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Practical Algorithms for Incremental Growth

Christopher MacLeod
School of Engineering, The Robert Gordon University, Aberdeen

Abstract
This report considers some of the practical issues involved in the implementation of
Incremental Growth or Incremental Evolution algorithms as outlined in the paper:
Incremental Growth in Modular Neural Networks (doi:10.1016/j.engappai.2008.11.002),

originally published in the journal Engineering Applications of Artificial Intelligence
and the article: Minds for Robots, published in the magazine Electronics World. These
algorithms allow a Neural Network or similar system to grow, piece by piece, in a
controlled manner. The sections below consider the data structures, algorithms and
programming techniques which can be used and also addresses unit functionality and
possibilities for interesting further work.

1. Introduction
The two papers mentioned in the abstract above1,2 describe a novel evolutionary
algorithm. This algorithm allows the structure of a system to grow piece by piece to
any arbitrary level of complexity. In the tests described in the papers, the system used
was an intelligent robot. A major facet of the algorithm is that only the piece which is
being currently added evolves and so the search space covered in each iteration is kept
manageable3. A history of the technique can be gleaned by following its development
through published papers, from initial ideas4,5 a PhD project6 to the first published
conference papers7, 8.

This report was written after several enquiries about the structure of the algorithms
and it gives several suggestions for these. However, it should be noted that these are
just suggestions and that there are many ways of implementing the system.

2. Network Data Structure
The main Data Structure in an Incremental Growth algorithm is that which contains
the details of the system being evolved – in the case of our previous work and this
description, a neural network controller. Various different data structures were
experimented with and considered for this purpose - for example, linked lists and
dynamic objects. However, one structure in particular has several useful advantages:

 It is simple to read, understand and debug.
 It can be directly read by other peripheral programs – for example, routines to

display or manipulate the network.
 It can be easily saved and retrieved to a permanent storage device like a hard disc.
 It can be read into working memory or variables for manipulation.
 It can be used with both Object-orientated and Procedural programming systems.
 It allows individual parts of the program to be easily developed and tested in

isolation.
 It is particularly easy to use with the growth algorithm.
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This structure is the “Netlist.” It is simply a linear list of the neurons in the network.
The list may be split up into four parts (or more if necessary):

1. The fixed part of the network (the previously evolved part, which undergoes no
further change).

2. The latest module; this is the part of the network which is currently being trained.
When training is finished, this gets added to the fixed part.

3. Input list. This holds a list of the inputs and which neurons they’re connected to.
4. Output list. As above, except for outputs.

The “population” of the training GA is made up from a population of 2, 3 and 4
(items 3 and 4 may need a separate fixed and evolvable part as well).

The neural network “engine” simply runs through each neuron in turn and calculates
its output.

The structure is shown in figure 1.

Figure 1, One possible structure for the “Netlist.”

As shown above, the input and output lists might be a separate data structure.

The Netlist is a sequential list of neurons. Showing their parameters and what
connects to them. Each entry in the list might be in a format similar to that in figure
2.

Fixed part. This part of the Netlist contains the previously evolved part of
the network, which undergoes no further training. It consists of a list of
neurons and their connections (as shown below).

Latest added module. The training GA consists of a population of these.
Once trained, this part is added to the fixed part.

Input list. List of inputs, their weights and their target neurons.

Output list. List of output neurons and their target actuators.
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Figure 2, Possible structure for a single entry in Netlist.

So the list looks as shown in figure 3.

No Type Output Connection1 Weigtht1 Connection2 Weight2………etc
1 1 0.4 6 -0.3 2 0.5…….etc
2 1 0.9 3 1.8 9 0.2…….etc
3 3 0.3 3 3.2 4 -3.2……etc
4 1 0.5 11 0.4 3 -1.4……etc
etc

Figure 3, Appearance of Netlist.

3. Algorithm Overview and Programming
If the program is divided into suitable modules (which can be coded as procedures,
functions, methods or separate programs) then each part can be tested and verified
independently. One way of decomposing the program in this top-down fashion is
shown in figure 4.

Figure 4, a top-down approach to the program design.

Each of these parts are considered individually below.

A) GA Structure
The purpose of the GA is to define the currently placed module. It must generate both
its weights and the connections. In the scheme illustrated above, it would generate a
module of the required size (this size parameter is passed from the Incremental
Growth Algorithm). The GA then has only to generate the required number of
neurons; random parameters; connections and weights and the input / output lists. As

Netlist ANN
simulator

Inputs

OutputsFitness function

GA training
algorithm

Incremental
growth

algorithm
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mentioned above, most of the network is fixed and so only a population of the new
modules is required. All normal EA operators may apply, although the recombination
operator must take into account if different types of neurons have different numbers
of non-weight/connection parameters. Because of this, the mutation operator is
particularly important and an Evolutionary Strategy type mutation would be
recommended. To evaluate the fitness, the GA can concatenate the new module with
the previously evolved section and pass control to the ANN simulator section. A
pointer can be set to delineate the new module from the rest of the network. A suitable
routine is shown in figure 5.

Retrieve module size S from Incremental Growth Algorithm.

Generate population of X new modules of size S

Iteration = 0

Do
N =1
Iteration = Iteration + 1

Do
Concatenate module N with previous (old) Netlist
Pass control to ANN simulator
Retrieve, index and store Fitness
Store Best_Fitness
Delete module N
N=N+1

Until (N==X)

Select (eg delete worst half of population - if you use roulette, keep best string)

Recombination (crossover)

Mutation

If (Iteration == Max_iteration and Best_fitness < Target_fitness)

Then report Failure to Incremental Evolution algorithm and pass
control to IE algorithm

Until (Best_fitness > Target_fitness)

Attach module with Best_fitness to Netlist, shift pointer: Report Success to
Incremental Growth algorithm

Figure 5, An implementation of the GA Algorithm.

The algorithm can be configured either to reach a predefined fitness target or report
success when the fitness of the current system has plateaued.
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B) Incremental Growth Algorithm
This section works hand in hand with the GA. It starts with just one neuron and grows
each module up to the point where it can perform the required function as illustrated
in figure 6.

It should be borne in mind that, after the system is performing correctly with one
particular function, then the whole system, including the robot’s body, changes. This
aspect of the system has been left out of the algorithm description above for simplicity
but is described separately in the next section (in practical systems it would usually be
integrated into the Incremental Growth Algorithm (or handled by a separate “over-
aching” control algorithm which supervised both controller and body deconstraint).

Start:
Size S = 1

Loop:
Pass control to GA

If (GA reports Failure)
Then S = S + 1

If (GA reports Success)
Then goto Start (new module pointer could be shifted here if not done
in GA)

If (Max_neurons is exceeded)
Then save Netlist
report failure to user

Goto Loop

Figure 6, An implementation of the IE Algorithm.

C) Neural Nets Engine (simulator)
The Neural Net program would be called from the GA. It would start at the first
neuron on the list and run through each one. In the first iteration it would use
randomly generated outputs from the other neurons to generate any required inputs
which don’t have values attached (the same randomly generated numbers each time).
As each neuron is run through, its own output is updated, so that from the second
generation the numbers converge towards a trained dynamic. The program would also
use the Input file to work out its current state. The network would cycle through a
fixed number of times (in previous work 500 cycles have been used). The fitness
function may be part of this simulator or a different part of the program. A typical
Algorithm is shown in figure 7.
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N=1
Testing_Epoch = 1

Do

Do

Check if neuron N is on input list (if it is, add input to activity)

Calculate activity of neuron N (Connections and weights in neuron’s
list are the inputs to neuron N): Write New_output(N) to list

Check if neuron N is on output list (if it is, save output to file or
data structure)

Until (N = Number_of_neurons)

Until (Testing_epoch = End_of_test)

Pass control to Fitness function

Figure 6, An implementation of the ANN simulator.

D) Fitness function
The fitness function is then simply, figure 7.

For (Epoch = 1 to End_of_test)

Read output data file
Calculate cumulative Error (against previously saved target or fitness formula)

Report Error to GA: Pass control to GA

Figure 7, An implementation of the Fitness Function Algorithm.

4. Deconstraint Engineering
The section above deals with the evolution of the neural controller; however, it should
be always born in mind that in an Incremental Growth algorithm, the whole system is
evolving – the physical layout and environment as well as the controller. In setting
this up, the question of the path taken by the system, from simple to complex, is
critical. In this section, the physical layout of the system is considered in more detail.

Each individual increase in complexity should be carefully planned and small enough
for the training EA to handle. Because the system starts simply and progressively
becomes from complex, in introducing further challenges into the environment we are
deconstraining it from its original simple and constrained form. Therefore, designing
an evolutionary path for the system might be termed Deconstraint Engineering.

The path of deconstraint which each individual system will take depends on the
problem at hand. This may be illustrated by considering the evolution of a prosthetic
arm as shown in figure 8.
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Figure 8, Joint plan of artificial arm

Here, A is the shoulder joint, B is the elbow, C is the wrist, D is the first figure joint,
E the second and F the third. The deconstraint path might start with all the joints
locked and immovable except B; once B has trained satisfactorily then another joint is
unlocked – starting with the simpler joints and moving towards the more complex -
like the fingers. Indeed, unlocking one joint at a time like this may not be simple
enough, since some joints (for example, the shoulder joint A) are universal ball-types
– in this case each universal joint may have to be itself deconstrained, one degree of
freedom at a time. We might term a detailed path of deconstraint the Deconstraint
Schedule.

It should be remembered, that at each stage, three components need to be considered:
Firstly, the mechanical form of the system; secondly, its inputs and outputs (sensors
and actuators) and thirdly the external environment. At each stage the fitness function
of the whole system is also updated to accommodate the current objectives.

So, there are two components to the control-system growth. One is the building up of
modules to control a single function and the second is the physical deconstraint of the
system. Consider, the example, figure 8 again: It may take several added modules to
control the function of B before it performs adequately and the system can be
deconstrained by releasing another joint.

5. Simple Experimental Setup
To illustrate the concept of Deconstraint in a practical setting, let us consider an
example of a simple experimental setup - in this case using a mobile robot. This was
chosen because it is easy to construct and it is informative to make it behave like a
simple animal. It would also be a good test-bed to use for developing household
robots like vacuuming or lawn-mowing machines.

For practical reasons, the training often has to be done off-line using previously
recorded images and a robot simulator. This is mainly because time constraints do not
allow us to run the robot with a large population of networks to establish its fitness.
However, once the network is trained, it can then be down-loaded into the physical
robot for demonstration purposes and there is no reason not to use the robot’s own
camera to capture the training images – most robotic cameras take images at periodic
time intervals anyway.

A

B
CD

EF
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Consider now an example Environmental Deconstraint Schedule for the robot:

 Avoid dark shadows (proceed forward normally but reverse away when in
shadow). One of the most basic reactions in simple animals. A simple light / dark
sensor is required.

 Roam and avoid walls (reverse and turn 180 degrees, or similar behaviour). Robot
is placed in “arena” and trained for this behaviour. The sensors required are usually
“bump” types, using simple switches.

 Avoid obstacles (turn away from object and continue). Obstacles may be painted a
different colour to make them more obvious. A simple low-resolution camera (for
example a 4 x 4 pixel) can be used.

 Light seeking (go towards and sit under light). This is a well-known test for robotic
intelligence. Further sensors are unnecessary.

 Power or food (identify image object and go towards it). Similar to the above case
except using a particular shape. Camera sensor may need to be deconstrained.

 Danger (non-moving). As above but fleeing response (an extension of this is a
moving dangerous object, this would test if the network can process movement - or
mark any moving object as danger).

 Follow trail (line following).
 “Open door” (task requiring a sequence of movements). In this task we move up a

level in complexity. The idea is that when the robot “sees” a particular object it
performs a sequence of movements (for example – go backwards, turn, go
forwards, turn). This tests it’s ability to do complex sequenced tasks (like the
metaphorical “opening a door”). Larger networks may be needed to do this.

 Planning task (a task involving the development of memory). Again, another step
upwards in complexity. The network must find its way (for example) around a
fixed maze.

 Planning task involving dynamic memory (variable maze, leant with same (fixed)
ANN structure). Maze changes and system must learn new path without training.
This requires a complex fitness function which rewards the ability to do this.

Notice how the sensors and actuators need to develop along with the environment.
This schedule may be conveniently split into four parts:

1. Tasks requiring simple reactions. The first (and perhaps third) task falls into this
class because it requires only one action of the robot. All indications are that these
tasks should train easily.

2. Tasks requiring (slightly) more complex reactions. The other tasks up to “open
door” fall into this category. They require about two actions to be sequenced
together (eg reverse and turn 180 degrees). Again no difficulty is anticipated, these
tasks serve as a good way of testing and debugging the system.

3. Tasks requiring more than three actions. The “open door” being an example. The
purpose of these is to establish the difficulties in evolving such complex sequences.
It is possible that this task may provide a “bottle neck” in the work (although it’s
doubted that it will cause too much problem).

4. Complex reactive tasks - such as the maze - require planning. These are just an
extension of the case above and hopefully the previous case will illuminate this
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task. However, each module may require a (perhaps initial) large number of
neurons to accommodate the sequence and this task may prove a bottle-neck.

5. Finally, the last task. Is it possible to evolve a network which can learn on-line
from experience? This task takes the research up to a new level and is likely to be
very difficult. In particular, the fitness function will have to be carefully considered
to reward this behaviour. Dynamic memory of this sort would put the system on
quite a different plane from other ANNs. See section on further work, below.

A typical test robot of the type described above is a DC motor driven, simple chassis
with an on-board webcam and PC control.

a) Robot: There is no need for complex electronics in the robot. For example, the
tasks above do not require position monitoring (even those requiring planning or
dynamic memory). So stepper motors or even dead-reckoning are not needed.
Probably a tricycle layout is all that’s required. The motors may be switched with
relays since speed control is not required.

b) Computer: A PC is the obvious choice. Other than this, a digital I/O board is
required for motor interface.

c) Camera: USB Webcams may be accessed from C++ Builder with appropriate DLL
files. Code is available for this (some free on the internet). Components are also
available for VB, Labview and Visual C++. More technical cameras are also
available which allow direct access to their images at the pixel level – for example
cmucam. This allows the images used to be initially constrained to a single pixel
and follow a deconstraint schedule similar to that outlined in the previous papers.
The camera may have to be defocused (made “short-sighted,” perhaps using a lens)
in order that it doesn’t get confused by objects in the distance.

The system is shown in figure 9.

Figure 9, A simple setup for algorithm development and experimentation.

6. Unit Functionality
During the initial stages of designing Incremental Algorithms it was discovered that
the functionality of the processing units in the controller was of critical importance.
This led to an exploration of unit functionality12 and so to the adoption of one
particular type of unit.

The Artificial Biochemical Network or ABN is the network model which the research
group at RGU have used in many of their later experiments. It is well suited to robotic

USB lead

Motor control
cable

WebCamMotor driver

PC

Arena walls



Practical Algorithms for Incremental Growth
MacLeod 2010

10

applications because of two attributes. Firstly, it is easy to program and secondly it is
equally at home as a sensory (afferent or input) network, doing tasks like pattern
recognition; a control (efferent or output) network feeding actuators like motors or an
intermediate (translational, interneuron, hidden or interface) network between these
two other types. They also display the sort of time-varying behaviour13,14,15 which
might be important in network dynamics and show that many networked systems –
for example, those made of Neurons, Biochemicals and Swarms, can produce parallel
systems potentially capable of intelligence.

A summery of the network is given in the 2010 journal paper9 and earlier
publications10,11 will also provide a foundation. This section addresses the techniques
which can be used to programme ABNs.

Although ABNs are conceptually very simple, the main problem in programming
them is that, because each unit produces a pulsed output which switches on or off
independently in its own time and may be in a different part of its cycle, timing can be
difficult. This is easily solved by ensuring that each neuron has its own unique clock
variables and the whole network gets executed once in each time cycle. This is
illustrated in figure 10.

Main loop:
Neuron 1:

If neuron 1 is triggered or in operation then
Start (or continue with current) action of neuron 1
Increment neuron 1 clock

If neuron 1 is not triggered or cycle is over then
Reset neuron 1 clock

Neuron 2:
If neuron 2 is triggered or in operation then

Start (or continue with current) action of neuron 2
Increment neuron 2 clock

If neuron 1 is not triggered or cycle is over then
Reset neuron 2 clock

.

.

.

.

Neuron n:
If neuron n is triggered or in operation then

Start (or continue with current) action of neuron n
Increment neuron n clock

If neuron n is not triggered or cycle is over then
Reset neuron n clock

End loop

Figure 10, the program-structure of an ABN network

In this way each neuron’s unique clock gets incremented once per cycle and the
individual neuron knows where it is within its own cycle. It is also particularly well
suited to the net-list structure outlined in section 2, since this can simply be run
through sequentially in each universal time step. Note, however, that the behaviour of
the network will strongly depend on the order in which the units are calculated and for
repeatable results this must be consistent.
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A number of other points are worth making about ABNs, which may make them more
useful in some settings. Firstly, if the leaky integrator time constant in the unit is
made small, then the unit starts responding to individual pulses rather then the average
of many; this is known as “pulse coding” rather then “rate coding” which is used in
most units – pulse coding may make the units respond faster and be more sensitive to
small changes in timing (which may be a disadvantage as the system might become
over-sensitive). Secondly, in the original ABN implementation, the pulse amplitude
was constant – however, there may be an advantage in making this vary by either i)
including a separate weight for pulse amplitude (solely dependent on unit activation)
or ii) allowing the unit to calculate time activation and amplitude activations
separately (each with its own weight). Finally, the network can also operate by giving
each connection its own delay instead of a weight – the delay allows pulses to co-
inside (or miss) with each other, so producing a “delay” encoding; this might have
advantages in network dynamics and also in implementing the system in hardware.

7. Suggestions for Further Experiments
A number of interesting applications of Incremental Evolution have been discussed in
the literature. This section is a brief overview of these and should provide some ideas
for additional experiments and development.

1. Incrementally growing networks onto a pre-existing technological backbone

One of the potential benefits of an incremental system is that it can be “grown
around” a pre-existing system by allowing the grown modules to connect to
the previous system’s inputs and outputs. The base architecture might be an
expert system or a robotic control system such as a subsumption architecture.
In the research at RGU, a robotic “backbone” has been developed which is
based on biomimetic principles and on the vertebrate Central Nervous System;
this is called the Artificial Nervous System16,17,18,19 or ANS. The system is
modular, hieratical and parallel. It is shown in figure 11.
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Figure 11, The ANS structure
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By allowing the growth algorithm access to any of the inputs or outputs from
the system modules, a more complex evolutionary starting point can be
obtained. This system is the basis for several on-going projects.

2. Learning and memory in the environment using on-line Incremental
Evolution

In its most common form, Incremental Evolution is used to evolve the
system’s a-priory abilities off-line. However, experiments have been
conducted (in a robotic setting) into adding modules as the machine moves
around and experiences the world – that is on-line (rather like memory or on-
line training). In this scenario, when the robot encounters something worthy of
“remembering” a new module is added to its “brain.” The main problem
encountered in doing this is due to module outputs conflicting – networks
respond, not only to their trained pattern, but also to others which fall outside
their training set. Generally speaking, this problem can be addressed several
ways; these include not connecting the modules in parallel, but placing them
in a hieratical structure. Another technique is to train an “allocation” or
“voting” module to choose the correct output. Finally, modules may be trained
to ignore inappropriate inputs by including these in the training set.

3. Other applications

There are many other applications of Incremental Growth. One example – that
of prosthetic control systems, has already been discussed above. Two other
areas are worthy of mention. One is in Mechanical Engineering, an example of
this is in aerospace design. For example, an aerodynamic control system could
be grown starting with a simple shape, other more complex ones being built up
on top. The idea is illustrated in figure 12.

Figure 12, Applications in mechanical engineering – aerodynamics design

The basic shape is evolved
first

Having fixed the first level
shape, the next stage is
grown on top and so on
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The other area is in electronics engineering, particularly in the design of
passive networks like filters2 and matching sections. How incremental growth
might be applied to a stub matching section is shown in figure 13.

Figure 13, Incremental growth of a broadband microwave tuning stub.

8. Problems yet to be solved
Although the basics of the algorithm are understood and have been outlined in the
papers already referenced, there are still some points which need further research –
some (although by no-means all) of these are mentioned below:

1. The placement of modules in large systems.

The largest neural network grown in the initial experiments had several hundred
neurons in its structure. However, it would be foolish to pretend that one of the
possibilities of the method was not to provide a method which could potentially
grow networks of thousand or even millions of units. Where to place new modules
in a structure like this has not been thoroughly investigated yet. Biology provides
some possible solutions to the problem in the layered onion-like structure of the
cortex – in this structure newly placed modules maintain contacts only with the
most recent prior structures.

Another question related to this is whether (or how) to allow previously placed
modules to change. It is likely that as the system gets larger, for efficient
development, some changes should be allowed in previous layers. The mechanism
for this and its extent is a question which still needs to be addressed. Obviously
though, it is important to restrict evolution of the previous system in order to
avoid an unmanageable expansion in search space.

The basic stub is evolved
first

Further sections are added, so
refining the impedance match and
frequency response
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2. Placement priorities

In some of the previous experiments, the order in which functions were placed had
an important impact on the chances of success. The reasons for this were
discussed in the original paper – however, more experiments need to be done
before a detailed picture can emerge of the effect.

3. Handling failure and alternative strategies

It has been established in early experiments that the evolutionary direction which
development takes depends on the previous deconstraint path and placement of
modules (including the issues highlighted above). This can sometimes lead to
unsatisfactory progress or failure and may require the system to be “rolled back”
or “unravelled” and a new path adopted. A protocol for this has yet to be
established.

4. Deconstraint Engineering

Although some general rules for the progress of the system are established, these
have yet to be fleshed out and applied to the type of very large systems mentioned
above. However, since the path followed needs to be realistic and each stage of
development achievable; again, more work needs to be done on this aspect and
rules developed which lead to likely paths of success.

Another aspect of deconstraint which has been considered is its automation. In
most of the experiments done so far, a decontraint schedule or path has been
formulated before-hand - however there is another option. Instead of providing the
system with a set body plan etc, at each stage it could choose its own components
from an available palette of actuators, sensors, body parts, etc and hence develop
in its own unique way without the intervention of the user. Early experiments
indicate that this approach is workable. Similarly, at each stage of evolution, the
fitness function changes in response to the new task which the system must solve
– again it seems possible to have a “universal” fitness function which allows the
system to develop in its own direction.

5. On-line Learning

A further area of research is that of on-line learning and memory (as mentioned
above). Is it possible to allocate further modules to contain learning or memories
as the robot is operating in real-time? The structure of the biological brain has
unassigned modules in the cortex which may serve just this purpose. Initial
experiments indicate that this is indeed possible – however there are several
problems which first need to be overcome. The major one of these is conflict.
Modules not assigned to a particular pattern fire when presented with noise and so
there is a conflict between two modules – one giving the correct output and
another firing for the reason mentioned above. Experiments indicate that there are
three approaches to solving this problem: a) To train the new module to recognise
noise and ignore it. b) To use a gating module to identify noise or the presence of
an important feature and c) To place the modules in a hierarchy in which
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information reaches important modules first and is then filtered down towards the
less import (this of-course has important implications for the placement of
modules in the system).

9. Conclusions
The Incremental Growth algorithm shows great promise in several fields, not the
least of which is robotics. In fact, if one considers the issues of search-space and
complexity, incremental growth is the only obvious system though which very
large systems may be built. The basic rules of the method have been established in
previous work. The suggestions for further work and discussions above do not
imply that the technique has thrown up any unsolvable problems thus far. Instead
they merely point to issues which need some thought or work in order to take
Incremental growth to the next level. Only further work will reveal other issues
which haven’t been discovered at this point.
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