remembering

that this is a minimisation problem (that is, lower fitnesses are preferable), we can see

that for populations constrained to have a low number of intervention points, TInSSel

outperforms DEUM. TinSSel reaches a minimum fitness of just below 2000, comparable

with that of 1983 in (Godley, Cairns & Cowie 2007a). However, as the number, µ, of

interventions allowed in the starting population approaches the maximum possible (closer

to the real world scenario) DEUM gives a marginally better result. It is clear that, once

enough interventions are allowed in the starting population, both algorithms are finding

very good solutions that may well be near optimal. However, while TinSSel appears
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Figure 6.6: Fitness of best solution after 200 generations for various values of initialisation
control limit µ
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Figure 6.7: Intervention usage of best solution after 200 generations for various values of
initialisation control limit µ

indifferent to the initial intervention control, DEUM is hindered by it, only achieving the

best solutions when the control is removed altogether. It is worth also noting the rapid

change in the best fitness found by DEUM as the number of interventions allowed in the

initial population. We believe that this occurs at the point where the diversity in the

population becomes high enough to build a useful model of fitness, with a clear tipping

point similar to that seen with increasing population size in Chapter 4.
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Figure 6.8: Probability of an intervention at each day (DEUM)

In Figure 6.7 we see the number of interventions present in the final solutions found

by each algorithm. The fitness function penalises solutions with larger number of inter-

ventions but at least some are required to achieve the goal of larvae reduction. We see

a similar effect to that shown for the raw fitness value - as the intervention control is

relaxed, DEUM is more consistently finding solutions with a slightly smaller number of

interventions.

6.3.4.3 Results: Intervention points in solutions

Now we explore in more detail the solutions found by DEUM when no initialisation control

operated, i.e. µ = 50. After each of 100 runs, we recorded the days on which interven-

tions occurred in the best solution found. Figure 6.9 contains a histogram showing the

distribution over all runs of an intervention occurring at each day. We have superimposed

this on the larvae population graph obtained by running the model without interventions,

i.e. the natural growth cycle of the larvae (this was originally derived by Fenton et. al. in

(Fenton et al. 2002).

We can see that in the large majority of runs the interventions coincide with the early

parts of the larval growth cycle, in particular, the first cycle occurring in the treatment

period.
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Figure 6.9: Probability of an intervention at each day (TInSSel)

The reason that few interventions occur over the second and third larval population

cycles is that the destruction of the population by the first treatment would mean there

would be few larvae remaining to breed and repopulate and so the expense of treatment

would outweigh the benefit to be gained by treating. Occasionally an additional interven-

tion is required later in the treatment period to catch any remaining larvae as they begin

to re-populate.1

Figure 6.9 shows the same information produced from runs of TinSSel. Here we can

see that, although the algorithm has found solutions which place interventions predom-

inantly in the first cycle of larval population growth, the distribution of interventions is

more diffuse and less obviously bound to the underlying system dynamics. So DEUM

consistently evolves schedules that sharply identify critical intervention points that can

be understood in terms of the system dynamics. In order to achieve this by evolution, a

substantial number of fitness evaluations (typically around 24 000) needed to be made.

However, as we have seen in Chapter 3, it is possible to build a good model of fitness using

a far smaller number of fitness evaluations (around 120).

1It is a feature of the mathematical model that the period of the sciarid larva growth cycle is not delayed
or advanced by nematode predation.
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6.4 Summary

This study has shown that there is a link between the fitness prediction capability of the

Markov network fitness model and optimisation performance for the benchmark functions

studied. This allows us to take the conclusions already reached for factors affecting the

fitness modelling capability and relate them to optimisation. This makes the important

step of demonstrating the wider applicability of the findings presented so far.

This chapter has also demonstrated how the DEUM fitness modelling approach can be

extended to more complex problems than the bivariate and univariate problems previously

investigated. This allows us a take a more general approach to problem-solving with

DEUM. A Markov network can be built and sampled to produce an optimal individual

and the experiments here demonstrate that this can be achieved with a small number of

function evaluations relative to other algorithms. However, this is achieved at a high cost

in terms of algorithm overhead, and requires a structure of variable interactions present

within the problem to be supplied. In earlier experiments, DEUM gained a significant

advantage over other algorithms through its use of fitness modelling. With increasing

problem complexity the number of terms in the energy function increases which leads to

an O(n3) increase in model build time. The time required by the sampler also increases

considerably as problem complexity grows.

In addition this section has shown that the DEUM approach can be applied to a real-

world problem (that is, not a synthetic benchmark problem). This problem does not have

explicitly defined interactions between variables, yet an approximation using the chain

model structure yields successful results. A useful aside from this work is the knowledge

that while initialisation control can be helpful or at worst neutral for a genetic algorithm,

it actually hinders the EDA due to biasing of the model. There is simply not enough

information in the controlled population to construct a good model of fitness. In this case

this is because a reduced number of interventions in the population make it difficult for the

EDA to easily find critical regions for intervention. Solutions with large numbers of initial

interventions, whilst of poor fitness, can still provide useful information to the modelling

process about where interventions should occur.
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The bio-control experiment also demonstrates the DEUM framework being applied in

a more traditional evolutionary manner rather than the single step approach described

in the previous section. This approach and combination of fitness modelling with other

techniques are likely to be important in overcoming the obstacles presented by algorithm

overhead and imperfect structures inferred from data. The results here demonstrate how

this may be achieved, moving us closer to developing DEUM as a practical tool for levering

the MFM for optimisation of real-world black-box problems.



Chapter 7

The Impact of Structure Learning

on Fitness Modelling and

Optimisation

The previous chapters have discussed a number of factors impacting upon the fitness model

as well as means by which it may be employed for solving optimisation problems. The

approaches described so far have all used a fixed structure for the Markov network which

must be supplied to the algorithm. This has either been derived from the definition of

the problem or has been a “best-guess” at a likely structure. We now move on to look at

learning the structure from the population; a critical step towards a general purpose fitness

modelling and optimisation algorithm which can be applied to black-box and real-world

problems.

In this chapter we make use of a number of techniques for structure learning which were

discussed in Chapter 2; the MIMIC-style entropy based chain builder, the linkage detection

algorithm and a number of approaches based around the Chi-squared (χ2) independence

test. We begin by exploring concepts related to structure learning and measurement of

structure quality; we then move on to look at factors affecting the performance of a struc-

ture learning algorithm using the χ2 independence test. Then follows a series of experi-

ments applying a number of variants of DEUM with structure learning to two benchmark

140
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problems. For each algorithm on each problem we examine both the fitness modelling

capability and the optimisation capability. As the proposed algorithms incorporate struc-

ture learning - in contrast to previous versions of DEUM which each used a pre-supplied

known structure of the problem - these algorithms may be applied to optimisation of

problems with a wider range of structures. They are limited by only learning particular

structure types, which means they will likely be suitable for optimisation of only problems

with either a chain structure (for the two DEUM-Chain variants) or bivariate interactions

(for DEUM-LDA and the latter two DEUM-χ2 variants). Consequently, in Section 7.3

we describe DEUM-Chain and DEUM-Chain-χ2 and apply them to the 1D Checkerboard

problem which has a chain structure. In Section 7.4 we describe DEUM-LDA, DEUM-χ2

and evDEUM-χ2 and apply those algorithms to the 2D Ising problem.

In (Santana 2003a, Santana 2003b, Santana 2005) the variable interaction (indepen-

dence) graph is learned from data using a statistical independence test. The structure

is then refined to reduce its density and maximal cliques are found. Finally, a junction

graph is learned in the case of MN-FDA (Santana 2003a, Santana 2003b) or a Kikuchi

Approximation is learned by MN-EDA (Santana 2005) to approximate the distribution.

In (Wright & Pulavarty 2005) an algorithm is proposed which uses the Linkage Detection

Algorithm (Heckendorn & Wright 2004) to discover interactions when building a Boltz-

mann distribution of the fitness function. These approaches all result in an undirected

structure which can also be used by the DEUM framework. The fitness modelling ap-

proach of DEUM allows us to make observations as to the quality of the structure learned

and its effect on the fitness modelling capability of the resulting model which should be

of interest to others using undirected graphical models and the wider EDA community.

7.1 How good is the structure?

Before moving on to discussion of the different approaches to structure learning, it is

useful to consider how we might evaluate a given structure. Some work has been done

on how to analyse structures learned in EDAs. (Mühlenbein & Höns 2005) included

an analysis of EDA structure learning with a study of the structure learning capability
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Figure 7.1: 16bit 2D Ising lattice

of Learning Factorized Distribution Algorithm (LFDA) and (Zhang 2004) discussed the

importance of higher-order interactions in EDAs. It is known that not all interactions

which are present in a problem will necessarily be required in the model for the algorithm

to rank individuals by fitness and find a global optimum. This observation is related to

the concept of unneccessary interactions (Hauschild et al. 2007). Also related is the idea of

benign and malign interactions (Kallel et al. 2000), essentially that some interactions result

in a deceptive influence on fitness. This is in addition to the idea of spurious correlations

(Mühlenbein & Mahnig 2000, Santana et al. 2007) which are false relationships in the

model resulting from selection.

Here we build on these concepts by comparing the structure learned by the algorithm

to what we call the perfect model structure, which was defined in Chapter 3. Recall

that the perfect structure includes exactly those interactions which are present in the

underlying fitness function, which we will be referring to as true interactions. The perfect

structure does not include all possible interactions but does include those which influence

the absolute fitness value. In contrast, we also have false interactions, which are any

interactions present in the model that are not present in the perfect structure. In the

example Ising problem shown in Figure 7.1 the true interactions which make up perfect

structure in addition to univariate and constant terms are:

x1x2, x2x3, x3x4, x1x4, x5x6, x6x7, x7x8, x5x8, x9x10, x10x11, x11x12, x9x12, x13x14,
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x14x15, x15x16, x13x16, x1x5, x2x6, x3x7, x4x8, x5x9, x6x10, x7x11, x8x12, x9x13, x10x14,

x11x15, x12x16, x1x13, x2x14, x3x15, x4x16.

This is more precisely defined by the MFM energy function, which we repeat here for

reference. In general for an l x l 2D Ising problem this is:

U(xi) = α0+
l

∑

i=1

l
∑

j=1

(αijxij+αij,(i+1)(mod l)jxijx(i+1)(mod l)j+αij,i(j+1)(mod l)xijxi(j+1)(mod l))

(7.1)

The interactions in the perfect structure are required to perfectly fit the model to

the fitness function. Identification of the perfect structure is only practical for predefined

test problems where the interactions are explicit. In the case of onemax there are no

interactions. For the 2D Ising problem, an interaction exists wherever there is a coupling

between two spin variables. In the example above, for a 16 bit 2D Ising problem the model

will have 49 parameters in total including the univariate parameters and the constant.

In assessing the structures learned by an algorithm we use two measures from the

information retrieval community: Precision (p) and Recall (r) (Witten & Frank 2005).

These are defined in (7.2) and (7.3).

Precision =
True interactions found

Total interactions found
(7.2)

Recall =
True interactions found

Total true interactions present
(7.3)

That is, p measures how much of the learned structure comprises correctly identified

interactions and r measures how many of the interactions present in the problem have

been found. Both are proportions ranging from 0 to 1, with 1 being the best (if both

measures are 1 then the learned structure perfectly matches the true structure). These

can be combined into the single figure the F-measure (7.4) (Witten & Frank 2005). 1

1This particular definition is known the F1 measure in which p and r are equally weighted.
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F =
2 · p · r

p + r
(7.4)

As with p and r values, the F-measure ranges from 0 to 1, with F = 1 representing p

and r of 1.

7.2 Chi-Square Structure Learning

We now move on to discuss structure learning using the Chi-squared (χ2) independence

test. The structure learner has a large number of parameters which can be tuned. In this

section we look at the impact of a selection operator and a refinement algorithm, using

the precision and recall measures discussed in Section 7.1 to measure the distance between

the learned structures and the perfect structure for a number of benchmark problems.

7.2.1 Effect of selection

In Chapter 5 we saw that there is a clear influence of selection on fitness modelling when

building the model. In that chapter and in Chapters 3 and 4 that the model structure

strongly influences the fitness modelling capability. It is then logical to infer that as

selection forms part of the χ2 structure learning algorithm that here too it will influence

the resulting fitness modelling capability.

The results for onemax show absolute numbers of false bivariates found (in this case

as there are zero true interactions to find, precision would always be zero). Results for

2D Ising show the precision and recall for the bivariate interactions. These experiments

followed the pattern of Algorithm 7.1. The threshold Γ for the χ2 tests was set to 3.84,

as noted in Section 2.2.3.3 this represents a 95% independence between variables. The

population size was set to 100n where n is the number of variables in the problem (the

problem size). This was the lowest size found that produced a precision and recall of over

0.95 with any selection operator and proportion on the 2D Ising problem. Section 7.2.2

shows results for additional poulation sizes.

As in Chapter 5, the experiments explored three operators: selecting the best ϕ ∗ M
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Algorithm 7.1 Experimental Procedure - Effect of Selection on Structure Learning

1: Generate random initial population p
2: Select a subset σ of p
3: Use Chi-square statistics on σ to determine interactions between variables; retain

dependencies where χ2 > 3.84
4: Count number of true/false interactions found, and calculate p and r

individuals (the top), selecting the worst ϕ ∗ M individuals (the bottom) and selecting

the best (ϕ/2) ∗ M and worst (ϕ/2) ∗ M individuals (the top and bottom). Again, the

proportion ϕ selected varied from 0.01 to 1.0 (equivalent to no selection).

When selecting the top and bottom of the population, the two groups had a separate

set of independence tests run, which were then combined to produce the full structure, by

simply taking the union of the two dependency sets. An example will explain the reasoning

behind this approach.

Say a dependency exists between two variables X1 and X2. Assume that fitness in-

creases if they are equal; thus in the “top” selected set, they will generally be equal and

in the “bottom” selected set they will be opposite in value. If the two sets were added

together prior to running the independence tests, the resulting set would see approxi-

mately half the individuals with X1 = X2 and half with X1 6= X2. This is no better than

a completely random set and no interaction will be detected. However, if the two sets

are kept separate, it will be determined that in highly fit individuals they are equal and

in low fitness individuals they are different. Thus the interaction will be detected and

incorporated into the model.

7.2.1.1 Experimental Results

In this series of experiments there is no perfect / imperfect model structure distinction

in the results because the structure is learned and is unlikely to perfectly match the

underlying structure of the problem. Each graph shows the FPC values as in the previous

section. Here, each graph also shows the number of interactions found, split in to true and

false interactions. The graphs are scaled so the number of bivariate interactions on the full

model is at the top of the right vertical axis; thus we can see the number of interactions

found as a proportion of the total number present. In keeping with the practice of earlier
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chapters, a sample of the results are given here, with the full series of figures presented in

Appendix D.

In Figures 7.2 and D.1 to D.9 we see the results from a series of fully specified onemax

problems; again we look at a number of problem sizes. In the case of onemax there are

no interactions so the perfect model has only univariate terms. As was the case with

the experiments in Chapters 4 and 5 with the smallest instances of the problem (10 and

20 bits in this case) the results vary considerably (note the standard deviations) and are

inconclusive. This is likely to be because the small problem size results in a correspondingly

small population and the selection operator causes a high lack of diversity in the population

so the statistical tests produce greatly varying results from run to run.

For the larger instances of the problem a trend starts to emerge. We can see that

selection does indeed influence the number of interactions being found; top+bottom se-

lection finds twice as many false interactions at the other operators. This is likely to be

because it adds together dependencies detected at each end of the population. One factor

which is important is that with more interactions present on the model the time required

to compute the model paremeters will be larger.

In Figures 7.3 and D.10 to D.18 we see the results from a series of fully specified Ising

problems. Here we have a definite set of bivariate interactions to be found. Selection

has a large effect on the precision and recall for the structure learned - again the trend

is much clearer for larger instances of the problem (25 bits and larger). With a high

selective pressure the structure has both high precision and recall. As selective pressure

decreases (selecting a higher proportion of the population) recall falls off rapidly, falling

below 0.1 once 20% of the population is selected with the top selection and bottom selection

operators. This means that 10% of the true structure is being identified at this point.

Precision falls more slowly as selective pressure is decreased - remaining over 0.8 until

over 40% of the population is being selected, with any of the selection operators. This

means that 80% of the interactions detected are true interactions. An interesting result

here is that the three selection operators detect structure with similar precision and recall;

this reinforces the findings presented in Chapter 5 that useful information is contained
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Figure 7.2: Number of interactions found against selection proportion for 100 bit fully
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throughout the population. On this figure we also show the results of running a Gibbs

sampler using the same approach and parameters as those in (Shakya et al. 2006), with the

exception that instead of supplying the lattice structure to the algorithm, the structure

discovered by the indepence tests is used. The success rate starts at 100% but falls off

very quickly, for more detail on this figure we show the maximum fitness found by the

algorithm. We can see that the optimisation capability falls off following the same trend

as the precision.

We can see that selection operator and selection pressure both have an impact upon

the structure learned. We know from Chapters 4 and 5 that this in turn has an influence

on the fitness modelling capability and this is why we observe an effect on the optimisation

capability.
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7.2.2 Effect of Threshold and Refinement Algorithm

A further important parameter to vary is the threshold Γ at which the algorithm deems

there to be a statistically significant relationship between two variables. In the previous

section this was set to 3.84; in (Santana 2003a) it was set to 1.0 to capture a larger number

of dependencies. In this section we will investigate setting Γ to different levels.

One consequence of lowering Γ is that a larger number of dependencies will be present in

the resulting structure. This makes the parameter estimation stage of the algorithm more

expensive. In (Santana 2003a), this problem was mitigated by introducing a refinement

algorithm which finds nodes in the graph with a large number of incident edges and

removes the edges with low χ2 values until a preset number is reached. Figures 7.4 and

D.19 to D.24 show the results of finding model structure with and without refinement,

with a number of different threshold levels across several different selective pressures.

Each seperate graph shows a set of results using a different selection pressure. Within

each graph, we have the precision and recall values for three different population sizes

(PS) and structures before and after refinement. Given that the 2D Ising model has four
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edges incident to each node, refinement limited the learned structure to the same. The

results are the means from 30 independent runs each using an instance of 2D Ising chosen

at random from a set of four.

A number of conclusions may be drawn from these results. Firstly, it is clear that

population size exerts a strong influence on both precision and recall, with the large

population generally resulting in the highest values for both. Secondly, the lower selective

pressures appear to produce better results at all population sizes.

Increasing the threshold results in an increase in precision and a decrease in recall.

This is because with a higher threshold, fewer interactions are present in the learned

structure - resulting in fewer erroneous interactions being present but at the expense of

losing some valid interactions. To capture as many of the true interactions as possible, it

would appear then to be necessary to have a low threshold (an observation also made in

(Santana 2003a)). This has the negative consequence of having a large number of incorrect

interactions in the model; however this effect is considerably mitigated by the refinement

stage. Particularly when selecting over 5% of the population (Figures D.21 to D.24) we

can see that precision for an unrefined structure starts near zero and increase to near one

as threshold increase, but precision for the refined structure remains high for all threshold

values. Refinement does have the negative effect of reducing the recall but this difference

is slight.

Again on this figure (Figure 7.4b) we show the maximum fitness found by running the

optimisation algorithm using the structure learned. In this case, for simplicity we only

show the optimisation for a population size of 10000 with selection 50% as this gave the

best precision and recall values overall. We can see that as recall falls off (while precision

remains high) the optimisation capability also falls.

This presents us with a problem: we can either have a dense structure which has

a maximal number of true interactions present but which will have a large number of

parameters (Chapter 4 in particular looks at the problems with this in more detail), or

we can have a much simpler structure which is missing some interactions. This is likely to

be highly dependent on the problem. In (Santana 2003a) a preference for having a larger
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number of interactions was stated, and based on the poor fitness modelling capability for

imperfect structures this would be the preference for the MFM approach.

We can see results from a repeat of this experiment for 2D Checkerboard and 3-CNF

MAXSAT shown in Figures 7.5, 7.6 and D.25 to D.36. Results for 2D Checkerboard are

very close to those seen for 2D Ising, which is unsurprising as both have the same lattice

structure. For 3-CNF MAXSAT, the algorithm was still finding biviariate interactions.

The problem itself has trivariate interactions (groups of three variables) - for calculating

precision and recall in this experiment the “true” set of bivariate interactions was de-

termined by assuming that each pair of variables which shared a clique in the trivariate

structure also share a bivariate interaction. The results again show similar trends to those

described for 2D Ising and Checkerboard.

7.2.3 Higher order interactions

For problems with higher order interactions than bivariate, some more sophisticated struc-

ture learning will be required. Either higher order dependency tests or LDA with higher

clique size can be run, or a clique finding algorithm such as Bron-Kerbosch (Bron &

Kerbosch 1973, Shakya et al. 2009) could be run on the bivariate structure found by the

lower order dependency tests.

7.3 Optimisation of 1D Checkboard

As in the previous chapter we start by looking at the simple chain based problem 1D

checkerboard. We try two approaches to structure learning for this problem: the MIMIC

style chain learning algorithm and the Chi-square independence test structure builder.

7.3.1 DEUM-Chain

7.3.1.1 The Algorithm

This algorithm is based on the information entropy (Shannon 1948) approach taken by

MIMIC (de Bonet et al. 1997), with a slight modification to the selection operator. To

estimate the structure, the top 50% of individuals are selected rather than all individuals
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fitter than the median fitness. In addition to this the model paramaters are calculated

using a differently selected set of individuals - the top 2N of the population - rather than

the exact same set as those used to estimate structure. 2N was chosen because it was

shown to give good performance with the fixed structure algorithm presented in Chapter

6. Elitism was also used differently to MIMIC, in this case preserving the best 90% of

individuals from one generation to the next - essentially a steady-state approach to prevent

premature convergence (in the workflow below, R = 0.9). The permutation as used by

MIMIC is interpreted as a chain of bivariate dependencies which become the structure of

the Markov network. This gives us the workflow in Algorithm 7.2.

Algorithm 7.2 DEUM-Chain

1: Generate random initial population p
2: while Stopping criteria not met do
3: Select a subset σ1, the top 50% of π
4: Run the MIMIC chain builder:
5: Choose the variable with the lowest information entropy within σ1 and denote it Xi

6: repeat
7: Choose the variable with the lowest conditional entropy given Xi not in the chain

and denote it Xj

8: Add interaction Kij to the structure of the Markov network
9: Relabel Xj as Xi

10: until All variables have been added to chain
11: Refine structure
12: Select a subset σ2, the top 2N of p
13: Use σ2 to compute MFM parameters
14: Calculate Cr

15: Sample m new individuals from MFM using random walk Gibbs sampler and replace
poorest m individuals in the old population with these

16: end while

Calculation of Cr is not part of the algorithm as such but is shown here to indicate

where the operation takes place. For the experiments, population size was set to 8(2n−1)

where n is the number of variables. This figure was chosen to ensure that selecting the

top 25% of the population would select 2N individuals (we know that N will be 2n − 1

because the chain structure will have a fixed number of terms). With this algorithm there

is an assumption that in early generations the model will not be a close fit to the fitness

function. This means that areas of high probability within the model will not necessarily

be areas of high fitness, and running the Gibbs sampler slowly to convergence is likely
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to result in an individual of inferior fitness to the global optimum. The algorithm was

initially run with a fixed value for cooling rate and maximum number of iterations. It was

found that performance was improved by varying these parameters over the course of the

evolution - reducing the cooling rate and increasing the maximum number of iterations

with each generation. This allowed the algorithm to be balanced towards exploration in

early generations and exploitation in later ones as the model fits more closely to the fitness

function. For each generation g, the cooling rate r was calculated according to (7.5) and

the maximum number of iterations of the Gibbs sampler I was calculated according to

(7.6); the parameters for these were determined empirically. The algorithm was stopped

at 100 generations if the optimum had not been found.

r = 10 + 5g (7.5)

I = 0.01/(1 + g) (7.6)

7.3.1.2 Fitness Model

The evolutionary approach means that multiple models are being created during each

run, with corresponding multiple figures for p, r, F and Cr. For ease of interpretation,

the values over the course of evolution for three instances of the problem (50 bit, 100 bit

and 200 bit) are represented graphically in Figures 7.7, 7.8 and 7.9. The four measures

can be shown relative to the same vertical axis as they all have a range of zero to one

(Strictly speaking Cr has a range of -1 to +1 but in the examples here it is always positive).

The smaller problem sizes are not shown because the algorithm often stopped in a single

generation so the chance to observe an effect over many generations was reduced. This is

because the reduced problem size makes it probable that an optimal individual will be in

the initial population.

Precision and recall values (and hence F values) are the same because the chain struc-

ture fixes the number of possible interaction in the model. For each true interaction

omitted from the model, a false one will be in its place. These never rise above 0.1 (10%

of the chain correctly identified). This in turn means that the model’s correlations with
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Figure 7.7: Fitness Model Statistics for DEUM-Chain on 50 bit 1D checkerboard over 30
runs

the fitness function Cr also remains low, also never rising above 0.1. It must be highlighted

that poor structure learning capability is not because the chain builder was designed for

building a directed model rather than the undirected one used by the MFM. The entropy

based chain builder simply generates an ordering of the variables and the precision and

recall measures indicate that the chains (orderings) learned bear no resemblance to the

correct chain (ordering). It may be possible to improve on this by increasing the size of

the population.

7.3.1.3 Optimisation Results

Now we run the full optimisation algorithm incorporating the MIMIC chain learner and

report the results in Table 7.1. The mean number of function evaluations (FE) and internal

iterations of the Gibbs sampler (IT) are given along with their standard deviations (FE-

SD and IT-SD). All of these values only include the successful runs; the success rate (SR)

is given as a percentage over 30 independent runs.

The results show that the algorithm was unable to finmd the global solution to this

problem, even in the 10 bit instance. The only runs which registered as successfully

completed found the optimum by chance in the initial starting population, which is why
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Figure 7.8: Fitness Model Statistics for DEUM-Chain on 100 bit 1D checkerboard over 30
runs
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Figure 7.9: Fitness Model Statistics for DEUM-Chain on 200 bit 1D checkerboard over 30
runs

there is no variation in the number of function evaluations and no Gibbs sampler iteration

needed to find the optimum in the 10 bit case. This is a reflection of the poor model seen

in the previous section. The MFM has little correlation with the fitness function in any

generation during the run, so sampling it does not yield a globally optimal individual at

any point.
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PS FE FE-SD IT IT-SD SR

10 152 0 0 0 10
20 - - - - 0
50 - - - - 0
75 - - - - 0
100 - - - - 0
200 - - - - 0

Table 7.1: DEUM-Chain Optimisation Statistics over 30 runs

7.3.2 DEUM-Chain-χ2

7.3.2.1 The Algorithm

We now move on to a single-step algorithm similar to that used for optimisation of 1D

Checkerboard in Chapter 6. A single step version of the algorithm incorporating the

MIMIC chain builder was attempted but found to be unable to find a useful chain in a

single generation. Instead, Algorithm 7.3 uses the χ2 independence test to build the chain;

a variable is chosen at random to act as one end of the chain and then the chain is formed

by following a path through the strongest dependencies.

Algorithm 7.3 DEUM-Chain-χ2

1: Generate random initial population p
2: Select a subset σ1, the top 25% of π
3: Run the χ2 chain builder:
4: Choose a variable at random and denote it i
5: repeat
6: Choose the variable with the highest χ2 value given i not already in the chain and

denote it j
7: Add interaction ij to the structure of the Markov network
8: Relabel j as i
9: until All variables have been added to chain

10: Refine structure
11: Select a subset σ2, the top 2N of p
12: Use σ2 to compute MFM parameters
13: Calculate Cr

14: Sample new population from MFM using random walk Gibbs sampler

Earlier in this chapter was saw that a large population size was required to find a useful

structure with the χ2 algorithm. The population size in this case was set to 100 multiplied

by the number of variables, which although large is reasonable given that there is only one
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PS SFE P P -SD R R-SD F FE FE-SD Cr Cr-SD

10 1000 0.874 0.038 0.874 0.038 0.874 157 8 0.841 0.102
20 2000 0.951 0.013 0.951 0.013 0.951 316 3 0.940 0.015
50 5000 0.980 0.004 0.980 0.004 0.980 801 9 0.975 0.005
100 10000 0.990 0.000 0.990 0.000 0.990 1624 26 0.987 0.003
200 20000 0.994 0.004 0.994 0.004 0.994 3470 284 0.991 0.005

Table 7.2: DEUM-Chain-χ2 Fitness Model Statistics over 30 runs

generation. There is no need to set a threshold for the χ2 tests in this algorithm because

we do not keep all interactions above a certain level; instead we keep those interactions

with the highest score relative to others incident to the same node. The Gibbs sampler

used was the same as that used for the fixed structure in Chapter 6, with a cooling rate

parameter of 0.01 and an iteration cap of 2000.

7.3.2.2 Fitness Model

In this case only one model is built for each run of the algorithm so we can present the

mean and standard deviation for p, r and F alongside those for Cr.

As was the case with DEUM-Chain, precision and recall values (and consequently F

values) are the same because of the chain structure. We can see that the precision and

recall values are around 0.9 rather than near zero as was the case with the MIMIC chain

builder. This results in models with a strong Cr values, all over 0.8. (recall that values

over 0.7 represent a strong positive correlation)

7.3.2.3 Optimisation Results

Table 7.3 shows the results for optimising using the algorithm at each problem size (PS).

The Cr value is given to show the fitness prediction power of the model in the context of

optimisation. The mean number of function evaluations (SFE) required by the structure

learning component of the algorithm is given. Then the mean number of additional func-

tion evaluations (FE) and internal iterations of the Gibbs sampler (IT) are given along

with their standard deviations (FE-SD and IT-SD). FE includes the evaluations needed to

estimate model parameters and the evaluations needed to confirm the fitness of individuals

generated by the Gobbs sampler. All of these value only include the successful runs; the
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PS SFE FE FE-SD IT IT-SD SR Cr Cr-SD

10 1000 157 8 472 630 100 0.841 0.102
20 2000 316 3 605 423 100 0.940 0.015
50 5000 801 9 1710 1632 100 0.975 0.005
100 10000 1624 26 7501 6107 100 0.987 0.003
200 20000 3470 284 91023 93248 100 0.991 0.005

Table 7.3: DEUM-Chain-χ2 Optimisation Statistics over 30 runs

success rate (SR) is given as a percentage of times the algorithm found a known global

optimum over 30 independent runs.

7.3.2.4 Analysis

In contrast to the poor results for DEUM-Chain, the algorithm is able to successfully

find the global optimum in all instances. This can be attributed to the increased fitness

modelling capability of the MFM. In turn this can be attributed to the greater success of

the χ2 chain learning algorithm over the entropy-based MIMIC chain builder at finding a

structure which closely matches the perfect structure.

7.4 Optimisation of 2D Ising

The 2D Ising problem has a two dimensional lattice structure similar to the checkerboard

problem featured in Chapter 6. This has previously been used as a benchmark problem

for EDAs (Pelikan & Goldberg 2003, Pelikan 2002, Pelikan, Ocenasek, Trebst, Troyer

& Alet 2004, Santana 2003a, Santana 2003b, Santana 2005, Shakya et al. 2006) due to

interesting properties such as symmetry and a large number of plateaux. The problem

exhibits an undirected network of interactions between variables and consequently EDAs

using Markov networks are naturally suited to it and should perform well. Given its lattice

structure the chain learning approach used in the preceeding section is unlikely to achieve

a satisfactory match to the problem structure in this case. (Shakya et al. 2006) reported

the application of a Markov network approach to optimisation of the 2D Ising problem.

That paper described an algorithm incorporating several different sampling techniques but

using the same underlying model-building algorithm which used a fixed-structure that was
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inferred from the definition of the problem (a 2D lattice). This set of experiments explores

different ways that a structure learning step may be added to the existing algorithm.

Here we investigate the impact of three structure learning approaches on the fitness

modelling and optimisation capability of the underlying algorithm.

7.4.1 DEUM-LDA

This approach adds the Linkage Detection Algorithm (Heckendorn & Wright 2004) to the

DEUM framework, giving us the workflow in Algorithm 7.4.

Algorithm 7.4 DEUM-LDA

1: Run LDA on the fitness function
2: Generate random initial population p, of size 4.4N
3: Select a subset σ, the top 1.1N of p
4: Use σ to build MFM
5: Calculate Cr

6: Sample new population from MFM using random walk Gibbs sampler

Step 5 is not an integral part of the algorithm. It is only included in the above workflow

to show the point at which we calculate the value for Cr.

The proportion of the population selected and population size used were determined

by earlier experiments described in (Brownlee, McCall, Zhang & Brown 2008). There we

found that fitness modelling capability of the MFM increases greatly when the number of

individuals selected is more than the number of parameters in the model (N). Once the

structure is known, we then set the number to be selected to 1.1N to ensure that this

is the case (we call this an over-specified system). The population size is then set to be

large enough to achieve the desired selection pressure. The results in (Brownlee, McCall,

Zhang & Brown 2008) revealed that fitness modelling capability improves as the selection

pressure is increased. In this case we set the proportion of the population selected to 0.25 -

that is, the population is four times the number of individuals required to build the MFM.

This represents a good tradeoff between a useful selective pressure and an excessively large

population.

The cooling rate parameter for the Gibbs sampler was 0.0005, taken from (Shakya

et al. 2006). The iteration cap of the sampler was increased from 500 to 2000 - this
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PS P P -SD R R-SD F Cr Cr-SD

16 1.00 0.00 1.00 0.00 1.00 0.887 0.091
25 1.00 0.00 1.00 0.00 1.00 0.924 0.049
36 1.00 0.00 1.00 0.00 1.00 0.932 0.034
49 1.00 0.00 1.00 0.00 1.00 0.939 0.037
64 1.00 0.00 1.00 0.00 1.00 0.949 0.023
100 1.00 0.00 1.00 0.00 1.00 0.942 0.027
256 1.00 0.00 1.00 0.00 1.00 0.945 0.018
324 1.00 0.00 1.00 0.00 1.00 0.943 0.015
400 1.00 0.00 1.00 0.00 1.00 0.940 0.022

Table 7.4: DEUM-LDA Fitness Model Statistics over 30 runs

improved the success rate of the algorithm and decreased the total number of iterations

required to find the global optimum.

7.4.1.1 Fitness Model

First we will look at the model generated by the algorithm for each problem size. In Table

7.4 we see the mean precision p and recall r for the structures found over 30 runs, with

corresponding standard deviations (p-SD and r-SD). This is followed by the F-measure

F combining the mean precision and recall. This is shown alongside the mean fitness

prediction correlation Cr for each size of the problem with its corresponding standard

deviation Cr-SD.

With a precision and recall (and hence F) of 1.0, the structure discovered matches

the perfect structure for the problem. This means we would expect similar optimisation

results to those seen in (Shakya et al. 2006).

7.4.1.2 Optimisation

Table 7.5 shows the results for optimising using the algorithm. The Cr value is given to

show the fitness prediction power of the model in the context of optimisation. The number

of fitness evaluations needed by LDA (FE-LDA) for each problem size is given next. Then

the mean number of additional function evaluations (FE) and internal iterations of the

Gibbs sampler (IT) are given along with their standard deviations (FE-SD and IT-SD). FE

includes the evaluations needed to estimate model paramters and the evaluations needed
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PS Cr LDA-FE FE FE-SD IT IT-SD SR

16 0.887 480 210 4 163 310 100
25 0.920 1200 330 1 989 532 100
36 0.932 2520 483 25 821 1995 100
49 0.905 4704 647 3 1675 1234 100
64 0.939 8064 846 1 902 688 100
100 0.944 19800 1446 221 11989 21296 87
256 0.950 130560 4342 862 130995 118419 67
324 - - - - - - 0
400 - - - - - - 0

Table 7.5: DEUM-LDA Optimisation Statistics over 30 runs

PS Cr FE-LDA FE FE-SD IT IT-SD SR

100 0.993 19800 2409 7 8015 6825 100
256 0.993 130560 6166 48 37705 82985 100
324 0.993 209304 7786 7 18947 11962 80
400 0.992 319200 9688 86 160237 154439 100

Table 7.6: DEUM-LDA Optimisation Statistics with increased population size over 30
runs

to confirm the fitness of individuals generated by the Gibbs sampler. All of these value

only include the successful runs; the success rate (SR) is given as a percentage of times

the algorithm found a known global optimum over 30 independent runs.

The results were unexpectedly poor given the perfect structure learned by LDA. We

increased the number of individuals selected from the population to estimate the model

parameters to 2N (that is, twice the number of parameters in the model). Part of our

work on the fitness information content in a population (Brownlee, McCall, Zhang &

Brown 2008) indicated that Ising requires a larger number of individuals than other fitness

functions we have looked at to obtain a good model of fitness. The results for the rerun

are given in Table 7.6. It can be seen that this resulted in a marked improvement of the

optimisation capability, even for the largest instances of the problem that we used.

One problem with this approach is that the linkage detection algorithm requires a large

number of fitness evaluations to learn the structure. This could be mitigated by recycling

the solutions generated by the LDA run for estimating the model parameters but this

would not make a large difference. The number of possible interactions for a particular

problem size n is given in (7.7); given that LDA requires four evaluations for each possible
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interaction, the number of evaluations required by LDA at a particular problem size n is

given in (7.8). This can be reduced by caching individuals but not by a large amount and

this comes with a rapidly growing space complexity.

Possible = n × (n − 1)/2 (7.7)

Evals = 2 × (n × (n − 1)) (7.8)

In addition to this, without some threshold it will include any interactions which are

not useful for optimisation and this will lead to a large and overly complex model which will

result in the algorithm being overloaded and potentially resulting in poor performance. An

effect similar to this was seen with the noisy chemotherapy problem used for benchmarking

hBOA in (Brownlee, Pelikan, McCall & Petrovski 2008). The 2D Ising problem is in

comparison very “clean” - because of the nature of the problem any interactions which LDA

discovers are important for optimisation with the result that the structure found is perfect.

This allows DEUM to build a model which closely matches the fitness function. For other

problems this may not be possible which provides motivation for the independence test

approach.

7.4.2 DEUM-χ2

7.4.2.1 The Algorithm

The workflow for this algorithm is very similar to that for DEUM incorporating LDA

and is given in Algorithm 7.5. The only additions are the extra selection step to choose

individuals for the Chi-Square structure learning algorithm and the structure refinement

step. The number of individuals for the structure learning selection was set to the top 25%;

the selection step for estimating the MFM parameters selected the top 1.1N individuals.

The structure refinement step is the same as that used in (Santana 2003a, Santana 2003b,

Santana 2005): a limit is imposed on the number of edges (interactions) incident to a

node (variable) on the graph. For any node exceeding this limit, the edges with the lowest

Chi-Square scores are removed until the limit is reached. For 2D Ising we set this limit to
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PS p p-SD r r-SD F Cr Cr-SD

16 0.785 0.183 0.979 0.028 0.988 0.997 0.01
25 0.749 0.213 0.968 0.029 0.98 0.992 0.015
36 0.73 0.166 0.97 0.022 0.982 0.994 0.008
49 0.754 0.101 0.963 0.019 0.976 0.99 0.012
64 0.741 0.107 0.958 0.018 0.974 0.99 0.008
100 0.695 0.116 0.948 0.018 0.966 0.985 0.01
256 0.589 0.092 0.914 0.009 0.94 0.968 0.007
324 0.584 0.083 0.908 0.011 0.935 0.964 0.008
400 0.529 0.085 0.894 0.011 0.924 0.956 0.007

Table 7.7: DEUM-χ2 Fitness Model Statistics over 30 runs

4 - that is, each variable can have only four neighbours. The clique finding step from those

papers is not applied here as we know that the 2DIsing problem has a bivariate structure

and we wish to keep the structure at this level of complexity. The population size was set

to be the problem size multiplied by 100. As in the previous section, the cooling rate for

the Gibbs sampler was 0.0005 and the iteration cap was set to 2000.

Algorithm 7.5 DEUM-χ2

1: Generate random initial population p
2: Select a subset σ1, the top 25% of p
3: Run Chi-Square edge detection algorithm to search for statistical dependencies appar-

ent in σ1

4: Refine structure
5: Select a subset σ2, the top 1.1N of p
6: Use σ2 to build MFM
7: Calculate Cr

8: Sample new population from MFM using random walk Gibbs sampler

7.4.2.2 Fitness Model

Again, before looking at optimisation results we will look at the model generated by the

algorithm for each problem size. In Table 7.7 we see the mean p and r for the structures

found over 30 runs, with corresponding standard deviations (p-SD and r-SD). The next

column is the F-measure combining these figures. This is shown alongside the mean fitness

prediction correlation Cr for each size of the problem with its corresponding standard

deviation Cr-SD.

We can see that increasing problem size results in a decrease in both p and r, reflected
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PS p p-SD r r-SD F Cr Cr-SD

16 0.8 0.037 0.703 0.052 0.854 0.573 0.163
25 0.896 0.051 0.816 0.053 0.921 0.733 0.095
36 0.954 0.02 0.89 0.027 0.976 0.869 0.05
49 0.992 0.011 0.961 0.023 0.989 0.941 0.047
64 0.995 0.007 0.984 0.009 1 0.974 0.014
100 1 0 1 0.002 1 0.992 0.004
256 1 0 1 0 1 0.993 0.002
324 1 0 1 0 1 0.993 0.002
400 1 0 1 0 1 0.993 0.001

Table 7.8: DEUM-χ2 Fitness Model Statistics with LDA-equivalent population size over
30 runs

in a steadily decreasing F . This indicates that with increasing problem size the algorithm

finds it more difficult to correctly identify all interactions and also begins to match some

false positives. This also results in a corresponding decrease in the fitness prediction

power of the model, revealed in the decreasing Cr values. We can see that these fall off

very quickly with a comparatively small decrease in r; this highlights the importance of

finding a good model structure. The experiment was rerun with population sizes equal

to the number of fitness evaluations required by LDA at each step; the results for this

are given in Table 7.8. We can see that the structures are considerably better at the

larger sizes; for the smaller sizes the number of evaluations required by LDA was actually

less than 100 times problem size as used in the previous experiment so the resulting

structures are poorer. The increased Cr values for this algorithm on large problem sizes

are a by-product of this algorithm’s workflow. In DEUM-LDA the parameter estimation

step selected individuals from a new population of size 4.4N rather than recycling that

produced in the course of the LDA run. DEUM-χ2 uses the structure learning population,

which is very large. The high selective pressure results in a slightly better model of fitness

with the same model structure, in line with the results reported in (Brownlee, McCall,

Zhang & Brown 2008).

7.4.2.3 Optimisation Results

We know from the results in section 7.4.1 that the algorithm can find the global optimum

when the learned structure has F equal to 1.0 relative to the true structure so the optimi-
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PS Cr FE FE-SD IT IT-SD SR

16 0.814 216 17 646 1074 90
25 0.831 340 32 1278 2828 77
36 0.830 479 21 887 1621 60
49 0.807 722 88 6863 6948 50
64 0.816 1005 256 17435 26404 43
100 - - - - - 0
256 - - - - - 0
324 - - - - - 0
400 - - - - - 0

Table 7.9: DEUM-χ2 Optimisation Statistics over 30 runs

sation experiment was instead run on the structures learned by the Chi-Square algorithm

with the smaller population - statistics for which are shown in Table 7.7. The motivation

for this is that if the global optimum can be found using these imperfect structures then

we have a significant saving in function evaluations over the LDA based algorithm.

Now we run the full optimisation algorithm incorporating the Chi-Square structure

learner and report the results in Table 7.9. As before, the Cr value is given to show the

fitness prediction power of the model in the context of optimisation. The mean number

of function evaluations (FE) and internal iterations of the Gibbs sampler (IT) are given

along with their standard deviations (FE-SD and IT-SD). All of these values only relate

to successful runs; the success rate (SR) is given as a percentage over 30 independent runs.

We can see that with the decrease in the fitness prediction capability of the model

there is a marked decrease in the optimisation capability of the algorithm. Indeed, it is

clear that the Cr values for the runs which proved successful (Table 7.9) were on average

higher than those found across all runs 7.7. To improve on these results, the population

size was again increased to 2N for the larger instances of the problem and the experiment

rerun.

In contrast to the previous section, we see that the results are still poor. This can be

attributed to the imperfections in the structure learned by the independence test method.

The recall values of around 0.9 indicate that up to 10% of the interactions present in the

perfect structure are missing; precision values of around 0.96 indicate that up to 4% of

the interactions which were added to the model are not present in the perfect structure.
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PS Cr FE FE-SD IT IT-SD SR

16 0.951 381 5 598 230 100
25 0.971 599 5 2122 2142 100
36 0.951 852 9 1425 543 100
49 0.940 1166 13 8192 14735 100
64 0.936 1505 16 1875 1941 100
100 0.939 2799 744 316472 525816 70
256 - - - - - 0
324 - - - - - 0
400 - - - - - 0

Table 7.10: DEUM-χ2 Optimisation Statistics with increase population size over 30 runs

7.4.3 EvDEUM-χ2

Based on the poor results for the single-step algorithm it is worth determining whether

an evolutionary approach would be able to overcome the issues with poor structure. This

is given in Algorithm 7.6.

One important change was a reduction in the run time for the Gibbs sampler. As for

DEUM-Chain, with this algorithm there is no longer an assumption that a model with

a close fit to the fitness function will be found in the first generation. Again, it was

found that performance was improved by varying these parameters over the course of the

evolution - reducing the cooling rate and increasing the maximum number of iterations

with each generation. For each generation g, the cooling rate r was calculated according

to (7.9) and the maximum number of iterations of the Gibbs sampler I was calculated

according to (7.10).

r = 1 + (g2/10) (7.9)

I = 0.1/2g (7.10)

We also adopted a steady-state approach for the algorithm, replacing 5% of the popu-

lation each generation. This allows us to use a large population for the structure learning

component and maintain diversity for as long as possible.
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Algorithm 7.6 EvDEUM-χ2

1: Generate random initial population p
2: while Stopping criteria not met do
3: Select a subset σ1, the top 25% of p
4: Run Chi-Square edge detection algorithm to search for statistical dependencies ap-

parent in σ1

5: Refine structure
6: Select a subset σ2, the top 1.1N of p
7: Use σ2 to build MFM
8: Calculate Cr

9: Sample r new individuals from MFM using random walk Gibbs sampler and replace
poorest r individuals in p with these

10: end while
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Figure 7.10: Fitness Model Statistics for EvDEUM-χ2 on 25bit 2D Ising lattice over 30
runs

7.4.3.1 Fitness Model

As with DEUM-Chain, there are now multiple models being created with corresponding

multiple figures for p, r, F and Cr. For ease of interpretation, the values over the course of

evolution for three instances of the problem (25 bit, 100 bit and 256 bit) are represented

graphically in Figures 7.10, 7.11 and 7.12. 25 bits was chosen for the first problem to look

at rather than 16 bits because the algorithm was often able to solve the 16 bit instances

of the problem in a single or very small number of generations so the chance to observe

an effect over many generations was reduced.
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Figure 7.11: Fitness Model Statistics for EvDEUM-χ2 on 100bit 2D Ising lattice over 30
runs
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Figure 7.12: Fitness Model Statistics for EvDEUM-χ2 on 256bit 2D Ising lattice over 30
runs

We can see that the structure quality and consequently the fitness modelling capability

of the model rise to begin with and then fall off as the population converges and diversity

decreases. Further work is needed to determine the factors which affect the point at which

this occurs. With increasing problem size the maximum values reached for structure

quality and fitness prediction capability becomes lower, never exceeding an F of 0.5 or
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a Cr of 0.3 as evolution proceeds. This means the model is unlikely to be good enough

to allow the algorithm to find the global optimum. It is also notable that in the first

generation the precision and recall of the structure and Cr for the model are all relatively

high, this then drops off immediately in the second generation.

7.4.3.2 Optimisation Results

For the optimisation capability of the algorithm, we can present the results in the same

way as for the previous algorithms in Table 7.11. As before, the mean number of function

evaluations (FE) and internal iterations of the Gibbs sampler (IT) are given along with

their standard deviations (FE-SD and IT-SD). All of these values only include the suc-

cessful runs; the success rate (SR) is given as a percentage over 30 independent runs. No

Cr values are present this time because that value varied over the course of the evolution.

The results in this section reflect the poor quality of the models learned. We can

see that even for small instances of the problem, the success rate is below 100% and the

total number of function evaluations used by the algorithm is higher than for the single

step algorithms. As the problem size increases, the perfect structure is never found and

the algorithm is unable to find the global optimum. In each generation, the model build

time is reduced because the structure learned has fewer interactions, means fewer terms

in the model. The sampling times are greatly reduced over the single step approach as

we are deliberately lowering the iteration cap on the sampler to encourage diversity in the

population. Both of these benefits are lost when repeated over many generations. While

PS FE FE-SD IT IT-SD SR

16 2465 3254 4292 10233 100
25 21135 2861 2564001 2010019 83
36 25913 911 3226402 1154681 100
49 33321 1826 8193559 3778421 67
64 - - - - 0
100 - - - - 0
256 - - - - 0
324 - - - - 0
400 - - - - 0

Table 7.11: EvDEUM-χ2 Optimisation Statistics over 30 runs
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the number of function evaluations is reduced in each generation (compared to the number

required by the single-step structure learning algorithms), the evolutionary approach does

not allow the structure to be found with reduced data.

7.4.3.3 Analysis

In each of the experiments we can see a rather different picture. The onemax problem has

no interactions to be found and consequently a high selection pressure on the structure

learning algorithm results in a number of useless interactions being added to the model.

The 2D Ising problem naturally lends itself to a bivariate structure learning algorithm,

itself being constructed round an undirected bivariate graph.

Thus for future applications of the DEUM framework to new optimisation problems

we can propose a standard approach to be taken; attempt to construct a MFM using the

univariate structure first. If the FPC values for this are poor, increase the maximum clique

size on the model to 2 and run the structure learning algorithm. This could be extended

further to repeat for higher order interactions.

7.5 Summary

In this chapter we have looked at structure learning in the context of Markov networks and

our main contribution is the incorporation of structure learning into the existing DEUM

framework, which previously required the structure to be supplied to it. Further to this,

in our analysis of the different structure learning approaches we have introduced measures

which are new to the EDA community: precision, recall and the F-measure. We believe

that these are helpful terms when comparing structure learning algorithms on benchmark

problems with a clearly defined underlying structure such as 1D Checkerboard and Ising.

They differ from existing terms which describe aspects of structure such as benign/malign

and unnecessary interactions - those terms describe the influence an interaction has on

fitness and whether an interaction is required by the model for optimisation. Precision,

recall and the F-measure refer specifically to the number of interactions that the struc-

ture learning algorithm has found relative to the known structure and allow a precise
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measurement of the effectiveness of a structure learning algorithm.

We have seen that the algorithm is able to optimise both of the benchmark functions it

was applied to but the overhead (model build and sampling time) is expensive. The MFM

requires a near-perfect structure to be supplied and a large population for optimisation

to be successful. This means that in its current form it is unlikely to be competitive with

other EDAs, except perhaps where the MFM could be used as a surrogate fitness model

for a very expensive fitness function. An incremental approach to the model building step

like that of iBOA (Pelikan, Sastry & Goldberg 2008) offers a potential improvement and

offers potential for future work. Additionally, other ways of making use of the fitness

model may give better results than the Gibbs sampler. These include guided operators

in a hybrid algorithm incorporating guided operators (Zhang et al. 2005) and surrogate

fitness models (Pelikan & Sastry 2004, Lima et al. 2006, Sastry et al. 2006, Orriols-Puig

et al. 2007).

An interesting observation to come out of this work is the dropoff in fitness modelling

capability as evolution proceeds. We attribute this to loss of diversity in the population.

The problem was mitigated by the use of a steady-state approach but did still prove a

hindrance over time. This relates to other work on diversity in EAs (Ochoa & Soto 2006,

Handa 2005, Mahnig & Mühlenbein 2001, Branke, Lode & Shapiro 2007, Poš́ık 2008, Higo

& Takadama 2008) and another avenue for future work is mutation of the probabilistic

model, niching (Dong & Yao 2008a) or other technique to reduce the effect of diversity

loss and improve optimisation performance.

It could be argued that some problem-specific knowledge is still being supplied to the

algorithm; for 1D Checkerboard both structure learning approaches will produce a chain

structure and for 2D Ising we limit the approaches to only finding bivariate interactions.

With the simple addition of a maximal clique finding algorithm it will also be possible to

apply the independence test approach to problems with higher order interactions such as

SAT. Further to this it would be worth looking at the effectiveness of other independence

tests in the context of building an MFM, as well as alternative means of learning permuta-

tions for the chain model such as Ant Colony Optimisation (Dorigo & Gambardella 1997).
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ACO has been shown to perform well on permutation based problems such as the trav-

elling salesman problem and could be combined in a hybrid EDA with DEUM-Chain. It

will be interesting to see if the effects described here hold true for these other problems

and structure learning techniques.



Chapter 8

Future Work

This chapter explores some of the possibilities for future research based on this work. This

can be grouped into four sections:

1. Exploration of higher cost and continuous fitness functions

2. Improving the efficiency of model building

3. Further work on effects of genetic operators

4. Hybrid algorithms exploiting MFM

8.1 Different fitness functions

The work presented in Chapters 6 and 7 using DEUM for function optimisation has made

use of a number of benchmark functions which are inexpensive to run. It would be inter-

esting to conduct further experiments using more expensive fitness functions. In particu-

lar, fitness functions which incorporate human feedback like evolutionary art (Romero &

Machado 2007) or which run over a network such as the Huygens probe function discussed

in Section 8.4. In these contexts the high algorithm overhead could be more easily justified

by the reduction in fitness evaluations required in searching for a global optimum.

Further to this, it would be interesting to adapt DEUM to use discrete integer or

continuous variables in place of a bitstring. This would initially appear to be a simple

175
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change; the energy functions in the Markov network use variables which can take on any

real value and we currently encode bitstrings into +1 and -1 before the system of equations

is built. Additionally the least squares fitting of SVD has no requirement for the variables

to take only two values. This would make it appear that it would be simple to adapt the

algorithm to work directly with values other than +/-1. In practice it is unlikely to be

so straightforward. We would have to ensure that variables having a value of zero are

processed in some way, so that terms are not cancelled out from the energy function (as

would be the case when trying to use the bitstring encoding directly). More importantly

it is not clear what the effect would be of removing the mathematical symmetry inherent

in the +/-1 encoding. The αk coefficients would have to represent both the influence on

fitness of a clique k and the energy distribution across absolute values of a variable. It is

possible that some information would not be encoded by the model because of this.

Further, the algorithm would no longer be building a set of energy functions with

direct parity with the Walsh functions for the problem. Considerable work would need to

be done to explore the implications of this on the underlying model being built by DEUM.

The ability to use integer or real variables would be very useful as this is a more natural

encoding for many real-world problems.

8.2 Improving model build efficiency

The results presented in Chapters 4 and 5 illustrate that building a model with a strong

positive correlation with the fitness function requires a large population and perfect struc-

ture (typically with a large number of interactions). This renders the model building

process highly expensive using a deterministic algorithm such as SVD. A number of pos-

sibilities exist for reducing the cost of model building and we discuss some of these in this

section.

8.2.1 Experimental design

Experimental design is a technique used to structure a set of experiments to systemat-

ically observe the effect of a number of interacting variables on a dependent variable.



8.2. Improving model build efficiency 177

It has been used for tuning the highly interdependent parameters of genetic algorithms

(Petrovski, Brownlee & McCall 2005). In (Zhang 2001) experimental design is used to

generate the starting population for the algorithm in place of random generation. (Reeves

& Wright 1995) explores the relationships between experimental design, genetic algorithms

and Walsh transformations.

Experimental design ensures improves the efficiency of the population with no duplica-

tion due to chance repeated patterns in the randomly generated individuals. This enables

the total size of the population to be reduced. The technique also enables an algorithm

to ensure that likely interaction points can be tested in detail by increasing the variation

of variables around these points. This is of particular interest in the context of building

an MFM where we may have strong coefficients associated with particular cliques found

in one generation which would be useful to study more closely in future generations.

This approach could also lead to a reversal of the way in which the algorithm parame-

ters are determined. Instead of determining the number of parameters we can estimate in

the MFM based on population size, we determine how much computation can be afforded

on model building and use this to determine the population size. This may be because for

a given problem it is desirable to find only a good solution in a fixed number of function

evaluations (similar to Section 8.4). Experimental design could be used to build a popu-

lation which fits with the size requirement but still allows points of interest in the set of

variables to be studied closely.

8.2.2 Incremental model

In subsection 8.2.1 we discussed ways of reducing parameter estimation time by reducing

the population, in turn reducing the matrix size so that SVD has a smaller system of

equations to solve. An alternative to this is to build the model incrementally, similar

to the approach recently proposed for the Incremental Bayesian Optimisation Algorithm

(iBOA) (Pelikan et al. 2008). This would fit more naturally into an evolutionary algorithm

where the information about fitness from new individuals in each generation could be

incorporated into the existing model. (Brand 2002) proposes a technique for updating a
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singular value decomposition by rotating the component matrices of the decomposition.

That paper also provides a summary of previous work in the area.

An alternative method would be to use the fitness prediction correlation as the basis

for a fitness function which measures the error between predicted and true fitness of new

individuals in the population. A simple hillclimber would alter the parameters to reduce

this error. Subsection 8.2.3 extends this idea further.

8.2.3 Parameter and structural evolution

A radically different means of reducing the computation time required would be to use

an evolutionary algorithm such as PSO or a real-valued GA to evolve the model param-

eters. This is inspired by existing hybrid algorithms such as meta-GAs (Back, Fogel &

Michalewicz 1997); (Schmidt & Lipson 2008) demonstrates coevolution as an efficient

means of obtaining fitness predictors for a range of fitness functions.

An obstacle to this has previously been the selection of an appropriate fitness function.

The fitness prediction correlation presented in Chapter 3 could be used for such a purpose.

The objective would be to evolve the set of parameters which give the model with a FPC

closest to +1 for a given randomly generated population.

8.2.4 Model partitioning

A further means of reducing the parameter estimation time would be to partition the

model into parts. At a high level this approach is similar to the operation of eCGA

(Harik 1999). That algorithm divides the problem variables into independent groups

and computes marginal probability distributions for each group. In a similar fashion the

Markov network could be partitioned into smaller independent networks which have their

parameters computed separately. Given the O(n3) complexity of the SVD algorithm, a

small number of divisions would result in a considerable reduction in computational cost.

Two major issues arise with this: the first is the manner in which the network would

be partitioned. A greedy algorithm could be used for this purpose, removing interactions

from the model which have a small corresponding energy (that is, the magnitude of the
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associated alpha value is small, indicating the interaction has a small influence on fitness

relative to other interactions). Alternatively, the model could be partitioned by removing

low-order maximal cliques which join higher-order cliques. The second issue is how to

attribute changes in fitness to the different partitions. This could be solved by fixing

values of some variables to determine the influence of others. In practice, cross-group

interactions are likely occur and any partitioning of the model in this manner will result

in a tradeoff in fitness modelling capability. The balance between this and acceptable

computing cost will need to be considered carefully as is the case with other methods of

reducing computational complexity.

The Kikuchi approximation used by MN-EDA (Santana 2005) is based on a similar

region-based decomposition of the Markov network. Another approach would be to exploit

the Markovianity property of the model to avoid needing to compute the full Markov

network. An algorithm which does this is MOA (Shakya & Santana 2008b).

One further approach could be to reduce the model complexity by including in the

MFM only the cliques which have large corresponding Walsh coefficients. In (Thierens

1999a, Thierens 1999b) it was proposed that the KM Algorithm (Kushilevitz & Mansour

1993) could be used for computing Walsh coefficients for such a purpose.

8.3 Further work on effects of genetic operators

Chapter 5 described a series of experiments exploring the effect of selection on the fitness

model. An obvious extension to this work would be further experiments using different

selection operators such as tournament or fitness proportionate selection and well as dif-

ferent fitness functions. It would be useful to the wider community to explore the question

of which selection operator is best suited to what problem and how best to use selection

to efficiently extract information about fitness from a population.

It would also be interesting to use the fitness model as a means of exploring the

distribution of fitness information within the population as an EA evolves. This was

briefly described in Chapter 7. The EA would run as normal but at each generation

the population would be used to generate a MFM for which an FPC value could be
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calculated. This would complement other work on fitness variance and distribution (Ochoa

& Soto 2006, Handa 2005, Mahnig & Mühlenbein 2001, Branke et al. 2007, Poš́ık 2008, Higo

& Takadama 2008). Further to this, (Brown et al. 2002) described some initial work

exploring the fitness models produced from populations which had crossover applied to

them. This concept could be taken further by investigating the quality of fitness model

obtained after crossover and mutation have been applied. From this it may be possible

to make inferences into the effect of crossover and mutation on the fitness information

held by a population. This would help us to have a better understanding of which genetic

operators suit what classes of problems, as well as when and how often they should be

applied. It would also have the potential to help us design better crossover and moutation

operators.

The study of Cm values also reaches into the issue of locality - and what makes an

individual “close” to another. There is also much potential for study in this area.

8.4 Hybrid approach - Huygens probe

The Huygens probe problem was presented as part of a competition at the 2006 Congress

on Evolutionary Computation, used to benchmark competing algorithms. The objective

of the problem is to find the lowest point on each of a series of 20 “moons” - fractal

landscapes (generated by sequences of meteor impacts) that are wrapped in both x and y

dimensions. For each moon an algorithm is restricted to 1000 probes (fitness evalutations).

The problem used a SOAP interface so that competing algorithms could be compared using

a central server. More on this and the fitness function can be found in (MacNish 2005).

The heavy restriction on function evaluations meant that fitness modelling had strong

potential. This section will explain the approach which we employed and present results

with comparisons to the other algorithms tried in the competition, as the basis for future

development of hybrid algorithms using the MFM.
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8.4.1 MFM and Encoding

As we have seen, to build a useful structure requires a large number of fitness evaluations

and so the model was restricted to a univariate structure. This would also reduce the

complexity of the model, reducing the size of population required to build a good model

of fitness. Initial experiments revealed that the best encoding for the problem using a

bitstring would be to have the bits represent a binary encoding of the coordinate values.

An alternative using a direct mapping of bits onto regions of the landscape was tried but

did not offer a high enough resolution to efficiently find the global optimum.

8.4.2 Guided Hillclimber

The guided hillclimber was developed for optimisation of the Huygens Probe problem. It

makes use of the fitness prediction capability of the MFM. The general approach is given

in Algorithm 8.1.

Algorithm 8.1 Guided Hillclimber

1: Generate random initial population p of size M
2: while chosen proportion of the available fitness evaluations not completely used do
3: Build univariate MFM modelling p
4: Trunction selection: select a subset σ, the fittest s individuals in p
5: for all individuals in σ do
6: Generate m neighbours µ:
7: Convert bitstring into real valued coordinates
8: Mutate values by up to a fixed amount (which decreases with each generaton)
9: Convert numbers back to bitstring

10: end for
11: Use MFM to predict fitnesses of µ
12: Select predicted best l individuals ς from µ, calculate true fitnesses
13: Take best M from combined pool of p and ς and replace p
14: end while

The method for generating neighbours was adopted because of the representation used

for the problem and could be simplified to a simple bit-flip mutation if a Gray encoding

or similar were used. The algorithm described allows the model to be rebuilt around

progressively smaller areas of the lunar surface which is suited to the fractal nature of the

landscape (equal levels of detail at different zoom levels). Initial experiments for the guided

hillclimber used a univariate model; given that it is looking at neighbouring solutions to
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those used to build the model the results in Chapter 4 indicate that this should be enough

to provide a reasonable fitness prediction capability.

Once the guided hillclimber terminated with a single best solution x found the re-

mainder of the 1000 evaluations were used up by an exhaustive search of the neighbouring

solutions to x. The proportion of the function evaluations allocated to each stage of the

algorithm was a preset parameter; in the first instance the guided hillclimber was given

2/3 of the total, in the second it was given 3/4.

Results for this algorithm were compared with a number of others taking part in a

competition as part of the IEEE Congress on Evolutionary Computation 2006, and are

shown in Table 8.1. To produce these results the algorithm was run 100 times, with each

run being perfomed on a different randomly generated moon. Each algorithm was run

on the same set of 100 moons, with a central server providing fitness evaluations and

perfoming comparisons between algorithms. It can be seen that the algorithm performed

comparably with a number of well-known problem solvers such as evolutionary strategies

(ES), memetic algorithms (MA) and simulated annealing (SA). Unfortunately no more

data is available on the specific implementation of these algorithms for this problem.

In this thesis we have seen that the MFM with an imperfect model can predict fitness

accurately for neighbouring solutions, even with a greatly simplified structure. We have

also seen that building a perfect model and running the Gibbs sampler is highly computa-

tionally expensive. Considering these factors, the work presented in this section has great

promise. It combines an imperfect MFM which is cheap to construct with an existing

and well-understood local search technique with low overhead to achieve competitive op-

timisation performance. This presents an interesting alternative application for the MFM

which lies somewhere between guided genetic operators such as (Sun et al. 2008, Zhang

& Sun 2006, Zhang et al. 2005, Peña et al. 2004) and surrogate fitness models (Lim

et al. 2008, Sastry et al. 2006, Ong et al. 2004). A more extensive study using different

fitness functions and a multivariate MFM could yield some interesting results. It would

also be interesting to see if a real-valued DEUM would be more efficient at optimising this

problem.
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Rank Algorithm Description

1 WF3 ES+NS

2 Voronoi 16,16 Method A

3 Voronoi 10,10 Method A

4 WF2 ES

5 WF1 Particle Swarm

6 Voronoi search 10,10 Method B

7 Memetic Algorithm MA-5

8 Memetic Algorithm MA-4

9 MFM Guider Hillclimber 2/3 guided hillclimber

10 Memetic Algorithm MA-3

11 MFM Guider Hillclimber 3/4 guided hillclimber

12 Simulated Annealing SA-5

13 Recursive Sampling Search Recursively search from uniform samples

14 Simulated Annealing SA-5

15 Simulated Annealing L1

16 Recursive Sampling Search Recursively search from uniform samples

Table 8.1: Competition Results



Chapter 9

Conclusion

This chapter outlines the contributions made by the research and concludes the thesis.

9.1 Important contributions

The following are the most important contributions made over the course of the research.

1. Review of EDA and fitness modelling: A review of algorithms incorporating

probabilistic distributions and fitness models has been presented.

2. Extension of MFM approach: The existing Markov Fitness Model of DEUM has

been extended to use a multivariate graphical structure, specified in terms of Walsh

functions.

3. Fitness Prediction Correlation: The FPC has been proposed and demonstrated

as a measure of fitness modelling capability for Markov fitness models.

4. Analysis of relationship between MFM and fitness functions: A study of

the coefficient values in the MFM for a range of benchmark functions has been

conducted. This helps us to better understand the relationship between the MFM

and fitness.

5. Analysis of effects of selection and population size on fitness modelling:

an extensive study of the effects of two key EA parameters (selection and popula-

184
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tion size) on fitness modelling has been performed, with experimental results for a

selection of benchmark problems assuming that other EA parameters are constant.

6. Introduction of new fixed structure DEUM algorithms: Variations of the

DEUM framework using different structures have been proposed and applied to

several benchmark functions which it had not been previously. It has been applied

to the chain structured 1D Checkerboard and biocontrol problems. It was also

applied to 3CNF MAXSAT, which required an MFM with trivariate interactions;

higher order interactions than DEUM had previously incorporated. A new variation

of the Gibbs sampler was also introduced into the framework.

7. Introduction of structure learning DEUM algorithms DEUM-Chain, DEUM-

Chain-χ2, DEUM-LDA, DEUM-χ2 and evDEUM-χ2 have been proposed as algo-

rithms which incorporate structure learning into the DEUM framework, which pre-

viously required a known fixed structure to be supplied before it could run. These

algorithms have been applied to different benchmark functions to demonstrate their

operation.

8. Applications: DEUM has been applied to optimisation of a number of benchmark

problems

9. Precision and Recall: Precision and Recall have been introduced as quality mea-

sures for structure learning algorithms.

9.2 General Conclusion

In this thesis, we have presented the Markov fitness model (MFM) as a tool for evolutionary

computation. We have explored a number of themes related to the construction and

application of the fitness model which are of interest.

We have developed a language to describe the MFM in terms of Walsh functions; this

helps us relate the MFM approach to fitness functions in terms already accepted the wider

evolutionary computation community. It also allows us to theoretically extend the MFM
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to incorporate higher order multivariate interactions than the bivariate structure of the

existing Ising-DEUM algorithm. We have been able to gain a deeper understanding of the

relationship between the MFM and the fitness function by showing that the model param-

eters have a direct relationship with the underlying dynamics of a selection of benchmark

fitness functions. We have developed a new measure of the fitness modelling capability of

the MFM which we have been able to demonstrate is closely related to the usefulness of

the model for optimisation.

We have explored several of the many factors which affect how closely the MFM cor-

relates with a fitness function. We can now describe with some certainty the impact

which different model structures have for modelling different fitness functions. We have

shown that there is a clear relationship between the complexity of a problem’s structure

and effort in fitness evaluations required to learn a useful model of fitness. We can now

say that, at least for the benchmark functions studied, the MFM requires a near-perfect

structure and over-specified population to be supplied to it in order for it to predict the

fitness changes resulting from a large number of mutations. In many cases studied, with

an imperfect structure or underspecified population, the MFM can be used to predict the

change in fitness resulting from a single mutation. Further to this we have studied the

impact on the fitness prediction capability of the MFM of four variations of truncation

selection. These results reveal useful information about how the selection operator sharp-

ens information about fitness in a population which is used to build the MFM. This is

of relevance to recent works in the EC community studying diversity, fitness distribution

and convergence in populations.

We have also been able to present extensions to existing works directly sampling the

MFM for optimisation of problems, using different benchmark functions with different

structures to those demonstrated previously. This is useful to demonstrate that the MFM

is useful in real world - that models of fitness have a direct link to optimisation. We have

also extended the DEUM framework to include multivariate interactions and a structure

learning component so it no longer must be supplied with the known fixed structure of

a problem. As part of this we have introduced precision and recall for describing the
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structure of the Markov network and in particular for measuring the quality of learned

structures which will be of use to the wider EDA and EA community.

In general, we have been able to develop the MFM as a useful tool to improve the

performance of evolutionary computation. We propose that it presents great potential

for greater understanding of existing evolutionary algorithms and ultimately improving

function optimisation and problem solving.
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Larrañaga, P. & Lozano, J. A. (2002). Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation, Kluwer Academic Publishers, Boston.

Lauritzen, S. L. (1996). Graphical models, Vol. 17, Clarendon Press; Oxford University

Press, New York; Oxford.



BIBLIOGRAPHY 196

Li, S. Z. (1995). Markov random field modeling in computer vision, Springer-Verlag.

Lim, D., Jin, Y., Ong, Y.-S. & Sendhoff, B. (2008). Generalizing surrogate-assisted evo-

lutionary computation, IEEE Transactions on Evolutionary Computation .

Lima, C. F., Pelikan, M., Sastry, K., Butz, M. V., Goldberg, D. E. & Lobo, F. G. (2006).

Substructural neighborhoods for local search in the Bayesian optimization algorithm,

PPSN IX: Proceedings of the 9th International Conference on Parallel Problem Solv-

ing from Nature, Vol. 4193 of Lecture Notes in Computer Science (LNCS), Springer-

Verlag, Reykjavik, Iceland, pp. 232–241.

Lima, C. F., Sastry, K., Goldberg, D. E. & Lobo, F. G. (2005). Combining competent

crossover and mutation operators: a probabilistic model building approach, GECCO

’05: Proceedings of the 2005 conference on Genetic and evolutionary computation,

ACM, New York, NY, USA, pp. 735–742.

Lucey, T. (1984). Quantatitive Techniques: An Instructional Manual, D. P. Publications,

Eastleigh, Hampshire, UK.

MacNish, C. (2005). Benchmarking Evolutionary Algorithms: The Huygens Suite, Pro-

ceedings of the Genetic and Evolutionary Computation COnference (GECCO 2005)

(Late Breaking Papers), ACM Press, New York, NY, USA, pp. 2423–2428.

Mahnig, T. & Mühlenbein, H. (2001). Optimal mutation rate using Bayesian priors for

estimation of distribution algorithms, SAGA ’01: Proceedings of the International

Symposium on Stochastic Algorithms, Springer-Verlag, London, UK, pp. 33–48.

Marascuilo, L. A. & McSweeney, M. (1977). Nonparametric and Distribution-Free Methods

for Social Sciences, Brooks / Cole Publishing Company, California.

McCall, J., Petrovski, A. & Shakya, S. (2008). Evolutionary Algorithms for Cancer

Chemotherapy Optimization, Computational Intelligence in Bioinformatics, Wiley,

chapter 12, pp. 265–296.



BIBLIOGRAPHY 197

Michalski, R. S. (2000). Learnable evolution model: Evolutionary processes guided by

machine learning, Machine Learning 38(1-2): 9–40.
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Appendix A

Terminology and Notation

Provided here for ease of reference are a few definitions which are found within the thesis.

A.1 Notation for Individuals and Fitness

Chromosome / individual A single member x = x1, x2...xn of the population in an

evolutionary algorithm, representing a set of values for the n variables in the problem

Evolutionary Algorithm An algorithm which solves a problem using a population of

solutions that evolve over time

Fitness function A means by which an evolutionary algorithm can evaluate individuals

within a population; applies a fitness f(x) to an individual x

Search space The set of all possible individual solutions for a given fitness function

Stopping Criteria An algorithm can terminate in a number of ways and thus those

described simply refer to “stopping criteria”. This may be when a solution with a

fitness value equal to the known optimum is found, the population has converged on

a particular point, a certain number of function evaluations has been performed or

some other threshold has been reached.

Variable A component part of an individual which can take on different values - repre-

sented in general by Xi and in a specific case by xi
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A.2 Probability and Information Theory

Chi square test An measure of independence between two variables. For two variables

Xi and Xj, calculated over all possible values xi and xj : X2
i,j =

∑

xi,Xj

(p(xi,xj)−p(xi)p(xj))
2

p(xi)p(xj)
.

A typical threshold would be 3.84, where the variables are said to be 95% indepen-

dent. See: (Marascuilo & McSweeney 1977)

Conditional Probability p(xi|xj) The probability of xi given that the value of xj is

known; a separate probability must be stored for each different values which xj may

take.

Kullback Liebler Divergence Also known as the relative entropy; a measure of the

distance between an estimated distribution and the true distribution. See: (Kullback

1987)

Marginal entropy of variable xi H(x) =
∑n

x=1 p(xi)logbp(xi)

Marginal Probability The probability of variable xi taking the value v is written as

p(xi = v)

A.3 Terms specific to MFM or experiments in this thesis

Bottom selection A variant of top selection, which selectes the least fit m individuals

in a population (See section 5.1)

Cm FPC for a population of mutated individuals (See Section 3.2)

Cr FPC for a population of randomly generateted individuals (See Section 3.2)

Decimated model structure The perfect structure with a fixed proportion of cliques

chosen atrandom and removed (See Section 3.1.4)

F-measure A combination of precision and recall (See Section 7.1)

Filtered model structure The perfect structure with all cliques of a specific order re-

moved (See Section 3.1.4)
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FPC Fitness Prediction Correlation; the correlation between a population’s true fitnesses

and fitnesses predicted by a MFM (See Section 3.2)

Full model structure The set of all possible cliques and subcliques up to certain di-

mension (See Section 3.1.4)

Imperfect model structure The perfect structure with some cliques added or removed

(See Section 3.1.4)

Over-specified The situation where the number of individuals used to estimate model

parameters is greater than the number of parameters 3.1.5

Perfect structure The set of all cliques and subcliques known to be present in the fitness

function (See Section 3.1.4)

Precisely-specified The situation where the number of individuals used to estimate

model parameters is equal to the number of parameters 3.1.5

Precision The proportion of interactions found which are true interactions (See Section

7.1)

Recall The proportion of true interactions which have been learned (See Section 7.1)

Top & Bottom selection A combination of top selection and bottom selection, which

selects the fittest m/2 and least fit m/2 individuals in a population (See section 5.1)

Top selection The standard truncation selection operator, which selectes the fittest m

individuals in a population (See section 5.1)

Under-specified The situation where the number of individuals used to estimate model

parameters is less than the number of parameters 3.1.5

A.4 Algorithm Abbreviations

The Chapter in which to find a detailed described is given after the algorithm’s name.

BOA Bayesian Optimisation Algorithm (Chapter 2)
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cGA compact Genetic Algorithm (Chapter 2)

COMIT Combining Optimizers with Mutual Information Trees (Chapter 2)

DEUM Distribution Estimation Using Markov Random Fields / Markov Networks (Chap-

ter 2 and (Chapter 6))

DEUM-χ2 Distribution Estimation Using Markov Networks with χ2 Structure Learning

(Chapter 7)

DEUM-χ2-Chain Distribution Estimation Using Markov Networks with χ2 Chain Learn-

ing (Chapter 7)

DEUM-Chain Distribution Estimation Using Markov Networks with Chain Structure

(Chapter 7)

DEUM-LDA Evolutionary Distribution Estimation Using Markov Networks with Link-

age Detection Algorithm (Chapter 7)

evDEUM-χ2 Evolutionary Distribution Estimation Using Markov Networks with χ2

Structure Learning (Chapter 7)

FDA Factorised Distribution Algorithm (Chapter 2)

GA Genetic algorithm (Chapter 2)

hBOA hierarchical Bayesian Optimisation Algorithm (Chapter 2)

iBOA incremental Bayesian Optimisation Algorithm (Chapter 2)

Ising-DEUM Ising Distribution Estimation Using Markov Random Fields / Markov

Networks (Chapter 2)

LDA Linkage Detection Algorithm

LFDA Learning Factorised Distribution Algorithm (Chapter 2)

MIMIC Mutual Information Maximisation by Input Clustering (Chapter 2)
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MN-EDA Markov Network Estimation of Distribution Algorithm (Chapter 2)

MN-FDA Markov Network Factorised Distribution Algorithm (Chapter 2)

MOA Markovianity Optimisation Algorithm (Chapter 2)

PBIL Population Based Incremental Learning (Chapter 2)

UMDA Univariate Marginal Distribution Algorithm (Chapter 2)



Appendix B

Figures - Population Size

Experiments

The figures in this chapter relate to the experiments discussed in Chapter 4.

Figure B.1: FPC vs population size for 10 bit onemax
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Figure B.2: FPC vs population siz fore 20 bit onemax

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.5 0.6 0.7 0.8 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  2  2.1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.5 0.6 0.7 0.8 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  2  2.1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.3: FPC vs population size for 50 bit onemax
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Figure B.4: FPC vs population size for 75 bit onemax
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Figure B.5: FPC vs population size for 100 bit onemax
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Figure B.6: FPC vs population size for 200 bit onemax
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Figure B.7: FPC vs population size for 500 bit onemax
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Figure B.8: FPC vs population size for 750 bit onemax

Figure B.9: FPC vs population size for 1000 bit onemax
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Figure B.10: FPC vs population size for 10 bit 1D Checkerboard problem using a perfect
model structure
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Figure B.11: FPC vs population size for 20 bit 1D Checkerboard problem using a perfect
model structure
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Figure B.12: FPC vs population size for 50 bit 1D Checkerboard problem using a perfect
model structure
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Figure B.13: FPC vs population size for 100 bit 1D Checkerboard problem using a perfect
model structure
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Figure B.14: FPC vs population size for 200 bit 1D Checkerboard problem using a perfect
model structure

Figure B.15: FPC vs population size for 500 bit 1D Checkerboard problem using a perfect
model structure
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Figure B.16: FPC vs population size for 10 bit 1D Checkerboard problem using a model
with only univariate terms
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Figure B.17: FPC vs population size for 20 bit 1D Checkerboard problem using a model
with only univariate terms
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Figure B.18: FPC vs population size for 50 bit 1D Checkerboard problem using a model
with only univariate terms
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Figure B.19: FPC vs population size for 100 bit 1D Checkerboard problem using a model
with only univariate terms
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Figure B.20: FPC vs population size for 200 bit 1D Checkerboard problem using a model
with only univariate terms

Figure B.21: FPC vs population size for 500 bit 1D Checkerboard problem using a model
with only univariate terms
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Figure B.22: FPC vs population size for 10 bit 1D Checkerboard problem using a model
with only bivariate terms
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Figure B.23: FPC vs population size for 20 bit 1D Checkerboard problem using a model
with only bivariate terms
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Figure B.24: FPC vs population size for 50 bit 1D Checkerboard problem using a model
with only bivariate terms
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Figure B.25: FPC vs population size for 100 bit 1D Checkerboard problem using a model
with only bivariate terms
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Figure B.26: FPC vs population size for 200 bit 1D Checkerboard problem using a model
with only bivariate terms

Figure B.27: FPC vs population size for 500 bit 1D Checkerboard problem using a model
with only bivariate terms
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Figure B.28: FPC vs population size for 16 bit 2D Ising problem using a perfect model
structure
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Figure B.29: FPC vs population size for 25 bit 2D Ising problem using a perfect model
structure
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Figure B.30: FPC vs population size for 36 bit 2D Ising problem using a perfect model
structure
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Figure B.31: FPC vs population size for 49 bit 2D Ising problem using a perfect model
structure
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Figure B.32: FPC vs population size for 64 bit 2D Ising problem using a perfect model
structure
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Figure B.33: FPC vs population size for 100 bit 2D Ising problem using a perfect model
structure
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Figure B.34: FPC vs population size for 256 bit 2D Ising problem using a perfect model
structure

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  2  2.1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.35: FPC vs population size for 324 bit 2D Ising problem using a perfect model
structure
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Figure B.36: FPC vs population size for 400 bit 2D Ising problem using a perfect model
structure
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Figure B.37: FPC against population size for 16 bit 2D Ising problem using a 10% deci-
mated model
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Figure B.38: FPC against population size for 25 bit 2D Ising problem using a 10% deci-
mated model
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Figure B.39: FPC against population size for 36 bit 2D Ising problem using a 10% deci-
mated model
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Figure B.40: FPC against population size for 49 bit 2D Ising problem using a 10% deci-
mated model
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Figure B.41: FPC against population size for 64 bit 2D Ising problem using a 10% deci-
mated model
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Figure B.42: FPC against population size for 100 bit 2D Ising problem using a 10%
decimated model
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Figure B.43: FPC against population size for 256 bit 2D Ising problem using a 10%
decimated model
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Figure B.44: FPC against population size for 324 bit 2D Ising problem using a 10%
decimated model
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Figure B.45: FPC against population size for 400 bit 2D Ising problem using a 10%
decimated model
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Figure B.46: FPC against population size for 16 bit 2D Ising problem using a 50% deci-
mated model
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Figure B.47: FPC against population size for 25 bit 2D Ising problem using a 50% deci-
mated model
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Figure B.48: FPC against population size for 36 bit 2D Ising problem using a 50% deci-
mated model
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Figure B.49: FPC against population size for 49 bit 2D Ising problem using a 50% deci-
mated model
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Figure B.50: FPC against population size for 64 bit 2D Ising problem using a 50% deci-
mated model
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Figure B.51: FPC against population size for 100 bit 2D Ising problem using a 50%
decimated model
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Figure B.52: FPC against population size for 256 bit 2D Ising problem using a 50%
decimated model
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Figure B.53: FPC against population size for 324 bit 2D Ising problem using a 50%
decimated model
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Figure B.54: FPC against population size for 400 bit 2D Ising problem using a 50%
decimated model
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Figure B.55: FPC vs population size for 16 bit 2D Ising problem using a univariate model
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Figure B.56: FPC vs population size for 25 bit 2D Ising problem using a univariate model
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Figure B.57: FPC vs population size for 36 bit 2D Ising problem using a univariate model
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Figure B.58: FPC vs population size for 49 bit 2D Ising problem using a univariate model
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Figure B.59: FPC vs population size for 64 bit 2D Ising problem using a univariate model
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Figure B.60: FPC vs population size for 100 bit 2D Ising problem using a univariate model
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Figure B.61: FPC vs population size for 256 bit 2D Ising problem using a univariate model
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Figure B.62: FPC vs population size for 324 bit 2D Ising problem using a univariate model
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Figure B.63: FPC vs population size for 400 bit 2D Ising problem using a univariate model
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Figure B.64: FPC vs population size for 16 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.65: FPC vs population size for 25 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.66: FPC vs population size for 36 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.67: FPC vs population size for 49 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.68: FPC vs population size for 64 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.69: FPC vs population size for 100 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.70: FPC vs population size for 256 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.71: FPC vs population size for 324 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.72: FPC vs population size for 400 bit 2D Checkerboard problem using a perfect
model structure
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Figure B.73: FPC vs population size for 20 bit MaxSAT problem using a perfect model
structure
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Figure B.74: FPC vs population size for 50 bit MaxSAT problem using a perfect model
structure
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Figure B.75: FPC vs population size for 75 bit MaxSAT problem using a perfect model
structure
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Figure B.76: FPC vs population size for 100 bit MaxSAT problem using a perfect model
structure



Figures - Population Size Experiments 252

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.5 0.6 0.7 0.8 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  2  2.1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.77: FPC vs population size for 125 bit MaxSAT problem using a perfect model
structure
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Figure B.78: FPC vs population size for 20 bit MaxSAT problem using a 50% decimated
model
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Figure B.79: FPC vs population size for 50 bit MaxSAT problem using a 50% decimated
model
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Figure B.80: FPC vs population size for 75 bit MaxSAT problem using a 50% decimated
model
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Figure B.81: FPC vs population size for 100 bit MaxSAT problem using a 50% decimated
model
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Figure B.82: FPC vs population size for 125 bit MaxSAT problem using a 50% decimated
model
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Figure B.83: FPC vs population size for 150 bit MaxSAT problem using a 50% decimated
model
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Figure B.84: FPC vs population size for 175 bit MaxSAT problem using a 50% decimated
model

Figure B.85: FPC vs population size for 200 bit MaxSAT problem using a 50% decimated
model
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Figure B.86: FPC vs population size for 20 bit MaxSAT problem using a structure with
trivariate and univariate terms
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Figure B.87: FPC vs population size for 50 bit MaxSAT problem using a structure with
trivariate and univariate terms
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Figure B.88: FPC vs population size for 75 bit MaxSAT problem using a structure with
trivariate and univariate terms
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Figure B.89: FPC vs population size for 100 bit MaxSAT problem using a structure with
trivariate and univariate terms
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Figure B.90: FPC vs population size for 125 bit MaxSAT problem using a structure with
trivariate and univariate terms
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Figure B.91: FPC vs population size for 20 bit MaxSAT problem using a univariate
structure
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Figure B.92: FPC vs population size for 50 bit MaxSAT problem using a univariate
structure
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Figure B.93: FPC vs population size for 75 bit MaxSAT problem using a univariate
structure
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Figure B.94: FPC vs population size for 100 bit MaxSAT problem using a univariate
structure
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Figure B.95: FPC vs population size for 125 bit MaxSAT problem using a univariate
structure
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Figure B.96: FPC vs population size for 150 bit MaxSAT problem using a univariate
structure
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Figure B.97: FPC vs population size for 175 bit MaxSAT problem using a univariate
structure
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Figure B.98: FPC vs population size for 200 bit MaxSAT problem using a univariate
structure
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Figure B.99: FPC vs population size for 250 bit MaxSAT problem using a univariate
structure
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Figure B.100: FPC vs population size for 10 bit Trap-5 problem using a chain model with
both univariate and bivariate terms, plus terms for each group of 5 variables
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Figure B.101: FPC vs population size for 20 bit Trap-5 problem using a chain model with
both univariate and bivariate terms, plus terms for each group of 5 variables
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Figure B.102: FPC vs population size for 50 bit Trap-5 problem using a chain model with
both univariate and bivariate terms, plus terms for each group of 5 variables

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.103: FPC vs population size for 75 bit Trap-5 problem using a chain model with
both univariate and bivariate terms, plus terms for each group of 5 variables
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Figure B.104: FPC vs population size for 100 bit Trap-5 problem using a chain model
with both univariate and bivariate terms, plus terms for each group of 5 variables
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Figure B.105: FPC vs population size for 10 bit Trap-5 problem using a chain model with
both univariate and bivariate terms

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.106: FPC vs population size for 20 bit Trap-5 problem using a chain model with
both univariate and bivariate terms
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Figure B.107: FPC vs population size for 50 bit Trap-5 problem using a chain model with
both univariate and bivariate terms
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Figure B.108: FPC vs population size for 75 bit Trap-5 problem using a chain model with
both univariate and bivariate terms
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Figure B.109: FPC vs population size for 100 bit Trap-5 problem using a chain model
with both univariate and bivariate terms
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Figure B.110: FPC vs population size for 10 bit Trap-5 problem using a univariate model
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Figure B.111: FPC vs population size for 20 bit Trap-5 problem using a univariate model
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Figure B.112: FPC vs population size for 50 bit Trap-5 problem using a univariate model
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Figure B.113: FPC vs population size for 75 bit Trap-5 problem using a univariate model
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Figure B.114: FPC vs population size for 100 bit Trap-5 problem using a univariate model
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Figure B.115: FPC against population size for 10 bit problem using a chain model with
no univariate terms
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Figure B.116: FPC against population size for 20 bit Trap-5 problem using a chain model
with no univariate terms
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Figure B.117: FPC against population size for 50 bit Trap-5 problem using a chain model
with no univariate terms

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Population Size Relative to N

Cm Cr

Figure B.118: FPC against population size for 75 bit Trap-5 problem using a chain model
with no univariate terms
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Figure B.119: FPC against population size for 100 bit Trap-5 problem using a chain model
with no univariate terms
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Appendix C

Figures - Selection Experiments

The figures in this chapter relate to the experiments discussed in Chapter 4.

Figure C.1: FPC against selection proportion for fully specified 10 bit OneMax
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Figure C.2: FPC against selection proportion for fully specified 20 bit OneMax
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Figure C.3: FPC against selection proportion for fully specified 50 bit OneMax
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Figure C.4: FPC against selection proportion for fully specified 75 bit OneMax

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr

Figure C.5: FPC against selection proportion for fully specified 100 bit OneMax
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Figure C.6: FPC against selection proportion for fully specified 200 bit OneMax
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Figure C.7: FPC against selection proportion for fully specified 500 bit OneMax

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr



Figures - Selection Experiments 281

Figure C.8: FPC against selection proportion for fully specified 750 bit OneMax
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Figure C.9: FPC against selection proportion for fully specified 1000 bit OneMax
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Figure C.10: FPC against selection proportion for fully specified 16 bit 2D Ising
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Figure C.11: FPC against selection proportion for fully specified 25 bit 2D Ising
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Figure C.12: FPC against selection proportion for fully specified 36 bit 2D Ising

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr

Figure C.13: FPC against selection proportion for fully specified 49 bit 2D Ising

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr



Figures - Selection Experiments 284

Figure C.14: FPC against selection proportion for fully specified 64 bit 2D Ising
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Figure C.15: FPC against selection proportion for fully specified 100 bit 2D Ising
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Figure C.16: FPC against selection proportion for fully specified 256 bit 2D Ising
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Figure C.17: FPC against selection proportion for fully specified 324 bit 2D Ising
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Figure C.18: FPC against selection proportion for fully specified 400 bit 2D Ising
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Figure C.19: FPC against selection proportion for fully specified 20 bit MaxSAT
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Figure C.20: FPC against selection proportion for fully specified 50 bit MaxSAT
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Figure C.21: FPC against selection proportion for fully specified 75 bit MaxSAT
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Figure C.22: FPC against selection proportion for fully specified 100 bit MaxSAT

 0.998

 0.9982

 0.9984

 0.9986

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr



Figures - Selection Experiments 289

Figure C.23: FPC against selection proportion for fully specified 125 bit MaxSAT
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Figure C.24: FPC against selection proportion for fully specified 150 bit MaxSAT
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Figure C.25: FPC against selection proportion for fully specified 175 bit MaxSAT
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Figure C.26: FPC against selection proportion for 0.1N under specified 20 bit onemax
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Figure C.27: FPC against selection proportion for 0.1N under specified 50 bit onemax
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Figure C.28: FPC against selection proportion for 0.1N under specified 75 bit onemax
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Figure C.29: FPC against selection proportion for 0.1N under specified 100 bit onemax
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Figure C.30: FPC against selection proportion for 0.1N under specified 200 bit onemax
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Figure C.31: FPC against selection proportion for 0.1N under specified 500 bit onemax
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Figure C.32: FPC against selection proportion for 0.1N under specified 750 bit onemax
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Figure C.33: FPC against selection proportion for 0.1N under specified 1000 bit onemax
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Figure C.34: FPC against selection proportion for 0.1N under specified 16 bit 2D Ising
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Figure C.35: FPC against selection proportion for 0.1N under specified 25 bit 2D Ising
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Figure C.36: FPC against selection proportion for 0.1N under specified 36 bit 2D Ising
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Figure C.37: FPC against selection proportion for 0.1N under specified 49 bit 2D Ising
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Figure C.38: FPC against selection proportion for 0.1N under specified 64 bit 2D Ising
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Figure C.39: FPC against selection proportion for 0.1N under specified 100 bit 2D Ising
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Figure C.40: FPC against selection proportion for 0.1N under specified 256 bit 2D Ising
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Figure C.41: FPC against selection proportion for 0.1N under specified 324 bit 2D Ising
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Figure C.42: FPC against selection proportion for 0.1N under specified 400 bit 2D Ising
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Figure C.43: FPC against selection proportion for 0.1N under specified 20 bit MaxSAT
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Figure C.44: FPC against selection proportion for 0.1N under specified 50 bit MaxSAT
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Figure C.45: FPC against selection proportion for 0.1N under specified 75 bit MaxSAT
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Figure C.46: FPC against selection proportion for 0.1N under specified 100 bit MaxSAT
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Figure C.47: FPC against selection proportion for 0.1N under specified 125 bit MaxSAT
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Figure C.48: FPC against selection proportion for 0.1N under specified 150 bit MaxSAT
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Figure C.49: FPC against selection proportion for 0.1N under specified 175 bit MaxSAT
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Figure C.50: FPC against selection proportion for fully specified 16 bit 2D Ising with no
bivariate interactions
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Figure C.51: FPC against selection proportion for fully specified 25 bit 2D Ising with no
bivariate interactions
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Figure C.52: FPC against selection proportion for fully specified 36 bit 2D Ising with no
bivariate interactions
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Figure C.53: FPC against selection proportion for fully specified 49 bit 2D Ising with no
bivariate interactions
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Figure C.54: FPC against selection proportion for fully specified 64 bit 2D Ising with no
bivariate interactions
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Figure C.55: FPC against selection proportion for fully specified 100 bit 2D Ising with no
bivariate interactions
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Figure C.56: FPC against selection proportion for fully specified 256 bit 2D Ising with no
bivariate interactions
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Figure C.57: FPC against selection proportion for fully specified 324 bit 2D Ising with no
bivariate interactions
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Figure C.58: FPC against selection proportion for fully specified 400 bit 2D Ising with no
bivariate interactions
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Figure C.59: FPC against selection proportion for fully specified 16 bit 2D Ising with 0.1
decimation
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Figure C.60: FPC against selection proportion for fully specified 25 bit 2D Ising with 0.1
decimation
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Figure C.61: FPC against selection proportion for fully specified 36 bit 2D Ising with 0.1
decimation
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Figure C.62: FPC against selection proportion for fully specified 49 bit 2D Ising with 0.1
decimation
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Figure C.63: FPC against selection proportion for fully specified 64 bit 2D Ising with 0.1
decimation
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Figure C.64: FPC against selection proportion for fully specified 100 bit 2D Ising with 0.1
decimation
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Figure C.65: FPC against selection proportion for fully specified 256 bit 2D Ising with 0.1
decimation
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Figure C.66: FPC against selection proportion for fully specified 324 bit 2D Ising with 0.1
decimation
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Figure C.67: FPC against selection proportion for fully specified 400 bit 2D Ising with 0.1
decimation
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Figure C.68: FPC against selection proportion for fully specified 16 bit 2D Ising problem
with 0.5 decimation
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Figure C.69: FPC against selection proportion for fully specified 25 bit 2D Ising problem
with 0.5 decimation
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Figure C.70: FPC against selection proportion for fully specified 36 bit 2D Ising problem
with 0.5 decimation
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Figure C.71: FPC against selection proportion for fully specified 49 bit 2D Ising problem
with 0.5 decimation
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Figure C.72: FPC against selection proportion for fully specified 64 bit 2D Ising problem
with 0.5 decimation
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Figure C.73: FPC against selection proportion for fully specified 100 bit 2D Ising problem
with 0.5 decimation
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Figure C.74: FPC against selection proportion for fully specified 256 bit 2D Ising problem
with 0.5 decimation
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Figure C.75: FPC against selection proportion for fully specified 324 bit 2D Ising problem
with 0.5 decimation
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Figure C.76: FPC against selection proportion for fully specified 400 bit 2D Ising problem
with 0.5 decimation
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Figure C.77: FPC against selection proportion for fully specified 20 bit MaxSAT with
only univariate terms in the model
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Figure C.78: FPC against selection proportion for fully specified 50 bit MaxSAT with
only univariate terms in the model
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Figure C.79: FPC against selection proportion for fully specified 75 bit MaxSAT with
only univariate terms in the model
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Figure C.80: FPC against selection proportion for fully specified 100 bit MaxSAT with
only univariate terms in the model
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Figure C.81: FPC against selection proportion for fully specified 125 bit MaxSAT with
only univariate terms in the model
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Figure C.82: FPC against selection proportion for fully specified 150 bit MaxSAT with
only univariate terms in the model
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Figure C.83: FPC against selection proportion for fully specified 75 bit MaxSAT with
only univariate terms in the model
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Figure C.84: FPC against selection proportion for fully specified 200 bit MaxSAT with
only univariate terms in the model
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Figure C.85: FPC against selection proportion for fully specified 250 bit MaxSAT with
only univariate terms in the model
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Figure C.86: FPC against selection proportion for fully specified 20 bit MaxSAT with
trivariate and univariate terms in the model

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
itn

es
s 

P
re

di
ct

io
n 

C
or

re
la

tio
n

Selected Proportion

Top Selection Cm
Bottom Selection Cm

Top+Bottom Selection Cm

Top Selection Cr
Bottom Selection Cr

Top+Bottom Selection Cr

Figure C.87: FPC against selection proportion for fully specified 50 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.88: FPC against selection proportion for fully specified 75 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.89: FPC against selection proportion for fully specified 100 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.90: FPC against selection proportion for fully specified 125 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.91: FPC against selection proportion for fully specified 150 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.92: FPC against selection proportion for fully specified 175 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.93: FPC against selection proportion for fully specified 200 bit MaxSAT with
trivariate and univariate terms in the model
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Figure C.94: FPC against selection proportion for fully specified 250 bit MaxSAT with
trivariate and univariate terms in the model
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Appendix D

Figures - Structure Learning

Experiments

The figures in this chapter relate to the experiments discussed in Chapter 7.
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Figure D.1: Number of interactions found vs selection proportion for 10 bit Onemax
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Figure D.2: Number of interactions found vs selection proportion for 20 bit Onemax
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Figure D.3: Number of interactions found vs selection proportion for 50 bit Onemax
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Figure D.4: Number of interactions found vs selection proportion for 75 bit Onemax
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Figure D.5: Number of interactions found vs selection proportion for 100 bit Onemax
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Figure D.6: Number of interactions found vs selection proportion for 200 bit Onemax
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Figure D.7: Number of interactions found vs selection proportion for 500 bit Onemax
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Figure D.8: Number of interactions found vs selection proportion for 750 bit Onemax
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Figure D.9: Number of interactions found vs selection proportion for 1000 bit Onemax
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Figure D.10: P and R vs selection proportion for 16 bit 2D Ising
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Figure D.11: P and R vs selection proportion for 25 bit 2D Ising

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
 / 

R

Selected Proportion

TS Precision
BS Precision

T+BS Precision
TS Recall

BS Recall
T+BS Recall



Figures - Structure Learning Experiments 336

Figure D.12: P and R vs selection proportion for 36 bit 2D Ising
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Figure D.13: P and R vs selection proportion for 49 bit 2D Ising
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Figure D.14: P and R vs selection proportion for 64 bit 2D Ising
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Figure D.15: P and R vs selection proportion for 100 bit 2D Ising
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Figure D.16: P and R vs selection proportion for 256 bit 2D Ising
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Figure D.17: P and R vs selection proportion for 324 bit 2D Ising
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Figure D.18: P and R vs selection proportion for 400 bit 2D Ising
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Figure D.19: Precision and recall of interactions learned for 100 bit Ising, selecting top
1%
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Figure D.20: Precision and recall of interactions learned for 100 bit Ising, selecting top
2%
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Figure D.21: Precision and recall of interactions learned for 100 bit Ising, selecting top
5%
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Figure D.22: Precision and recall of interactions learned for 100 bit Ising, selecting top
10%
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Figure D.23: Precision and recall of interactions learned for 100 bit Ising, selecting top
20%
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Figure D.24: Precision and recall of interactions learned for 100 bit Ising, selecting top
50%
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Figure D.25: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 1%
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Figure D.26: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 2%
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Figure D.27: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 5%
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Figure D.28: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 10%
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Figure D.29: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 20%
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Figure D.30: Precision and recall of interactions learned for 100 bit Checkerboard problem,
selecting top 50%
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Figure D.31: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 1%
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Figure D.32: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 2%
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Figure D.33: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 5%
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Figure D.34: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 10%
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Figure D.35: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 20%
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Figure D.36: Precision and recall of interactions learned for 100 bit MaxSAT problem,
selecting top 50%

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18  20

P
re

ci
si

on
 / 

R
ec

al
l

Threshold

PS 100 Precision - unrefined
PS 1000 Precision - unrefined

PS 10000 Precision - unrefined
PS 100 Recall - unrefined

PS 1000 Recall - unrefined
PS 10000 Recall - unrefined

PS 100 Precision - refined
PS 1000 Precision - refined

PS 10000 Precision - refined
PS 100 Recall - refined

PS 1000 Recall - refined
PS 10000 Recall - refined


