

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

GOLOVINE, J. C. R. R., 2013. Experimental user interface design
toolkit for interaction research (IDTR). Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

Experimental User Interface Design Toolkit for

Interaction Research (IDTR)

Jean Claude Raymond Rolin Golovine

PhD 2013

Experimental User Interface Design Toolkit for

Interaction Research (IDTR)

Jean Claude Raymond Rolin Golovine

A thesis

submitted in partial fulfilment of the

requirement of the

Robert Gordon University

for the degree

of Doctor of Philosophy

May 2013

i

Abstract

The research reported and discussed in this thesis represents a novel approach to User

Interface evaluation and optimisation through cognitive modelling. This is achieved

through the development and testing of a toolkit or platform titled Toolkit for

Optimisation of Interface System Evolution (TOISE). The research is conducted in two

main phases. In phase 1, the Adaptive Control of Thought Rational (ACT-R) cognitive

architecture is used to design Simulated Users (SU) models. This allows models of user

interaction to be tested on a specific User Interface (UI). In phase 2, an evolutionary

algorithm is added and used to evolve and test an optimised solution to User Interface

layout based on the original interface design. The thesis presents a technical background,

followed by an overview of some applications in their respective fields. The core concepts

behind TOISE are introduced through a discussion of the Adaptive Control of Thought –

Rational (ACT-R) architecture with a focus on the ACT-R models that are used to simulate

users. The notion of adding a Genetic Algorithm optimiser is introduced and discussed in

terms of the feasibility of using simulated users as the basis for automated evaluation to

optimise usability. The design and implementation of TOISE is presented and discussed

followed by a series of experiments that evaluate the TOISE system. While the research

had to address and solve a large number of technical problems the resulting system does

demonstrate potential as a platform for automated evaluation and optimisation of user

interface layouts. The limitations of the system and the approach are discussed and

further work is presented. It is concluded that the research is novel and shows

considerable promise in terms of feasibility and potential for optimising layout for

enhanced usability.

ii

Dedicated to my father, my mother and lost

daughter Kirsteena-Lee and all my friends and

family who are sadly no longer with us today

iii

Table of Contents

CHAPTER 1. INTRODUCTION .. 1

1.1 THESIS ORGANISATION .. 4

CHAPTER 2. REVIEW OF MAJOR MILESTONES AND RELEVANT LITERATURE 6

2.1 HISTORICAL BACKGROUND ... 10
2.1.1 The first GUI and pointing device .. 12
2.1.2 The next pointing device.. 13
2.1.3 The ubiquitous direct input device: the mouse ... 14
2.1.4 Importance of Object Orientated Programming (OOP) in HCI ... 15
2.1.5 The importance of event handling i.e. Reaction Handlers in HCI .. 16
2.1.6 Icons .. 16
2.1.7 Xerox PARC .. 17
2.1.8 Apple Macintosh .. 19

2.2 SOFTWARE EVOLUTION .. 21
2.3 THE EMERGENCE OF COGNITIVE ENGINEERING ... 22
2.4 HCI FOCUS .. 25
2.5 DESIGN DEFICIENCIES ... 26

CHAPTER 3. COGNITIVE MODELLING ... 30

3.1 MODEL HUMAN PROCESSOR (MHP) ... 30
3.2 GOALS OPERATORS METHODS SELECTIONS (GOMS) .. 34
3.3 OVERVIEW OF COGNITIVE ARCHITECTURES .. 36

3.3.1 SOAR ... 37
3.3.2 Executive – Process Interactive Control (EPIC) .. 39
3.3.3 Adaptive Control of Thought—Rational (ACT-R)... 44

3.3.3.1 Buffers in ACT-R ... 46
3.3.3.2 Vision functions in ACT-R .. 47
3.3.3.3 Motor functions in ACT-R... 49
3.3.3.4 Memory retrieval in ACT-R ... 52
3.3.3.5 Conflict Set in ACT-R... 54

3.3.4 Summary ... 56
3.4 COGNITIVE MODELLING USED IN HCI ... 57

3.4.1 ACT-Simple .. 57
3.4.2 CogTool .. 58
3.4.3 Prediction of Driver behaviour and in-Vehicle interfaces .. 60

3.4.3.1 Predicting the effects of In-Car Interface on Driver Behaviour ... 60
3.4.3.2 Distract-R: Rapid Prototyping and Evaluation of In-Vehicle Interfaces .. 62
3.4.3.3 Prediction of energy consumption used by devices relating to interaction 64
3.4.3.4 Predicting user performance: people with physical disabilities .. 65
3.4.3.5 Vision for ACT-R ... 66

CHAPTER 4. OPTIMISATION USING EVOLUTIONARY ALGORITHMS ... 73

4.1 GENETIC ALGORITHM ... 76
4.2 APPLICATION OF GENETIC ALGORITHM IN THE DOMAIN OF COMPONENT PLACEMENT............................... 82

CHAPTER 5. SOFTWARE DESIGN - TOISE ... 85

5.1 INTRODUCTION ... 85
5.2 RECORDING INTERACTION ... 87

5.2.1 Alternatives ... 87
5.2.2 Robot based on Abbot ... 90

iv

5.3 MODELLING PRIMITIVES .. 95
5.4 DECOMPOSITION A SERIES OF TASK .. 96
5.5 SYSTEM OVERVIEW .. 99
5.6 EXECUTION SYSTEM .. 100
5.7 DEBUGGING SYSTEM ... 103
5.8 GENETIC ALGORITHM INTEGRATION ... 106
5.9 GENETIC ALGORITHM DESIGN .. 107

5.9.1 Chromosome representation ... 108
5.9.2 Genetic Algorithm generalities ... 109
5.9.3 Mending mechanism.. 110
5.9.4 Selection operator and dynamic operator rates ... 111
5.9.5 Mutation operators .. 119
5.9.6 Crossover operators .. 125
5.9.7 Fitness Assessment .. 125

5.9.7.1 Overlapping penalty mechanism ... 126
5.9.7.2 Outside the layout area penalty mechanism.. 127
5.9.7.3 Outside the layout designated area penalty mechanism ... 127

5.9.8 Conclusion .. 128
5.10 LISP VERSION DESIGN .. 129
5.11 ISSUES WITH THE TOISE DEVELOPMENT. .. 132
5.12 TOISE ACT-R CODE RECOMPILED IN C++ .. 133

CHAPTER 6. EXPERIMENTATION ... 135

6.1.1 Experiment 1 ... 136
6.1.1.1 Aims and objectives ... 136
6.1.1.2 Experiment setup. ... 136
6.1.1.3 Experiment results ... 137
6.1.1.4 Discussion ... 138

6.1.2 Experiment 2 ... 138
6.1.2.1 Aims and objectives ... 138
6.1.2.2 Experiment setup. ... 138
6.1.2.3 Experiment results ... 139
6.1.2.4 Discussion ... 139
6.1.2.5 Summary ... 140

6.1.3 Experiment 3 ... 140
6.1.3.1 Aims and objectives ... 140
6.1.3.2 Experiment setup. ... 141
6.1.3.3 Experiment results ... 141
6.1.3.4 Discussion ... 142

6.1.4 Experiment 4 ... 142
6.1.4.1 Aims and objectives ... 142
6.1.4.2 Experiment setup. ... 142
6.1.4.3 Experiment results ... 143
6.1.4.4 Discussion ... 143
6.1.4.5 Discussion ... 144

6.1.5 Experiment 5: Optimising a calculator Interface .. 144
6.1.5.1 Experiment results ... 147
6.1.5.2 Discussion ... 157

CHAPTER 7. CONCLUSION .. 159

7.1 DEVELOPMENT AND ISSUES... 159
7.2 CONTRIBUTIONS AND ACHIEVEMENTS .. 163
7.3 FUTURE WORK ... 163

v

APPENDICES……….164

APPENDIX A: A TYPICAL G2A TRANSLATION USING A GOMSL MODEL .. 164
APPENDIX B: SAMPLE RUN OF G2A GENERATED MODEL USING TOISE1 .. 169
APPENDIX C: AN EXAMPLE OF MACROS TO RUN ACT-R INTERACTION PRIMITIVE DRAG&DRAP 179
APPENDIX D: SAMPLE RUN USING THE DRAG AND DROP MACRO .. 183
APPENDIX E: LISP HELPER DEBUGGING FUNCTIONALITY CODE.. 185
APPENDIX F: MUTATION SYSTEM PUMP... 198
APPENDIX G: BLOCK RANDOM MUTATION OPERATOR ... 199
APPENDIX H: TOISE 2-POINTS CROSSOVER ... 200
APPENDIX I: GA PENALTY ALGORITHMS.. 201
APPENDIX J: GENETIC ALGORITHM SURROGATE METHOD EXAMPLE .. 203
APPENDIX K: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000 GENERATION SIZE 206
APPENDIX L: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000 GENERATION SIZE............................ 208
APPENDIX M: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000 GENERATION SIZE 210
APPENDIX N: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000 GENERATION SIZE.............................. 212
APPENDIX O: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000 GENERATION SIZE 214
APPENDIX P: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000 GENERATION SIZE 216

REFERENCES……….218

vi

Table of Figures

Figure 1: Waterfall software development process .. 6

Figure 2: User Centred Design (UCD) ... 7

Figure 3: Whirlwind Project (1949) ... 12

Figure 4: Sage System with early light gun .. 13

Figure 5: Sketchpad (1963) ... 13

Figure 6: Sage System with early light gun .. 14

Figure 7: Engelbart’s mouse patent: 3,541,541 - 1967 ... 15

Figure 8: Douglas Endelbart’s first wooden mouse ... 15

Figure 9: Dynabook (1968) .. 17

Figure 10: Xerox Alto (1973) .. 18

Figure 11: Xerox Start personal computer with a two buttons mouse .. 19

Figure 12: Apple Lisa .. 19

Figure 13: Apple MacPaint ... 20

Figure 14: Apple MacWrite .. 20

Figure 15: Hunger by Peter Foldes (1971) .. 22

Figure 16: Scenario Based Development .. 28

Figure 17: The Model Human Processor .. 31

Figure 18: Outline of the GOMS model for a line editor (Card, Moran, & Newell, 1983)...... 35

Figure 19: EPIC architecture (Kieras 2009) .. 40

Figure 20: Welford formulation of Fitts's Law ... 43

Figure 21: Feature calculation during preparation of motor movement 50

Figure 22: ACT-R Memory organisation ... 52

Figure 23: Activation process in ACT-R .. 53

Figure 24: GA Run .. 78

Figure 25: Interaction Recording ... 88

Figure 26: Dojo testing suite .. 89

Figure 27: Maveryx Testing Suite .. 89

file:///D:/STATIC%20references%20TH%20Comments-corrected-revised%20after%20VIVA-8-no%20comments%20etc-18.docx%23_Toc357158374

vii

Figure 28: Abbot Testing Suite ... 90

Figure 29: Robot after recording a Drag and Drop action ... 93

Figure 30: Robot Interface and Interaction model ... 93

Figure 31: Portion of a GUI models generated by Robot.. 93

Figure 32: Portion of the user interaction generated by Robot .. 94

Figure 33: Recording of a sequence of action ... 94

Figure 34: Robot extended motion captured .. 95

Figure 35: Drag & Drop GOMS model .. 95

Figure 36: Test Application small text editor in Java .. 96

Figure 37: Demo Test Application exercised using Robot .. 96

Figure 38: Small test .. 97

Figure 39: TOISE (Lisp/C++ version).Running model to obtain ACTR latencies................... 99

Figure 40: TOISE system ... 100

Figure 41: Lisp version of TOISE system design ... 100

Figure 42: Running primitives .. 101

Figure 43: ACT-R receiving a command from the GA .. 101

Figure 44: ACT-R parsing a series of tasks .. 101

Figure 45: Command executer for IDTR (“newop” to execute the command) 101

Figure 46: Drag Drop primitive method to call specific method that invokes a macro 102

Figure 47: Method invoking the specific macro .. 102

Figure 48: ACT-R Feedback windows as an ACT-R trace ... 103

Figure 49: Stepping through a model ... 104

Figure 50: ACT-R trace whist stepping through a model run .. 104

Figure 51: running information content whist stepping through a model run 104

Figure 52: Procedural window contain the WhyNot functionality .. 105

Figure 53: Chunks windows... 105

Figure 54: All Buffers windows .. 105

Figure 55: TOISE main GA interface prototype.. 107

viii

Figure 56: Test Application for testing the GA setup... 108

Figure 57: GA Chromosome Encoding ... 109

Figure 58: Tweaking the GA parameters .. 110

Figure 59: Relevance test of the Mending algorithm ... 110

Figure 60: Impact of population size of GA Performance .. 113

Figure 61: Dynamic operators’ rates control .. 115

Figure 62 : No pre-run versus pre-run strategies ... 116

Figure 63: Dynamic control - Crossover evaluations .. 117

Figure 64: Sensitivity for operators’ control set from 0.1 down to 0.01 118

Figure 65: TOISE Mutation system ... 119

Figure 66 Mutation operator operations .. 121

Figure 67: Mutation system and control... 123

Figure 68: Mutation biasing algorithm .. 124

Figure 69: Out of area scenarios .. 129

Figure 70: Loading the project from Lisp ... 130

Figure 71: Typical SWIG header file for native code ... 130

Figure 72: Typical DLL header file .. 131

Figure 73: SWIG Native code wrappers .. 131

Figure 74: Lisp CFFI wrapper code generated by SWIG .. 131

Figure 75: 10 Phone numbers interaction ... 137

Figure 76: GA versus LS (Different population diversity – 25 individuals) 137

Figure 77: GA versus LS (Different population diversity – 50 individuals) 139

Figure 78: 10 phones - (25/50 Individuals) - Difference diversities... 140

Figure 79: GA versus LS - 100 phones-25 individuals .. 141

Figure 80: GA versus LS - 100 phones-25 and 50 individuals’ population............................... 143

Figure 81: Calculator Experiment conducted using the ROBOT recorder 144

Figure 82: Experiment with three areas designed ... 145

Figure 83: Experiment with three areas designed (with user interaction) 145

ix

Figure 84: Experiment using four areas to constrain components ... 146

Figure 85: Experiment using four areas to constrain components (with Actions) 146

Figure 86: Performance for difference diversities ... 147

Figure 87: Distribution curves for Calculator experiments (10000 generations) 148

Figure 88: Top two optimised (< 2* STDEV) layouts ... 149

Figure 89: optimised user interaction (4 areas) 10000 generations ... 149

Figure 90: Top three optimised (< 2* STDEV) layouts .. 150

Figure 91: Comparison of 3/4 areas experiments .. 151

Figure 92: Top optimised (< 2* STDEV) layout .. 154

Figure 93: Top optimised (< 2* STDEV) layout .. 155

Figure 94 Top optimised (< 2* STDEV) using three areas ... 155

Figure 95: Top optimised (< 2* STDEV) layout .. 156

x

Table of tables

Table 1: Benefits of Abbot Library .. 90

Table 2: TOISE 1 Interaction primitives ... 98

Table 3: Categories of ACT-R coding .. 106

Table 4: Comparing the inclusion of the mending algorithm into the mutation process ... 111

Table 5: ANOVA test on Population size change ... 113

Table 6: Dynamic versus static mutation control ... 116

Table 7: Pre-run strategies (with or without carrying crossover rate to other runs)......... 116

Table 8: Dynamic control for testing crossover evaluations .. 117

Table 9: Sensitivity for operator control [0.1,0.01]... 118

Table 10: Comparing sensitivity = 0.01 and 0.06. .. 119

Table 11: The 12 Mutation Operators ... 120

Table 12: Out of area penalty system ... 128

Table 13: ACT-R versus Simulator .. 134

Table 14: ACTR versus Simulator correlation .. 134

Table 15: GA versus LS (Diversity=0.001-25 individuals) ... 138

Table 16: GA versus LS (50 inds-10 numbers) .. 140

Table 17: GA versus LS (25 inds-100 numbers).. 141

Table 18: versus LS (50 inds-100 numbers)... 144

Table 19: Diversities comparison .. 147

Table 20: Comparing Calculator experiments (10000 generations) ... 148

Table 21: Comparing different approaches using different generation size for GA 152

Table 22: Comparing different generation size for 3 areas approach .. 153

Table 23: Comparing different generation size for 4 areas approach .. 153

Table 24: Similarity of component placement (3 areas) ... 156

Table 25: Similarity of component placement (4 areas) ... 157

xi

Table of Abbreviations

ACT-CV
Adaptive Control of Though /

Computer Vision, 81, 82, 83, 173,
233

ACT-R
Adaptive Control of Thought /

Rational, iii, 1, 2, 3, 4, 5, 8, 15, 20, 47,
48, 49, 51, 52, 55, 56, 57, 58, 60, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
94, 96, 97, 98, 106, 107, 109, 110,
111, 112, 113, 114, 115, 116, 117,
121, 123, 127, 135, 137, 139, 140,
143, 144, 145, 146, 148, 149, 150,
152, 153, 154, 155, 159, 160, 161,
162, 163, 168, 169, 170, 171, 173,
175, 190, 200, 217, 219, 221, 223,
225, 227, 229, 230, 232, 233, 236,
239, 240

ACT-Simple
Adaptive Control of Thought/Simple,

1, 68, 69, 70, 73, 74, 75
AIPP

Applied Information-Processing
Psychology, 34

API
Application Programming Interface,

79, 80, 102, 171
ARC

Augmentation Research Centre, 32
ASCA

Airplane Stability and Control
Analyser, 23

AWT
Abstract Window Toolkit, 102

cGA
Compact Genetic Algorithm, 92

CMP-GOMS
Cognitive Perceptual Motor – GOMS,

76
CS

Cognitive Science, 36
DLL

Dynamic Linked Library, 6, 79, 81, 102,
114, 117, 140, 141, 142, 143, 144,
198, 199, 201

DS
Double-Shift, 78

DT
Decay Time, 42

EMMA
Eye Movements and Movements of

Attention, 55, 67, 77, 78, 79, 97
EPIC

Executive – Process Interactive
Control, 1, 4, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 60, 61, 62, 67, 76, 235

FPGA
Field-Programmable Gate Array, 93

FPS
Fitness Proportional Selection, 90

G2A
GOMS to ACT-R, 3, 106, 107, 146, 175,

178, 179, 180
GA

Genetic Algorithms, 3, 4, 5, 6, 8, 87, 88,
89, 90, 91, 92, 93, 94, 95, 112, 113,
116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 129, 130,
133, 134, 136, 138, 139, 140, 143,
144, 145, 147, 148, 149, 150, 151,
152, 153, 154, 155, 157, 162, 163,
166, 169, 172, 211, 212, 230

GAlib
C++ Library of Genetic Algorithm

Components, 240
GOMS

Goals Operators Methods Selections, 1,
4, 5, 19, 34, 36, 40, 41, 45, 46, 47, 48,
54, 68, 76, 106, 146, 175, 178, 179,
233, 234, 235, 239, 240

GUI
Graphical User Interface, 1, 5, 22, 23,

26, 29, 30, 33, 34, 84, 100, 101, 102,
103, 104, 114, 117, 119, 126, 140,
141, 143, 210, 212, 215, 229, 241

HCI
Human Computer Interaction, 1, 12,

13, 14, 15, 16, 20, 22, 23, 24, 26, 27,
33, 34, 35, 36, 37, 40, 41, 42, 45, 47,
48, 50, 57, 60, 68, 69, 79, 97, 170,
172, 174, 230, 231, 234, 236, 237,
238

HIP
Human Information Processing, 69

IDTR
Interface Design Toolkit for Interaction

Research, i, ii, 5, 112, 117, 190, 202,
203, 205, 206, 209

KLEM

xii

Keystroke-Level Energy Model, 75, 76,
236

KLM
Key Stroke-Level Model, 36, 40, 45, 46,

47, 54, 68, 69, 70, 75, 76
MHP

Model Human Processor, 1, 40, 41, 44,
45, 48

MIT
Massachusetts Institute of Technology,

23, 117, 231, 235, 237
MS

Motor System, 42
NGOMSL

Natural GOMS Language, 47, 235
NLS

oN-Line System, 32
OOP

Object Orientated Programming, 1, 26
PARC

Palo Alto Research Centre, 1, 28, 29,
33, 34

PPS
Parsimonious Production System, 51,

52, 55
PS

Perceptual System, 42
PyOgre

Python Open-Oriented Graphics
Rendering Engine, 103

RMI
Remote Method Invocation, 102

RWS
Roulette Wheel Selection, 90, 92

SBD
Scenario Based Design, 38, 39

SoC
System-on-Chip, 93

SRI
Stanford Research Institute, 25, 32

SUS
Stochastic Universal Selection, 91

SWIG
Simplified Wrapper and Interface

Generator, 6, 81, 83, 102, 103, 140,
141, 142, 144, 240

TL
Text-Look, 78

TOISE
Toolkit for Optimisation of Interface

Systems through Evolution, iii, 1, 2,
3, 5, 6, 8, 15, 16, 20, 57, 67, 85, 88,
96, 97, 103, 109, 110, 111, 117, 118,
120, 122, 125, 130, 131, 133, 136,
137, 138, 140, 143, 144, 146, 147,
155, 156, 161, 162, 165, 168, 169,
170, 171, 172, 173, 174, 211

TS
Tournament Selection, 91

TSI
Tcl/Tk Soar Interface, 50

UCD
User-Centred Design, 4, 17, 18, 31, 38,

230
UE

Usability Evaluation, 13
UTC

Unified Theory of Cognition, 47
WM

Working Memory, 42
WME

Working Memory Elements, 49

xiii

Acknowledgement

This study would not have been possible without the support of my family at home. My

partner Debra supported me throughout all those years, running the house with her

determination to keep the family together and reminding me of the important things in

life. This thesis would not have been possible without her help, love and her patience and

for putting up with me all those years. I would like to thanks the children, Jack for his care

about my work, Ellen for being understanding and Stephane for always being supportive

when things became difficult.

I would like to thank the Robert Gordon University and my fellow colleagues for all the

support and encouragement they provided to me, with a special thanks to Audrey Fryer

for the all so helpful coffee sessions. Many thanks to the technical team that have provided

their professional assistance on so many occasions well beyond expectations and to

Malcolm Clark for going over this thesis.

 Most importantly, this thesis would not have achievable without Patrik O’Brian Holt,

who gave me this opportunity, provided me with the support, mentorship, knowledge and

lively chats without which this research would never have been completed. Special thanks

also go to John McCall for keeping me on track and providing me with ideas that helped to

bring this project to completion.

1

Chapter 1. Introduction

While the fundamental lessons of Human Computer Interaction (HCI) as a field of study

is important, the significance of user experience design in the interface design and

engineering should not be under estimated. Users are often faced with interfaces created

by software engineers. Theses engineers are highly trained specialists, who tends however

to focus less on aspects of user interaction than they are on the software functionality. It is

often the case that users tend to be seen as secondary participants in the application

development process, who are often considered once the software development life cycle

is nearing completion, which is after the functionality is tested. It is most often seen that

users need to conform to the requirements of the application and its interfaces created by

the developers, as opposed to the idea of the design of the application being a

collaborative activity between those users and the system developers.

As new technologies such as new mobile innovations impact on our daily life, a new

type of computer user interfaces and users emerges. Today’s computer interfaces have

become much more interactive, complex and ubiquitous in many devices, and users spent

much more time interacting with them as part of their day-to-day lives. For example, not

only these users utilise this technology as tools as part of their professional lives but often

in their private life too for leisure, such as communication and entertainment. This new

generation of users and devices highlights the necessity to develop software and interfaces

fit for purpose for the highly diverse population of users.

HCI has emerged alongside computer technologies as it soon became apparent that

sophistication of software is pointless unless the users can interact properly with its

interfaces. When software is designed, it is embedded with functionality that is only

perceived when users use the system efficiently and represents what this system can do

and above all what it is marketed for. The usability of this software is the degree by which

it is used in terms of efficiency when users perform a series of possible tasks using the

system. Thus as Karray stipulates, a balance is needed between the actual functionality

and the usability to demonstrate efficiency (Bevan 1998; Karray et al. 2008).

Usability has potential benefits for software development companies such as increased

productivity and customer satisfaction (Haapasalo and Kess 2002; Rajanen and Jokela

2

2007; Kljajevic 2008) as it brings effectiveness and efficiency to the product. It is

increasingly significant for leading world software companies to use usability factor in

high profile advertising (Karat 1993; Myers 1993; Byrne 2008; Macleod 1994; McGrenere

1998; Gamsriegler 2006). As Macleod states, usability tends to be linked with

minimization of errors and staff training, efficient use of software and lower staff turnover,

which stir Usability Evaluation (UE) as an essential part of the development to ensure that

user interfaces (UIs) enable users to achieve goals effectively in line with Standards such

as ISO9241 (Nielsen 1994; Bevan 1998; Lebiere et al. 2005; Lane 2007; Ismail et al. 2011).

As Haapasalo and Kess stipulate, it is more likely that people operates computer systems

to be productive but not essentially to be creative and thus, software development is often

driven around routine tasks (Redmond & Smith 1975; Haapasalo & Kess 2002; Lif et al.

2003; Anderson et al. 2004). McGrenere noted that most users are now faced with more

functionality in their computerised systems and marketing was often perceived as the

driving force behind this increase of features even though surveys report that heavily

featured applications are often the cause for a decrease of productivity. This statement is

more accurate than ever today with consumerism having become a major part of our daily

life and users purchase computer software and electronic devices in the same manner as

they would with any other products i.e. they want more features and functionality for their

money even though it is unlikely those devices extra functions that are often heavily

marketed will ever be used by the majority of users (Sutherland 1964; Lewis & Rieman

1993; Anderson 1996; McGrenere 1998; Lebiere 2006).

HCI research has made the case for usability evaluation as part of the design process

that leads to interface optimisation. However, given the known potential benefits, there

are comparatively few software developments that undertake usability testing as part of

their software development life cycle, as often management experience difficulties to

establish immediate potential advantages. In addition, another aspect is that usability

evaluation often competes in terms of budget share with other development teams (Karat

1993; Anderson & Lebiere 1998; Troutt & Sheiner 2007). Many software designers refrain

from using usability as an iterative process in their software development as the process is

perceived as too time consuming and expensive; especially regarding the techniques

involved too intimidating in their complexity (Newell 1990; Dillon et al. 1994; Nielsen

1994; Lif et al. 2003; Das and Stuerzlinger 2007; Pang & Schauder 2007; Ismail et al.

2011).

Most large projects are developed using version of the waterfall method, which

decomposed the entire process into a series of well-defined sequential phases. It starts

3

with the requirement analysis, and then a set of specification documents is drawn for it.

The project is then planned and the design phase starts. Once completed, the

implementation is undertaken; with a phase of integration, testing and maintenance that

ends the project development. In this model there is no formal mechanism for feedback

from one phase of the development to previous phases which often impairs maximising

usability.

Even though this model has been proven to fail in many cases it is still used as it allows

companies to define responsibilities and budgets easily. This state of affair has major

consequences as testing is achieved by a very limited sample of potential users which can

be problematic when an attempt of optimization of interfaces is necessary (Lewis &

Rieman 1993; Kieras 1997).

Therefore, usability in software engineering is often neglected despite over thirty years

of research discussion on the HCI scene (Nygaard & Dahl 1981; K Card et al. 1983; John et

al. 2004; Troutt and Sheiner 2007). Cost is often always the limiting factor rather than the

belief that usability is being considered un-beneficial, as it is known that well-designed

software increases productivity, reduces human errors and makes software more

enjoyable to users, which in terms of marketing is an important point. Dillon (1994)

surveyed current practices in usability engineering and found that those benefits could be

measured by a reduction of training and learning time most feedback from the

professionals demonstrated a view that reflected a vague nature of the concept. However

this survey also reported that 52% of the respondents reported that their organisation

perceived usability as “Essential” while 19% of the respondents viewed it as unnecessary.

95% suggested that a solid knowledge of the users, tasks and their working environment

was very important suggesting most of the respondents had a realistic opinion in terms of

usability and related variables. However, 64% of them reported having difficulties with

usability because of limited time and resources (Dillon et al. 1994; Dorman and Gaudiano

1998; Ivory and Hearst 1999; Ivory and Hearst 2001). This statement is still valid today.

There is however another school of thought that has emerged and rejects the

traditional waterfall development path and has moved in a more participatory design

model where systems are designed by both the designers and users working together with

the common goal of making the system fit for purpose (Lebiere et al. 2005; Pang and

Schauder 2007; Bolton et al. 2012), in effect moving the process from “designing for” to

“designing with” (Card et al. 1980; Lewis and Rieman 1993; Anderson et al. 2004).

4

To improve the undertaking of usability evaluation many HCI specialists have

responded by providing specialised tools and usability guides to designers to validate and

evaluate their designs in an attempt to optimise them to aid designers to assess their

software interfaces at low cost both in terms of modelling and financial, thus promoting

usability (Anderson 1996; John et al. 2004; Grudin 2005; Lebiere 2006).

 Automated tools are increasingly been researched (Card et al. 1983; Ivory & Hearst

1999; Ivory & Hearst 2001; Crystal and Ellington 2004), but automatic optimisation of UI

is a field that remains undeveloped.

The goal of the research that is presented in this thesis is to provide tools for design

and research titled: Toolkit for Optimisation of Interface Systems through Evolution

(TOISE). TOISE will automatically optimise an interface to provide clues to the designer on

how to place components on interfaces to alleviate some of the cognitive load and human

motor functions when interacting with them, by using a cognitive architecture; namely

ACT-R/PM. This approach is referred to in this thesis as an EvoCog approach. TOISE

attempts to automatically evolve a near optimal layout for an interface, thus the essence of

the research presented in this thesis is related to automatic optimisation of user

interfaces. What TOISE will not do is to combine HCI heuristics or other design principles1

(Lidwell et al. 2003) that designers may use as part of design and their usability activities.

This toolkit was conceived to concentrate on human cognition and motor functions, as

part of its functionality and its novelty is the combination of a genetic algorithm using

ACT-R as a human simulator, replacing expensive and incremental human-driven activities

with a relatively rapid and inexpensive meta-heuristic search of a much larger design

space that normal human approaches would not be able to carry out.

1.1 Thesis organisation

The argument that is presented in this work is that a software prototype is developed

by demonstration using the user interaction recorder i.e. Robot, which produces a

complete and well-described interaction model for a specific interface. This model is then

loaded into an evolutionary engine that uses some of its metrics i.e. locations of all the

widgets contained in the interface and construct a population that is evolved using a

cognitive model as part of its fitness assessment. TOISE will over time evolve an optimal

1 Principles referred for instance to as 80/20 rule, accessibility, affordance, alignment, colour and consistency
to name but a few presented in the Universal Principles of Design publication by the authors.

5

layout solution that will minimize both human cognitive load and motor functions when

interacting with the interface for some series of specific goals.

The sections in this thesis are going to follow this structure. The first part of this

document will concentrate on the introduction. Chapter 2 will provide a brief discussion

on the historical background of HCI. Chapter 3 will review the literature related to

cognitive modelling whilst chapter 4 will presents an overview of relevant research in the

field of layout optimization using evolutionary algorithm. Chapter 5 will discuss in detail

the TOISE approach and software, first by discussing the user interaction recording, then

by presenting a comprehensive look at the cognitive modelling. The next section will

present the evolutionary algorithms used in TOISE. Chapter 6 discusses a series of

experiments demonstrating the abilities of TOISE to generate optimised design.

Finally chapter 7 will conclude the thesis by summarizing the advantages and the

disadvantages of TOISE as well as problems encountered during the development of the

software and provide some constructive directions for future work.

6

Chapter 2. Review of major milestones and relevant literature

The evaluation of usability is increasingly becoming more important as a major part of

any software development project and a range of methods and tools have been available to

professionals and other groups to support their endeavour for some time. According to

Andrew Dillon, usability is a measure relating to a user interface quality that is connected

to its effectiveness, efficiency and user satisfaction when using this UI attempting to

perform a series of tasks (Dillon 2005). This description of usability is close to the ISO

9241:11.

With the ubiquitous nature of computers (Christou 2007) and users experience and

diversity becoming broader; software and user Interfaces must cater for this extensive

range of users. Without a good knowledge of the target users, computer interfaces may

become usable but their usefulness will often be debatable. Therefore, any computer

system should be designed for the needs and capabilities of these target users for who

there are intended.

Figure 1: Waterfall software development process

One way to achieve this is by utilising a known approach that is gaining a wider

acceptance (Bevan and Ferre 2010) named User-Centred Design (UCD), which includes

the users throughout the design and development phases. This approach not only focuses

on understanding target users but also focuses on understanding the tasks (or series of

tasks) that are performable on the system, and furthermore the environment in which

they operate in (Gersh et al. 2005). In addition, potential users are involved throughout

7

the whole development of the systems, thus insuring and acceptable level of usability

feedback from one lifecycle stage to another. This approach contrasts with the more

traditional sequentially based waterfall cycle (Stone et al. 2005) in which each part of the

cycle is an independent part of the software development that is completed before the

next phase in the sequence is started (Zachary et al. 2001). However in reality iterations

between the different stages of development take place to allow some overlapping

between the phases where information that is needed is fed back so alterations can be

implemented (Zachary et al. 2001). The classic process is displayed in Figure 1. In this

type of development, user testing and evaluation often take place at the end of the cycle

which implies that by that stage changes are often more difficult and costly to achieve as

the development is nearing completion, which also often precludes the information to flow

from one stage to another as often one phase starts when the previous one was completed.

This approach contrasts with the UCD approach (See Figure 2). As per the classical

waterfall approach, it starts with a good knowledge of the target users’ analysis. This leads

to a set of requirements being drawn that contributes to the design of the software and its

interfaces. Once a design is compiled, a prototype is created that is used as a basis for

implementation (and user testing). The major difference between the UCD and the Classic

approach is that users are involved throughout the whole process at each and every phase,

and the feedback that is obtained is always taken into consideration at all stages of the

development.

Figure 2: User Centred Design (UCD)

Although the concept of usability is perceived as key to the design of software and user

interface in particular, its integration within the development lifecycle is often restricted

to one user evaluation in more classical methodology (Hartwig et al. 2003; Kljajevic 2008).

The UCD model of development tends in theory to re-adjust the potential of usability

8

evaluation by integrating the human-in-the-loop in all the phases of the interface

development where the collected data can play a significant role to indicate usability

improvements focusing on specific user groups for specific tasks. However, one of the

main issues with usability evaluation is that it can become impractical or prohibitive in

terms of cost i.e. conducting evaluation on population samples of pilots; doctors etc., but

also in terms of logistics, that is consulting these participants repeatedly can be

problematic (Byrne 2008).

One approach to solve this problem it the use of quantitatively realistic models based

on these participants to replace the human-in-the-loop that can assess user interfaces,

making the evaluation process more straightforward than using real users. These models,

whether there are based on Goals Operators Methods Selections (GOMS) or cognitive

architectures, act as surrogate users, which ultimately produce quantitative values such as

execution times and error rates (Gamsriegler 2006).

The research presented in this thesis uses cognitive models as surrogate users and uses

the metrics obtained during their usability assessment as the fundamental part of an

optimization process, which ultimately provides user interfaces that minimize cognitive

and motor load.

This essentially means that early in the design process, cognitive models are used to

predict user performance when interacting with a specific UI architecture. This approach

potentially allows developers to use evaluation data (provided by the cognitive model)

which can help guide the design process and be of use well before any user evaluations are

involved (Ritter et al. 2002; Fleetwood et al. 2006). It follows that predictions of human

performance using software models has the potential to be of great practical value but,

unfortunately, it is a difficult process to perform owing to the considerable difficulties with

the creation of cognitive models based on and created from a set of criteria defined by

experimental user test data. This is in part due to the complexities of collecting

experimental data requiring specialist expertise and a great deal of resources.

Unfortunately, there is not a great deal of data in the public domain, partly due to state-of-

the-art research being funded by organisations such as NASA and the United States Air

Force (Lebiere et al. 2005; Lane 2007).

The research reported and presented in this thesis involves an approach that will

ultimately facilitate the modelling of human behaviour and the enhancement of user

interfaces at the level of cognitive, perceptual, and motor operations using the unified

9

cognitive architecture referred to as Adaptive Control of Thought – Rational (ACT-R)

(Sutherland 1964; Redmond and Smith 1975; Anderson 1996; Anderson et al. 2004;

Lebiere 2006) which allows cognitive tasks to be modelled and thereafter run. ACT-R is

discussed in detail in section 3.3.3. In short, ACT-R (Anderson & Lebiere 1998) is a

modular architecture that embodies the theories of cognition, perception and motor

behaviour (Das and Stuerzlinger 2007), which is composed of a series of interacting

modules such as declarative and procedural memories, perceptual frameworks such as the

visual and auditory modules and motor frameworks such as the motor and speech

modules. They are coordinated by a central production system (Newell 1990), which

matches the content of the different modules’ buffer to fire the best production rule.

Thus in order to facilitate the modelling tasks to produce enhanced user interfaces, the

system that is presented in this thesis involves the retrieval of cognitive predictions and

metrics that will be used to improve the usability and design of these software interfaces

in terms of efficiency in a real-time setting by using a genetic algorithm that will ultimately

attempt to evolve a solution using the ACT-R predictions whilst a special module will

retrieve all the user interactions relating to a specific prototype interface.

The main research question in this thesis is answered through two approaches: ACT-R

and optimisation. This duality makes this work somewhat complex to present, as both

approaches are based on fundamental principles i.e. human cognition and Darwinian

principles.

For this reason, the following sections will present a historical overview of HCI and its

emergence. Sections associated with cognitive architectures and modelling will follow

where applications that relate to the presented research in this thesis are discussed.

Further sections on Genetic algorithms will explain some major concepts on

evolutionary algorithms providing examples of usage. In the next Chapter TOISE is

presented and discussed.

10

2.1 Historical background

There is little doubt that research during World War II led to new understandings of

human factors (Kieras 1997) as new technologies were invented during that period such

as Radio Detection and Ranging (RADAR) systems. Human beings became more active

processors of information than they would have been before the development of these

increasingly complex systems, e.g. in aviation that placed greater demands on human

perception and cognition. This led to breakthroughs in experimental psychology,

perception, performance, advances in our understanding of how human memory works,

human learning processes and problem solving. It became apparent during this era that

the main practical difficulties with equipment such as radar systems and military aircraft

lay with the operating of these devices and not essentially with the complex devices

themselves. In other words, the interaction with those devices was the major source of

difficulty and not their complexity. This research i.e. Human Factors, influenced not only

the design of those devices but the psychological theories that emerged during that time.

In retrospect, this gave researchers the perfect applied problem to work with, and as

society was being transformed due to the use of these new computational devices,

cognitive scientists used their applied methodology to solve these problems that were

critical to usability (Card et al. 1983).

With the emergence of early personal computers as opposed to mainframe computers

normally used only by specialists, changes in human-computer interaction gave rise to

new approaches and more understanding as cognitive scientists came to realise that with

the new styles of interactions that were required using this new technology than better

design of human-computer interfaces must become pivotal in dealing with human

performance.

The first postulation was that the best approach to design should be based on task

analysis, to obtain human interaction metrics and argued that since human activity is

known to be goal orientated, and their limitation in terms of perceptual and information

processing abilities was beginning to be understood, adjusting the task environment could

increase human performance (Dorman and Gaudiano 1998; Bolton et al. 2012). Hence

given the understanding of human cognition and motor functions and the goal to achieve,

the task environment can provide information to psychologists to analyse how best this

goal can be performed within this environment. Another postulation was the need to shift

the methodology from results based on formal comparative work to results based on

calculations i.e. approximations, which from then on became an essential tool to perform

11

their analyses (Card et al. 1980). To complete their set of requirements, cognitive

psychologists who were becoming cognitive engineers argued one last requirement: a

need for a supporting theory of human computer interaction relevant to the design of

computer interfaces (Crystal and Ellington 2004; Grudin 2005).

It is during the design process, that the designer has still enough degrees of freedom to

change the system usability as it is easier to propose evolved designs at this stage rather

than when a system has already launched for use, which means that proposing any

changes are extremely difficult to implement and would probably lead to a later major re-

release. Therefore if psychologists only concentrate on evaluation of existing implemented

systems, the impact of their research will remain negligible unless it moves in the design

area (Carroll 1997).

Human Computer Interaction (HCI) emerged in the 1980s and has steadily expanded

for over thirty years to attract many professionals from diverse disciples i.e. computer

science, psychology, mathematics, engineering, merging concepts and approaches from

those disciplines. HCI is an example on how many distinct approaches and conceptual

interests can be integrated to provide a human-centred theory of best practice. It has

evolved into a major area of research that concentrates on finding best practice with

computer interfaces focussing on human interaction. However, as we will see later, the

field of HCI and its focus has expanded dramatically over the past three decades to

embrace new technological developments and the further diversification and complex

user base.

In some ways, HCI was and still remain greatly influenced by technical advances. As

equipment evolved, HCI had to catch up to fulfil its remit. This fundamental link between

the two phenomena symbolizes two entities coevolving symbiotically.

The main technologies that affected the entire industry are both hardware and

software advances. Without debating which one had the most impact, most agree that

direct manipulation of objects, for example by utilising mouse pointer devices, created a

shift in usability that has been difficult to surpass contemporarily. This however would not

possible if the concept of Graphical User Interfaces (GUI) had not been previously

invented. These two advances led to major adjustment of productivity and led to

applications such as spreadsheets, word processing and graphic packages, which are now

the rudimentary requirement in all computers. This drive towards a more interactive

environment not only created an impact then but also paved the way for today's new

12

research on gesture's recognition and control, and many of the multimedia software used

today, in their own ways, are revolutionizing today's industry.

In the next sections, we will discuss the main steps that evolved computer technology

along with the many issues that the technological advances created and how the HCI

community came about to solve the many problems the same technology brought about;

in particular obtaining metrics or user interaction that this research is based on.

2.1.1 The first GUI and pointing device

The first computer graphics aided systems is often argued to have come alongside the

first digital computers; the Whirlwind project being the first project to have used this

technology which had over an acre of electronics with one control room containing one

electronic screen display and a light gun providing direct input onto the screen (Machover

1994).

HCI would not be what it is without the phenomenon of direct input. The light gun was

the first real direct input device created, used mainly in a military environment and was

brought to light by the Whirlwind project2.

Figure 3: Whirlwind Project (1949)

Created in 1944 as part of the US Navy's Airplane Stability and Control Analyser Project

(ASCA), it attempted to provide a real-time flight simulator. The Whirlwind project was

integrated into the Semi-Automatic Ground Environment (SAGE) that was an air defence

system design to protect the US against enemy bomber attacks controlled by US Air

Defence (See Figure 3). The light pen was created as part of the work on the Whirlwind

project by Robert Everett. He designed this input device i.e. a light pen (or light gun) which

when pointed at a light symbol displayed on a CRT radar screen (see Figure 43). These two

2 Project ran by the Massachusetts Institute of Technology (MIT)

3 Courtesy of http://www.computermuseum.li/Testpage/Whirlwind-1949.htm

13

projects left a legacy by opening the door to the Computer Graphics (CG) discipline and

showing CRT screens as viable displays and interaction interfaces, and moreover,

introducing the light gun as an important input device for these devices (Redmond &

Smith 1975; Lane 2007).

Figure 4: Sage System with early light gun

2.1.2 The next pointing device

The pointing device technology advanced when Ivan Sutherland (Sutherland 1964)

invented Sketchpad4 (See Figure 55). Its concept influenced and galvanised generations to

come as it fundamentally contributed to the domain of HCI, being one of the first usable

graphical interface software.

Figure 5: Sketchpad (1963)

Even though the pointing device was not a mouse, the light pen used in his experiments

allowed for direct input to take place. Using this device, objects could be drawn, selected

and moved by dragging them onto a screen (Figure 66).

4 Sutherland invented Sketchpad as part of his PhD research in 1963-1964.

5 Sketchpad: courtesy of http://kisd.de/~rbaehren/sketchpad.htm

6 Sketchpad: courtesy of http://kisd.de/~rbaehren/sketchpad.htm

14

In the programmatic context, Sketchpad provided a major leap in techniques too as he

abstracted what was displayed onto the screen in order to reduce cognitive load as his

intentions were to create a system that could be used by non-programming individuals

such as artists and engineering draughtsmen. In short his main task was to remove the

division between users and programmers.

Figure 6: Sage System with early light gun

In that respect Sutherland succeeded and was one of the first person to use the concept

of object orientation, namely the concept of classes and objects being instance of those

classes with an introduction to inheritance. Many attributed Sketchpad as being the first

CAD program for which Sutherland received the prestigious ACM Turing Award in 1988.

2.1.3 The ubiquitous direct input device: the mouse

Douglas Engelbart was a visionary7 (Grosz 2005). His report “Augmenting Human

Intellect: A Conceptual Framework” that described and discussed his vision and research

agenda secured funding from ARPA, which led to the invention of an early prototype of the

contemporary computer ubiquitous mouse8 (Zhai 2004) (See Figure 89). Originally made

up of two geared wheels perpendicular with each other, the co-founder Bill English while

working later at the Xerox Palo Research Park modified the original model and replaced

the two wheels system with a metal ball pressed against some metallic rollers to translate

the mouse movement See Figure 7.

7 Engelbart earned a Ph.D. in EECS from UC Berkeley in 1955.

8 Around 1963 at the Stanford Research Institute (SRI)

9 Courtesy of http://www.dougengelbart.org/pubs/papers/scanned/Doug_Engelbart-
AugmentingHumanIntellect.pdf

15

Figure 7: Engelbart’s mouse patent: 3,541,541 - 1967

Some years later the mouse saw other modifications which included amongst others

the additions of two buttons, to become the technology for direct input for their first

personal computer containing a GUI as its interface. This computer was the Xerox Star as

shown in Figure 11 10.

Figure 8: Douglas Endelbart’s first wooden mouse

2.1.4 Importance of Object Orientated Programming (OOP) in HCI

None of the advances made in pointing devices, which have become the main human

interaction with computer user interfaces would have been possible without creating a

layer of abstraction between the objects displayed onto a screen and their relevant virtual

entities inside the programming code.

Nygaard and Dahl (1981) with their work on simulation models - SIMULA some years

later would take the concept used by Sutherland much further and formalize what is

known today as OOP (Nygaard & Dahl 1981). In short, most programming languages were

based on functional decomposition techniques, i.e. based on sub-routines (or major

actions) that were necessary to complete a specific task. With object-orientation, this

10 Courtesy of http://images.yourdictionary.com/xerox

16

decomposition is based on objects. Thus changes in representation of an object are

localized rather than global. Furthermore, the object-representation implements models

of reality that are self-contained objects interacting and collaborating with each other

hence introducing the idea of real-world objects for developing applications and systems

(Booch 1986; Dahl 2004; Kindler 2007).

2.1.5 The importance of event handling i.e. Reaction Handlers in HCI

It is difficult today to conceive a programming environment without event handling

which provides the main code response to human interaction on user interface widgets.

However, in the early 1960s this concept was not formalized. There were influences such

as the work done on the SAGE project, but this was a military project and consequently not

in the public domain.

Another influence in this domain was the work of William Newman11. This researcher

from Harvard University worked on the development of problem-orientated programming

languages for graphical applications and Reaction Handler12.

This fundamental concept lies on the fact that for every action taken by a user, a

specific reaction would follow by the computer depending on the current state of the

running program. This is undoubtedly the precursor of events handlers that is seen in

most of today's programming software (Newman 1968). This paved the way for

fundamental changes in ways software not only computes and retrieves data for specific

tasks but also reacts to human interaction (Kay 1996).

2.1.6 Icons

In the field of HCI there have been many important scientific findings. Some were

theoretical and pushed the science forward but some were practical and resulted in a

major usability shift. David Canfield Smith’s contribution refers to both. Heavily influenced

by the invention of Sketchpad, and the new possibilities it presented, Smith went on to

explicitly argue the benefits at the cognitive level of the abstraction between the user

interaction and the programming platforms. In a sense it was clear to him that graphical

images could represent abstract entities of some programming language objects.

Smith coined the term "icon"13 to these graphical entities, a name still used today. These

objects could be manipulated irrespective of what they were in terms of programming

11 William Newman earned his PhD from the Imperial College in London.

12 Newman presented a conference paper in 1968 based on the work done at Harvard.

17

objects. Smith being part of the team that later developed the Xerox Star as chief designer

influenced the development with his principles and in particular with the first adoption of

“WYSIWYG” (Smith 1975).

2.1.7 Xerox PARC

From this point, many computer scientists were moving towards the idea that

computers that should not be solely for programmers and experts but also tools that

anyone could utilise. This could have seemed an insurmountable challenge had the

discoveries mentioned above not been made. The next stage to meet this challenge was to

merge all these advances into one system. Alan Kay14 was such a person to drive this

concept to completion. In his book, Kay (Kay 1996; Chesbrough & Rosenbloom 2002)

wrote:

"Ideally the personal computer will be designed in such a way that people

of all ages and walks of life can mould and channel its power to their own

needs."

This typifies the vision that the Xerox team had in the mid-70s and led to the creation of

the Dynabook in 1968 (See Figure 915); a major evolutionary step analogous to today's

tablet computers, directed towards usage by children (Kay 1972; Kay and Goldberg 1977).

Figure 9: Dynabook (1968)

However it was later, at the beginning of the 1980s that Xerox developed their first

“commercial” system to use direct manipulation extensively. Xerox first conceptual

13 Based from Smith’s PhD research on Pygmalion in 1977,

14 Working at Xerox PARC

15 Courtesy of http://history-computer.com/ModernComputer/Personal/Dynabook.html

18

system, was the Xerox Alto in 197316. It was a device used only for experimental purposes

and incorporating the new innovations that were made at the time.

Those computers mainly used in Xerox's original Palo Alto Research Centre (PARC)

(Irby et al. 1977) were revolutionary17 in a way that they were Ethernet-linked and

provided unique services (for that point in time) including arguably the first Graphical

User Interface (GUI) (See Figure 1018). Later, the Xerox Star development started in 1977

(Smith et al. 1986). The mission behind this development was to create the "office of the

future" and owed most of his technical success to the Xerox Alto19, which incorporated

many developers from the Alto project (Chesbrough and Rosenbloom 2002).

Figure 10: Xerox Alto (1973)

Despite the huge technical breakthroughs this computer brought to the world, the

Xerox Star (See Figure 11) failed commercially in 1981. However many agree that this

engineering achievement laid the foundation for a new type of computer interfaces based

on “WYSIWYG”, Ethernet, network file services and printing services which are still with

us today.

16 Development team was headed by Chuck Thacker.

17 Thacker was awarded the Turing Award for his pioneering work with the Alto

18 Courtesy of http://retro-treasures.blogspot.co.uk/2010/10/xerox-alto-computer.html

19 David Liddle was in charge of the development team.

19

Figure 11: Xerox Start personal computer with a two buttons mouse

2.1.8 Apple Macintosh

The Xerox Alto did not just spawn interests within the Xerox team. In the late 70s, the

Apple management became aware of the revolutionary new architecture of the Alto and

decided to use its new mouse driven GUI concept for a new system they were designing to

upgrade their existing commercially successful Apple II. The Apple Lisa20 (Figure 12)

presented a GUI not unlike the current Apple "Look and Feel" was introduced in 1983.

Figure 12: Apple Lisa

Three years later, in 1986, the Macintosh Plus was introduced including some

fascinating improvements to earlier models on both the hardware and applications fronts.

One of the major enhancements this product contained was the inclusion of a SCSI port,

which allowed many types of devices to be attached to the system externally including

20 At the time Xerox was a shareholder in Apple the Apple Lisa.

20

extra display units. This “WYSIWYG” system included many programs such as MacPaint

(Figure 13 21) and MacWrite (Figure 14 22) bundled into it. In addition, third party

software like Word and Excel 23 and PowerPoint24 could optionally be installed.

Figure 13: Apple MacPaint

Figure 14: Apple MacWrite

All of these technological breakthroughs have had a major impact on the way people

interacted with computer systems. Allowing human interaction with computer interfaces

created a breeding ground for research in usability as these user interfaces became more

complex and failures in this field had major impact at many levels both in terms of

productivity and cost. What was true yesterday is still true today and as computer

interfaces become ever more complex and human limitations on system performance is

being ascertained, usability evaluation is now beginning to be taken seriously. With the

increasing cost of user evaluation due to the increasing popularity in approaches such as

the UCD approach, user modelling is becoming more popular as a mean of evaluating user

interfaces. Tools have been created to help designers with user interface evaluation, but

21 Courtesy of http://churchm.ag/macpaint-and-quickdraw-source-code-available-mac-download/

22 Courtesy of http://www.jnkmail.com/stuff/nostalgia/

23 Word and Excel where first produced by Microsoft for the Macintosh platforms.

24 PowerPoint was created by Forethought before being bought by Microsoft.

21

the system presented in this thesis goes one step further and provides a mean of

automatic optimisation of those interfaces.

2.2 Software Evolution

The field of text editing had the major impact on the whole software industry. The first

prototype came from the Stanford Research Laboratory and was proposed by Engelbart25

where he implemented the first word processor in 1965 called oN-Line System (NLS) after

three years of research and demonstrated it in 1968.

NLS marked an evolutionary turn in computer office software. Engelbart who also

invented the mouse was a pioneer in human-computer interaction research and his team

put forward a new concept of hypertext. This word-processor had similar functionality to

the bestselling software that came out some years later: WordStar. It provided a turning

point in the way text editing would be considered and marked the start of major funding in

R & D that would ultimately lead to word-processing software such as WordStar leading to

MacWrite and Microsoft Work.

Graphical programs are a major part of software tools used today. In the early days,

Sutherland's Sketchpad using a light pen first introduced this technology. The real

demonstration of real time user interaction with a mouse came with Engelbart’s NLS. With

the continuing research drive that was taking place, another significant step in the

evolution in human computer interaction was taken in 1968. Ken Pulfer and Grant

Bechthold26 using Engelbart’s idea of a device pointer drew all the frames of a movie

sequence using a key-frame animation system. This led the director Peter Foldes in 1971,

to direct the first computer-animated movie produced by the National Film Board of

Canada (See Figure 15). This film became a success and was recognised by the awards

bodies in and around 1971 i.e. Jury Prize at the Cannes Film Festival, a BAFTA award for

Best Animation Film and a Silver Higo at the Chicago International Film Festival. This

iconic film had a major impact in a somewhat traditional movie industry.

25 Engelbart was a researcher at the Augmentation Research Centre (ARC) at the Stanford Research Institute
(SRI) during the 1960s.

26 From the National Research Council of Canada

22

Figure 15: Hunger by Peter Foldes (1971)

During the same period other influential research took place for example, Newman

when working on the Xerox Alto project implemented the first paint program. Soon after,

Patrick Baudelaire’s Draw became part of the Alto successor - the Xerox Star system. The

first real Paint program is agreed to be Dick Shoup’s SuperPaint27. This pioneering

research and development from Xerox PARC with colleague Smith increased the dynamics

towards a technology that would revolutionize the multi-media industry in terms of

features. Not only, would the program allow the capture of images from standard video

output, but also virtual paintbrushes, pencils and fills. Moreover, SuperPaint became the

first Paint program to use and depend entirely on a GUI with the new feature called anti-

aliasing using a pointing device. Television channels used this relatively easy to use system

to create custom graphics for their programs. NASA for the Pioneer Venus project mission

in 1978 used SuperPaint to create their technical graphics and animations. Shoup won an

Emmy award in 1983 for his work, and an Academy Award shared with Smith and Thomas

Porter in 1998, for his development of SuperPaint (Shoup 2001). This bespoke system was

never intended to be for mass production but like Newman's Sketchpad and Engelbart's

mouse and his first word-processor, it became part of a surge of new ideas and concepts

that would revolutionize the world of HCI.

2.3 The emergence of cognitive engineering

With windows in a Graphical User Interface (GUI), with pointing devices and concepts

that allowed developments of many of today’s software and hardware devices, the world

of computing and computer users changed beyond recognition. This revolution in terms of

user demands will put pressure on the HCI and Cognitive Science communities.

27 Shoup earned a PhD from Carnegie Mellon University in 1970.

23

Prior to the 1970s, technology professionals were most likely to interact with

computing technology. However the emergence of personal computers in the 1980s

revolutionized not only productivity in people's professional lives but also at a private

level. People not only used computers at work, but also started to spend time at home

utilizing them for recreation purposes, such as game playing, improving their personal

lives using word-processors and interactive programs such as communication software.

This led to an explosive growth of computer usage, which changed the fabric of our society

and human behaviour.

This surge highlighted many deficiencies of computer devices as pieces of hardware as

well as in their interfaces with respect to usability for the individuals wanting to use

computers as tools. It also presented a major challenge to the manufacturers, designers

and programmers of those artefacts who after being made aware of these deficiencies who

lacked formal theories and models that could guide design as well as methods, tools and

techniques to build usable systems.

Fortunately, this corresponded to the time when cognitive science, which included

domains like artificial intelligence, psychology, and linguistics, emerged. The professionals

from these fields became active, began to work together, published their findings and with

the help of manufacturers made sense of increasingly complex technologies and the

changing of user populations which led to the emergence of modern HCI (Roth et al.

2002).

The main core of the research started yet again when Xerox, established the Palo Alto

Research Centre (PARC) in the 70s, which was by that time famous for its developments in

interactive technology. In those days, Allan Newell, employed as a consultant to undertake

some psychological research into human interaction using the newly invented

technological concepts such as user interface and interaction devices, created with his

former students Stuart Card and Thomas Moran a small unit called the Applied

Information-Processing Psychology (AIP) project with the main remit of applying their

applied psychology research to HCI (Laird and Rosenbloom 1992). In short, their work

concentrated on the quality of human interaction when using interactive devices such as

mouse and GUI. Their efforts amongst others placed HCI at the centre of one of the most

influential place in terms of new technology. From this research, a very influential

document emerged written by Stuart Card, Thomas Moran and Allan Newell: The

Psychology of Human-Computer Interaction, which introduces the concepts of human

performance, GOMS and KML. The latter two concepts being paradigms that allows the

24

simulation of users, will be introduced in the proceeding sections; concepts still in use

today.

The main remit of this new venture, was to include systematic and scientifically

understood concepts into applications development and assessment focusing solely on

usability based by research made by cognitive scientists. It gave rise to "Cognitive

Engineering”. Cognitive Engineering is an interdisciplinary approach to the development

of principles, methods, tools, and techniques to guide the design of computerized systems

intended to support human performance (Woods and Roth 1988; Roth et al. 2002). This

emergence came at the right time and injected new and novel concepts, integrating skills

from different disciplines, and most of all delivered a new needed vision dedicated to

addressing deficiencies with the use of computers and digital devices.

Early research focused mainly on software such as text input and editing as well as data

entry in software. Today, it has become far richer and has expanded to areas like

information systems, visualization and many aspect of product design to name but a few.

Thus, in the academic world, HCI is taught in departments such as psychology, design,

product design, cognitive science, science and technology, it is also included in industrial

and manufacturing courses. HCI is now an integrated part of every taught concept

integrating different approaches, and this richness encompasses a broad spectrum of

users ranging from the young to the elderly, users with many forms of disabilities from

learning to physical disability ranging from motor to visual impairment. As software

domains became richer in terms of functionality, HCI focused on many aspects of software

(and hardware) applications and now includes games, e-software, military software and

process controls. This spectrum of applications meant that the early primary focus of HCI

which mainly dealt with graphical user interfaces and usability now includes many other

types of interactions, for many types of devices, ranging from hardware devices of any

sizes i.e. from computers, hand-held devices, and mobile devices of many types with all the

intricacies that these new devices offer.

This broad landscape is very varied and complex and develops professionals that once

would have been known as computer scientists and psychologists, but now produces user

experience designers, application designers, user interface designers, interaction

designers and other relevant engineers for these professions. The application areas are

now sub-divided into many domains. These subareas include mobile computing, in-

vehicles systems, handheld and wearable devices, distributed systems, programming tools

and their related tools.

25

2.4 HCI focus

The main focus of research in Cognitive Science (CS) is to study and to develop mental

models as part of its efforts to understand and predict how humans know, perceive, make

decisions, and construct behaviour in different environments.

Cognitive Science is the study of how the human mind operates and has inherited many

of its concepts from psychology, itself associated with the study of human behaviour.

Cognitive Science focuses on the understanding of how the human mind works not only by

studying human behaviour but by incorporating research from many other fields not

limited to linguistics, neuroscience, artificial intelligence and psychology. Cognitive

scientists have many tools at their disposal i.e. for example computing and mathematical

science, to represent some of the inner-workings of the mind such as thinking or

addressing several processes related to the working of the mind like acquiring or using

knowledge. One of the main contributions of Cognitive Science that has much weight and

heavy impact on the research presented in this thesis is the development of theories,

which led to the creation of cognitive architectures that account for human cognition and

behaviour.

HCI adopted and adapted these concepts to further the study in its main area of

research i.e. usability. This approach is at the centre of its success. For instance, HCI

applies Cognitive Science concepts to deal with information visualization in areas such as

user modelling. The counterpart is seen when HCI provided cognitive scientists the

guidance in regard to its user research (Carroll 1988).

The collaboration between HCI and Cognitive Science, which is far-reaching, led to

theories like models of human information processing that were frameworks used to

explain and describe human mental processes, including basic aspects of perception,

attention, short-term memory operations, motor functions integrated into a single

powerful model. Two implementations of those concepts are GOMS and KLM (an example

of GOMS model is given in Appendix A) which will be discussed in later chapters (Card et

al. 1983). Because of the dynamic aspect of HCI, these basic functions were developed

further. From an atomic actor, which was what the early model described, in the late

1980s and early 1990s, the HCI concepts have now evolved to integrate more fundamental

concepts which led to the integration of the Activity Theory, whereby a user is not seen at

an atomic level separated from his/her environment, but rather part of a collective

framework. These conscious activities with objects can be broken down into goal-directed

26

actions through predefined automatic operations that have to be performed in order to

satisfy these objects. The complexity is that these activities are not fixed but can change

dynamically as the environment or conditions to which actions are applied, are dynamic

and changes.

2.5 Design deficiencies

Given the impact that HCI has had on the industry, deficiencies in software and

hardware devices are still commonplace. The main question is why this state of affair still

exists today, given the massive development drive and theoretical impact HCI provides to

the industry? To answer this question, we must first discuss what might be referred to as

“mainstream user interface design”. The step often mentioned is the stage where one does

try to define what the software / system does and who is going to use the system. The

stage is referred to as tasks and user analysis. Not only should the system be able to

achieve what it is intended for, but also integrate well with the world of users.

Traditionally, a requirement analysis is performed on a system. This leads to a set of

specifications that is used for the development of the system. However, this methodology

is not user centred, but is system centred based on assumptions of usability for a

particular system by the system designers. If one looks into the details of what tasks a user

must perform to achieve a series of goals and evolve a design accordingly, this puts the

user back at the centre of the development.

One of the major obstacles if a development team decides to undertake a thorough user

analysis is often not the process to render the system more user-centred itself but to

recommend this need to their management team who often have financial and timing

pressures. In addition, this often involves additional professionals and many testing users,

pushing the cost of development. Such usability evaluation activities actions are often

rejected on ground of extra cost even if it is common knowledge that an early and

continued involvement leads to good design and therefore gives a more likelihood of the

software being successful (Karat 1993). Alternatively, developers (often prescribed by

early management requirements) might use a "template" of what the system may look like

(Apple 2012; Microsoft 2012). Creating a new kind of interface often results in failure and

management team being aware of this might set a basic set of specifications long before

development is started. The beneficial points in following this road can have positive

outcomes. First this road minimizes the uptake risks, as most users will be familiarized

with a known interface template. Secondly, the design cost is minimal, as most of the

27

design research has already been done. This type of project often relies on backend design

and development. A very good example of such templates is with Windows and Apple's

interfaces. Not trying to compare them, one can see that using a formal interface template

for designing a User Interface (UI) with those platforms will ensure user satisfaction both

in terms of use and aesthetics. A user familiarized with a type of template interface for

instance will almost be competent using a system that contains interfaces similar to those

already used.

Good practice should be at the centre of development and should cover a good task

analysis, which should itself cover a detailed use of the system through series of real tasks.

Once this information is collected from human user testing, it can be used to analyse the

existing system and draw another set of specifications where the users are at the centre of

the changes. The tasks included should attempt to capture most of the software difficulties

in terms of usability. The new specifications are then used to optimize the software. The

momentum is kept well into the "alpha" phase of the development, thus allowing the

maximization of usability for a particular system. This objective can only be kept by

investments both in terms of financial support but also in terms of dedication of the

development team both at a managerial and development level. The cycle just described

needs a lot of user testing resulting in expensive extra costs and additional time allocation.

Moreover, it will often impact on the development cycle, which could stall while the

usability testing is undergoing its course. Hence, to factorize all these aspects into a system

development makes prediction difficult and more complex to formalize in terms of

milestones for instance.

Many important principles of design were proposed by Carroll and Rosson (1997) in

the form of the Scenario Based Design (SBD) approach. SBD inherits the components of

UCD (see Star model in Figure 2), but adds another dimension by including the concepts of

scenarios in the development cycle. Scenarios are stories about people behaviour, their

goals and the environment they are. They have a plot i.e. they include actions and events

that either happen to actors or are generated by actors (Carroll 1999). They can be

written from many perspectives and for many situations, and for many purposes (Carroll

2002). They are techniques that are used to shift the focus of the design process from

mainly purely functional specifications to a description of on how people use a system to

achieve a specific task in a specific environment. In other words they are a kind of

lightweight user interaction visualisation of the use of a system by potential real target

users that have become popular as they enable a realistic and rapid communications about

potential usage of a system amongst many parties in the development cycle (Rosson and

28

Carroll 2009). Furthermore, in terms of user analysis, SBD tends to supply important

information that is useful to include cognitive engineering into the loop.

Perusing Figure 16, one realises that the user is a central part of the development of the

system. From the user analysis, much information can be conveyed to form scenarios and

scenarios can be used to help researching human information processing specifics.

Scenarios provide important information to the user centred design process to direct the

design process. User evaluation takes place to refine requirements, which can lead to new

scenarios being created.

Figure 16: Scenario Based Development

This forms the basis of SBD, which is at the centre of many development projects. The

main issues with empirical testing are its time scale i.e. slow approach and financial

pressure put on software companies i.e. can be prohibitively expensive if domain experts

are involved, to apply an appropriate usability testing program (Kieras 2006). For

example a Norwegian company called TNO (TNO 2012) can charge anything between

50,000 to 100,000 Euros, with tests lasting between an estimated 8 to 18 weeks to

perform some usability testing on a company behalf. These figures represent a typical

example of the bottleneck for the adoption of usability studies into the development of

software discussed above. Moreover this is compelled by the fact that user performance

varies greatly over a set of experiments and participants (Ritter et al. 2002). There are

approaches such as usability discount cost benefit methods that help with those issues

(Rajanen and Jokela 2007; Rajanen 2011). However another alternative came with the

cognitive engineering community response by creating cognitive models specially

engineered for usability, providing quantitative predictions such as task completion

latency describing how well humans perform a task or a series of tasks using a specific

29

design; models that can be used as surrogate users to get empirical data (Kieras 1999).

Such an approach provides an opportunity to iterate through many design revisions under

a variety of condition much faster than real time (Byrne 2003). The research this thesis

presents relies on surrogate users that have been modelled and engineered to run using a

cognitive architecture, which will be described in later chapters.

The synergy between Cognitive Science and HCI helped to provide some important

developments that are far more reaching than the main usability focus. We have

mentioned above the dynamic aspect of HCI evolution as systems complexity increased

and ways it moved on to encompass this complexity in its research. Cognitive Science

followed the same evolutionary path in its own domain by developing more advanced

human models and architectures capturing not only based on basic human reactions and

motor functions but also fully functional models born from research in psychology and

neuroscience. Thus a new era in Cognitive Science grew alongside HCI, which had a major

impact in our understanding of human interactions with the external world. This synergy

brought about theoretically speaking a huge amount of research that helped all

professionals involved in developing hardware and software devices to understand

usability for ever changing and involving user needs at a more meaningful way in the

development of systems. The advances in human modelling gave HCI the tools needed to

perform usability tests without human user involvement.

These tools are discussed in more detail in the following chapter, starting with the

Model Human Processor (MHP). MHP was the first real attempt to formalize human

behaviour and interaction. The extensive research gave birth to human interaction

modelling that led to the creation of models such as Goals Operators Methods Selections

(GOMS) and later Key Stroke-Level Model (KLM) (a subset of GOMS focusing on computer

interface interaction) both of which are explored in the following section. There were

followed by the advent of cognitive architectures. In the next chapter, an overview is given,

concentrated on aspects that have an impact on the research presented in this thesis.

30

Chapter 3. Cognitive Modelling

3.1 Model Human Processor (MHP)

The book The Psychology of Human-Computer Interactions from Card, Moran and

Newell28 (Card et al. 1983) is often credited with bringing to the forefront the concepts of

Human Computer Interaction and human cognition and is thought of as one of the most

central early influences in human computer interaction and cognitive engineering-

oriented usability fields. It introduced MHP as an engineering model of human

performance and GOMS as a methodology to perform task analysis (Byrne 2001).

This section provides an overview of MHP and is heavily based on the early publication

of the book mentioned above.

The importance of MHP will be illustrated using this publication as a reference, why it

is considered as a turning point in the impact HCI has had in relation to new developments

in computing science in general, in which applied psychology comes to the rescue of

developers and engineers to describe and explain how humans interact with computers

devices.

A simple model of human performance was created which gives an integrated

description of psychological knowledge about human performance relevant to human-

computer interaction. It is called MHP. This model sees the human mind as an

information-processing system that can be used to predict and approximate user-

computer interaction (see Figure 17).

The MHP is an elementary model of human performance, intended to equip cognitive

engineers with rough estimates of system behaviour focusing on the information

processing capabilities of an average individual, described in terms of sets of memories

and processors, in addition to sets of principles connecting human operations to these

sets.

 In terms of memories, the MHP includes sensory memories which are small buffers

that hold information sensed from the environment before it is eventually encoded, short-

term memory (or working memory) and long-term memory which are buffers that hold

symbolically encoded information.

28 Published in 1986

31

Figure 17: The Model Human Processor

The processors in this model refer to systems that can act on the sensed data. There are

three types of processors referring to the perceptual system that includes all the human

sensors and their associated memory buffers, the cognitive system that receives

symbolically encoded data from the sensory stores and its Working Memory (WM) and

responds using previously stored long-term memories and finally the motor system whose

main task is to respond to the cognitive system.

The Perceptual System (PS) transfers sensory data of the physical world that is

detected by the human body sensory systems into symbolic representations. The data

received by the human sensors is coded physically supporting physical properties such as

width, height, curvature, and intensity for visual stimuli or pitch and intensity for auditory

stimuli. In this model, processor memories are associated with working memory. Another

aspect of this memory model is that this information decays over time. This is called the

Decay Time (DT). MPH measures this value in terms of half-life values. The perceptual

processor, which acts on perceptual memories, is the time taken for the processor to

respond to a given stimulus.

The Motor System (MS) can be thought of a system that translates thoughts into

movements and plans patterns of muscle activations. HCI is mainly concerned with

effectors such as arm-hand-finger system and the head-eye system. Like most of these

motor activities, the movements are not continuous but consist of series of small micro-

movements or motor saccades. Like many of those values, this value is an approximation

based on research results. When dealing with the motor system, it is difficult to exclude

the feedback system that exists between perception and motor functions. For example, if

one wants to complete a motor movement with some precision, one needs to make some

small corrective adjustments in order to complete the task. Therefore one intended motor

32

movement latency is often a summation of all the timings obtained for different sub-action

that led the full action to be completed.

The cognitive system is involved in passing stimuli from the perceptual system

responses to the right motor output system. Two types of memories are associated with

the cognitive system: the working memory or short-term memory, which holds the

current symbolic information, and the long-term memory whose main purpose, is to store

this information for future use. All the information that is generated by the perceptual

system is stored in the forms of symbols in short-term memory. Hence all mental

operations will refer to this memory to gain access to the current registers used by the

different perceptual systems.

The abstract symbols that are stored in this memory are called chunks and are usually

nested. This means that a chunk can refer to or include another, the latter referring to

another one etc. These relations are therefore useful for memory retrieval purposes as

these relations mean that when the information stored in a chunk is activated in the long-

term memory, this activation will spread amongst related chunks and thus makes those

chunks themselves more retrievable by virtue of increase activation. It will also affect the

retrieval speed as more activation a chunk has faster retrieval time. However due to

human limitations, if those chunks get more activation, some others will see their

activation decreased in time if not reactivated due to decaying itself proportional to the

number to chunks. Like any other kind of memory, working memory decays too. This

decaying time was researched quite extensively to show the relevance of the number of

chunks to the decaying time and demonstrated the human limitation when recalling

information. For instance, when a person is asked to recall some information that they just

heard a few seconds before, both working and long-term memory are used in this process.

Results showed that the storage capacity of the working memory is between 2 to 4 chunks.

However if given a little more time is given (>5 sec), the long-term memory is also used in

addition to the working memory and the number of chunks that one can recall increases to

5 to 9 chunks. This number of chunks is well known and familiar and demonstrates the

limitations of the human cognitive system as well as re-enforcing the proverbial sentence:

“take your time to think about it”.

The knowledge stored in the long-term memory can only be accessed through the

working memory i.e. it is transferred from long-term memory to working-term memory. It

is common knowledge that this memory acts as a massive storage space knowledge that is

gained over one’s life. It is understood that long-term memory does not decay over time.

33

The major point to of discussion regarding the links between chunks in long-term memory

is that most of the retrieval process depends on those links or semantic coding that exists

between them. The situation in which the encoding context happens is important for

retrieval purposes and leads to the difference between accessible and available memories.

Whilst the latter encompasses all of the memories that have been encoded, the former

deals with memories whose symbolic encoding has been achieved in the same context as

the cues given for their retrieval. This is called “Encoding Specificity”. This principle states

that the likelihood of successful retrieval increases as the similarity between retrieval

context and the encoding context increases. In other words, to maximize the retrieval rate,

the same context should be referred to when memories were encoded during the retrieval

process. It also follows from the above, that given a particular chunk (or set of chunks), the

more associations it (or they) may have then the greater it will be/their chance(s) of

retrieval. This is a very important factor in terms of retrieval performance. In terms of

cognition, the optimum strategy to ensure easy retrieval is to attempt to associate a

symbol with others already encoded in long-term memory in some ways and furthermore,

to attempt to do this in a novel way, to avoid interference with other piece of information

that may lead to retrieval failure. Finally, following Card’s MHP model, the information get

stored in long-term memory once the decay time threshold of the working memory i.e.

around 7 sec, is passed, which compared to the time of retrieval i.e. around 70

milliseconds is far higher. This implies that if the task’s latencies are very small then,

storage in long-term memory cannot occur.

The cognitive processor that Card describes is similar to the computer CPU’s fetch and

execute processes i.e. the information is fetched from some registers (using different

registers depending on the task to achieve) and then processed which may lead to some

registers having different data presented or stored within them; the CPU clock controlling

the flow of executions. The same applies in cognitive processing. First the content of

working memory is pattern matched with the long-term memory content. Second, the

procedural content will be executed which might lead to the working memory content to

be updated with new chunks of information, and the cycle repeating itself. An important

point is that this nominal time will decreases with practice or the demands for it.

One interesting detail about the cognitive processor in this model is that the

recognising processes i.e. pattern matching it spawns run in parallel but the processor

schedules all the necessary procedures in a serial manner. This bottleneck has serious

consequences: the human cognitive system can be aware of many things at the same time

through its perceptual and motor systems but it will only be able to spawn one action at a

34

time to deal with this new acquired awareness. In addition, as this awareness depends on

the perceptual and motor systems, which run in parallel to the cognitive system, one can

be aware of many factors that may happen around one-self but one will ever be able to

deal with one phenomenon at a time. Card’s & al MHP had major consequences for the

future of usability and HCI overall and led to the definition of GOMS discussed in the

following section, a framework for task analysis and later its simpler version called KLM;

both of which allowing for empirical predictions to be generated for those models. It

paved the road for production-system representation of human procedural knowledge

used by much cognitive architecture today.

MHP was a major achievement in the 80’s, which embedded psychological human

behaviour findings known at the time. However, today, it is out-dated, lacking most of the

recent finding in research in fields such as neuroscience. Major issues with MHP was its

manual processing and its reporting of only expert behaviour. A more useful model stems

from this research i.e. GOMS, which became a focus in HCI and is discussed in detail in the

next section.

3.2 Goals Operators Methods Selections (GOMS)

The Concept of the MHP representation helped to define a general model of human

interaction. Research by Kieras and many other researchers demonstrated how GOMS

analysis (based on MHP) could be used to obtain usefully accurate predictions of learning

and execution time dealing with computer interaction.

GOMS stands for Goals Operators Methods and Selection (GOMS). The Goals represents

what the user has to accomplish using the software. It can refer to one particular task or

be broken down into series of sub-tasks; all of which are to be completed for the overall

goal to be achieved. Operators are the elementary or complex motor or cognitive actions

that must be performed to complete a task. They can change the user internal mental state

as an action is taken place but they also can change the physical environment around that

user.

Since MHP, GOMS high-level predictive modelling has been accepted as one of the most

widely known and used theoretical concepts in HCI which evolved to several variants,

some of which are executable (John and Kieras 1996). In terms of modelling, GOMS is

perceived as a high-level language in which user interaction is expressed in a hierarchical

manner that represent a decomposition of complex tasks into more elementary ones (St-

Amant et al. 2006).

35

Figure 18: Outline of the GOMS model for a line editor (Card, Moran, & Newell, 1983)

GOMS models (See Figure 18) are descriptions of the knowledge that a user must

possess in order to perform some specific required tasks on some device. It is the

procedural knowledge that is required in order to accomplish a task (Kieras 1999).

There is an important factor about Operators, which is the execution time often

approximated by a constant discovered empirically. In simple terms, Operators are the

actions that the software allows the user to achieve. Methods are the sequence of

Operators or sub-goals that are needed to complete some goal that depends on the nature

of the specific task to accomplish. In short, they are learned sequences of operators and

sub-goals that can lead to the completion of a goal and can be perceived as strategies to

accomplish a task. One can have many strategies to complete similar tasks but only one of

which is selected. Selections rules are the learned decisions procedures that must be used

in a specific context to select the required method. It is the case that a user may have

learned different methods to complete the same task for instance. A method of selection is

necessary depending on the context to decide which strategy is better suited than another.

In a GOMS model, a Selection Rule would exist to select the best strategy i.e. method to

carry on a series of tasks to complete a goal (John & Kieras 1994).

There are many flavours of GOMS ranging from simple to more complex forms. One of

the simplest is KLM (Teo and John 2006) that was first presented as a concept by Card and

his colleagues. This version focuses on human physical actions adapted to computer user

interfaces. The model includes a sequence of simple motor or mental operators such as

click-mouse, type a letter or thinks to perform a required task. KLM provides focused time

latencies predictions that are required to perform a task.

36

Others more complex variants are Cognitive Perceptual Motor GOMS (CPM-GOMS),

Natural GOMS Language (NGOMSL) (Gray et al. 1993; John and Kieras 1996; Kieras 1996;

Kieras 2006).

GOMS, KLM and other versions mentioned in this section suffer the same issues

discussed for MPH. However the more complex versions bring extra functionality that has

been found very useful in HCI (Gray and Altmann 1999). For instance, CPM-GOMS

provides means to chart dependencies between the user’s perceptual, cognitive and motor

processes but is still an approach that models skilled behaviour of users (Biswas and

Robinson 2008). However in terms of human performance, despite the fact that CPM-

GOMS allowed parallel execution of user processes, resulting in better predictions for

skilled human behaviour, its predictions are only based on estimates of latencies for

primitive human cognitive, perceptual and motor processes (Vera et al. 2005).

3.3 Overview of Cognitive architectures

A cognitive architecture, whose concept was first proposed by Newell (Newell 1990) in

an attempt to challenge the research community to develop a Unified Theory of Cognition

(UTC) that simultaneously address all aspects of human cognition and is a framework that

simulates the fixed mechanisms of human cognition (Kljajevic 2008). In so doing, a well-

defined cognitive model can be developed specifically and executed by this architecture.

Newell first proposed a production system, which became the basis for much of the

cognitive architectures that exist today, and went on to develop with Laird and

Rosenbloom the SOAR architecture. Later ACT-R was developed by Anderson (Anderson

and Lebiere 1998) and EPIC by Meyer and Kieras (Kieras and Meyer 1994); the latter

being the first to include perceptual and motor mechanisms, each representing a synthesis

of recent empirical evidence gathered at the time, thus addressing the full spectrum of

behaviour; from perception, cognition, to motor functions (Chong and Wray 2006). ACT-R

was extended to incorporate perceptual and motor processes, resulting in ACT-R/PM

(Byrne and Anderson 2000).

Cognitive models based on cognitive architectures have been used in human-computer

interaction in three ways: from prediction of task performance times and errors (Van

Rooy et al. 2002) to assist users in tasks performance (Ritter 2003) or to be used

efficiently as substitute users during testing (John and Prevas 2003).

The work presented in this thesis makes extensive use of cognitive models that are run

to gain metric of human performance. We will present a summary of three most used

37

cognitive architectures i.e. SOAR, EPIC and ACT-R/PM that are used in the domain of HCI

with a strong emphasis on ACT-R/PM which has been used for this research.

The architectures that are discussed in the following sections have much in common.

They are all based on a production system and they all provide a goal-orientated approach

when running a cognitive model. They are also based on cyclic execution with an

execution time fixed per default to 50 milliseconds. Finally these cognitive architectures

provide means to interact with an environment to some extent with some having more

limitations than others. This discussion explains and provides the mean to determine by

comparison which framework was the more appropriate to use for this project.

3.3.1 SOAR

The SOAR cognitive architecture developed by Laird, Rosenbloom, and Newell (Laird

2012) on the back of the research carried out on the General Problem Solver (GPS) (G. M.

Olson & J. S. Olson 2003) around 1960. In short, the main research focus of GPS was on

problem solving and the ability of humans to search through a problem space to solve

problems using means-ends analysis; a common-sense approach where the available

means are the operators that are selected to reduce the difference between the current

situation i.e. the current mental state, and the goal to achieve i.e. the ends of the problem.

The operators are the means by which the system can move through the problem, and the

problem space consists of the operators and the set of possible states that can be visited to

solve the problem (Laird & Rosenbloom 1992). GPS led to the research that brought the

Model Human Processor (MHP) and the publication of The Psychology of Human-

Computer Interactions by Card, Moran and Newell which led to the concept of GOMS, as

the P9 Problem Space principles (Card et al. 1983).

SOAR inherited this concept. Based on a production system, it has two types of

memory: a production memory and a working memory. The productions contain

association between conditions and actions and represent both declarative and procedural

knowledge. They are similar to productions rules that are presents in other production

systems; namely they have conditions and actions. These rules are stored in the long-term

memory.

Soar working memory includes the current problem solving state and operator

(including sub-states that may arose during impasse process) and has also a short-term

memory.

38

It contains elements called Working Memory Elements (WME). Several of these WME

can be associated with the same factual knowledge and collectively fully describe this

piece of knowledge. For instance we may have the fact about an object that is a button:

“BTN1 is a button”, “BTN1 is a square”, “BTN1 is named OkButton”, “BTN1 is disabled”. All

these WME’s are contributing to the knowledge SOAR has on BTN1 that will be internally

refer to as BTN1, which is known as the identifier for BTN1. The group made of WME’s

that share the same identifier i.e. BTN1 in this example is called an object with each WME

describing a different attribute of this object. Therefore all WME with the same identifier

are part of the same object. Objects in working memory are linked to other objects by

setting a WME attribute set to an object identifier. In addition, all objects must be linked to

a state through other objects, either directly (when doing problem solving) or indirectly

(when accessing external sensors for example).

Similar to ACT-R and EPIC, Soar is based on a production cycle but it called the decision

cycle. During this cycle Soar attempts to determine what changes in the system state can

be made to progress in the problem solving operation. It comprises two phases: the

elaboration and the decision phase. During the former one, all instantiated productions i.e.

productions that matches the elements in working memory, fires in parallel and all the

productions that are not firing are retracted. During the execution process, these rules can

change the working memory or create preferences. This is the preference phase that

suggests which operator to apply. Following this comes the working memory phase where

all non-operator (tagged i-supported) preferences are considered and then evaluated

leading to elements either added or deleted from working memory. The elaboration phase

repeats until no more productions are eligible to fire or to be retracted hence making sure

that all relevant available knowledge is taken into account during the decision. During this

phase, some productions have fired, and a decision is taken as to which operators to select

but no actions take place. This is during the following phase that operators are selected.

All operator preferences (tagged o-supported) are considered and then evaluated.

Concluding this phase the selection of a new operator or a new state takes place.

There are times that after a decision phase, no appropriate operator is selected. In Soar

it is called an impasse, which is dealt with by creating a new state added to the working

memory in which the goal of the problem solving becomes solving this impasse. During

solving impasses, Soar is given the opportunity to learn. This automatic process is called

chunking, in which a new production rules i.e. a chunk is created where the conditions of

the chunk are the elements of the state that (arising from a chain of production firings)

allowed the impasse to be resolved whilst the action of the production is the WME or

39

preference that resolved the impasse. During the chunking process, Soar creates variables

based on the conditions and the related action so that when a new similar situation arises,

this production may match and fire thus avoiding future impasses from arising (Laird and

Rosenbloom 1992; Laird and Congdon 1998; Gray and Altmann 1999; Schultheis et al.

2006; Byrne 2008).

In terms of HCI, the inclusion (or re-inclusion when Soar was ported in C) of a graphical

interface using Tcl/Tk called Tcl/Tk Soar Interface (TSI) allows model designers to

develop explicit GUIs as external environments that can deal with human interaction

(Ritter et al. 1998).

3.3.2 Executive – Process Interactive Control (EPIC)

The EPIC cognitive architecture developed by Kieras & Meyer (Kieras and Meyer 1997;

Kieras et al. 1997) in an effort to reduce the design time for computer interface, and to

evaluate analytically these interfaces without often having to spend time and financial

resources for empirical user testing, and provides a platform to use engineering models

for human computer interaction. It is a cognitive architecture for constructing models of

human performance, which represents in detail the perceptual, motor and cognitive

constraints on the human ability to perform tasks using computer interfaces. In short,

EPIC goes beyond providing the type of engineering predictions of human performance as

seen in a real world task domain.

EPIC in addition to facilitating the modelling of human cognition, perceptual and motor

functions, provides a framework to simulate the interaction of humans with external

systems and provides a task environment that can assign physical locations and properties

to interface objects and generate events in response to simulated human behaviour.

40

Figure 19: EPIC architecture (Kieras 2009)29

EPIC’s memory system is subdivided into several working memories. There are

memories for the perceptual processors i.e. visual, auditory and tactile memories that

contain the current information generated by these respective processors. There is also a

partition dedicated to the motor processor called the motor working memory, which holds

information about current statuses and state of the processor i.e. whether a hand

movement is being undertaken or has completed. All this information held in memory is

refreshed on every cyclic turn. EPIC has also two other types of memories that do not

contain information pertaining to sensory or motor processors. One is the control store

that contains information representing the current goals and sub-goals to accomplish the

designated goals. As EPIC used the Parsimonious Production System (PPS), this is an

important addition as PPS stipulates that the control information should be simply be

another kind of memory item which can be changed by production rule actions (similar to

ACT-R), hence is a critical functionality for modelling multi-tasking performance as the

production rules can control sub-processing simply by manipulating the control store

content. The second amodal memory is used by EPIC to store miscellaneous task

information. Unlike cognitive architectures such as ACT-R, there are no assumptions

regarding memory decaying in the EPIC framework.

29 Taken from “Why EPIC was Wrong about Motor Feature Programming” (Kieras 2009)

41

As already mentioned, EPIC largely inherits from PPS concepts and thus is based on

PPS production rules which have the format (<rule

name>IF<conditions>THEN<action>). The rules are not limited to initiating motor

actions only but can add or remove items from the working memory. Those production

rules contain clauses i.e. conditions that must be met. EPIC operates in terms of cycles.

This implies that at the beginning of each of these cycles, the production rules are updated,

and then their conditions are matched against the whole set of the current rule clauses. If

these conditions contained in a rule matches the conditions the rule fire and its action part

is executed which typically involves changing the content of the procedural rule memory,

this influencing the flow of the rule firing process during the next cycle. Since EPIC follows

closely PPS, every rules that matches fire during the next cycle in a parallel manner; thus

simulating a parallel cognitive architecture; unlike known traditional production systems

i.e. SOAR or ACT-R that require that only one production rule is fired at a time i.e.

sequentially; controlled by some kind of conflict-resolution mechanism that compute

which rule is best to fire; a process often constituting a bottleneck in terms of action

executions.

The research presented by this thesis focuses only on the visual and motor with their

associated cognitive functions, thus the discussion of the processors will concentrate only

on these areas.

EPIC was one of the first frameworks to include relatively complex visual processing

which takes into account the fact that human vision is not homogeneous and its acuity is

highest towards the centre of the Fovea and decreases towards the periphery of the retina.

The visual processor simulates the retina of an eye. It determines the kind of sensory

stimuli information that is available about the objects contained in the task environment

based on angular distances on the retina between an object and the centre of the fovea.

This computation in EPIC is called the eccentricity. The eye model contains three

approximated zones i.e. Fovea – 1 degree, Para fovea – 7.5 degrees and the retina

periphery set to 60 degrees that are simulated by specific processors for each of those

areas.

In the EPIC vision system the visual perceptual processor maintains a representation of

object visibility and metrics in the visual working memory that are slaved to the output of

the eye. This implies that it is kept automatically updated by changes in the scene as

objects appear, disappear, and change their colour or when an eye movement or object

movement occurs in that scene. In response to changes, events are issued and lead to

42

outputs with different timing tags by the visual processor depending, which zones the

detection happens to be in with regard to the eye.

The EPIC framework contains many motor processors producing a variety of simulated

movements for different effector organs; each having appropriate timing characteristics

for their movement completion. Different processors exist for the hand, vocal and eye

organs all of which can be activated simultaneously. The motor processors get inputs from

the cognitive processor as a result of a procedural rule firing. The motor action is executed

and the cognitive processor is kept updated about their state as motor clauses in the

production rule memory. All motor processors have the same structural arrangement and

share most of their functionality, i.e. in terms of coding they all inherits from a base

processor class that contains most of the functionality. The movements for those

processors are described by a set of features; the style feature being the most important

that represents the kind of movement it relates to i.e. its name. The features for a style are

represented in a hierarchical fashion that controls which specific effector of the motor

action that must be generated. Thus when a feature changes from a previous one, the

implications are that all the sub-features for that movement style change too i.e. a change

in feature of the Punch action filters down changing the feature of the effectors such as the

Hand and Finger also features.

The motor processors are based on a three phases cycle. The first phase known as the

preparation phase generates a list of features needed by the movement and a time stamp

of 50ms is applied for each feature that is generated. Then the movement initiation phase

follows and sets the movement up which EPIC also assumes a time stamp of 50ms. Finally

the execution phase is launched which consists of making the actual mechanical motion

for the movement but the time stamp for this process depends on the movement itself. The

manual processor, which controls the hands and fingers, is able to simulate four main

styles of movement. The Punch style simulates high-speed response where a button is

located directly underneath the finger. The Ply or Point styles simulate the moving of an

object using a hand i.e. a cursor moving towards a target object, by manipulating a control

such as a mouse or a joystick; the Point style being more specific to mouse and computer

interface usage. Both these styles shared very similar functionality whereby the Point style

inherits most of the Ply functionality. Both types of movements have similar preparation

phase to prepare features such as Direction and Extent. The Direction feature is only

computed if the difference between the new and old direction is larger than PI/4. Similarly

the Extent feature is re-calculated if the difference between the new and old extent is over

two degrees of visual angle. Once the preparation phase is completed, the initiation phase

43

proceeds with the calculation of target distance and size to compute the movement time

using the modified version of Welford’s modification of Fitts’ Law, amongst other

processes. Finally, the movement is scheduled for execution during the execution phase.

The other style that EPIC provides is the Keystroke movement based on GOMS-KLM which

simulates hitting a key on a keyboard. During the feature preparation phase, no time is

stamped if the previous movement was a keystroke to the same key. This is adjusted to 1.5

features to prepare if a new key is hit and 3 features to prepare if the previous movement

was not this style. The Keystroke style does not require a preparation phase before the

action is scheduled for execution. The Welford formulation of the Fitts’ law is:

 max (, [

 0.5]) (3.1)

where is the minimal aimed movement time (default set to 100 milliseconds), k is a

constant specific for a style of movement i.e. for example for a peck action it is 75

milliseconds and for ply action it is 100 milliseconds. d is the distance to travel to the

target and w is the width of that target. This implies that no movement can be performed

in less than i.e. 100 milliseconds. The other alternative being that the duration of the

movement is a function of the ratio of the distance to travel to the width of the target. The

width is not simply the width of the actual target but is computed by taking the width of

the cord through the target region taken on the line drawn from the starting point of the

movement through the centre of the actual target. See Figure 20.

Figure 20: Welford formulation of Fitts's Law

The EPIC ocular system can produce both voluntary and involuntary eye movements

that are initiated by the cognitive processor. These movements are composed of a number

of saccades (or small movements) moving towards a target object. During the preparation

44

phase, similarly to the Ply style movement, both the direction and extent features are

prepared using the current position of the eye to the target object. The time stamp applied

to each saccade is four milliseconds per degree of visual angle. The oculomotor system can

also initiate involuntary eye movements either through saccades or small smooth

adjustments in response to changes in the scene. Therefore if an object appears in the

scene, the processor will trigger an involuntary saccade helping the eye to adjust to the

location of the object. By using a combination of both voluntary and involuntary eye

movements EPIC can track a moving object.

Finally, in the EPIC architecture, the motor phases can be overlapped to bring efficiency

to the motor system compared to phases executed purely sequentially by overlapping the

initiation and execution phase of the movement with the preparation phase for the next

scheduled movement (Kieras and Meyer 1994; Kieras and Meyer 1997; Kieras et al. 1997;

Bryson 2001; Meyer et al. 2001; Kieras and Meyer 2004; Schultheis et al. 2006; Byrne

2008; Kieras 2005; Kieras 2011).

3.3.3 Adaptive Control of Thought—Rational (ACT-R)

The research presented in this thesis is based on using ACT-R/PM, which combines the

cognitive module and both the perceptual and motor modules into one framework; the

engine behind the visual module is based on Salvucci’s research called Eye Movements and

Movements of Attention (EMMA) (Salvucci 2001). Anderson stated in his book “Rules of

the Mind” four basic concepts, which underline ACT-R. Some of these principles express

the architecture as a production system that should be based on neural-like processes to

fit in with the human brain function and finally to be able to deliver optimal behaviour

given the statistical nature of the environment i.e. based on probabilistic principles

through the use of Bayesian techniques as seen in ACT-R (Anderson 1993). Like other

architectures, ACT-R is a goal orientated production system based on PPS but unlike these

frameworks it combines both a symbolic and a sub-symbolic component with the latter

tuning itself to the structure of the environment. Both components are using Bayesian

learning mechanisms for the declarative and procedural memory. ACT-R goes beyond

other architectures as it has embedded a sub-symbolic level composed of a set of variable

quantities that are updated continually by ACT-R learning mechanisms to bring the

qualitative side of human cognition thus tuning the performance of the human cognition in

a neural-like activation manner in terms of activations levels. The activation levels

determine the speed and ultimately the success of memory access for both declarative and

during conflict resolution for procedural knowledge. The availability of a memory chunk

for retrieval is established by these activation levels that are learned by ACT-R cognitive

45

framework according to statistics returned by the Bayesian networks derived from the

history of use of the information contained in memory chunks. The chunks with higher

activation are selected by ACT-R for retrieval (Lebiere et al. 2002). Like other architecture

ACT-R has a cycle timing of 50ms (Byrne and Kirlik 2005).

ACT-R version 6.0 is the latest version of the ACT architecture, the latter first

introduced in 1976 based on a production system as described by Newell. The evolution of

this framework shifted when the rational analysis was added in ACT-R 2.0. Some of the

major changes between the two versions brought partial matching. When one looks at a

person’s face for instance; which changes over time, one still recognises this person many

years later even though those changes can be profound. This concentrates on calculating a

degree of mismatch amount, which is then taken off the activation level, thus restricting

chunks that can be partially matched to the ones that have the same type which

themselves compete for a match to a production rule condition, thus impacting on the

retrieval probability of chunks. Another change is the way the production rules are

selected. In ACT-R 2.0, all productions were contenders for selection whereas in version

4.0 only the ones whose top goal matches are selected for the conflict set; thus reducing

excessive pattern matching. Attempts to retrieve chunks are made to match the rest of

production conditions when the conflict set is created. In version 2.0, this process did

happen during the construction of the conflict set. Another major change was the change

of the learning mechanism from analogy where past examples are used to provide likeness

between past and current problem solving goals. This mechanism produced many

difficulties such as an over-creation of production rules. This complication was resolved in

ACT-R 4.0 by introducing the creation of declarative knowledge called dependency goals

in a process called production compilation. During this process new production rules are

derived from declarative chunks immediately created upon the popping the dependency

goal when the goal is achieved and added to the production system. In addition, this

generalisation process created variable objects of any memory chunks that occur in two or

more slots anywhere in the condition or in the action part of the created procedure rule.

The next iterations of ACT-R saw an extension that incorporated perceptual and motor

processes resulting in the version named ACT-R/PM (Anderson 1993). ACT-R/PM

combines ACT-R, a visual interface specially adapted for ACT-R created by Mike Matessa

(Anderson et al. 1997) and the motor section of the EPIC architecture (Kieras 2011).

Both ACT-R 5.0 and 6.0 brought to the architecture a better integration of cognition,

perception and finally motor processes. In addition, the goal stack that existed with ACT-R

4.0 was removed leaving the task of goal setting to the action part of production rules. The

46

research presented and discussed in this thesis is HCI orientated and based on ACT-R/PM

6.0 architecture. The conclusion of this section will therefore focus on the functionality

that pertains to the functionality needed in the TOISE system.

Before describing the visual and motor modules in some details, some attention is

given to buffers in ACT-R that are somehow windows to each of those modules.

3.3.3.1 Buffers in ACT-R

In terms of HCI, the interest of modelling often comes to areas dealing with memory

handlings, visual, auditory or motor functions. ACT-R contains a set of buffers for each of

those modules, which as already mentioned, enables asynchronous operations to take

place. Any changes to a module buffer will immediately been followed by a module

response resulting in the generation of event(s) to perform some type of actions and if

appropriate the module might place a chunk in its buffer to signal the outcome of these

actions (Bothell 2008). Buffers have two main functions in ACT-R, which are making

requests to a module from a production rule and holding a chunk. One of the main tasks

that are often carried out in ACT-R modelling is memory retrieval. Like motor commands,

memory retrieval is initiated on the right hand-side of a production rule. The pattern

matching that attempts to match the conditions specified on the left-hand side of a

production rules to the current content of the specified buffer as we have discussed

previously is carried out through those buffers and this point is illustrated with the

production rule listed below:

(P ATTEND-OBJECT-A-LOCATION
 =GOAL>
 ISA GOAL
 STATE ATTEND-LOCATION-A-ACTION
 =VISUAL-LOCATION>
 ISA OBJECT-A-LOCATION
 ?visual>
 STATE FREE
==>
 =GOAL>
 STATE LOOKFOR-VISUALOBJECT-ACTION
 +VISUAL>
 ISA MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +VISUAL-LOCATION>
 ISA OBJECT-A-LOCATION
)

There are two sides to a production rule. The left-hand side i.e. LHS which is the

content that is above the “ >” and the right hand-side i.e. RHS is below that line. A rule

contains a name, which in Lisp is a symbol. In the example above, the name is “ATTEND-

OBJECT-A-LOCATION”. This name must be unique. The left-hand side of this production

rule is therefore:

47

 =GOAL>
 ISA GOAL
 STATE ATTEND-LOCATION-A-ACTION
 =VISUAL-LOCATION>
 ISA OBJECT-A-LOCATION
 ?visual>
 STATE FREE

This part can be interpreted in plain English as follow. If the goal buffer contains a

memory element of type “GOAL” and its state slot is “ATTEND-LOCATION-A-ACTION” i.e. if

the goal is to attend location “A” and the visual buffer contains a memory element of type

“OBJECT-A-LOCATION” i.e. if the object to attend is the object present in location “A” and

the state of the visual module is free then this production rule can participate in the

conflict resolution process. In ACT-R, all production rules whose LHS that are in the

procedural memory that match against these conditions will be put into the conflict set

with the one with the highest utility set to fire.

In a production rule the RHS initiates modifications of the buffers. These changes can

lead to a request of changing the information contained in the current buffer or a request

to execute a command that is associated with it. In the right-hand side such a request is

marked by a “ ” sign in front of the buffer name this change pertains to. This is shown in

the production rule below:

 =GOAL>
 STATE LOOKFOR-VISUALOBJECT-ACTION
 +VISUAL>
 ISA MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +VISUAL-LOCATION>
 ISA OBJECT-A-LOCATION

In plain English this RHS can be interpreted as follow. In short, set the goal to look for

an object and change the visual buffer to issue the command for the visual module to move

its attention to the visual location where object “A” is located. This is achieved by setting

the state of the goal to “LOOKFOR-VISUALOBJECT-ACTION”, setting the visual buffer type

slot to “MOVE-ATTENTION” and its screen position to the visual location “OBJECT-A-

LOCATION”.

3.3.3.2 Vision functions in ACT-R

The vision module provides the functionality pertaining to vision on the device. It sees

the features that can be attended to by a model, which have been added and then provided

by the device. In ACT-R/PM the set of features that are presented by the device is named

the visicon. These features provide information such as the type, location, colour, kind and

so on. The Vision system is composed of two major parts named by Dan Bothell as the

48

where and what systems. The where system (or feature search) is the side of the vision

module that takes requests passed through the visual-location buffer. A typical request is

similar to the one shown below which instructs the system to find a feature whose type is

named as “OBJECT-A-LOCATION” making sure it is attended. Responding to this request,

the system updates its visual-location buffer by creating and placing a declarative memory

chunk into that buffer that contains the location of the object in the device if it found. The

attended slot is important in modelling vision as they are markers that have limitations in

both their duration and numbers i.e. there are so many items that can be attended at any

one time and their duration is limited either by a voluntary shift of attention to another

object or naturally i.e. one can only attend an object for some time only.

+VISUAL-LOCATION>
 ISA OBJECT-A-LOCATION
 :attended t

The what system’s (or movement of visual attention) main interface to a model is the

visual buffer. Its main function is to attend to locations in the device that have been

previously found with the where system. To attend a target, the model needs to provide a

chunk that describes the visual location of where that target is located. If an object exists

in this location, the system will respond by placing a chunk in its =visual> buffer

representing the object. The system has an inbuilt tolerance set by default to 0.5 degrees

of a visual angle, which ensures that if an object has moved a little since the time it was

first located, it would still be attended to. For instance, a statement shown in the code

listing below tells the vision module to shift its attention to the object that is located at

“ VISUAL-LOCATION”.

+VISUAL>
 ISA MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION

In the LHS of a production rule, the chunk that is placed in the visual buffer can be

tested using the matching clause as shown below. For instance in this example, we are

testing for a visual object that is of type “OBJECT-A” and named “object1”.

=VISUAL>
 ISA OBJECT-A
 VALUE "object1"

The visual-location buffer can be tested for errors or attention states. This is done

using slots such as Attended or State error. The former can be t if attended, nil if it is not or

new if it’s just been added to the model visicon and not yet attended. For errors, the state

can be true i.e. t if a request has failed or nil otherwise. In the same manner the visual

buffer can be tested for errors and states. For instance the state of the visual module can

be busy if a visual request was initiated but not yet completed and nil in other situations. A

49

state can be free if a visual request has been initiated and just completed for instance, nil

otherwise. Similar to the visual-location buffer, an error state exists. Finally a change in the

device i.e. an object just appears in the scene, the Scene-change state reflects this change

by setting the slot value to true i.e. t or nil otherwise.

3.3.3.3 Motor functions in ACT-R

The motor module is based on EPIC Manual Motor Processor from Kieras and Meyer

(Kieras and Meyer 1997) and can be perceived as the model’s hands. It provides the

functionality to interact with a keyboard and a mouse in the same manner as a real user

and can be extended to interact with other devices through the creation of proprietary

modules. Like other modules it has its own buffer from which it determines which action

to perform. Unlike the visual buffer, the buffer associated with the motor module does not

update this buffer in response to some required action. The keyboard that is associated

with the motor module is a standard QWERTY keyboard that is often seen as part of

standard computer station equipment. The mouse is controlled using the right hand is a

fairly old model with one button only. However, this is sufficient for most modelling work

dealing with HCI. In order to make a movement using the keyboard or the mouse, the RHS

of a production must make a request of a specific type of movement called a style. The

motor module inherited the movement styles provided by EPIC Motor Processor. The

primitive movements provided by the motor module are listed in the table below.

Action Definition
Punch This action is similar to the action when one presses a

keyboard key when the finger is directly above the key.
It is a simple down-stroke movement followed by an up-
stroke one.

Peck This action is in actual fact two movements combined
together. The first movement is a specific movement
towards a location that is followed by a keystroke.

Peck-recoil This action a combined action containing a Peck action
that is followed by a movement that returns the finger
to its starting position.

Ply This action is similar to the action one does when
moving a device such a mouse to a specific location.

Point-hand This action moves the hand to a specific location.

The motor module provides more complex movements in addition to those primitives.

For instance, there is the mouse-cursor action, which is a combination of the “ply”, and a

press-key action for the right hand; the latter being either a “punch” or “peck-recoil”

action.

Similar to EPIC, there are three phases or states when performing motor movements

i.e. preparation, initiation and execution.

50

The preparation phase builds a list of features that are used to guide the movement.

The maximum number of features is five. The timing associated with this preparation

phase depends on the amount of features that needs to be prepared and increases with the

complexity of this preparation. Each feature takes 50 milliseconds to prepare. The feature

set of calculations takes into account the complexity of the movement on one hand and

refers to the previous movement on the other. More complexity means more needed

features to be computed and more similarity with the previous movement results in less

features to take into account during the calculations. The motor module keeps a record of

the last set of features that was prepared for the previous movement in its buffer.

Figure 21: Feature calculation during preparation of motor movement

There is a hierarchical structure about features as shown in Figure 21. All movements

for instance have a style and all have a hand feature. If the style of a movement changes, all

the features for this movement are therefore re-calculated i.e. a different movement

altogether. If the style of two sequential movements is similar but the hand changes, the

features for the style do not need to be recalculated but the feature for the hand and the

ones below do require recalculation. Thus, four features needs to be computed. The

remaining 3 features are often specific to the type of movement requested. For instance

when using the keyboard and punching a key, only the hand and finger are needed to

perform this movement. During this phase the preparation state becomes busy. It is worth

noting that like in EPIC, the direction feature is only computed if the difference between

the new and old direction is larger than PI/4. Similarly the extent feature is only re-

calculated if the difference between the new and old extent is over 2 degrees of visual

angle (Byrne 2001).

51

Action Features needed

Punch This style of action is a simple action that needs only 2 features i.e. a hand
and a finger. However, in terms of execution time, punching a key of a
keyboard also must take into consideration the mechanical side i.e. it takes
time for the switch of a button / key to make contact. This is termed as the
closure time, which is estimated at 10 milliseconds, which is added to the
final time.

Peck This style of action is a directed movement of a finger to a target location that
is followed by a keystroke that needs 4 features i.e. a hand, a finger, a
direction and a distance. In terms of execution time, this action involves the
Welford version of the Fitts’ Law using a k constant of 75 milliseconds. See
section on EPIC and Figure 20 for more details on Fitts’ Law

Peck-recoil This style of action is identical to the Peck style with the difference that the
finger returns to its original location. Thus 4 features are needed and in
terms of execution time, like the Peck style, this action uses the Fitts’ Law
with added consideration that the returns back to its original starting point.

Ply This style of action refers to a hand movement that holds the mouse to a new
location that needs 3 features i.e. a hand, a direction and a distance. In terms
of execution time, this action involves the Welford version of the Fitts’ Law
but using a k constant of 100 milliseconds.

Once the proposed movement has been prepared, the motor module makes the

specified movement. When it performs the movement, it undergoes an initiation phase

that sets the movement up with an assumed 50 milliseconds time stamp. During this phase

both the processor and execution states becoming busy and when it finishes, the processor

state is set to free again but the execution state remains until the movement is fully

completed. Following this phase the actual execution starts. The overall amount of time

that a movement takes to execute this action is mainly based on the style of the movement

and the distance to travel to achieve the movement. Complex movements such as moving a

mouse takes longer to achieve as their execution time is based on Fitts’ Law (See section

on EPIC and Figure 20 for more details on Fitts’ Law) compared to punching a key on a

keyboard or the mouse button for instance. As already mentioned, the motor module is

based on EPIC’s Manual Motor Processor. This implies that it can execute an action whilst

preparing the next one but it can only prepare them sequentially. Hence, if an extra

movement is scheduled at the same time and therefore needs to be prepared, the motor

module is said to be “jammed”. If it is already busy preparing a movement and an error is

generated this results in a notification in the ACT-R/PM console. To avoid this jamming

situation, the model production rule that initiated the movement should have a constraint

in its LHS testing for the state of the motor module as shown in the code below. In simple

terms, the constraints stipulate that if any procedural rules have a goal to press a mouse

and if the motor module is not busy, then add this rule to the conflict set.

…
=GOAL>
 ISA GOAL
 STATE PRESS-MOUSE
 ?manual>
 STATE FREE
 ==>

52

…

3.3.3.4 Memory retrieval in ACT-R

Another important aspect of the cognitive architecture ACT-R is the way declarative

memory elements are retrieved. Not only ACT-R has a symbolic system of production rules

but it also implements a sub-symbolic activation based memory system, which influences

the retrieval of memory chunks.

Unlike SOAR, ACT-R does not have a separate working but instead it has a short-term

memory (declarative memory) and a pointer called Focus of attention that points to goal

chunks stored in that memory to keep track of the current context (See Figure 22).

New declarative memory chunks are added to the declarative memory either when

goals are created through the action of production rules (creation of declarative goal

chunks that are stored in the goal buffer, effectively replacing the old existing goal with a

new one) or being possibly encoded as a result of changes in the external world. Each

chunk has an activation value which reflects its previous use and association with the

other chunks contained in memory. This activation value reflects the probability that the

chunk will be needed in the current context. Thus if it is the case, each time a chunk is

retrieved from memory, its activation value is increased. Chunk activation is also subject

to decaying so the longer ago a memory chunk is activated, the lower its contribution to

the activation will be. In addition there is an activation threshold beyond which chunks

cannot be retrieved.

Figure 22: ACT-R Memory organisation

53

The most appropriate method to explain this activation concept is by means of an

example. Suppose that the task at hand is to solve an addition problem such as “7 + 3 = ?”

as shown below.

=goal>
 ISA addition
 arg1 7
 arg2 3
 sum nil

All chunks that have an association with 7 and 3 will have a better probability of being

suitable to solve this problem. Let us suppose that previously a subtraction problem was

completed such as 10-3=7 as shown below:

=goal>
 ISA subtraction
 arg1 10
 arg2 3
 sum 7

This chunk would have been pushed into declarative memory and in the current

context this chunk in memory will get an increase of its activation through 3 and 7.

Figure 23: Activation process in ACT-R

Looking at this example and Figure 23 one can determine the relevance of the two

chunks towards each other. It is however the sub-symbolic activation and spreading

system that creates this relevance in ACT-R (Taatgen 1996).

The formulation for the chunk activation is given by this formula:

 ∑

 (3.2)

 is the activation value of chunk . The computed activation value has two main

parts; a fixed base-level activation , which is specific to chunk that reflects it general

usefulness in the past and can relatively vary given some random noise to reflect

stochasticity in the nervous system. The second part is the variable part is determined by

54

the current context reflecting its relevance to it. What the summation does is adding up

the influences for each chunk in the current context. determines if a chunk has

influence over chunks in current context. ACT-R assumes that there is a fixed capacity for

source activation and that each chunk in the context has an equal amount with the overall

amount set to the value of 1 as default. Thus, if there are chunks in the current context,

each influential chunk gets 1 ⁄ source activation. If a chunk however does not influence

chunks present in the current context, then is set to zero. represents the strength of

association between chunks. It is an estimation of the odds of being a source present if

the chunk is retrieved (Anderson and Lebiere 1998).

Chunk activation levels have substantial consequences with regards to memory

retrieval. First in situations when more than one chunk matches a procedural rule

constraints (or partially match) the one with the highest activation is retrieved. In case of

partial matching, situations can arise when high-activated chunks are partially matching

procedural rule constraints – in this case an activation penalty is imposed, but this can still

lead to a partially matching chunk to be selected in favour of a fully matching one. The

final point to highlight is that chunk activations are tied to memory retrieval. The time it

takes to retrieve a chunk from memory by a procedural rule relates mainly to two factors

i.e. the match score of the chunk and the production rule strength. The match score is the

activation value minus the degree of mismatch. Consequently, if there is not partial

matching then the match score is the activation itself. In this case the formula based on an

exponential function is:

 () (3.3)

This represents the latency needed to retrieve chunk by the production rule and

Both F and are scaling constants. is the strength of the production rule that is

attempting to retrieve the chunk and is the activation for chunk . As the sum of the rule

strength and activation decrease, and thus their relevance decreases, the time to retrieve a

memory element increases exponentially (Byrne 2008).

3.3.3.5 Conflict Set in ACT-R

In early chapters we discussed procedural rules that construct a model. Bearing in

mind that ACT-R is goal directed the decision to select which of the rules to execute is

referred to as the conflict resolution and all the procedural rules that are matching on the

basis on goal matching are entered into the conflict set. This conflict set may contain one

55

or more productions with only one of which that will ultimately be selected for execution.

When a production rule is selected from the conflict set, and then the rest of memory

retrieval is completed (if required). ACT-R maintains a number of parameters and value

attributes for each production rules to calculate the likelihood that a production is

selected.

Productions in the conflict set are ordered in terms of their expected computed gain.

The equation for this computation is:

 (3.4)

Where is the expected gain or utility of the production rule, is the probability of

success that the goal will be achieved if the production is selected, is the value of the

goal and is the expected cost of achieving the goal if the production rule is selected. is

some stochastic noise to fit the decision in line with human behaviour. Both and are

measured in terms of time. Thus is an estimation of the time it will take to achieve the

goal and symbolises the worth of the goal or how much time ACT-R thinks it can spend

on that goal. becomes the expected gain if the production rule is selected. is therefore

the expected utility of production as a trade-off between cost and worth of the goal. This

implies (because of) that the procedural rule becomes more selectable as the rule

becomes more successful over time. This is, for instance, why the utility of production

rules can be used to find the best strategy to adopt in experiments, for example, as Peebles

and Bothell’s response task that deals with sustaining attention (Peebles and Bothell

2004)

It is worth mentioning these computations only apply to selecting the best rule to fire in

terms of goal matching. However if for some reasons the rest of the constraints for that

rule fail to match once it is selected, the next ranked procedure in the conflict set is

selected. This behaviour is repeated until a procedure is successful in terms of constraint

matching. Another interesting point exists in which the firing of the procedural rules is

completed serially whereas the conflict resolution process is mostly done in parallel.

Finally in the formula above, we used as a probability and as estimates. However

 is an aggregate probability of two probabilities namely and ; being the probability

of the production to function successfully and is the probability of achieving the goal if

the production rules function successfully.

56

 (3.5)

The resulting probability is the probability of success that the goal will be achieved if

the production is selected. The higher this value then more likely the production rule will

fire. Similarly, is an aggregate of two values namely and . The higher this value is and

the less likely the production rule will fire. The value a represents the amount of current

effort (as a latency) that the production rule will need to complete and b represents the

amount of time from the time the procedural rule complete until the goal is achieved.

 (3.6)

The value takes into consideration the presence of sub-goals because their

completion time is taken into account as well as any actions that must be completed

(Anderson 1993; Taatgen 1996; Anderson and Lebiere 1998; Anderson and Schunn 2000;

Johnson et al. 2002; Anderson et al. 2004; Stewart and West 2006; Bothell 2008; Byrne

2008).

 and are important values in learning and problem solving in which cognitive

modellers can forcibly alter those values during specific problem solving. Fu for instance

uses this technique in a navigation task on computer-simulated map by removing success

from the equation only focussing on cost (Fu 2001) as cost is the main factor as all paths in

the map lead to the destination eventually (Fu 2003).

3.3.4 Summary

In this section we have discussed Soar, EPIC and ACT-R. Comparing those architectures

and bearing in mind what TOISE has to fulfil, the factors provided by ACT-R led to this

architecture to be used in this research. The perceptual motor functionality is well

developed and includes better integration of eye movement using EMMA and interaction

with environment i.e. it can interact with external environments and not just simulate

them like EPIC (SOAR does not have this functionality integrated per default). It has both a

symbolic and sub-symbolic components whereas the others architectures have only a

symbolic one. In addition ACT-R has an integrated noise generation at the sub-symbolic

level that reflects stochasticity found in human behaviour. Finally, there is a lot of support

material for ACT-R such as documentation, tutorials and much published research work

with source code available and visual environment that is very helpful to develop models.

In summary, ACT-R was found better suited as a cognitive platform to use with TOISE.

57

3.4 Cognitive modelling used in HCI

This section discusses some past and present research and work that apply to the

domain of HCI, in particular the instances that have common ground with the research this

thesis presents in which cognitive models are used to simulate human users. In this

section we will present and discuss research that was carried using ACT-R to simulate

human cognitive, perceptual and motor functions in the domain of HCI often as substitutes

for real users (Ritter and Young 2001). There is a trend towards applying cognitive

modelling to real world problems, which include domains like HCI, often focussing on

human interaction in real-time. In a research environment, different tools can be used to

provide different required results, which can be combined together to produce final

results. Attempts are now made to integrate all the necessary functionality into one

development environment to extend the capability of the main system and integrating

other tools that are well suited and validated for a specific domain (Lebiere et al. 2005).

This effort often presents many challenges i.e. communication between the different

modules for instance. The research presented in this section often has had to meet those

challenges in the same magnitude as the research presented in this thesis.

3.4.1 ACT-Simple

Cognitive modelling is evolving and is used to predict user behaviour. Powerful

techniques have emerged for exploring user interaction with complex systems. GOMS and

its variant platforms such as KLM-GOMS or CPM-GOMS have been used to predict user

behaviour and often sped up testing and evaluation of user interfaces but often lacks the

precision to model detailed behaviour. The issue often encountered using these platforms

is that they require expertise and are also time consuming.

ACT-Simple combines the simplicity of high-level frameworks with the power found in

lower-level architectures by compiling basic cognitive and perceptual motor commands

into ACT-R production rules. The available command set is limited but in terms of HCI is

sufficient to provide a useful tool for predictions of human behaviour.

The process involves a sequence of KLM-GOMS like actions that are compiled into

corresponding ACT-R procedure rules. An initial production rule is generated to initialise

the current goal and from this point the rest of the generated rules are executed in the

correct order until the end of the sequence of actions. ACT-Simple has a command set that

includes: move-hand, mouse-mouse, click-mouse, press-mouse, release-mouse, press-key,

speak, look-at, listen and think

58

ACT-Simple has been validated many times over a period of time and has been found to

match empirical data with a percentile of errors around 10-12% but more importantly

with an excellent correlation of 0.99. Thus the fluctuations of the data are possible in

terms of human behaviour but the variability shows that data generated with ACT-Simple

is very close to empirical data in terms of variations (Salvucci and Lee 2003). This

compilation ensures that models that are developed in ACT-Simple inherits the features of

ACT-R and in addition when run, they also inherit the parallelisation of perceptual and

motor processes presented by this architecture, which thus becomes psychologically more

plausible. It is worth mentioning that ACT-Simple has been used in many research and

tools that will be discussed in the next sections.

3.4.2 CogTool

Engineering models of user behaviour have had a surge in popularity in HCI, but they

are complex to build and this impacts on how widespread they are used. John & al 2004 in

their research developed a system called CogTool (John et al. 2004) in which designers

can generate predictive cognitive models simply by demonstrating the required tasks on a

mock-up of intended interfaces.

The prediction of skilled performance in the HCI domain has been researched and

validated by many research projects and yet its widespread use as a tool to help designers

is somewhat discouraging. As John stipulated, even using KLM is cause for concern as it is

often perceived as too difficult to model.

The first version of CogTool is somewhat the precursor of the now popular CogTool

toolkit and uses Macromedia HTML IDE30 as a base for constructing and instrumenting

designs. The second version presents its own interface for design not relying on HTLM,

Netscape and the other tools that were needed in the earlier version. CogTool is a

combination of tools to predict latencies on user behaviour whilst demonstrating tasks on

a mock-op design, which does not require programming cognitive modelling skills. There

were two versions made over the years. The current version of CogTool is 2.0.

CogTool is based on Keystroke-Level Model (KLM) based on Human Information

Processing (HIP) theory of human behaviour first proposed by Card & al (Card et al. 1980;

Card et al. 1983) that is specific to user behaviour interacting with computer interfaces.

30 Dreamweaver from Macromedia purchased by Adobe Systems in 2005.

59

It uses ACT-Simple to translate the instrumented actions into KLM rules which are

themselves translated into more fine-grained production rules in ACT-R using Salvucci &

al compiler (Salvucci and Lee 2003). Thus, movements that are analysed obey the Fitts’

Law (see section 3.3.2) but in addition integrate in the timings the theories of preparation

of actions before every task to be achieved as described in section 3.3.3.3. It incorporated

significantly more detailed theoretical accounts of human cognition, perception and

performance than the simpler KLM. It is a tool that produces quantitative predictions on

how users will behave when the mock-up is finally implemented and gives an insight

regarding cognitive load when users employ it (John and Salvucci 2005).

The earlier version included a Behaviour Recorder that observed a UI designer

demonstrating tasks on a mock-up design run in Netscape using LiveConnect. LiveConnect

is now discontinued since version 7.0 of Netscape but the concept at the time was

noteworthy. The system presented widgets in a special palette that could be used to create

a wide range of designs. Once the design was finished and demonstrated, the Behaviour

Recorder (John and Prevas 2003) would translate the user actions into KML operators,

which were then compiled into production rules.

Validation was performed and compared to latencies observed in previous publications

so models generated by this system have been shown to be more accurate or at least

accurate in mapping findings by other researchers. As john mentioned in her paper, the

main drawback with this system is that four different systems must run in concert i.e.

Dreamweaver, Netscape, the Behaviour Recorder and ACT-R in its Lisp console, which is

also a problematic and somewhat cumbersome issue when it comes to developing user

interfaces (John and Prevas 2003).

The next and current version of CogTool is inspired by projects such as SYLK and

DENIM that both focus on sketching, storyboarding and designing applied to web content

design for example (Landay 1996; Lin et al. 1999; Newman et al. 2003; Almasri 2005).

Unlike its first version, the contemporary version has integrated a storyboard system,

transitions between frames and contains widgets containing common components for

interaction. The advantages being that the screenshots of existing products can be inserted

as background images and those widgets can be located and overlaid on top of existing

versions from the screenshots and thus CogTool can benchmark any existing product such

as electronic devices, web sites etc. Additionally one can sketch ideas and use these ideas

to profile cognitive load. As the early version, the interaction is done by demonstration to

produce a computational cognitive load of a skilled user’s performance.

60

Validation was performed and compared to latencies observed in previous publications

and models generated by this system have shown to be more accurate or at least mapping

exactly findings by other researchers (John 2008; John 2010).

An interesting development that used CogTool is the CogTool Explorer that predicts

user exploration choices given a user interface and task, which attempts to predict what

users might do when presented with a user interface to give prediction of user choice. The

idea is to extend the existing CogTool, which predicts skilled performance on routine tasks

and add predictions of user choices in exploratory tasks. It is based on SNIF-ACT (Teo et

al. 2007). SNIF-ACT attempts to simulate users as they perform unfamiliar tasks such as

searching while browsing Internet pages. It is based on information scent, which is based

on spreading activation of chunks in declarative memory and ultimately affects the

matching of production rules. The activation of content-dependant memory chunks that

are matched by production rules can become the base for determining the utility of

selecting these productions rules dynamically. The assumption behind this development is

that activation spreads from the user’s goal, behind the focus of attention, through

memory associations to words and images that are visible on web pages (Pirolli and Fu

2003; Fu and Pirolli 2007; Teo et al. 2007; Teo and John 2011).

In terms of relevance to the work presented in this thesis, this early platform has

common concepts. Firstly, tasks are demonstrated on a mock-up designed for which an

automated cognitive model is generated and executed to gather user behaviour latencies.

Secondly, the user interaction is in due course compiled as ACT-R production rules.

However, the behaviour is compiled down from a high level using very few types of

primitive motor or mental actions, to a lower one, which may restrict its use for more

complex tasks.

3.4.3 Prediction of Driver behaviour and in-Vehicle interfaces

3.4.3.1 Predicting the effects of In-Car Interface on Driver Behaviour

It is now common knowledge that attempting to manipulate an interface whilst driving

has essential consequences which impact on driver performance whilst driving. Salvucci‘s

research (Salvucci 2001) attempts to predict those effects. This research attempts to

integrate into one system both a driver cognitive model that accounts for basic driving

skills which has been well validated, and a user cognitive model that mimics user

behaviour when using a device. It concentrates on dialling phone numbers whilst

performing a driving exercise but could easily apply to devices, such as car radios and

61

other controllers that are often integrated as car instruments. The purpose of this research

is to attempt to generate predictions focussing on interface interaction on driver

performance and vice versa in terms of dialling numbers on a dialling pad.

Using the ability of ACT-R to interact with virtual interfaces, Salvucci constructed a

simulated user that dials a number into four dialling interfaces hands-free cell phone that

is mounted on the dashboard of the car with each one of them having benefits and

drawbacks in his cognitive models that are integrated into the driver model already

validated. The four phones are based on fully manual where the user keys in all the

number of contact, speed manual where the user only keys in one key for that contact, full

voice controlled where the user speaks the number to dial and speed voice control where

the user only speaks the name of the contact to dial. The same contact is used for all

experiments with the speed-dialling interface less demanding in terms of cognition as the

full-speed dialling ones.

The main task is a usability experiment of four different interfaces while driving. A task

analysis was achieved and a set of interactions with the cell phone was created with

commands such as Recall number, Press digit, Say digit and many more. These commands

provided the basic elements used to create the user model.

Because the two models are integrated into one, the main concern was to decide what

to do in multi-tasking situations i.e. one can drive and still be able to press a power button

on the cell phone. In this case, a lot of the available commands pass control over to the

driver model after completion of the task.

The validated driver model controls movements in a sequential manner i.e. assess

information and applies control. However, this model presents other aspect of driving

including looking for blind spots etc. that affects the accuracy of the control. The research

presented by Salvucci focuses on exploring the behaviour degradation in terms of control

when an extra user interface is being operated in parallel.

The predictions being focussed on are dialling times and a measure of control accuracy

i.e. with regards to the road lane and individuals were asked to perform 32 dialling

experiments at the same time to compare them with results obtain from the cognitive

model. Findings of the user testing, in comparison to model predictions, revealed that

experiments validated known facts. Dialling times while driving are slightly longer mainly

due to the control of the car and full dialling compared to speed dialling is slightly longer

with a good correlation between model and user latencies. In terms of control of the car,

62

the findings found that human driver data presented greater deviation than the model, yet

both correlated well but the model under-predicted the speed that dialling has on car

control where it failed to capture its impact. In addition the results showed that manual

interfaces are more taxing in terms of control of the car than voice controlled devices

(Salvucci 2001).

This research and similar findings in this domain has shown the importance and

contribution that cognitive modelling can make in research fields where high cognitive

demand is required of users. One can also conclude that systems such as the one described

can help designers to develop more usable interfaces.

3.4.3.2 Distract-R: Rapid Prototyping and Evaluation of In-Vehicle Interfaces

Vehicle distraction is becoming a major issue in a society focussed on personal

electronic devices and specifically car devices dominating our lives while travelling. Hence,

researchers respond by engineering tools to build less distracting devices as publicity

concerning the dangers associated with driver distraction, such as mobile phone use, are

becoming more publicised. Distract-R is one of those tools to help evaluate new in-vehicle

interfaces in terms of human interaction to steer away from the time-consuming and

expensive modelling that is required to achieve this task. Driver simulators are often used

to monitor user behaviour but studies using those tools are time-consuming and costly.

To identify the aspects of distractions, researchers have begun to use cognitive models

in an effort to predict elements such as latencies of distraction (Salvucci et al. 2001;

Salvucci 2002; Salvucci and Macuga 2002). As already mentioned, Usability Engineering is

difficult as it demands highly trained professionals in the loop and thus becomes

expensive. In an effort to address these issues, work has been carried out to use fast

prototyping and modelling by demonstration (John et al. 2004).

Distract-R follows on this work and provides a prototyping and modelling tools that are

less limited and focussing only on In-Vehicle interfaces.

Similar to the research presented by John & al work, Distract-R used a version ACT-

Simple with a simplified driver model that has been validated in research such that

presented in section 3.4.1.

As shown by John, Distract-R attempts to abstract cognitive modelling and is intended

to aid designers and engineers and contains five distinct parts. The first tool is the rapid

prototype component in which simple In-Car device interfaces can be sketched that

63

contains buttons, displays, a microphone and a speaker. The next component relates to

tasks and provides modelling by demonstration that occurs on the created designs. This

automatic modelling relies on ACT-Simple, which in the same way as CogTool translates

mental and motor cognitive functions to ACT-R production rules. However Salvucci was

concerned with the speed of execution and natively re-implemented a subset of ACT-R and

ACT-Simple using C++, which in addition to making the code much simpler to integrate

into their system, runs 100 times faster than using the Lisp code. The following component

pertains to driving the vehicle where different types of driver age can be selected (as age

influences performance). In addition, the steering style can be adjusted and used to

represent the aggressiveness of steering control. Another component is the scenarios

component that provides a selection of driving environment. Finally, the Results

component provides the driver simulation, visualisation and analysis tools. One can

inspect the model driver navigating around the chosen environment in real-time where

eye movements are positioned on the screen and thus provide feedback on how the

interface impacts on the driver’s performance. The means to view results are provided in

tables or graphical charts.

This research was validated in two experiments. The first experiment is based on

phone dialling while driving and attempts to validate Distract-R using results from

previous research. The second experiment tests the effect of age on driving performance.

For the former experiment, the same tests were used as in section 3.4.3.1. In terms of

results Distract-R provides similar results as Salvucci (2001) with the same implications

i.e. the latencies related to complete a task for each dialling method are both fairly

accurate but are slightly lower than human data. Comparing methods, Full-voice requires

more time to complete and Speed-manual gives the shorter latency in line with earlier

experiments (Salvucci 2001). The second experiment relates to the age of the driver when

performing multi-tasking while driving i.e. dialling a number when controlling the steering

wheel of a car. The premise is that when drivers are driving, age is not significant but

when multi-tasking, age does make a difference. The experiments exhibited no major

differences when no interactions with other interface features were expected but showed

significant changes when drivers were asked to manipulate and dial a cell phone in

addition to driving (Salvucci et al. 2005).

Salvucci’s work in addition to demonstrating the obvious impact that driving and

performing other tasks has on driving performance is also a good platform to test

important issues such as multitasking and in particular switching tasks. Since ACT-R does

not include a goal stack anymore nor does it have a goal module, Salvucci developed a

64

general executive or goal module, which allows for the addition and removal of goals to

and from a set of active goals, leaving this goal module in charge of managing goals and

their execution rather than being purely procedural, allowing the switching of goal to be

stated in the action of production rules. Since only one goal buffer is present, only one goal

can be active and executed at one time. The goal module operates a goal queue based on

the principle of first come, first served and each goal is allocated some period of cognitive

processing before switching to another goal after a period of time thus incorporating

temporal dependence in the goal firing process. The implication is that the general

executive can execute the most urgent goal i.e. either “due” or “overdue”. Salvucci, for

instance uses this extended concept with the experiment mentioned above (Salvucci 2005;

Salvucci et al. 2006).

His work provides an insight into different module integration to provide a tool that

permits the prototyping of interfaces, with an automatic generation of ACT-R production

rules via the ACT-Simple compiler. As running ACT-R in Lisp is much slower than native

code, the needed functionality was re-coded natively to allow for real-time

experimentation. It also shows how cognitive modelling is becoming a serious contender

in predicting human behaviour data that matches human data for a fraction of the cost of

both in terms of finance and time.

3.4.3.3 Prediction of energy consumption used by devices relating to interaction

Whilst KLM is used to get timing predictions for user interaction with interfaces, an

unexpected use of KLM came from the engineering field in a research called Keystroke-

Level Energy Model (KLEM) (Luo and Siewiorek 2007).

As more ubiquitous devices emerge in the market their efficiency in terms of energy

consumption is often put into question. Software that is deployed for those highly

interactive devices is often not optimised in terms of energy efficiency and run time

performance. The main energy efficiency approach is often a global and broad run-time

management technique such as aggressive use of idle time etc. The concept behind KLEM

was researched to address energy efficiency and its concept is based on prototyping

interfaces before the application is implemented and deployed in those devices.

The basic idea behind the research is that more interaction and a broader variety of

modalities used to perform a task will lead to more energy being consumed; actions such

as tapping buttons etc. Thus less interaction to achieve a task leads to savings in energy.

After benchmarking their target device and compiling energy profile for the different

65

modalities, KLEM uses a user interaction trace (using KLM) to determine the cost in terms

of power needed to perform the task, which involves the nature of the interaction and the

period it will last. The resulting energy consumption predictions are therefore the sum of

all the KLM operator energy and the system activity energy to perform each task i.e.

 ∑ where s is a task primitive, is the power needed to perform this task

(from profiles) and is the time needed to perform this operation. CogTool is used to get

the needed user interaction through the ACT-R trace provided by CogTool from which all

the MOTOR functions are retrieved.

Luo and Siewiorek (2007) validated their work successfully using 10 participants

whilst monitoring energy consumption of the two used devices. The error between task

energy prediction and model energy prediction for one of the devices on average is a

significant 4.4% and the other 8.4% (95% confidence interval) which overall provides

good accuracy. That project has implications for the research presented in this thesis as it

is evidence of a real-time application that uses simulated user models as surrogate users

to provide sets of metrics with the difference that these metrics do not focus on usability

of the device but instead on the device in operation i.e. optimisation of the energy (Luo

and Siewiorek 2007).

3.4.3.4 Predicting user performance: people with physical disabilities

A lot of the research concerned with predicting user performance of computer

interfaces is based on skilled user interaction. For users with physical disabilities the

range of abilities is more diverse than able-bodied people. As user trials are difficult and

expensive (Biswas 2007) is attempting to develop a simulator to help with the evaluation

of assistive interfaces. In this research, a task definition and locations of different objects

in an interface is used as input, which is then used to predict a cursor trace, likely eye

movements and task completion time for the different configuration of the device used.

The Biswas modular system has three main components. A perceptual model inspired

by EPIC uses keyboard and mouse events and produces a sequence of eye movements and

cursor paths, which are used to predict task completion times. By varying the quality of

the image the system predicted visual search for people with or without visual

impairment. A cognitive model that simulates users utilises a version of GOMS called

Cognitive Perceptual Motor – GOMS (CMP-GOMS) created by (Gray et al. 1993) to simulate

the expert users and another model for novices or people with disability inspired by the

work of Rieman (Rieman et al. 1996) which involves exploratory learning based on two

search spaces; an external space which deals with interface states and an internal space

66

that deals with knowledge; both of which are mapped to one another. The mapping (i.e.

anaphoric reference) in Biswas’ project however, is done manually and so is the creation

of the user space, which is created by analysis of prior real user interactions. These models

use the output of the perceptual model to determine which action to accomplish for the

current task. The final component is the motor-behaviour model, which does not use

Fitts‘law as this is not appropriate for disabled users but instead uses a validated

proprietary algorithm based on statistical analysis of cursor traces obtained through

observations of user’s interaction as well as some amount of trial and error (Biswas &

Robinson 2008). At the time of writing this thesis their findings were only confirmed with

experimentation using novice able-bodied users and proper testing with their intended

target users which is now is due (Biswas et al. 2005; Biswas and Robinson 2007; Biswas

and Robinson 2008; Biswas and Robinson 2010).

Their project is relevant to the research presented in this thesis due to the fact it

attempts to simulate an interface which is a personalised interface for specific users i.e. in

this case for people with physical disabilities or visual impairments.

3.4.3.5 Vision for ACT-R

Much interest has focussed on user interfaces and there has been emphasis on different

elements that constitute GUIs to understand and correlate both human behaviour with

ACT-R predictions when operating components such as menus, buttons, and text entry

controls etc. both in terms of eye and motor movements. The second focus of this

experimentation is the validation of the cognitive architecture.

With an earlier version of ACT-R/PM (i.e. which at the time did not include Salvucci’s

EMMA), Byrne and his colleagues (Byrne et al. 1999) researched this area by simulating

these perceptual and motor functions with an ACT-R/PM model, in particular the role of

icon searching and saccade movements during menu selection. Overall the experimental

data reproduced known behaviours but some discrepancies showed in the raw data

collected over a series of experiments. With respect to response times, which predict that

it is a function of the target location, their results produced a good fit. With the eye

fixations the theory predicts a graded increase of the number of eye fixations within the

target location with some visual search strategy based on a top-down approach with some

amount of randomness. However, their simulated findings demonstrated different

behaviour to where these fixations happened and the one first attended to. With regards

to mouse movements, ACT-R/PM model predicts that the mouse movements should follow

the eye movements. Their results however show that fewer mouse fixations with the ACT-

67

R/PM model where needed compared to eye fixations, thus also showing divergence at

this level compared to real user behaviour (Byrne et al. 1999; St Amant et al. 2004).

Another experiment of interest is icon search using ACT-R/PM. Fleetwood and Byrne

(Fleetwood and Byrne 2001) studied this area and their first set of experiments did not

use Movements and Movements of Attention (EMMA), which were used subsequently. The

main topic of research was to understand how icons could convey more information

without impacting on search time. After gathering real user data to that effect, they

constructed two models to illustrate two strategies: a double-shift (DS) method whereby

the model shift its attention to icons that have common characteristics such as colour with

the requested target icon and then shift its attention to the filename below. If the filename

coincides with the requested filename, the model shifts its attention to this icon so a

procedural action can take place. The other strategy called text-look (TL) attempts to

focus only on the filename below the icon, and then refocus on the icon in the same

manner as DL. The former model does not re-focus on previously seen icons whereas the

latter does. These experiments also took into account the icons’ complexity. Complex icons

or poor icons are items that have multiple features that are maybe shared with other icons

whereas the good quality versions have only one single feature associated between them.

The results of their experiments matched the ones obtained with real subjects, that

decrease of icon quality affected response time with longer latencies as the quality

decreased, and finally the correlation between the DL and TL experiments demonstrated a

good fit. The suggestion by the authors was that the number of extra attention shifts

generated by the DL approach was cancelled out by the re-visitation of the TL strategy.

However, the data also provided some unexplained over-estimation of timings that led to

another set of experiments to be conducted with real user to use the eye-tracking

techniques to further the understanding of choice of strategies. The new collected data

suggested that users were able to identify clusters of icons pre-attentively, by recognising

features that were common amongst the group of icons, then moving one from one group

of icons to another group while with the poorer quality of icon this behaviour did not

occur suggesting the use of better strategy. Moreover, the new data also indicated that for

real users TL was more frequently used; as users seemed not to look at the icon itself but

directly at the filename in addition to possibly take the length of this filename into account.

As a conclusion, they suggested that some underlying assumptions of both the vision

module and the conceptual design of their study maybe needed to be improved

(Fleetwood and Byrne 2001).

68

This research was revisited with the ACT-R/PM models using the integrated EMMA

system (Salvucci 2000). The experiments remained similar to the ones proposed in the

first paper and results vindicated earlier assumptions with regards to grouping of icons

and the move from one icon group to another following a nearest strategy as a visual

search strategy. The results also found that designing effective icons i.e. their

distinctiveness, for a system reduces search times leading to the conclusion that variation

of the quality of icons and their number in the display has more influence on search

latencies than the strategies used by users, which in itself is an important finding as it

provides evidence and re-enforce the case that the design of the icons (always present in

today’s interface) is an important factor in terms of usability (Fleetwood and Byrne 2003;

Fleetwood and Byrne 2006).

The main issue with ACTR is the lack of possible connectivity with applications that

were not designed to interact with those architectures. For instance the environment

developed for ACT-R runs on the concept of client/server sockets architecture. Both these

systems have this functionality implemented into their code. This is not possible with the

majority of off the shelve applications that are distributed as precompiled products

without any code being distributed; there are exceptions though but the compilation

process for a specific platform can be very challenging and time consuming.

As the cognitive community started to focus on HCI issues related to off the shelve

products, calls were made to resolve this issue. Segman (St Amant et al. 2005) was created

to fill that gap and provides cognitive models with the ability to see the Microsoft

Windows graphical interface screen as any real user would and allows ACT-R to interact

with Microsoft Windows as if a user was sitting at his desk looking at the computer

display, thus providing more direct interaction with the system.

Segman written in Lisp relies on code gluing allowing Segman to connect to native code

written in C & C++ exposed in a Dynamic-Link Library (DLL) which among other things

provides Segman with means to use low level functionality provided by the Windows

Application Programming Interface (API). When loaded, wrapper methods are available to

interact with the methods provided and exposed by the DLL. In addition, Segman provides

computer vision and lower level image processing to cognitive modellers by processing an

image through a process called segmentation. In short, segmentation pre-processes the

image using a series of procedures such as reduction of colours, cropping, and translating

to name but a few. The next step is the data reduction that uses algorithms to reduce the

image data by feature analysis algorithms that can extract pixel groups as regions. This

69

stage deals mainly with a combination of region growing and shrinking, clustering,

boundary detection depending on the outcome that is sought. The final step is the feature

extraction phase which extracts, classifies the image features and assigns labels to them

(Shah et al. 2003). Therefore, Segman is capable of capturing the desktop screen as a

bitmap and through pixel manipulation can create a list of pixel groups and non-

overlapping regions of the screen that share the same colour. These pixel groups have

features such as number of pixels in the group, its area, height, width, its red, green and

blue (RGB) component, its colour in terms of numerical RGB values and its proportion i.e.

height divided by its width. These features allow the creation of declarative chunks or

patternation. Segman also provides the functionality to combine groups together. For

example, a standard embossed button can combine an overall grey colour with highlight in

lighter and darker colouring for the embossing effect. Segman can combine these three

groups of colour to one overall group. In addition to the feature detection, Segman

provides the functionality to initiate commands via the API messaging system to interact

with components present in the interface.

Segman is a significant step forward in terms of adding visual capability to ACT-R. It has

been tested with applications such as Notepad, or Paint or dialling cell phones (St Amant

et al. 2004) and also tested with more serious dynamic applications in terms of complexity

such as a simple game of control for which results were very promising as it provides a

means for a cognitive model (acting a surrogate user) to see an interface and to interact

with it in the same manner as a real user. Another more substantial experiment was

performed using a driving game programmed using Java. A system was constructed to

conduct this experiment i.e. a Driver User Model in ACT-R and Segman (Van Rooy et al.

2002), its performance that showed lack of robustness in some situations such as strong

curvature of the road bend or the inclusion of extra useless procedural knowledge that

were set to fire randomly as the model was driving to simulate anxiety as dual task, for

instance. The perceptual functionality was based on empirical studies i.e. a dual strategy,

where one strategy is used for the detection of the curvature of the road - the region is

four degrees below the horizon, the other strategy deals with closer region – the region is

seven degrees below the horizon. To provide a balance, between these two strategies, a

visual field of 5.5 degrees below the horizon was chosen. When it came to test its

effectiveness with more serious games such as a roulette user interface, results were

encouraging as it acted a proof of concept but also demonstrated limitations (Shah et al.

2003). Segman has also been tested with SOAR to control some desktop dialling

applications. Finally St Amant and his colleagues (St Amant et al. 2005) built a cognitive

70

model to remote control a simple off the shelve robot ER1 Personal Robot System (Ride

2012). By controlling the robot control centre software interface, Segman was able to

control the robot remotely extending to controlling the movement of the robot gripper.

Whilst Segman opens the door to modelling with image processing inclusion, it is

restricted in its capacity and the visual process needs to be amended both in terms of

cognition accuracy i.e. taking into account human attention allocation and the foveal

increase acuity and in terms of its basic object recognition as it stands, objects which are

groups of pixel, have to be combined manually (Van Rooy et al. 2002; St Amant et al. 2005;

Ritter et al. 2006; Ritter et al. 2007).

Other research that is relevant to this thesis is ACT-CV from Marc Halbr gge

(Halbr gge et al. 2007). This research is similar to Segman in some respect as it provides

ACT-R with powerful image processing based on the highly developed library called

OpenCV. Like Segman, ACT-CV connects to native code written in C & C++ delivered as a

linked library, which provides the means to use functionality in the form of native code i.e.

C and C++, provided by the library to achieve its visual perception. OpenCV, an open

source project backed by Intel and designed for real-time applications, is an optimised

multi-platform library containing over 500 hundreds programming functions for real time

computer vision (Intel 2010). It is available in the form of libraries depending on the

operating system platform and is coded in C and C++. Similar to the algorithm of Segman,

OpenCV (OpenCV 2012) is based on the professionally developed concept of object

features i.e. group of pixels with some unique attributes. It has all the basic functionality

associated with computer vision such as object detection and motion detection (optical

flow), it finds groups of pixel that are in motion, find group of pixels that are organised in

straight lines and provides face detection using face templates in addition to many low

level image processing routines (Gary & Adrian 2008; Gregori 2012). ACT-CV, instead of

providing the functionality uses optimised methods provided by OpenCV. This library

needs to be loaded by the model. In the past for instance Segman used Allegro Lisp

proprietary functionality to load and use the functionality exposed by the DLL. ACT-CV on

the other hand does not and uses a combination of Common Foreign Function Interface

(CFFI) (Bielman 2006) and Simplified Wrapper and Interface Generator (SWIG) (SWIG

2012) instead thus allowing much more flexibility in terms of running platform. SWIG is

an open source library that has a long history since scientists in the Theoretical Physics

Division at Los Alamos National Laboratory for building user interfaces to simulation

codes first used it. In short, SWIG is a compiler that takes C/C++ declarations exposed in a

dynamic library and creates the specific wrappers for a scripting programming platform

71

needed to access those declarations from other languages that include for example many

of the scripting languages such as Lisp and languages such as java. The actual loading of

the native code in C++ library from the Lisp platform is done using CFFI for cross

platform functionality, which unlike Segman does not rely on the more proprietary

functionality of Allegro Lisp.

The experiments carried with ACT-CV are similar to the experiments that were carried

with Segman i.e. to demonstrate the publicised impact that driving and performing other

tasks at the same time has on driving performance. In this experiment, multitasking tasks

is scrutinised in the same manner as Salvucci did with his research mentioned previously.

An empirical study was first conducted using a driving simulator where the participants

while driving where given an announcement to follow a certain route, then a road sign was

displayed after two seconds and the driver has to press specific keys depending on

whether the route that was announced was displayed on the road sign either as going

straight on, of following a change of course or not displayed at all. The assumption was

that the duration of the visual search in those type of tasks is not only influenced by the

time to perceive the road sign on the road side but also by the words used for the locations

refer to i.e. known or unknown place. Thus to reduce this influence, fictitious places were

used in the experiments. Also care was used in terms of not having two places starting

with the same letters and the design of the sign was also carefully chosen. An eye tracker

was used to track the eye movements during the visual search. In total 19 participants

were used, each performing 108 tasks during experimentation. The average time from the

presentation of the sign to the participants’ reaction was on average 1.9s with only 2% of

incorrect response. The results also showed a strong significant correlation between the

size and type of the sign and response times. Moreover, the difference of response times

only showed when comparing signs of different size but do not with similar type of signs.

Furthermore, participants needed 2.7 fixations to attend the sign with 24% of the cases

searching the road for the destination mentioned on the sign. An ACT-R model similar to

Salvucci’s (2002) was created to simulate participants. Analysis of the findings showed

that in general ACT-R latencies were shorter with the exceptions where the destination

was not displayed on the sign. In addition ACT-R needed more fixations on the sign as was

needed by real participants i.e. from 2.7 to 4.1 for the model. The results presented fit well

with the current literature i.e. the processing time increases in a linear fashion with the

number of target presented in the sign. In term of functionality of the simulation, ACT-CV

proved to be a useful tool for processing vision processes. In terms of ACT-R modelling,

this experiment showed that it is well possible to design a cognitive model that is capable

72

of simulating human behaviour despite the shorter latencies that have been reported.

Furthermore, this experiment showed that it is well possible to combine this cognitive

model with model of driving such as Salvucci. Finally, Halbr gge (2007) reported that the

cost in time to create the ACT-R was in the region of days whereas the empirical study

took several weeks to complete.

This research further provides evidence that cognitive modelling is useful at many

levels, one of which is cost both in terms of time and also in terms of financial costs (Gray

et al. 1993). Halbr gge’s research is in itself a step forward in terms of adapting vision

processes to a cognitive architecture and thus contributing toward a more integrated

cognitive architecture (Halbr gge 2007; Halbr gge et al. 2008).

ACT-CV was mentioned in this section for two main reasons. It takes on the

experiments done with Segman but uses a well-accepted platform in the industry to

simulate the vision processes. Second, ACT-CV combines a series of tools to provide a

multi-platform package i.e. through the use of CFFI, SWIG and OpenCV, which is not

available with Segman i.e. dedicated to Windows platform only. Thus bearing in mind the

use of Open-CV, it presents a more scalable solution both in terms of functionality but also

in terms of integration.

In this section, we have looked at some of the prominent research that has been carried

out. Most of these examples focus on human behaviour predictive work or providing

practical and theoretical enhancements with regard to the cognitive architecture of ACT-

R/PM. However, in terms of automatic optimisation of user interface, the literature is non-

existent. It is believed that the reason behind the lack of projects is due to the integration

of ACT-R models within an optimisation engine, which remains unfortunately a major

issue. However user interface optimisation has been attempted using some evolution

algorithm and some heurists, which unfortunately rely not on human cognition but by

other means, which will be discussed in latter sections.

73

Chapter 4. Optimisation using evolutionary algorithms

The research presented in this thesis uses an optimisation engine that uses virtual or

simulated human cognition and motor functions as part of the assessment of solutions

found. The presented research deals with placing components in a user interface in an

optimal manner that minimises these functions latencies. It is therefore a placement

problem, which is a difficult problem to solve given the fact that many GUI components

have different functions that often require different means of interaction. With regards to

placing those components on an interface there are many issues that have to be resolved

in order to achieve a proper layout. For instance, none of the component can overlap or

some components must stay static and not move from their original place to list just a few

of the problems to resolve. Given a complicated interface, this search for good layouts can

become exhaustive due to the extremely large search space as, not only the components

must be properly placed related to one another, but also they must respect constraints too

such as spatial and usability constraints. Had this project also included constraints such

aesthetics, these would also have to be met with too. In addition, the placement of one

component may affect not only the human interaction pertaining to this GUI component

and the ones that it directly linked to but also down the line to others as this will often

affect the motor functions that resulted from this placement. These constraints can be

perceived as costs in a placement problem (Examples of these constraints are discussed in

Section 5.9.7).

In its basic form i.e. given a set of components placed in an user interface (1,… ,),

and given a set of locations those components can be located at (1,… ,), where

since you must have at least a number of possible locations that is equal or greater to the

number of components to place all the components on that interface, the problem is to

determine the assignment of components to locations that will result in the minimum

cognitive load for interaction between one component and another. Thus the basic form

can be expressed as a problem of mapping the one-to-one mapping of the set C into the set

L, which results in the minimisation of human cognitive and motor functions.

Thus the feasible region of the problem’s solution space contains points. For

example, with a small interface containing 15 components, the total number of

alternatives would be in the region of 1,307,674,368,000; in other words over a trillion

possibilities. If one also takes into account costs i.e. component overlapping for instance,

which will decreases the number of solutions, that are attached to placements, the

possible number of solutions remains extremely large even discounting solutions that are

74

evidently not feasible and therefore finding a optimal solution to this problem is still a NP-

Hard problem and the problem often becomes to find a solution that is of good quality

rather than the definite optimal solution.

Given the large number of possible solutions, and bearing in mind the amount of time

to create and test every ones of them and the computing power necessary to compute

them, dealing with this type of problems often comes down to creating an algorithm that

can move through the solution space to find the best alternatives without attempting to

produce them all but to find a solution that produce a good result i.e. an interface that is as

optimal as possible at minimising the cognitive and motor functions. The test to decide if a

solution is good relies on some sort of metrics which is often returned by a cost function,

that becomes larger or smaller depending how good a solution is or vice versa. For

instance, in the case of TOISE, the cost function could return a metric that symbolise the

amount of time that an interaction scenario takes to achieve in addition to penalties for

placing components on the interface either protruding outside the interface surface or

overlapping on other components. In this case, a minimisation process would be

necessary, as the algorithm should attempt to decrease this latency as well as to decrease

penalties.

There two main important branches of search algorithms: i.e. deterministic or not

deterministic. The former refers to systematic and less random search processes such as

hill-climbing algorithms described in the literature as local search algorithms. A hill-

climber often begins with one solution to the problem, which is usually chosen at random.

This solution is then mutated and the resulting solution’s fitness is then tested to the

previous one and if the new fitness is higher than the former one, the old solution is

discarded and the new one is then kept as the base solution for the next iteration. The

algorithm is then repeated until the mutation process does not produce a sufficient

increase in the current fitness otherwise the algorithm returns the current solution. Hill-

climbing algorithms are often referred to as greedy algorithms because during each of

their iteration their aim is to make the best optimal available choice with the aim to find

the overall best result. As a consequence, the main issues with greedy algorithms are that

they have a tendency to get trapped within local minima or can be affected by poor initial

solution choice. Furthermore, in terms of computer processes for the placement problem

that we propose, this type of algorithms is computer intensive as they often undergo an

exhaustive search of solution space, which can be time consuming.

75

For the complex minimisation placement problem at hand we need an algorithm that

can explore the search space and find a good quality solution quickly without becoming

deceived by possible solutions that appear to be good solutions but are in fact short in

terms of quality compared to the global minimum that may exist in the search space.

Deterministic algorithms such as hill-climbers can be useful in instances where the search

space in well understood and relatively structured hence allowing special algorithms to

take advantage of it, these types of algorithms are advantageous (Forrest and Mitchell

1993; Verhaegh et al. 2006). The other branch of algorithms deals non-deterministic

methods, which includes algorithms such as, simulated annealing and genetic algorithms.

A short explanation for these methods can be explained as follow. Let’s say that a solution

space exists which includes a good quality or optimal solution. Thus, an algorithm can

eventually discover this solution purely by inspecting this space randomly. Anyhow, this

type of random search can often become an exhaustive search in a large solution space,

which in terms of processing and operating time is not an option i.e. similar to hill-

climbers. However if the search is conducted in a more directed manner i.e. the algorithm

jump around from one location of the solution space to another until a relatively

potentially good solution is found, then the algorithm can search the vicinity of the

surrounding region of that map in the hope of finding a good quality solution nearby.

However if the outcome of this local search does not point to a good quality solution,

another hop into the other area of the solution space can be performed and the process

repeats. These types of algorithms can often significantly outperform classical methods of

solution space searches when applied to read-world applications (Fogel 1994; Nolle et al.

2002). In terms of concept, this type of algorithm often gets initialised with a set of

solutions that are randomly chosen. A pool of these solutions is then selected that includes

some good and poor solutions; the poor solutions are kept in order to allow the algorithm

to avoid the chance to be trapped by local minima. The selected solutions are then

modified with the hope of producing better quality ones; the amplitude of these

modifications decreasing with time or as the overall quality of solutions increase. As the

algorithm iterates better solutions emerge to finally converge to a generally good solution

though no guaranty is given that the found solution is the absolute best solution.

There two commonly used types of non-deterministic search algorithms - simulated

annealing algorithms and genetic algorithms. The former is based on the idea developed

by Metropolis (Metropolis et al. 1953; Holland 1975) and later by Kirkpatrick (Kirkpatrick

et al. 1983; Mitchell and Forrest 1994) which took the concept of the physical annealing

process of solid i.e. known as the thermal process for obtaining low energy states

76

(equilibrium state) of solid in a heat bath, and applied it to the problem of solving

combinatorial optimization problems. In this process the temperature of the heat bath is

raised to a maximum melting temperature of the solid so that it is in a liquid state – during

which the molecules evolve in a random fashion, which is then followed by a phase where

the temperature of the heat bath is carefully lowered until the molecules arrange

themselves in a highly structured and stable lattice – the molecule are in the equilibrium

state and thus the energy is minimal. If either those stages are not carefully performed, the

solid solidifies in a semi-stable state and the energy is not lowered to its true optimum

minimum energy state (R. L. Haupt and S. E. Haupt 2004; Verhaegh et al. 2006). The

annealing algorithm is an analogy to this process. Moreover it is somewhat similar to the

hill-climbing algorithm and thus starts with an initial solution, which is obtained at

random from the solution space. During each step of the algorithm, the current solution is

perturbed i.e. modified and its fitness is assessed. However unlike the hill-climbing

algorithm, if the current solution fitness is lower than the previous one it is not

automatically rejected but instead its probability to be retained is calculated depending on

the difference of fitness with the previous solution and the current temperature following

the equation ()

 where () is the probability of the solution being retained,

is the difference of fitness between the previous and current solution and is the current

temperature. In order for the annealing algorithm to settle into a thermal equilibrium i.e.

to rich a balanced state, each step must be kept to the same temperature for a length of

time. Therefore the temperature is decreased in steps following the equation

where is the next temperature, is the current temperature and is the cooling

coefficient. If this cooling time is too short i.e. the cooling coefficient is too low the

algorithm is more than likely to be trapped in a local minimum. Too long and the algorithm

might not converge to an optimal solution (Kahne 1997; Nolle et al. 2002; Konak et al.

2006)

4.1 Genetic Algorithm

One of the most prominent other type of non-deterministic algorithms refers to Genetic

Algorithms (GA) (Goldberg & Holland 1988). It is based on the Darwinian theory of

evolution. The analogy of this theory and algorithm was first described by Holland in the

1960s (Holland 1975; Huang et al. 2012). Later with his colleagues, he further developed

the idea and presented genetic algorithms as an abstraction of this evolution theory which

included processes such as mutation, selection and crossover in addition to introduce the

notion of schemata (Bäck 1989; Mitchell and Forrest 1994; R. L. Haupt and S. E. Haupt

77

2004; Jadaan et al. 2008). In short the concept deals with the idea that evolution adapts

living organisms to deal with complex environments in which the fittest individuals

survive, similarly GA adapts solutions to best solve a problem based upon a fitness factor.

The algorithm is based on the fact that strong individuals who have high fitness have the

opportunity to pass some of their genetic material i.e. genes to the next generation via

reproduction. The individuals who demonstrate poor fitness get discarded over some

generations. Over time, during the slow process of evolution, some small mutations can

affect individual’s genes. If these changes provide additional advantages, the selection

process i.e. natural selection will ensure that new individuals bearing those changes

evolve from the old ones to eventually replace them to become the dominant species in the

population (Koehn 1994; Kahne 1997; Konak et al. 2006). Thus mutation, crossover and

selection are the basic processes in a genetic algorithm.

The GA terminology in the literature follows the biological representation is inherits

from. A solution is called an individual or a chromosome. These chromosomes are

composed of discrete units called genes, which influences some features of the

chromosome. Genes can have many representations such as binary units, integers, float,

doubles, strings etc. In genetic algorithms a chromosome often corresponds to a solution

in the solution space, which implies that a mapping between the solution space and the

chromosomes referred to, as encoding, must be implemented. Therefore the GA

mechanism operates on this mapping rather than the problem itself. Unlike many

algorithms, GA does not operate on a unique solution, but instead operates on a set or

population of solutions, which is first initialised with random solution. As the search

process progresses, the population is checked for its fitness, and from this, a pool of good

parents are selected which is used to create the offspring’s for the population for the next

generation. Finally some individuals from the new population are mutated. A check on the

convergence of the population towards the best solution is made and if it is felt that it has

converged the GA run exit otherwise it re-iterate, alternatively, the GA can be instructed to

run for a specific number of generations. The general process is shown in Figure 24. A

chromosome is defined for a particular problem. This is the encoding phase. This

population individual has a size i.e. number of elements or dimensions of , thus given

 , , … , a chromosome can be represented as an array of these elements i.e.

 [, , … ,
]. Each chromosome is associated with a cost function to

calculate its fitness so for each element of the chromosome the cost is

 () (, , … ,
). This is the fitness for this chromosome that

will define its selection ranking for matting. Hence for a placement problem such as TOISE,

78

for a number of components
2⁄ , the number of locations for these components is

2⁄ ,

a possible fitness of a solution can be represented as (, , … ,
) where

 , is the location of component in the interface , is the location of component ,

,

 is the location of component
 with referring to some summation of

constraints on overlapping, placement and cognitive and motor function.

Selection is a process in a GA that determines the manner by which it is converges. As

shown in Figure 24, genetic algorithms use the selection process to select the individuals

from an existing population to insert into a mating pool which are then used by a

recombination operator i.e. crossover to generate new offspring that will form the next

generation population. It is therefore important that the selected individuals in this pool to

have an overall good fitness and the selection process should focus on the selection of

those types of individuals in a current population for this mating pool.

Figure 24: GA Run

The selection pressure is the degree by which the individuals compete with each other

so that the fittest individuals are chosen for the matting pool. The higher the selection

pressure and the more fit individuals are chosen for the next generation. Consequently,

over a number of generations this pressure forces a GA to refine the population in terms of

fitness, which ultimately will eventually push the GA to converge to a set of optimal or

near-optimal solutions. There are too main issues related to selection pressure. If it is too

low, this will lead to an increase of the variability of the diversity of the population and the

79

GA convergence will be slow and will take unnecessary longer to find an optimal solution,

adding extra computer processing time, often stalling the GA from settling down.

Conversely, if it is too high, it will decrease the population diversity and the GA might be

driven to converge quickly and to a local sub-optimal solution, which could be far of the

optimal solution. In other words, the GA settles down too fast (Mitchell 1996; Huang et al.

2012). Selection schemes come in two major flavours i.e. proportionate and ordinal based

selection. The former bases its selection on the fitness of the individuals relative to the

fitness of the entire population. The latter base its selection on the rank of individuals

compared to the other individuals ranked according to the fitness in the population.

Therefore the main difference is that the selection pressure is directly proportional to the

fitness of individuals for the former whereas it is not for the latter i.e. it is only based on

the ordering of individuals of a population. Examples of commonly used proportionate

selections are proportionate selection, stochastic remainder selection and stochastic

universal selection and examples of ordinal-based selections are tournament selection,

truncation selection and linear ranking selection. It follows that the selection operator is a

critical component in delivering optimal solution when using GA (Bäck 1989; Reeves

2003). It is not the place in this work to describe in details all the selection algorithms

that are used today, as the list is exhaustive. Much research has been undertaken in this

field. We will simply briefly introduce some to provide information regarding their

features however. The classical Fitness Proportional Selection (FPS) also known as the

Roulette Wheel Selection (RWS) is based on the simple algorithm where the expected

number of copies for a particular individual is based on its fitness compared to the

population fitness (which normalises it) usually using a roulette wheel to make the

selection. In this process each individual is assigned a slice of the roulette wheel with the

size of the slice being proportional to the individual’s fitness related to the population

fitness. A random number is generated from (0,1). Starting at the beginning of the

wheel, the cumulative probability is summed until it is equal or greater to the value. The

entire circumference of the wheel equals the sum of all individual fitness’s of the

population individuals (Hancock 1994; Jadaan et al. 2008). The individual under the wheel

selector is then selected for the mating pool. The process is repeated for the number of

individuals that are required for the mating pool. This algorithm however has reported

issues associated with it (Goldberg and Deb 1991; Koehn 1994; Miller and Goldberg

1996). This process leads to early convergence, as at the start of the GA run, there are

many individuals with poor fitness and just some much fitter. Since the selection is purely

based on stochastic selection i.e. random, poor individuals can be selected multiple times

with only a small proportion of fitter ones entering the matting pool. Consequently toward

80

the end of the run the fitness of the individuals and the population overall has little

variation. In addition, as poorer individuals multiply rapidly, this stops the GA explorative

search leading often to early convergence to local optimal solution with the few fitter ones

driving the GA to this early convergence (Mitchell 1996; Luke and Spector 2010). An

attempt to avoid this rapid degradation of the population fitness is to omit replacing

individuals into the selection pool once they are selected. Whist helping, this does not

provide a robust solution. A proposed solution to this problem is to use Stochastic

Universal Selection (SUS). This type of selection is similar to the roulette wheel but rather

than using the cumulative fitness probability as the mean of selecting individuals,

selections points are distributed on regular interval around the roulette wheel once an

initial pointer is placed at random. The selected individuals are the ones that fall under

those pointers. This provides a chance to fit individuals to have many copies entering the

matting pool. This partially addresses the problems mentioned previously but this

selection type is still susceptible to early convergence. In addition, this does not solve the

issue of scaling when for instance using real values strings as part of the encoding

(Hancock 1994; Miller and Goldberg 1995; Wall 1998; Reeves 2003; Sivaraj and

Ravichandran 2011). Another type of selection is ordinal selection based on ranking. One

of the major attributes of ranking selection is that it is not directly proportional to fitness

and is normally the preferred alternative to proportional selection mainly because of the

scaling problems and early convergence (Goldberg and Deb 1991; Miller and Goldberg

1996; Harik et al. 1999). A selection often referred to is the Tournament Selection (TS).

This type of selection is based on ranking the parents in terms of fitness and running a

tournament contest using a small group of these individuals randomly selected with the

individual with the fittest selected for mating. This type of selection provides a robust

mechanism in which the selective pressure varies proportionally with the number of

individuals that are present during the tournament i.e. more participants increases this

pressure but in the literature this value is often set to two (Thierens 2002; Luke and

Spector 2010). Because of its nature, it is often used with noisy fitness function (Spears

1993; Miller and Goldberg 1995).

To put it in perspective with the research presented in this thesis, when dealing with

human visual perception, which has a tolerance set by default to 0.5 degree of visual angle,

the fitness function would report similar values for many layout solutions that are slightly

different. Because of its elitist behaviour and competitive nature, the tournament selection

often selects the solutions in a manner that favours the fittest and typically chooses more

valued individuals than would proportional selection otherwise. It must be noted that this

81

selection uses RWS to select the participants at random (Tate and Smith 1998; Wall 1998;

Sivaraj and Ravichandran 2011).

Other important genetic operators are the crossover and mutation operators. The

crossover deals with mating of two selected parents to create one or more offspring and is

often associated with the exploitation of the solution space for a given problem. The most

common reproduction form involves two parents producing two offspring. In this instance

some points 1… i.e. kinetochores are randomly selected between the first and last

gene of the parent chromosome. The gene information from both parents is then copied

onto both the offspring chromosome with respect to those points. Thus the two offspring

inherit both parents genetic material. There are many forms of crossovers that have been

studied but all have the same idea behind which is to recombine building blocks on

different chromosomes. There are known issues with implementing crossovers. One well

known issue is hitchhiking and comes with the one-point crossover whereby given only

the one point, poor genetic material can tag alone good genes over many generations. The

other problem with this style of crossover is that the genes at the beginning and end of the

chromosome will often been replicated. Therefore many projects use the multi-point style

of crossover to overcome these issues. One crossover that is worth mentioning despite its

potential disruptive effect is the uniform crossover, which has the potential to disturb any

genes present in a chromosome. The choice of the crossover method used in a GA is often

related to the type of other operators used i.e. fitness function, the encoding used and

mutation amongst other aspects. However it all depends on the type of problem to solve

and therefore the encoding used. In layout or placement problems it is often the case that

special crossover operator are created to deal with the special type of encoding. These

issues will be discussed in the next section when examples of placement projects will be

discussed in more details.

Another important operator is the mutation operator, which is used, in genetic

algorithm to maintain genetic diversity in a population from one generation to the next.

This operator alters one or more genes in a chromosome in an arbitrary manner thus

introducing the extra variability in a population that is often needed in genetic algorithms.

Mutation is often perceived as the second tool in a GA to explore the solution space in

addition to its exploration role. However, whilst crossover guaranties preservation of

genetic material, mutation does not. There is however proprietary GAs that does not use

the mutation operator. Compact Genetic Algorithm (cGA) is one of these GA that has been

successful in standard tests that only uses a uniform crossover with a selection pressure

provided by a tournament selection with replacement (Harik et al. 1999; Hooda 2012).

82

Both the crossover and mutation operators are assumed to have rate associated with

them that provides the probability that changes will occur. Finding the right rates for these

operators can become a tedious job. For instance Thierens in (Thierens 2002; Perrins

2008) discusses several adaptive mutation controls that can be used to eliminate the need

for a static mutation parameter. These attempts are based on declining the mutation rate

over a GA run with binary encoding however. Nonetheless, in the literature, there seem to

have a standard for those rates (which off course are dependent of the problem to solve).

The crossover rate is often thought to be 0.6 0.7 where as the rate for mutation is

in the region of 0.001. Moreover, the literature often attempts to question the relevance of

these operators (Spears 1993; Maveryx 2011), which are at times is misleading. In many

cases the consensus is that the driving force behind GA is its selection of parents for

breeding, new generation based on their fitness and the discarding of the poor individuals

as the main factors for contributing to the general increase of the population fitness.

Whereas as crossover or mutation has had a major contribution is somewhat secondary as

above all the selection pressure acts on the population individuals regardless if they are

born through breeding or brought about by mutation. These operators however as

important they are help to raise the individuals’ fitness but without a strong and

appropriate selection mechanism, these efforts will not translate to a fitter population

(Tate and Smith 1998).

4.2 Application of Genetic Algorithm in the domain of component placement

In the realm of applications dealing with component placement on 2D or 3D

environments, the research done in this field has increased over the years. There are

however leading fields which lead or steer the research towards helping professional in

area such as electronics i.e. System-on-Chip (SoC) (Manikas and Cain 1996; Lohn 2002;

FriedMan 2009) , Field-Programmable Gate Array (FPGA) (Ando and Iba 2000),

construction site (Jang et al. 2003), building (Yang et al. 2002; Narahara and Terzidis

2007; Klanac et al. 2008) or plant layout (Gero 1999; Balakrishnan and Cheng 2000;

Osman et al. 2003; Jagielski and Gero 2009), ship building (Thapatsuwan et al. 2007),

factory layout (Ajenblit and Wainwright 1998; Pérez et al. 2005; Ho and Perng 2009),

document assembly (Purvis 2009) and some dealing with User interfaces (Oliver et al.

2002; Brewbaker 2008) to name but a few. The research and work is this field is far too

sizable to provide a comprehensive overview therefore this thesis will attempt to describe

some work that concentrates or relates best to the work this thesis presents in this thesis

such as discussed by Brewbaker and Oliver.

83

The Brewbaker’s research is related to the research within this thesis as it attempts to

optimise some user interaction virtual keyboards, using a form Shannon Fitt’s law (which

is used in ACT-R).

Its main focus is to use a genetic algorithm approach to optimise virtual keyboards

layouts, namely QUERTY and FITALY, the former being a keyboard optimised for stylus

use whereas the former is a ubiquitous keyboard found in many keyboards. The

optimisation process focuses on two target users referring to two types of typists: English

language typists and C programmers using Shakespeare literature for the former and the

Linux kernel code for the latest which are used to test the system.

The fitness function for the GA is based on Shannon version of Fitt’s law, which has

been modified to take in the Euclidian distance between the keyboard keys when typing

from one key to another. The GA encoding encodes each key for a character using unique

real numbers in a matrix representing all the key of the keyboard i.e. (1…number of keys).

The roulette selection is used to provide better population diversity for the selection and

is using a two points crossover.

Brewbaker succeeded at evolving QUERTY keyboards that displays certain particular

traits such as placing OTAIE in the home row of the keyboard for the evolved Shakespeare

test which fits well with the English language as most of those letters i.e. AIEO are

frequently used. For the programming tests, sequences of letters or words such as FOR, N,

I were located in the home row which fits well for this type of programming language as

they are often used. Tests for the FITALY keyboards were also successful are putting close

to each other letters commonly used in the Shakespeare test i.e. A, I, O and U but placed

them diagonally around the middle of the keyboard. Tests for the same keyboard focusing

on C programming placed letters N, I and A in the middle, with the word PRINT nearly

contiguous. This again fits well with the Linux kernel code which includes many debug

code lines using this word.

Brewbaker compared also this method with a random approach. His results showed

that the random method came last in terms of timing performance returned by the Fitt’s

law based fitness function, with the GA evolved keyboards being the best high

performance solutions, the standard QUERTY being in the middle in terms of performance.

The main issue with the work presented in this paper is that it does not take into

account any movement preparation, execution latencies but only focuses on expert user

fast movements. However, it shows potential of using GAs for optimising user interfaces

84

specific applications using a fitness function that takes into account a basic human

performance when operating an interface.

Oliver’s research that is presented in his paper deals with automatic optimisation of

web pages layout, which is its relevance to the research presented in this thesis. What is

novel in this project is that it is based on an IGA which uses actual user feedback as fitness

assessment for the system proposed layouts. Its main purpose is to suggest to users

different visually optimised layouts based on some user specification (font, size, colours

etc.) and therefore eliminate technical knowledge that is often required for such task.

This work focuses on two parts: one that deals with individual styles of the components

and the other of the overall layout of the web page, where users can optimise either one.

To help with the usability and ease of use, only 12 layouts are proposed to the users at one

time.

Mutation rate controls the type of layout that is suggested by controlling their diversity

in terms of component placement. The run starts with a high mutation rate, which

decreases over time, thus suggesting a diversity of layouts that gradually focuses down to

the user preferences. Some controls were implemented to ensure readability of the text

and their luminance. Any failure results in the run re-starting. The crossover is based on a

uniform crossover (with probability rate = 0.5).

The layout is based on a HTML table where all the objects are contained in the table’s

cells, which can be merged together hence allowing for an increase variety of layout

representations. The fitness of the representation takes into account two constraints:

overlapping and the inclusion of individual object in one cell. The mutation operator

assigns one object to a cell at random.

The study reported by Oliver is in operation and represents a real world problem

where scalability is paramount that has shown itself successful in a real life business

situation based on a GA to provide optimised layouts with direct real user input as part of

its fitness assessment.

85

Chapter 5. Software Design - TOISE

5.1 Introduction

The main part of the concept discussed in this thesis relies extensively on ACTR

modelling. In the first sub-section of this chapter I will discuss an overview of the road

taken to develop the concept and in the later chapters I will discuss the ways the system

was implemented. Finishing this section, I will discuss the points that led to the

development of an updated version, namely the version of TOISE compiled from C++

code.

Looking at ways users interact with software, it is possible to define primitive actions

that are taken to interact with a system.

 Typing

 Clicking

 Dragging

 Moving limb

Those basic actions are often mixed together as a scenario to perform a goal. For

instance, if one has to click on a specific series of buttons to achieve a task, one has to

move the hand in position, click the component, then move the hand to another location,

maybe click on that particular component, then perform some typing, then move the hand

to another location and maybe drag an object to some location. Regardless of the

complexity of the task, the task can often be divided into a series of smaller sub-tasks,

which themselves can be split over a series of sub-actions to perform if necessary. In this

thesis, we name those subtasks primitive actions. We named them primitives because they

cannot be sub-divided into smaller actions.

In order to obtain this type of data, an action recorder must record user actions when

instrumenting a software prototype; this recorder must be able to return these interaction

primitives. The following section will describe the software that allows this type of

recording. It is called in this project: Robot.

Once a model of user interaction has been created, this interaction must be simulated

using the ACT-R cognitive architecture. Hence, models must be created to simulate these

action primitives with its supporting software. In the following section, this side of the

project will be discussed. Finally, an optimisation system using these models is used as

86

part of a genetic algorithm. The final part of this chapter discusses the software that

optimises layouts and presents an optimal setup for the layout.

TOISE uses both perceptual and the motor modules to interact with a virtual world

named the device represented in ACT-R/PM by the device module. The device simulates a

computer (but can simulate other environments if needed) that is useful for HCI research

and TOISE. Visual elements such as objects and object locations can be added to the device.

The code fragment shown below for instance creates two chunks; one for an object and

one for its visual location and add them to the device interface, which is then selected as

the default visual interface for the current model.

…
(push (car (define-chunks-fct `((
 VISUAL-A-LOCATION
 isa OBJECT-A-LOCATION
 color black
 value OBJECT-A
 kind OBJECT-A
 screen-x ,obj1X
 screen-y ,obj1Y
 width ,obj1W
 height ,obj1H)))) visual-location-chunks)

 (push (define-chunks-fct `((
 A-OBJECT
 isa OBJECT-A
 CONTENT "object1"
 value "object1"
 width ,obj1W
 height ,obj1H))) visual-object-chunks)

(let((the-device (pairlis visual-location-chunks visual-object-chunks)))

(install-device the-devic

Once the device is selected, the vision module provides the functionality to interact

with this interface as well as to provide information about what can be seen in it. It is

worth mentioning that ACT-R/PM does not model eyes movements. This functionality is

external to the core system and is provided with Eye Movements and Movements of

Attention (EMMA) created by Salvucci. ACT-R can be set to force EMMA to replace its

standard vision module.

As will be discuss further down, TOISE decomposes a scenario of actions to its basic

primitives; the buffers that it needs to interact with are therefore limited and are

displayed below. First it is goal directed which means that there is a need to change

memory content to perform different tasks. Thus memory needs to be retrieved from

declarative memory, location of objects needs to be found and attended to, the visual

module needs to be issued commands to direct the eyes and finally the motor module

needs to perform primitive actions.

87

Buffer Module Commands

Goal Framework i.e. cognition Changes or replace the content of
memory element

Retrieval Framework i.e. cognition The main action is the retrieval from the
declarative memory of chunks with the
highest activation that fulfil all the
constraints mentioned in the LHS

Visual-location Vision This command moves the system visual
attention to a specified location.

Manual Motor Execute actions such moving mouse,
clicking a mouse etc.

5.2 Recording Interaction

The software that was constructing to record the user interaction is called Robot. The

main specification for Robot was four folds. Firstly, Robot should record all the user

interactions and secondly create a model for that interaction scenario. This model can

then be imported as a scenario of interaction that can be simulated with a series of ACT-R

models. Thirdly, the recorder should generate a model of the interface that was used

during the interaction, which can be used by the optimisation engine as a virtual interface

that provides all the metrics necessary during the process. Finally, an extra specification

was for the software to be able to re-run the interaction on the specific software. See

Figure 25.

5.2.1 Alternatives

Testing and test automation is a vast domain which is often perceived as the most cost

effective method for testing software products. There are two main general approaches to

test automation. Code driven testing that is often based on frameworks that interface

classes and backend code, which are validated by input arguments. The other kind which

is part of our domain of interest are graphical user interface testing frameworks that

generate system events such as mouse and keyboard input which exercise the underlying

code and validate user interface behaviour. These tools are often expensive and often

require knowledge of the application under test often relying of professionals to perform

the necessary steps (Hooda 2012).

88

Figure 25: Interaction Recording31

One of the earliest effort in producing some user input automation was made by Sun

Microsystems when integrating the java Robot class as part of the 1.3 Java JDK in 2000

(Ginbayashi 2004). It is however difficult to use this class as exact interface object metrics

must be precisely known to generate events properly. This class is often used as a base

class in many frameworks such as Abbot, which will be discussed further on this section.

For this reasons, a few attempts were made using Java Robot but difficulties obtaining

consistent data to model the interaction and software interface were experienced, and

which led to a change of direction.

The idea behind this change was to use a free Java testing framework, apply some code

changes to it to transform the testing platform into a user interaction recorder.

Comprehensive testing suites are often frameworks that are integrated into programming

environment to instrument the code and offer an automated functional testing tool as well

as a regression-testing tool. Others are not but rely on bootstrap code to load some test

scripts alongside the application code to be tested, which often allows the framework to

load other needed testing modules. Two of these free public domain sophisticated

frameworks are the well-known Dojo32 (Perrins 2008) (See Figure 26), endorsed by IBM33

and Maveryx (Maveryx 2011) (See Figure 27).

31 Courtesy of: http://bfmexotic.com/wp-content/uploads/2011/08/computer-based-test.jpg

32 http://dojotoolkit.org/

33 http://www.ibm.com/developerworks/web/library/wa-aj-doh/index.html

89

Figure 26: Dojo testing suite34

Figure 27: Maveryx Testing Suite35

However, the idea of bootstrapping / integrating some bespoke code onto an existing

application source code renders the goal of user interaction recording much more difficult

and less intuitive, not to say attractive as in most cases the original source code is not

accessible. In addition, those innovative frameworks are based on identifying UI elements

that are present in interfaces and needed by testing scripts, rather than having the code

being instrumented by demonstration to discover the elements that are needed for a

specific task.

There is one of these frameworks that differ from the others mainly because it is by

definition a framework that focuses on testing Java GUI’s rather than testing the

underlined operational code. Rather than relying on additional testing scripting code, it

dynamically loads an application, creates a model of the application interface and records

34 http://blog.siliconforks.com/wp-content/uploads/2010/05/jscoverage-dojo.png

35 http://marketplace.eclipse.org/nominations/product/maveryx

90

the interaction using a set of semantic recorders that are hooked into all the elements of a

Java software interface. This framework is called Abbot (Wall 2011)36. It is built upon the

java.awt.Robot class to provide an automated event generation and validation framework

for Swing GUI components that are present in java applications as well as and functional

testing. The suite contains also The Costello script editor that can record user actions and

facilitate script construction and maintenance (See Figure 28 and Table 1). This GUI

regression testing toolkit is reliable and despite the fact that it has some glitches (Ames

and Jie 2004).

Table 1: Benefits of Abbot Library

Benefit Explanation

Reliable reproduction of user input The reason that often graphical user interface do not get the required amount of testing is often
because it is usually not a simple task to simulate user input. Abbot solves this issue by making
this process seamless.

Scripted control of actions and inspection Rather than having to write extra code for testing, the test scripts are dynamically interpreted by
Abbot

Loose component bindings User interface tend to change over time. Thus a raw event recorder and playback is more likely
to break during the development of a product, as the component absolute coordinates tend to
change with it. Abbot does not rely on component location as long as it can find them
dynamically

Specify high-level semantic actions whist
using low-level Operating System events
to implement those action

As already discuss, the java.awt.Robot is capable of simulating user events but is too low level to
be used easily. Abbot has a built-in level of abstraction on top of the java Robot in the same way
Swing components present a layer of abstraction to related Awt components thus making testing
easier to construct.

Support recording and editing of high-
level semantic events

In many circumstances, test scripts are written as XML scripts (often by hand), Abbot comes
with its own test script management editor that let user record, edit and manage test scripts i.e.
Costello

Figure 28: Abbot Testing Suite37

5.2.2 Robot based on Abbot

The Abbot Framework meets many of the requirements that were sought, but being a

testing platform, its main focus is on processing user actions on an interface and functional

testing rather than modelling it as user interaction. Thus, a few code adjustments were

36 Reference: http://abbot.sourceforge.net/doc/overview.shtml

37 http://abbot.sourceforge.net/doc/images/costello.png

91

necessary to transform this platform to meet those requirements. Moreover, in order to

create a model of the interface, parental inheritance has to be properly resolved. This was

necessary as Java applications often rely on parental metrics to set the components in the

right locations on the GUI; functionality unneeded in testing. Other necessary addition

dealt with timing. In testing mode domain, these types of metrics are not needed and thus

are not included, but they are essential if proper user interaction needs to be recorded.

Underlying code was therefore included to expand the Abbot functionality to record

timings in milliseconds. Further additions in the recorders were also necessary to record

location metrics in the model (again not necessary when testing in the domain for which

Abbot was created). Those changes had to filter out to the Costello Editor, which is the

main manager for the scripting and parsing functionality. The main issue with Abbot was

discovered when dragging operations took place. Java (unlike other platforms) generates

an Abstract Window Toolkit (AWT) Event when this type of action is performed. Unlike

the Windows API which generates an API event when the drag action is first performed

when selecting an object to drag which refers to the object that is being dragged and then

another message when the selected object is dropped relating to the object that becomes

the container for that object, Java does not and the drop message still refer to the object

being dragged, not referring to the new container that receives that object. To create a

user interaction model, one needs to know the object that is being selected in addition to

the object that will contain that object in the future. In a testing environment, this is not an

issue but it becomes one when trying to analyse user interaction and model a user

interface.

In order to deal with this issue, the need to investigate the messages coming directly

from the API was necessary rather than relying on the Awt event message pump for the

drag and drop events received from Java. The only way to achieve this was to build a

Dynamic Linked Library (DLL) with the necessary code to retrieve events directly from

the API, and dynamically loading this library into the Abbot Suite backend java code,

replacing the code dealing with this type of recording. To achieve this SWIG38 (SWIG

2012) was used to wrap the code contained into the library into the Java code.

SWIG is a compiler that wraps an interface around a native platform of choice, whose

code can be compiled in a native form. Unlike some other alternatives i.e. Java Remote

Method Invocation (RMI) based on a server / client architecture where the former

38 More Information at: http://www.swig.org/index.php

92

instantiate remote objects and make them available to client applications which can obtain

remote reference of those objects and invoke methods exported by the server, using object

serialization to marshal and un-marshal parameters, SWIG does not produce stubs i.e.

proxy interface to remote objects, but produces code that can be compiled into the java

code and ran, thus avoiding the difficulties of writing server/client code to run some

functionality. SWIG is mature system that was first released in July 1995 by Dave Beazley

(Theoretical Physics Division at Los Alamos National Laboratory). The main advantage is

that the wrapping is automatic, can be easily implemented and is scalable (Langtangen

2010). SWIG has been used in projects like SubVersion, Web-based Analysis and

Visualization Environment (Weave)39 (Dufilie et al. 2012), Python Open-Oriented Graphics

Rendering Engine,(PyOgre)40 (Dawson 2010) (a Python version of Ogre), Shogun41

(Sonnenburg et al. 2010) and OpenCV (Thompson & Stevenson 2011) for which SWIG is

used to interface platforms such as Python. It is support at the time of writing eighteen

platforms including Java, Allegro Lisp and CFFI.

The change of focus from a testing application to a user interaction-recording suite can

be seen in Figure 29. Figure 30 displays the models generated by the software with its two

parts: one that deals with the interface whilst the other focuses on the user interaction. In

the figure the model lines (in red) correspond to the modelling that pertains to the

interface, which includes all the components that took part in the interactions recording. It

is a sub-model that TOISE will parse to create his own virtual interface description. The

green section represents the second sub-models that correspond to the type of actions

that were performed during the interaction i.e. clicking, dragging or typing etc. TOISE

parse this model (in green) and will link these actions to the objects (in red) that were

included during these specific tasks.

Figure 31 and Figure 32 display specific details of the type of information that model

the interface and the user interaction. The details provided are sufficient to model many

aspects of the application and the user interaction provided that care is taken to

reconstruct the GUI given parental inheritance when parsing these models to reconstruct

virtually both the application interface and the interaction that took place on that interface

during the test.

39More information at http://www.oicweave.org/ & https://github.com/IVPR/Weave

40 More Information at http://www.ogre3d.org/tikiwiki/PyOgre

41 More Information at http://www.shogun-toolbox.org/doc/en/2.0.1/index.html

http://www.oicweave.org/
http://www.ogre3d.org/tikiwiki/PyOgre

93

Figure 29: Robot after recording a Drag and Drop action

Figure 30: Robot Interface and Interaction model

Figure 31: Portion of a GUI models generated by Robot

The sequence of action can be seen Figure 33. In this screenshot, one can see that each

sub-task can be edited or tweaked as needed either using Costello or by hand.

94

Figure 32: Portion of the user interaction generated by Robot

The information that is shown is retrieved from the application as it is dynamically

loaded and then completed when a user interaction has taken place. In addition more

sequences of interaction can be added to existing or new sequence. Therefore many

complex sets of tasks can be recorded, run and edited with Robot based on the Abbot

framework.

Figure 33: Recording of a sequence of action

Moreover, Abbot had the base code to record motion. This functionality was extended

in the same manner as the action recording and is available to further investigate user

interaction on the motion level as seen in Figure 34. Furthermore, another issue that was

dealt with was to retrieve the real containers of the interface objects rather than

containing abstract class objects.

95

Figure 34: Robot extended motion captured

5.3 Modelling Primitives

In the project that the thesis presents, modelling ACT-R primitives actions were done

starting from a plausible GOMS model as shown in Figure 35, which is the primitive that

will be used in this section to demonstrate how the actual ACT-R models were obtained.

Figure 35: Drag & Drop GOMS model

G2A42 is a runnable system created by St Amant et al. that automatically abstracts ACT-

R productions from more abstract and high level GOMSL models (St-Amant et al. 2005).

Using a GOMS model as a base, G2A parses this model and generates the ACT-R

productions rules by mapping the GOMS operators (actions to be performed) to ACT-R

productions rules which are integrated into an ACT-R model with predicted timings within

5% of GOMS models latencies (St-Amant and Ritter 2004; Byrne 2005; Karray et al. 2008).

The only issue with this solution is its reliance on ACT-R version 5. However, as we are

dealing with simple primitives in the research proposed in this thesis, this does not pose a

problem to the conversion to an ACT-R model suitable with version 6.0. The resulting ACT-

42G2A is available at http://www4.ncsu.edu/~stamant/G2A/

96

R model just needs to be modified and tweaked to reflect the changes necessary for ACT-R

6 to take care for instance of Visual State and Manual State which are no longer used in

ACT-R 6. The available G2A generated ACT-R model can be perused in Appendix A with a

sample run displayed in Appendix B. This model gives us the main mainframe from which

a final model can be derived and modified as a macro to allow for the encapsulation of the

ACT-R model, which can then repeatedly invoked.

5.4 Decomposition a series of task

Figure 36: Test Application small text editor in Java

Any task involving a series of action on an interface can be decomposed into a series of

independent tasks.

Figure 37: Demo Test Application exercised using Robot

Looking at Figure 36, and Figure 37, the test consists simply of entering the text pane,

adding three lines separated by two empty lines, formatting the first line in Bold,

formatting the second line in Italic, formatting the last line using the Underline, saving this

as a RTF file and finally exiting the application using the Exit menu item.

97

Figure 38: Small test

The Robot model shown in Figure 38 can be described as a scenario:

 Click(JTextPane Instance,0%@%113-34)
 KeyString(JTextPane Instance,This is test line 1)
 ActionMap(JTextPane Instance,insert-break)
 ActionMap(JTextPane Instance,insert-break)
 KeyString(JTextPane Instance,This is test line 2)
 ActionMap(JTextPane Instance,insert-break)
 ActionMap(JTextPane Instance,insert-break)
 KeyString(JTextPane Instance,This is test line 3)
 ActionMap(JTextPane Instance,insert-break)
 SelectText(JTextPane Instance,19,0%@%91-10:-12-5)
 Click(Bold)
 SelectText(JTextPane Instance,40,21%@%108-43:-4-44)
 Click(Italic)
 SelectText(JTextPane Instance,61,42%@%89-61:-1-64)
 Click(UnderLine)
 Click(Save RTF)
 SelectMenuItem(File)

SelectMenuItem(Exit)

This scenario can be refined as:

 Select a point in the text pane by clicking in it
 Type: This is test line 1, where the selection was first made
 Type: The Enter key
 Type: The Enter key
 Type: This is test line 2
 Type: The Enter key
 Type: The Enter key
 Type: This is test line 3
 Type: The Enter key
 Select the first line of text
 Click on the Bold button
 Select the second line of text
 Click on the Italic button
 Select the third line of text
 Click on the UnderLine button
 Click on the Save RTF button
 Click the File menu in the menu bar
Click the Exit menu item

Further enhancements to the scenario:

 Start with hand where the first selection was made
 Select a point in the text pane by clicking in it
 Type: This is test line 1, where the selection was first made
 Type: The Enter key
 Type: The Enter key
 Type: This is test line 2
 Type: The Enter key
 Type: The Enter key
 Type: This is test line 3
 Type: The Enter key
 Move hand at the end of the first line of text

98

 Drag mouse to beginning of first line to select the entire line 1 text
 Move hand over the Bold button
 Click on the Bold button
 Move hand at the end of the second line of text
 Drag mouse to beginning of second line to select the entire line 2 text
 Move hand over the Italic button
 Click on the Italic button
 Move hand at the end of the third line of text
 Drag mouse to beginning of third line to select the entire line 3 text
 Move hand over the UnderLine button
 Click on the UnderLine button
 Move hand over the Save RTF button
 Click on the Save RTF button
 Move hand towards the File Menu Item
 Click the File menu in the menu bar
 Move hand over the Exit menu item

Click the Exit menu item

This can be put into a sequence of independent set of actions

 Move hand from last location to new location, type: This is test line 1
 Move hand from last location to new location, type: The Enter key
 Move hand from last location to new location, type: The Enter key
 Move hand from last location to new location, type: This is test line 2
 Move hand from last location to new location, type: The Enter key
 Move hand from last location to new location, type: The Enter key
 Move hand from last location to new location, type: This is test line 3
 Move hand from last location to new location, type: The Enter key
 Move hand from last location to new location i.e. line nb1, perform dragging selection from source to destination
 Move hand from last location to new location, click on the Bold button
 Move hand from last location to new location i.e. line nb2, perform dragging action to select text from source to destination
 Move hand from last location to new location, click on the Italic button
 Move hand from last location to new location i.e. line nb3, perform dragging selection from source to destination
 Move hand from last location to new location, click on the Underline button
 Move hand from last location to new location i.e. over the Save RTF button, perform click action
 Move hand from last location to new location i.e. over the File menu, perform click action
Move hand from last location to new location i.e. over the Exit menu item, perform click action

TOISE uses this system to create the ACT-R models that are used to obtain interaction

timings. It has specific primitive macros that can be launched which will create models on

the fly to reflect the primitive functionality.

Table 2: TOISE 1 Interaction primitives

Primitive type Explanations

(drag-drop-action-with-moveto-
macro obj0X obj0Y obj0W obj0H
obj1X obj1Y obj1W obj1H obj2X
obj2Y obj2W obj2H thinking)

This is an action whereby the model will move from an earlier location
to a new one where the first action of the drag action takes place.

(drag-drop-Action-macro obj1X
obj1Y obj1W obj1H obj2X obj2Y
obj2W obj2H thinking)

This is an action whereby the model will perform the action of the first
drag action takes place.

(click-Action-with-moveto-macro
obj1X obj1Y obj1W obj1H obj2X
obj2Y obj2W obj2H thinking)

This is an action whereby the model will move from an earlier location
to a new one where the first action of the click action that takes place.

(click-Action-macro obj1X obj1Y
obj1W obj1H thinking)

This is an action whereby the model will perform the action of the first
click action that takes place.

(move-Mouse-From-To-macro
obj1X obj1Y obj1W obj1H obj2X
obj2Y obj2W obj2H thinking)

This is an action whereby the model will perform the action of moving
the mouse from one place to another.

(type-Action-macro obj1X obj1Y
obj1W obj1H repeat-times do-a-
click thinking)

This model simulates the action of typing a number of characters at a
certain location on the interface

99

This is required and run those models to obtain the latencies that are necessary for the

optimisation system. See Table 2.

Figure 39: TOISE (Lisp/C++ version).Running model to obtain ACTR latencies

Hence a sequence of tasks can be simulated by running a sequence of these macros and

thus provide the underlying functionality to allow their integration within the Genetic

Algorithm fitness function which is the base of the optimisation system.

Each sub-task is sent to ACT-R for processing which results in the creation of a new

model that will simulate all the necessary actions to complete this sub-task. See Figure 39.

5.5 System overview

TOISE development was achieved in two phases. The first prototype based on Lisp and

C++ was developed to assess the underlying concepts behind ACT-R. A latter version was

thereafter developed with speed in mind that contained some of ACT-R compiled into

native C++ code.

100

Figure 40: TOISE system

The first iteration of TOISE is displayed in Figure 40. It was based on multi-

environment software that uses Lisp to access ACT-R functionality and has a C++

environment that comprised the genetic algorithm that was used as a layout optimiser.

The system design is displayed in Figure 41 and its design is discussed in section 5.10.

Many issues arose with this development and those are discussed in section 5.11.

Figure 41: Lisp version of TOISE system design

5.6 Execution system

TOISE is more than just a Genetic Algorithm that uses ACT-R as part of its fitness

function. Its first iteration was specifically created to test and evaluate the modelled

interaction primitives that the system uses. The full command may include multiple sub-

tasks that are separated with a “@” character. This is seen in Figure 42, which displays the

running of an interaction primitive.

101

Figure 42: Running primitives

In this example, the action is to drag an object whose X & Y coordinates are 55 and 7

respectively with a width and height of 10 and 267 pixels respectively, onto an object that

is located at 267 & 237 in terms of X & Y coordinates with a width and height of 50 and 40

pixels respectively. The final number i.e. 0 is a flag to allow ACT-R to add extra thinking

time for this operation. The “i” tells that the data past is a number. “s” is for strings or

characters. “:” is seen by the system as a delimiter.

Figure 43: ACT-R receiving a command from the GA

These commands are sent to the IDTR module and specifically to a function that will

invoke the parsing code as seen in Figure 43.

Figure 44: ACT-R parsing a series of tasks

Once the command or series of commands is received, it is parsed so it is suitable to

send to an executer method that will invoke the proper macro to execute an interaction

primitive. This is seen in Figure 44.

Figure 45: Command executer for IDTR (“newop” to execute the command)

102

When the passed commands are formatted and properly set as a list of sequential tasks,

each of the sub-tasks can be therefore executed. The method pertaining to this is shown in

Figure 45.

Figure 46: Drag Drop primitive method to call specific method that invokes a macro

When the individual command are sent, the method shown in Figure 46 takes the

arguments and pass them on to a specific method that invoke a macro. This design was

necessary as otherwise returning the timing generated spurious errors when attempting

to retrieve the operation latency.

Figure 47: Method invoking the specific macro

The method seen in Figure 47 invoke the macro that will create an ACT-R model, set the

environment properly and dynamically create all the necessary chunks and goals

necessary to complete the task. The Macro for this specific action is displayed in Appendix

C due to its size. This macro is very similar to any ACT-R model.

 It first reset the ACT-R environment

 Command ACT-R to start with the mouse at hand

 Invoke chunk declarations

 Declares procedural rules

 List the procedural rules necessary for this primitive

 Set the ACT-R environment variables

 Dynamically create a rule if thinking is required

 Dynamically create all the visual objects that are required

 Set the ACT-R device

 Run the model

 Delete the model

Once the model is run (See Appendix D for an example), the latency is retrieved and is

sent back to the calling method i.e. GA which will be used as part of the fitness assessment.

103

5.7 Debugging system

In order to ensure that the process was in line with expectations, some wrappers and

hooks were implemented in ACT-R to send information back to the main GUI in the DLL

loaded by Lisp for inspection as seen in Figure 48.

Figure 48: ACT-R Feedback windows as an ACT-R trace

Therefore when loading a sample ACT-R model representing a primitive action such as

shown above, extra functionality added to the above such as described below were

available:

 Stepping through the run of a model. See Figure 49 and Figure 50.

 Displaying run information whilst stepping through a model run. See Figure 51.

 Conflict resolution inner working including the WhyNot ACT-R functionality. See

Figure 52.

 Displaying current chunks that are available in the model. See Figure 53.

 Displaying all the buffers. See Figure 54.

104

Figure 49: Stepping through a model

Figure 50: ACT-R trace whist stepping through a model run

Figure 51: running information content whist stepping through a model run

105

Figure 52: Procedural window contain the WhyNot functionality

Figure 53: Chunks windows

Figure 54: All Buffers windows

This extra functionality was useful to ensure the proper working of each model that is

running when the optimiser i.e. the GA needed information to assess the fitness of a

possible layout solution. Special methods (based on ACT-R code) have been created to

106

retrieve the necessary information from ACT-R and use to execute models. This code can

be perused in Appendix E. In short there are seven categories as listed in Table 3.

Table 3: Categories of ACT-R coding

Category Explanations

Loading ACT-R models The methods contained in this section deals with loading,
reloading and running ACT-R models or any other suitable Lisp
scripts.

Stepper Code The code in this section allows the initialisation of a stepper
system that allows stepper the running of a model. At each step,
information stored in ACT-R is retrieved and displayed in
specific windows of the DLL’s GUI

IDTR Hook helper code for
information retrieval

A special module is loaded alongside ACT-R core code to allow
events and information to be retrieved from ACT-R. This is the
safest and often the only way to retrieve the needed
information. This functionality is used by most of the
information retrieval code.

Executer helper code This is the section of the code that manage the formatting for
the information coming from the native code that deals with
running models, passing the required arguments to the macros
that dynamically construct and run an ACT-R model.

Procedural rule information
retrieval

The related code allows the native to retrieve required
information pertaining to procedural from ACT-R.

Chunks information
retrieval

The related code allows the native to retrieve required
information pertaining to chunks held in ACT-R.

Buffers information
retrieval

The related code allows the native to retrieve required
information pertaining to ACT-R buffers.

5.8 Genetic Algorithm integration

Whist the first iteration of TOISE was designed to interact with ACT-R models in

debugging mode or to retrieve ACT-R latencies, the main object of the native DLL was to

contain the genetic algorithm that deliver the optimisation engine based on Galib (Wall

1998).

Matthew Wall from the Massachusetts Institute of Technology (MIT) created Galib 43 in

the mid 90’s as part of his PhD research. It is a versatile template library that includes

many of the functions that are sought in a GA library. Moreover, it has a strong community

and forum groups (Wall 1996; Rajanen and Jokela 2007). After some research on available

genetic algorithm libraries, Galib was chosen because of its widespread use both in the

industry and education institutions and its ease to manage its internal structures, which is

advantageous for the type of project that we were concerned with. In addition, this library

contains a strong statistical backend which is another advantage given the time constrain

43 http://lancet.mit.edu/ga/Copyright.html

107

imposed on the project (Macleod 1994; Petrovic 2001; Blouin and Fadel 2002;

Fahimuddin 2003; Adusumilli et al. 2007; Holzhamper and Seppelt 2007).

The inclusion of Galib into the early LISP version of TOISE native code provided the

optimisation algorithm that was sought. This version was originally created to

experiments with different type of crossover, mutation, selection types etc. However due

to its template design, all the generic functionality was replaced by bespoke code to

implement both crossover, mutation and selection operators which will be discuss in

following sections when discussing the next version of TOISE i.e. named TOISE2 for short.

See Figure 55.

Figure 55: TOISE main GA interface prototype

5.9 Genetic Algorithm design

The test application that will be used to provide the necessary data for this section is

shown in Figure 56. This is a simple calculator with 41 actions that were performed using

simple mathematics.

108

Figure 56: Test Application for testing the GA setup

In terms of interaction, the number of tasks was kept low to provide difficulties to the

GA as having a small amount of interactions does not provide the pull that could render

the optimisation easier to evolve. In addition, constraints were applied to the optimisation

by forcing the key pad number from zero to nine, the dot and ‘e’ sign to remain in the

centre of the area shown in green in Figure 56.

5.9.1 Chromosome representation

One of the main issues with using genetic algorithm is the representation of the

chromosomes i.e. encoding information in a meaningful way so the GA can evolve these

individuals over a number of generations.

In this project, there are two components that must be taken care of. Firstly the

interface layout and secondly, the actions that are taking place on those components. The

implementation this thesis focuses on is optimisation of layouts and not on optimising the

user interaction as such which themselves remain constant regardless where the interface

components are located, the same actions are needed. Thus the encoding should reflect the

placement of the GUI components in the layout and not the user interaction itself.

The other assumption was that the metrics i.e. width and height of the components

should remain constant and the only variation in terms of the layout would be their

location within the layout itself.

109

Therefore the encoding should reflect locations of all the components; except for those

that are perceived static. In TOISE, static components are layout items such as menus or

invisible components such as JLayeredPane, which are important in terms of retrieving the

layout metrics but are not interactive components that the user can interact with.

However, it is possible to demote any component to a static one. The same applies to

controls such as layout manager that constrain component location and sizes within an

area but do not participate in the user interaction. Furthermore there are components that

the user can interact with but are static and will not move; these include components such

as menu or button toolbars such as JMenuBar components. The encoding of the

chromosome is as follow:

 , , … , (7)

Where are the and coordinates of each layout’s element of the interface.

Figure 57: GA Chromosome Encoding

The encoding is explained in Figure 57. As mention above, only the layout components

that can be re-located to another location are part of the chromosomes that will form the

population individuals.

5.9.2 Genetic Algorithm generalities

In most cases, the GA parameters need to be tweaked in order to fully optimise the

evolution process. With a typical GA, one may tweak the mutation rate and then tweak the

crossover rate to search the search space more effectively.

110

Figure 58 displays how the GA evolve solutions for the given test application for

different mutation and crossover rates over 250 runs of the genetic algorithm. Genetic

Algorithm parameters are often solution specific but some of these parameters can also be

greatly influenced by their underlying behaviour. For instance, the mutation operators are

relatively speaking destructive and therefore a small mutation is expected for the GA

settings. These tests shows that a mutation rate of 0.004 provides the best settings to

produce solutions that have the lowest ACT-R latencies with a preference for a crossover

rate of 0.7 as the distribution tends to reach the lowest value of ACT-R latencies.

Figure 58: Tweaking the GA parameters

It is worth noting that crossover rate changes effect seems to be more pronounced at

higher mutation rates than it is at lower ones. Furthermore Figure 58 seems to suggest

that as the GA tuning is becoming optimal with respect to the mutation rate (and therefore

the diversity of the population being kept optimised) the effectiveness of tuning the

crossover rate becomes secondary in the tuning exercise.

5.9.3 Mending mechanism

Figure 59: Relevance test of the Mending algorithm

111

A layout mending mechanism originally included with previous version of TOISE

(Golovine et al. 2010) attempted to minimise overlapping by shifting layout components

in an a manner that respected as close as possible their original location. It inherited some

the mutation placement functionality discussed further in the mutation operators section

(See Figure 65). However later version of TOISE inherited a stronger mutation mechanism

and layout protection and with a more selective process, this algorithm did not prove itself

necessary any longer thus freeing a considerable number of computation processes during

experimentation. The original exhaustive process both in terms of experimental time and

computations provided at the time to TOISE the necessary mending capability to

counteract the destructive effect of the mutation and crossover operators in terms of

layout feasibility. This implied though GA runs completed after days of intense

computations rather than the current system that complete similar experiments in a

manner of hours.

Tests were conducted (generations = 10000, mutation rate = 0.004 with base

crossover rate = 0.7) to assess the benefit of the mending mechanism in TOISE. Table 4

results and t-test re-enforces the visualisation provided by the distributions displayed in

Figure 59 that the mending algorithm does not lead the GA to evolve better solutions

providing evidence that the inclusion of the mending system is not necessary (t(498) =

.338, p = .735). It was subsequently compiled out in later versions. In conclusion, the

major arguable advantage of not having this mechanism remaining in TOISE can also be

expressed in terms of experimental time. The 250 experiments reported in Table 4, took 5

hours and 66 hours for the experiments not using or using layout mending respectively.

Table 4: Comparing the inclusion of the mending algorithm into the mutation process

Individuals Mending Mechanism N Mean Std. Deviation Std. Error Mean

50
With Mending 250 54.282268 .1763215 .0111515

Without Mending 250 54.276830 .1828835 .0115666

T-Test

t df Sig. (2-tailed) Mean Difference Std. Error Difference

50 .338 498 .735 .0054376 .0160668

5.9.4 Selection operator and dynamic operator rates

As mentioned in previous chapters, the selection system in a genetic algorithm is an

important aspect of any evolutionary algorithm as it puts pressure i.e. selective pressure,

on the system to single out good individuals for mating to create next generations.

112

Given the noisy nature of the fitness function produced by ACT-R, a Tournament

selection was chosen for the genetic algorithm to increase this selective pressure.

However there is a trade-off between using high selection pressures and maintaining a

respectable level of population diversity, as high selection pressure tends to reduce the

diversity of a population over time by making the population more homogenous.

Conversely, lower pressure allows the diversity of a population to be maintained more

easily but lowers the chances of convergence to good solutions within a reasonable

amount of generations. This is compelled by the fact that genetic algorithms have a natural

inherent tendency to converge rapidly, often due to low diversity as it reduces GA’s ability

to identify more attractive areas of the search space over a number of generations (Burke

et al. 1998).

Another point to mention is that population size is also important. Higher population

sizes will help to maintain the population diversity much easier than lower ones at the

cost of computations. Therefore the control of population diversity which is needed is one

of the most important indicator of the population state and a major factor in performance

of the genetic algorithm (Lacevic et al. 2007) is associated with the amount of selective

pressure that is applied to the system, the operators’ rate that are used, the latter (i.e.

mutation rate) often used to counteract high selective pressure by introducing new

information into the individuals of an aging population and finally the population size.

Figure 60 provides a visualisation of the impact of population size fluctuation with respect

to GA performance. It is worth noting in these series of experiments, that increasing

population size does not automatically results in significant changes in ACT-R latencies.

For example, rising the GA population size from 75 to 150 individuals does not lead to any

significant gains in terms of finding better quality layouts, but moving from 25 individuals

to anything upwards or from 50 to 150 individuals does as shown in Table 5.

113

Figure 60: Impact of population size of GA Performance

To pre-empt any issues arising with regards to population diversity decreasing below a

threshold that could lead the genetic algorithm to stall or to converge prematurely and

therefore causing the search process to be trapped in local optima, an automatic control of

the population diversity was implemented.

Table 5: ANOVA test on Population size change

Anova Test (Turkey output)

Gens Gens Mean Difference Std. Error Sig.

25

50 .1104120* .0143326 .000

75 .1399273* .0143326 .000

100 .1484088* .0143326 .000

125 .1478832* .0146421 .000

150 .1854667* .0143326 .000

50 25 -.1104120* .0143326 .000

75 .0295153 .0143326 .309

100 .0379968 .0143326 .086

125 .0374711 .0146421 .108

150 .0750546* .0143326 .000

75 25 -.1399273* .0143326 .000

50 -.0295153 .0143326 .309

100 .0084815 .0143326 .992

125 .0079559 .0146421 .994

150 .0455394* .0143326 .019

100 25 -.1484088* .0143326 .000

50 -.0379968 .0143326 .086

75 -.0084815 .0143326 .992

125 -.0005257 .0146421 1.000

150 .0370578 .0143326 .101

125 25 -.1478832* .0146421 .000

50 -.0374711 .0146421 .108

75 -.0079559 .0146421 .994

100 .0005257 .0146421 1.000

150 .0375835 .0146421 .106

150 25 -.1854667* .0143326 .000

50 -.0750546* .0143326 .000

75 -.0455394* .0143326 .019

100 -.0370578 .0143326 .101

125 -.0375835 .0146421 .106

Another compelling factor is that the system once developed, will be used by

individuals more than likely not to be professionals into the matters of evolutionary

114

systems, and therefore it was felt important to remove much of the difficulties that can be

encountered setting up those genetic parameters.

To pre-empt any issues arising with regards to population diversity decreasing below a

threshold that could lead the genetic algorithm to stall or to converge prematurely and

therefore causing the search process to be trapped in local optima, an automatic control of

the population diversity was implemented. Another compelling factor is that the system

once developed, will be used by individuals more than likely not to be professionals into

the matters of evolutionary systems, and therefore it was felt important to remove much

of the difficulties that can be encountered setting up those genetic parameters.

The algorithm is based on Zhu research (Zhu 2003) in which a dynamic genetic

operators control is achieved. In this research the dynamic control is described as:

 max (,min (, (1
 ()

))) (5.1)

Where is the current rate of an operator, is the new rate to apply to the operator at

the next generation, is the diversity of the current population, is the target diversity,

is the control for the sensitivity for the ramping process, and , are the lower and

upper bound of the operator’s rate. is an important parameter as it controls the rate of

change in the operator rate; where a small value of means a slow and gradual change in

the rate. In TOISE, the lower and upper bounds are set to 0 and 1.0 respectively.

The adoption of the dynamic concept of diversity control in TOISE was not proposed to

gain major improvements in the search capabilities of the GA compared to more

traditional empirical methods of finding optimal operator rates, but its purpose was to

maximise the system usability by pruning out demanding and challenging tasks both in

terms of experimentation and time to set operators’ rates to their optimal values.

Provided very low rates exists to begin, the dynamic control mechanism, regulates those

rates to ensure the population diversity remains relatively constant over a GA run thus

reaching an equilibrium whist not decreasing below a specified population diversity.

To achieve this, and unlike Zhu research, TOISE goes through a first partial test run that

sets those rates automatically for the following experiment runs. During this test run, the

diversity drives TOISE to control all the operator rates automatically through the dynamic

control, which comes into action as soon as this diversity hits a value below a specified

target value. These rates are monitored and used thereafter for the main GA runs as base

115

rates, thus ensuring that the population diversity never goes below a level that may affect

the genetic algorithm to stall and therefore decreasing its chances to converge to good

solutions. The crossover rate is also allowed to adjust dynamically but it is reset every run

to its default standard rate i.e. 0.7. As an example, the optimum mutation rate i.e. 0.00356

(0.004) displayed in the distribution in Figure 58 were obtained using the dynamic

system, and subsequently used to set the mutation parameter for the mutation rate in a

standard genetic algorithm running the same experiments.

As a conclusion, it is possible to find the optimal rates for operators using traditional

approaches but the necessary systematic tests are time-consuming i.e. many tests are

required with different operator rates, compared to only running the GA a quarter of the

specified number of generation once with our proposed solution. Moreover, given that this

prototype presents a possible tool for GUI designers that are more than likely to be remote

from these types of concepts, an automated system is paramount for this concept to

succeed his primary goal.

Figure 61: Dynamic operators’ rates control

Experiments were carried out to assess this mechanism compared to a classic GA.

These experiments consisted of running an experiment with a mutation rate that is

relatively low i.e. 0.0001 for the dynamic GA and a known pre-optimised mutation

operator rate i.e. 0.004 for the classical GA; the hypothesis being that no significant mean

difference exists between the two systems. The crossover was set to 0.7 for both systems.

Results are shown in Figure 61 and Table 6. Looking at Figure 61 the run distribution

seems to suggest that the results re-enforce the assumption that using a dynamic system

does not impair the genetic algorithm in its capacity to find good layouts but it does

increases its chances by virtue of setting the operator rates optimally.

116

Table 6: Dynamic versus static mutation control

Individuals Algorithm N Mean Std. Deviation Std. Error Mean

50
Dynamic Mutation 249 54.256041 .1754756 .0111203

Static Mutation 249 54.272237 .1749176 .0110850

T-Test

t df Sig. (2-tailed) Mean Difference Std. Error Difference

50 -1.031 496 .303 -.0161960 .0157015

Tests were also conducted to assess if the presence of a test pre-run affects the ability

of the genetic algorithm negatively, as this is a departure from a standard GA, with the

assumption that it did not (generations = 10000, mutation rate = 0.00001 with base

crossover rate = 0.7). In addition, there were many strategies that were available.

Figure 62 : No pre-run versus pre-run strategies

In Figure 62, the distribution curves provides evidence that using a pre-run with both

mutation and crossover rates controlled by the dynamic system provides the best solution

if the fluctuated crossover rate is not used for subsequent runs as a base rate but is

restored to its default value at each start of the runs. All but one strategy seems to suggest

no significant changes in terms of ACT-R latencies. Table 7 results re-enforce this

hypothesis (t (475) = -4.760, p = .000).

Table 7: Pre-run strategies (with or without carrying crossover rate to other runs)

Algorithm (pre-run) N Mean Std. Deviation Std. Error Mean

Mut & Cross-not forwarded 242 54.179851 .1631685 .0104889

Mut & Cross forwarded 235 54.248797 .1528197 .0099689

T-Test

t df Sig. (2-tailed) Mean Difference Std. Error Difference

-4.760 475 .000 -.0689466 .0144844

117

There is however another aspect to take into account with controlling the crossover

rate dynamically. As the automatic mechanism adjusts the operators’ pressure depending

on the diversity of the population, these fluctuations either increase or decrease the

number of computations that the system has to achieve. Experiments were conducted to

verify the assumption (generations=10000, base mutation rate = 0.004, base crossover

rate = 0.7) that when dynamically controlled, the number of crossover evaluations is

decreased substantially thus releasing computer resources as well as benefiting from

shorter run times.

Figure 63: Dynamic control - Crossover evaluations

Figure 63 confirms that indeed the number of crossover evaluations are significantly

lower when the crossover rate is dynamically controlled; in this example by around 11%.

Those results were confirmed by a t-test shown in Table 8 (t (234.942) = 289.200, p =

.000). This adds to the point already mentioned, that the addition of controlled crossover

rate adds advantages to the system.

Table 8: Dynamic control for testing crossover evaluations

Algorithm N Mean Std. Deviation Std. Error Mean

Dynamic Crossover Evals 249 315099.493976 1714.8906156 108.6767770

Static Crossover evals 250 350053.040000 450.9339955 28.5195700

 T-Test

t df Sig. (2-tailed) Mean Difference Std. Error Difference

-311.095 282.002 .000 -3.4953546E+04 112.3566097

The final aspect of dynamic operator control is the hypothesis that larger values of

sensitivity favour the hopping from one local optimum to another by the search process

hence increasing the chances to find better solutions as mentioned in Zhu’s body of work.

118

In simple terms, on one hand the system reacts smoothly to changing population diversity

but and on the other pronounced shifts of operators’ rate are applied.

This hypothesis was tested by a series of 250 experiments ranging from the suggested

values of 0.1 down to 0.01 i.e. 0.01, 0.003, 0.006 and 0.1, for the diversity control

sensitivity in Zhu paper (generations=10000, base mutation rate = 0.0001, base

crossover rate = 0.7). Figure 64 suggests that changing the rate of change of the

sensitivity has an impact on the overall GA capability to search for good layout with both

0.06 and 0.03 being the best and worth respectively for this series of experiments whilst

the high and low bounds suggested by Zhu are not in this case the optimum values but

provide a middle of the road values that are problem specific. However , Table 9 and Table

10 confirm that setting the optimum value for this setting does provide a difference of

means from 54.261146 seconds down to 54.179147 seconds; a difference of around 82ms

which in terms of human cognition is a big number; (t (271) = .4.078, p = .000). However

to find this optimum rate with the proposed dynamic system, is much easier and quicker

to achieve for a novice user.

Figure 64: Sensitivity for operators’ control set from 0.1 down to 0.01

Table 9: Sensitivity for operator control [0.1,0.01]

Anova Test (Turkey output)

Sensitivity Sensitivity Mean Difference Std. Error Sig.

0.01 0.03 -.7088443* .0190285 .000

0.06 .0819987* .0212012 .001

0.1 -.0023102 .0219033 1.000

0.03 0.01 .7088443* .0190285 .000

0.06 .7908430* .0187232 .000

0.1 .7065340* .0195147 .000

0.06 0.01 -.0819987* .0212012 .001

0.03 -.7908430* .0187232 .000

0.1 -.0843090* .0216386 .001

0.1 0.01 .0023102 .0219033 1.000

0.03 -.7065340* .0195147 .000

0.06 .0843090* .0216386 .001

119

Table 10: Comparing sensitivity = 0.01 and 0.06.

Algorithm N Mean Std. Deviation Std. Error Mean

Sensitivity=0.01 133 54.261146 .1655980 .0143592

Sensitivity=0.06 140 54.179147 .1664706 .0140693

T-Test

t df Sig. (2-tailed) Mean Difference Std. Error Difference

4.078 271 .000 .0819987 .0201057

5.9.5 Mutation operators

The use of Galib allows for the development of bespoke operators. In many GA

solutions, these operators operate on individual genes. However in TOISE, these operators

operate on sequential pairs of genes. The reasons behind this choice was that operators

can disturb the chromosome in harmful way i.e. be too disruptive. Thus the choice was

made to mutate genes as XY pairs thus respecting their pairing as they refer to their X and

Y coordinates whilst minimising disturbances.

The mutation system is entirely based on random choices. First, a selection of pairs of

genes is randomly made which represents components that can be nudged on the layout.

Second, a mutation operator is selected at random; an operator that will mutate the

selected genes in a manner specified by the type of mutation the operator pertains to.

Figure 65: TOISE Mutation system

120

Table 11: The 12 Mutation Operators

RandomBlockComponentsShift Operator shifts all selected genes in the same direction by the same
random amount that is randomly chosen to be within the interface
area. See Figure 66(a).

ConstantBlockComponentsShift Operator shifts selected genes in the same direction by the same
constant amount, which equals to double the size of the biggest
sized component. See Figure 66(b).

OnePixelBlockComponentsShift Operator shift selected genes in the same direction by the same
constant amount set to 1 pixel. See Figure 66(c).

FlipUpDownComponents Operator select a pair of X and Y genes and flip it from top to
bottom, left to right etc. See Figure 66(d).

ConstantComponentsShift Operator shift selected pairs of genes in the different direction by a
constant amount, which equals the size of the biggest sized
component. See Figure 66(e).

RandomComponentsShift Operator shifts all selected genes in the any random direction by
an individually computed random amount that is randomly chosen
to be within the interface area. See Figure 66(f).

OnePixelComponentsShift Operator shift selected genes in any random direction by an
individually computed amount set to 1 pixel. See Figure 66(g).

StickComponentsToRandomComponents Operator selects a pair of X and Y genes at random, then selects
another pair in the same manner, and sticks the former component
close to the former in a random direction taking into account their
metrics. See Figure 66(h).

SwapTwoComponentsCoordinates Operator selects at random two pairs of gene and swaps their X
and Y coordinates values. See Figure 66(i).

SwapComponentsOwnXYCoordinates Operator selects a pair of sequential genes referring to X and Y
coordinates of a component and swaps those coordinates. See
Figure 66(j).

StickComponentsToRelatedActionComponents Operator selects a pair of genes at random which relates to a layout
component, then follows the trail of actions performed on this
component to find the component that is related with an action
and will attempt to stick closer to its location X and Y coordinated
in a random direction. See Figure 66(k).

FlipComponentsFromFormOwnHinges Operator selects a hinge from a component and flips it using width
or height depending of the direction which is determined in a
random manner. See Figure 66(l).

TOISE provides two overall types of mutation operators. Some operators operate on

individual pairs of genes that can be shifted in any direction i.e. left, right, top, bottom, or

diagonally by some random distance, thus moving some components on the layout in an

individual manner whilst the block operators still operate on a selection of pairs of genes

but shift some selected components on that layout in the same direction by the same

amount.

Their functionality is explained in Table 11 and a diagram of the mutation system is

presented in Figure 65. An explanation of the way the mutation operators operation is

explained in Figure 66.

121

(a) RandomBlockComponentsShift

(b) ConstantBlockComponentsShift

(c) OnePixelBlockComponentsShift

(d) FlipUpDownComponents

(e) ConstantComponentsShift

(f) RandomComponentsShift

(g) OnePixelComponentsShift

(h) StickComponentsToRandomComponents

(i) SwapTwoComponentsCoordinates

(j) SwapComponentsOwnXYCoordinates

(k) StickComponentsToRelatedActionComponents

(l) FlipComponentsFromFormOwnHinges

Figure 66 Mutation operator operations

122

TOISE like any GA system relies on its mutation algorithm(s) to provide the exploration

of the search space and finding new layout configurations over a number of generations.

These small and subtle changes in the genes’ configuration provide the mechanism that

brings into an existing population necessary changes to gradually evolve the layout in the

manner that minimise the cognitive and motor loads when a set of actions is apply to these

components.

To evolve this layout, the layout components must be able to find a location within an

amount of constraints that makes the layout workable. Therefore these components must

remain within the general area of the layout, not overlap with other components and if

constrained to be within an area, they must be located and optimised within the specified

area. It must be also noted that some components should remain static i.e. not movable.

Components such as menu bars and their menu items are located to the top of the

application; a template that is followed across operating system platforms. Hence the

mutation system must also take into account these constraints too.

The mutation operators from which one is selected at random, delivers the tool that

allows a component on the layout to be nudged to another location. The mutation system

only ensures that if a component is shifted, it must remain with the general layout area. If

not it is nudged to the closest location that ensure it is within this area in a fashion that

takes into account the random direction a component was supposed to be nudged. During

this process, there are no attempts to check if overlapping or braking area rules occurs as

this is one of the assessments that is taking care off during fitness assessments where

penalties are imposed if instances such as this occur ultimately impacting on the selection

of that individual during the selection rounds.

Perusing at Table 11 from figures (a) to (l), one can see that the operators were

conceived to help a component to shift to any place in the layout or to find a place that is

relevant. For instance the random, swap and flip operators are the more exploratory

operators, whereas the nudging and the stick operators are more the consolidator

operators that make sure those components that are related by an action or areas move

closer to each other.

123

The mutation system is described in details in Appendix F. Overall there are a few

steps:

 Retrieve the genes from the main GA.

 Select a random pool of genes that will undergo mutation

 Select a mutation operator at random

 Invoke the mutation operator to operate on selected pair of genes

 Retrieve and pass to Galib the total number of mutations that took place

The entire process is based on random selections but an exception is made regarding

the selection of the genes, which are selected by pairs to reflect the X, and Y coordinates of

components. The main coding in terms of methodology is based on Galib but the code was

amended to reflect the operators’ functionality in the real world i.e. component of a layout.

Thus instead of mutating individual genes individually, a pair of sequential genes are taken

and mutated together by the same process. This minimises also the disturbance effects of

the mutation process yet moving component on the layout in a sensible way i.e. when one

does move or place a component on a layout, one affects both the X and Y coordinates

during this action. Since we are simulating human cognitive and motor functions during

the assessment of a layout, it makes sense to place the widgets in a similar manner. See

Figure 67.

Figure 67: Mutation system and control

124

Some care was taken to ensure that a component could move in any direction. A set of

directions is randomly chosen i.e. whether the component should be moved up or down,

left or right or combining both to move diagonally. All mutation operators use this system

to nudge components in their new locations. An example of such operator is displayed in

Appendix G.

The mutation operator selection changes strategy, which is based on the concept that

mutation operators are chosen at random over the range of available operators and

therefore all the operators have the same probability of selection. However, as a feasible

layout is evolved, i.e. no components are located outside the main interface area, all

components are sitting in their own area if required, and little overlapping is showing, a

change of strategy occurs to drive the evolution process to consolidate a layout

configuration when low interaction pressure is applied to the evolution system. In this

work, this is called mutation operator selection biasing.

The mentioned strategy is to provide, once a feasible layout is found, the sticking

operators a little more probability to be selected in the mutation operator selection

process so some consolidation of the layout can occur (Given that ACT-R does not

calculate the Fitt’s law if a change in visual angle is smaller than five degrees). This allows

some related objects in a layout to come closer to each other thus minimising in a

meaningful way human motor processes (refer to the Fitt’s Law section) and as a

consequence the ACT-R latencies. (The mutation process code is displayed in Appendix F,

and the code highlighted in green refers to the strategy discussed in this section.). Figure

68 describes the process.

Figure 68: Mutation biasing algorithm

125

5.9.6 Crossover operators

The crossover operators are based on Galib and were developed in the same manner as

the mutation operators. Because of the need of consistency with the mutation system the

crossover operators transfer information from pairs of genes from one generation to

another thus respecting the pairing of X and Y coordinates for the components of layout.

An example of the code for a 2-points crossover is shown in Appendix H. The main types of

crossovers such as EvenOdd, Uniform, 1-point and 2-points are available but the standard

chosen is the 2 points crossover type.

5.9.7 Fitness Assessment

The fitness function is invokes each time an individual of a genetic algorithm is entering

the selection competition. Thus it is a crucial part of a GA. Because there are many aspects

that TOISE needs to assess before returning an individual’s fitness, the overall strategy for

the fitness function is based on multi-objective fitness, which has been described in the

literature. Genetic algorithms are well suited for multi-objective optimisation both

because of their parallel search mechanism; where multiple individuals can search the

solution space for multiple solutions in parallel, taking advantage of any similarity

amongst possible solutions, and their effectiveness at handling complex problems with

noisy evaluations and discontinuous search space (Fonseca & Fleming 1995).

TOISE uses a known used technique, which is the weighted aggregating approach; an

approach that is straightforward to implement and is computationally effective (Konak et

al. 2006), where summing up the weighted objective values that are part of the overall

fitness assesses the fitness of an individual. With this technique, maintaining diversity

within the population is crucial as the genetic algorithm deals with more isolated optima

given the many objectives that are part of the final assessment and the possibility of

dominance of some of the objectives over others over some part of the run time which

often lead to local optima (Zitzler et al. 2000). In a general form this type of optimisation

problem can formulated as:

 () ((), (), (), … ())

(5.2)
given (, , …) & (, , …)

Where is a vector function that maps a set of parameters (decision variables) to a

set of objectives. is a set of the decision vectors and is the parameter space, is the

objective vector, and is the objective space. Therefore, the set of solutions of a

126

multiobjective optimisation problem consists of finding all the decision parameters for

which corresponding objective vectors cannot be refined in any dimensions without

degradation in another. These types of optimisation produce a set of unique equally good

solutions known as pareto-optimal solutions (Zitzler et al. 2000).

In the context of TOISE, the parameters are a set of component locations in a layout to

optimise i.e. (, , , , … , ,) such that:

 () () () () () (5.3)

Where () is the task latency provided by ACT-R, () is a penalty given for

overlapping components that is proportional to the area of overlap, () is a fixed penalty

proportional to the amount of components that are located outside the layout boundaries,

and () is a fixed penalty proportional to the amount of area that is outside dedicated

areas (if requested). Each objective has a weight coefficient that is controlled through

the interface. In TOISE, is set to 1.0 per default and is set to 5000 as default value.

As with many real-life problems, individual objectives conflict with each other and

TOISE is no exception. For instance, optimising with respect to a single objective such as

 () will often results in unsatisfactory results with respect to other objectives such as

 (), (), () i.e. constraining components within an area of the layout often lead to

inflated ACT-R motor and cognitive latencies and therefore reduces the search space. Thus

satisfying all the objectives may lead to compromises in terms of layout solution quality.

5.9.7.1 Overlapping penalty mechanism

The overlapping mechanism is based on the component overlapping area that is

accumulated and returned as a fraction compared to the total area that is occupied by all

the components. This is a simple algorithm but very effective at picking up component

overlap. The code can be perused in Appendix I. The overall method is as below:

 For each component in the layout that can be moved

 Increase total area by the area of the component

 Calculate the overlap with other components

 Increase the total overlap area if overlapping

 Finally returns the fraction of overlap compared to total overlap

127

5.9.7.2 Outside the layout area penalty mechanism

The algorithm for this penalty is very similar to the overlapping penalty system with

the difference that instead of accumulating the area that is only outside the area, the

aggregation adds the entire area of the component. This difference means that more

pressure will incur when a component is outside or partially outside the layout as it would

if only the out of bound area was only added. The code can be perused in Appendix I.

 For each component in the layout that can be moved

 Increase total area by the area of the component

 Increase the total out of bounds area by component are if outside the layout

 Finally returns the fraction of out of bounds area compared to total overlap

5.9.7.3 Outside the layout designated area penalty mechanism

In TOISE, any area can be created on the layout and component can be assigned one of

those areas for which it will bond to. If one of these components is located outside the

designated area, a penalty occurs. Unlike the other two penalty mechanisms, this

algorithm does not deal with proportional values. It returns accumulated fixed penalties

for breaching area rules. A fix penalty of 6 points is given for breaching area boundaries.

However points are taken off given some criteria that are discussed in Table 12, whilst

Figure 69 displays those concepts.

In addition to its own area, penalties are applied if a component is placed in an area

that it is not bound to with a penalties of six points. This helps the GA to shift the

components in their right areas much quicker and avoid situations where a component is

trapped into an area which should be occupied by another component. This is needed as

otherwise, there is no gain for the GA in terms of fitness to move this component because

it is not breaching out of areas rules and the cost of overalapping if moved somewhere else

is much cheaper than remaining in this un-authorised location.

128

Table 12: Out of area penalty system

Penalties (+ or -) Explanation

Full penalty = 6 A component that partially or completely lies outside its designated area is
given 6 point penalties. See Figure 69(a)

Penalty =- 1 A component whose center lies within the designated area i.e. half of the
component is within its area will see the penalty decreased by 1. See Figure
69(b).

Penalty =- 1 A component that has its bottom right corner within its area sees the
amount of penalty points decreased by 1. See Figure 69(c)

Penalty =- 1 A component that has its bottom left corner within its area sees the amount
of penalty points decreased by 1. See Figure 69(d)

Penalty =- 1 A component that has its top right corner within its area sees the amount of
penalty points decreased by 1. See Figure 69(e)

Penalty =- 1 A component that has its top left corner within its area sees the amount of
penalty points decreased by 1. See Figure 69(f)

5.9.8 Conclusion

The fitness function behaviour will return high values as long as the layout components

lay outside the main area of the interface, or when components lie outside their

designated area. These two components of the fitness function are the drivers, compared

to overlapping, due to their high cost at the beginning of the evolutionary process which

very quickly through selection lead the genetic algorithm to evolve solutions i.e. layouts,

that exclude component arrangements that include components outside the interface or

specified areas.

As the GA run goes along, the overlapping penalties which were of minor importance to

begin with compared to other penalties, begin to influence the evolutionary system and

become more substantial and in par with ACT-R Latencies, therefore leading the genetic

algorithm selection algorithm to select layouts that do not contain component overlapping

with others but also layouts that compete in terms of cognitive and motor load.

129

(a) Out of area bonds examples

(b) Component centre in area

(c) Component bottom right corner in area

(d) Component bottom left corner in area

(e) Component top right corner in area

(f) Component top left corner in area

Figure 69: Out of area scenarios

Toward the end of the GA run, the main selective pressure mostly takes into account

the human factors during its selection rounds leading the GA to produce layouts that are

more usable in terms of usability.

5.10 Lisp Version design

The Lisp version of TOISE (Its design can be seen in Figure 41) relied on CFFI (Lisp

side) & SWIG (SWIG 2012) (Native code side) code wrappers to communicate bi-

directionally with the native code held in the library DLL that also contain the GUI and

most of the functionality. Most of the methods that are used in the code are callbacks as

the communication originates from the GUI held in the DLL to pass commands to ACT-R or

Lisp which most of the time expects some kind of return values. Thus the order of loading

the individual elements in the system is important. First ACT-R is loaded, then its

130

environment, followed by the CFFI backend, which will provide the interface to the

methods help in the library once it is loaded. This is followed by both the methods and

callbacks. Finally, a method held in the library is invoked to start the GUI. The loading

process is described in Figure 70.

Figure 70: Loading the project from Lisp

Unlike the code in the Lisp environment, which is not compiled, the C++ native code

side is double-compiled. The first compilation gets SWIG to generate all the wrapper code

necessary for the library methods that are exported and contained in the DLL. It also

generates the Lisp code based on CFFI to integrate and load in the Lisp environment. The

second compilation compiles the code wrappers with the library code so that the methods

shared between CFFI and the DLL can be assessed by ways of “bindings” without regard to

provenance.

In the DLL code, a special header is thus needed to let SWIG know which methods must

be included in the wrapping exercise. This is often contained in a header file with the “i”

extension. An example of such as file is presented in Figure 71.

Figure 71: Typical SWIG header file for native code

In the header Swig file shown in Figure 71, we simply tell SWIG to refer to the

“LispDLL.h” DLL library header file and export everything that is declared.

131

Figure 72: Typical DLL header file

A typical header file is shown in Figure 72. An example of the SWIG wrappers is shown

in Figure 73.

Figure 73: SWIG Native code wrappers

The names of the methods that are wrapped are similar to the methods SWIG generates

for the CFFI wrapping code that is used on the Lisp side as seen in Figure 74.

Figure 74: Lisp CFFI wrapper code generated by SWIG

Once the final compile is processed, the DLL is loaded from Lisp and both environments

can invoke each other methods as being part of the same system.

132

5.11 Issues with the TOISE development.

There were many issues regarding the Lisp version of TOISE system in terms of

communication between the two main parts. Firstly the dual communication between

modules had to be extra fast so Lisp would not crash due to the pressure the GA contained

in the DLL puts on the Lisp backend. This entailed independent and fast threading

algorithms to deal with both ways communication. Secondly, the DLL library had to be

loaded by the Lisp environment and had its exposed functionality usable from Lisp and

vice versa. This functionality was provided by the use of CFFI. With this design, the former

provided an interface to ACT-R to the GA installed in a DLL, which was somewhat limited.

The latter provided an interface to foreign function code to native code, allowed the

allocation and dereferencing for foreign memory, invoking of foreign methods, including

callbacks that is shared in libraries from a Lisp environment. It also provided support to

load these libraries into the Lisp environment.

This was compounded by the fact that the GA is highly iterative thus putting pressure

on both systems without giving them time to, for instance, clean the memory up. This

matter was not a problem with the code in the library but was at the level of Lisp, which

uses a Garbage Collector, which seemed to respond too slowly at deleting resources thus

making the system consuming more memory than needed.

As already mentioned, the Lisp version had two main parts. The main part in terms of

the design was the Lisp Environment in which ACT-R was loaded and ran. Swig and CFFI

were used to provide wrappers and functionality to load Native code libraries i.e. DLL’s for

Windows and to make code from both environment available to each other using wrapper

code.

Each communication channels that allowed data to flow from ACT-R and the GA relied

entirely on independent threads, as it was found that locking code i.e. using threading

locks, between channels often resulted in the Lisp console freezing. Thus special care was

used to develop optimised code that recycles the data as fast as possible so to minimize

possibilities of crashes. Moreover it allowed the free manipulation of all controls in the GUI

contained in the DLL, which would not have been possible once the GA underwent a run

for instance.

It was furthermore found that due to the way Swig worked at the time of development

i.e. Swig making copies of data structures to similar structures that are suitable with the

intended receiving environment, small memory leaks could happen. The main issues in

133

that respect were that even if special care was used to delete and manage resources in the

DLL native code, due to the combination of the use of the garbage collector which only

delete resources over a number of lives and internal leaks in the SWIG wrappers, loss of

memory would occur over a long period of time. As a genetic algorithm is highly iterative,

a small leak over one GA run generation might be multiplied a million of times, the overall

memory that is not recycle can affect the running of the system. Moreover this was

compelled further by the fact that the pressure the GA module puts on the Lisp

environment, the Lisp garbage collector was often interrupted and too slow at deleting

unneeded resources. Special care was therefore taken to develop an external thread in

Lisp that instigated and pushed the garbage collector to be more assertive in deleting

unwanted resources, which kept resources loss at its minimum.

5.12 TOISE ACT-R code recompiled in C++

The Lisp version suffered many issues that were difficult to resolve; the major issue

being the speed of execution due to the speed of execution of ACT-R Lisp environment. For

this reason part of the code contained in ACT-R was ported and optimised in the C++

library to increase the speed of execution. In the same way Salvucci did with some

experimentation (Myers 1993; Salvucci 2001). There is an increasing trend to use

accurate simulation code in the design of many systems to improve their reliability. These

simulations in terms of computations and process timing are often overwhelmingly time

consuming. This is often a compelling side in optimisation algorithms using these types of

high quality, reliable simulations for fitness assessment purposes. Alongside this trend,

system designers are now designing low cost fitness surrogate functions to replace high

computationally expensive simulation codes (Lim et al. 2007; Zhou et al. 2007; Couckuyt

et al. 2011).

This was the case with the Lisp version of TOISE. The high cost of individual

evaluations shaded doubts to its usability. This led to a new approach, which included at

its hart the compilation of the relevant ACT-R code into the GA (C++) base native code.

Some to the source code is listed in Appendix J, which include some of the functionality

pertaining to dragging an object. A lot of the methods listed are inline meaning that they

are speed optimised, using also pointers as much as possible to reduce object creations

etc. Some of the functionality was a straight port from ACT-R whilst others were achieved

by inspecting carefully some debug logs that positioned throughout the source code on

both C++ and Lisp platforms leading to corrective tweaks in the C++ native to realign

results to push them in line with ACT-R findings. This was a long and tedious process

134

involving a lot of statistical tests which was only possible due the small granularity nature

of the actions modelled.

To validate the solution, a comparison was made between ACT-R latencies and the

simulated ones for a full run where ACT-R and the simulator returned latencies for the

same tasks. Over 100000 comparisons were made in this run. This technique is often used

in optimisation using GA where often computer intensive modelling code is replaced by

simulation for fitness assessment of the individuals of the GA population. Perusing both

Table 13 and Table 14, the simulator does not induce major calculations errors given the

fact of the precision of the number used.

Table 13: ACT-R versus Simulator

Mean Std. Deviation N

ACT-R 77.1487609 0.57902102 101648

Simulator 77.1488846 0.57897879 101648

Moreover, these slight differences in terms of value should not affect the GA ability to

evolve any of those solutions accordingly as we will see in later sections, ACT-R latency is

only one part of the whole fitness value; the others being the different layout penalties and

constraints that are equally important for most of a GA run.

Table 14: ACTR versus Simulator correlation

 ACT-R Simulator

ACT-R

Pearson Correlation 1 1.000**

Sig. (2-tailed) .000

Sum of Squares and Cross-products 34078.717 34074.521

Covariance .335 .335

N 101648 101648

Simulator

Pearson Correlation 1.000** 1

Sig. (2-tailed) .000

Sum of Squares and Cross-products 34074.521 34073.746

Covariance .335 .335

N 101648 101648

**. Correlation is significant at the 0.01 level (2-tailed).

The porting of the ACT-R code into the GA environment makes possible long runs with

runs times in the range of hours compared to days using ACT-R in the Lisp environment.

135

Chapter 6. Experimentation

There are two classes of search algorithms: Global and local search algorithms. The

former algorithms, which include genetic algorithms, are characterized by finding the right

equilibrium between exploration of the search space and exploitation of accumulated

information to help the search process to find the best global solution. Probabilistically,

these algorithms are guaranteed to find a global solution at the expense of long

computations. However given their robust nature, global algorithm can explore the search

space and locate reasonably good global solutions relatively fast. The latter type of

algorithms on the other hand does not rely on exploration in the same manner as global

algorithms do to locate good solutions but move from a current solution to a nearby-

improved solution present in the neighbourhood often terminating when there is no

longer any improvement that can be discovered. The weakness with these types of

algorithms is two folds: depending on the complexity of the search space and the initial

solution that started the search process, they can focus on local optima solutions, and

finally they are often associated with much longer run times than global search algorithms

(Balaprakash 2012).

It is therefore of interest to determine if the global genetic search algorithm contained

in TOISE competes with a local search algorithm that inherits the same shift functionality

and to determine if the finding retrieved during these experiments discussed in the

following sections ascertain if the case for using a genetic algorithm is founded.

A lot of evaluations have already been discussed in the sections above. However there

is a need for more systematic experimentation when dealing with both human factors and

genetic algorithms. Whilst for the former one can rely on already published literature as

the system has stayed closely similar in terms of methodology to many published research

in this domain i.e. GOMS to ACT-R5 using G2A, and then translation from ACT-R5 to ACT-

R6 with minor platform adjustments, the latter is somewhat more challenging to assess its

performance and therefore the overall ability of the system (that is using ACT-R as part of

its fitness assessment) to find competitive optimised layout in a reasonable amount of

time.

The first set of experiments re-examine findings published in WCCI IEEE publication

(Golovine et al. 2010), based on real world problem (Deininger 1960). The main purpose

of this series of experiment was to re-discover some of the findings that Bell Laboratories

achieved at much expense and time. Bell laboratories evaluated 16 different designs using

136

more than 200 participants and the research lasted two years and came up with the now

ubiquitous digital phone keypad layout that is part of most of the communication devices

today. The approach presented in this thesis reliably produced similar competitive layouts

to Bell’s, all of them better in terms of human factors than the one proposed by Bell’s. As

with all human interaction, small differences are expected but are significant in terms of

cognitive load when the apparatus is user over a long period of time. This set of

experiments will attempt to determine if a local search based on the genetic algorithm can

perform as well as the genetic algorithm and if these results compared to already

published ones.

The second set of experiment re-examine the calculator software that was used to

demonstrate the software in the previous chapter. In these experiments more constraints

and human interaction are used to provide additional pressure and demonstrate the

concept behind TOISE.

6.1.1 Experiment 1

6.1.1.1 Aims and objectives

The aim of this experiment is to define if both algorithms can find competitive layout

solutions given two different population diversities and relatively low number of

individuals for the genetic algorithm i.e. 25, using the real world problem first defined by

Bell Laboratories (1960) (Golovine et al. 2010). In this experiment 10 phones numbers

were used.

6.1.1.2 Experiment setup.

The GA is setup with a population comprising 25 individuals, running for 10000

generations, with a base crossover set at 0.7. As it is an automatic process both the

mutation and crossover rate will fluctuate once the GA is running. The pre-run found

mutation rate is passed over to the LS algorithm so both are in par, with the LS running for

25*10000 iterations. (No crossover exists for this algorithm). This rate was found to be

0.009 for a population diversity = 0.001 and 0.03 for a diversity of 0.01. Two series of

experiments were setup to run for both population diversities. The interface is shown in

Figure 75.

137

Figure 75: 10 Phone numbers interaction

Figure 76: GA versus LS (Different population diversity – 25 individuals)

6.1.1.3 Experiment results

Perusing Table 15, both GA and LS approach are capable to find layouts as good or

better as the original layout. i.e. <= 151.737. Looking closer at Figure 76, one can see that

all layouts found by both methods are better in terms of ACT-R latencies than the one

obtained using the original layout and therefore both algorithms are capable to find

competitive layouts regardless of the population diversity (hence mutation rate).

Referring to Table 15 and Figure 76, the obtained means show that within their own

category i.e. diversity = 0.01 or 0.001, the distribution curves are very similar and none of

the approach seems better than the other with no significant difference in the findings i.e.

(t (493.930) =-1.490, p = .137) for population diversity set to 0.001 and (t (498) = -.459,

p .646) when set to 0.01. It is worse noting that the LS type of algorithm found the best

layout i.e. ACT-R latency = 147.9740, for a population diversity set to optimised 0.1 %

compared to the LS ACT-R latency = 147.9600. It is however a very small difference but

still is significant in terms of cognitive load.

138

6.1.1.4 Discussion

The final point to note is that the GA runs lasted only hours whereas the LS algorithm

ran for many days i.e. around 3 days to complete the 250 runs. This is due to the parallel

architecture that is embedded into a genetic algorithm, thus making them much more

efficient that the purely sequential approach that forms the basis for a local search type of

search algorithm. The findings demonstrate that given the mutation algorithms (that shifts

the components of the layout around) that were shared by both the LS and GA are

producing layouts that can provide any approaches to produce competitive layouts.

Finally, the small differences found for the best ACT-R latencies between the two

approaches are not significant in terms of cognitive load i.e. 4ms. It is also worth

mentioning that the optimal gene mutation rate for the LS approach was discovered by the

GA approach.

Table 15: GA versus LS (Diversity=0.001-25 individuals)

Algorithm N Minimum Maximum Mean Std. Deviation
Std. Error

Mean

[1]: GA (diversity=0.001) 250 148.0750 149.4670 148.615380 .2572204 .0162680

[2]: LS (Mutation rate = 0.009) 251 148.0000 149.4200 148.651590 .2858941 .0180455

[3]: GA (diversity=0.01) 250 147.9600 148.9660 148.297560 .2232707 .0141209

[4]: LS (Mutation rate = 0.03) 251 147.9740 149.2900 148.306096 .2247648 .0141870

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] -1.490 493.930 .137 -.0362096 .0242959

[3] & [4] -.459 498 .646 -.0092000 .0200460

[1] & [3] -14.754 498 .000 -.3178200 .0215418

[2] & [4] -15.006 473.662 .000 -.3448296 .0229800

6.1.2 Experiment 2

6.1.2.1 Aims and objectives

The aim of this experiment is to define if both algorithms can find competitive layout

solutions given two different population diversities, scaling up the number of individuals

for the genetic algorithm i.e. 50, using the same real world problem as discussed in

previous experiment with the same number of phone numbers i.e. 10.

6.1.2.2 Experiment setup.

The GA is setup with a population comprising 50 individuals, running for 10000

generations, with a base crossover set at 0.7. As it is an automatic process both the

mutation and crossover rate will fluctuate once the GA is running. The pre-run found

mutation rate was passed over to the LS algorithm so both are in par, with the LS running

for 50*10000 iterations. (No crossover exists for this algorithm). This rate was found to be

139

0.006 for a population diversity = 0.001 and 0.02 for a diversity of 0.01. Two series of

experiments were setup to run for both population diversities.

Figure 77: GA versus LS (Different population diversity – 50 individuals)

6.1.2.3 Experiment results

Perusing Table 16, both GA and LS approach are capable to find layouts as good or

better as the original layout. i.e. <= 151.737. Looking closer at Figure 77, one can see that

all layouts found by both methods are better in terms of ACT-R latencies than the one

obtained using the original layout and therefore both algorithms are capable to find

competitive layouts regardless of the population diversity (hence mutation rate).

Referring to Table 16 and Figure 77, the obtained result means show a slight advantage

towards the GA when the mutation rate is not optimised (t (499) = 2.945, p = .003).

However this difference between those means disappears and becomes not significant as

the mutation rate becomes more optimised for the solution (t (499) = .99, p = .323). It is

worse noting that the GA type of algorithm found the best layout i.e. ACT-R latency =

147.832, for a population diversity set to optimised 0.1 % compared to the LS ACT-R

latency = 147.834.

6.1.2.4 Discussion

The final point to note is that the GA runs lasted only hours whereas the LS algorithm

ran for many days i.e. 5 days to complete the 250 runs. As already mentioned, the

parallelism of GA makes this approach much more efficient than a local search approach.

Another point to note is that unlike the experiment with 25 individuals, when the Local

search approach was better than the GA when the mutation rate was not optimised,

doubling the number of individuals has for effect that the GA becomes more efficient when

running with non-optimal population diversity which seems to indicate that the extra

diversity provided by the increase number of individuals benefits the GA more than it does

for a LS approach.

140

Table 16: GA versus LS (50 inds-10 numbers)

Algorithm N Minimum Maximum Mean Std. Deviation
Std. Error

Mean

[1]: GA (diversity=0.001) 250 147.9600 149.8780 148.580640 .2823018 .0178543

[2]: LS (Mutation rate = 0.006) 251 148.0500 152.1690 148.667016 .3684172 .0232543

[3]: GA (diversity=0.01) 250 147.8320 148.9900 148.323772 .2401823 .0151905

[4]: LS (Mutation rate = 0.02) 251 147.8340 149.1010 148.345446 .2498718 .0157718

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] 2.945 499 .003 .0863759 .0293332

[3] & [4] .990 499 .323 .0216742 .0218992

[1] & [3] -10.958 485.541 .000 -.2568680 .0234420

[2] & [4] -11.444 439.831 .000 -.3215697 .0280982

6.1.2.5 Summary

Looking at data distribution curves displayed in Figure 78, one realises that once the

population diversity is set appropriately, changing the number of individuals from 25 to

50 does not make any changes in the behaviour of both approaches as both methods are

able to find layouts better than the original ones providing evidence that maintaining the

population diversity in a search algorithm of this type is paramount.

Figure 78: 10 phones - (25/50 Individuals) - Difference diversities

6.1.3 Experiment 3

6.1.3.1 Aims and objectives

The aim of this experiment is to determine if scaling up the number of phone numbers

to 100 phone numbers makes a difference in the behaviour of both approaches using the

Bell layout problem. The assumption is that the increase of activity on the layout should

help both approaches to find better high quality by increasing the interaction pressure of

the algorithms.

141

6.1.3.2 Experiment setup.

The experiment setup is the exactly the same as the previous experiment with only the

number of interaction with the keypad changed to 100 phone numbers. The pre-run found

mutation rate was passed over to the LS algorithm so both are in par, with the LS running

for 25*10000 iterations. (No crossover exists for this algorithm). This rate was found to be

0.01 for a population diversity = 0.001 and 0.03 for a diversity of 0.01. Two series of

experiments were setup to run for both population diversities.

Figure 79: GA versus LS - 100 phones-25 individuals

6.1.3.3 Experiment results

Perusing Table 17, both GA and LS approach are capable to find layouts as good or

better as the original layout i.e. < 1487.481. Looking closer at Figure 79, one can see that

all layouts found by both methods are better in terms of ACT-R latencies as demonstrated

by the previous experiments.

Table 17: GA versus LS (25 inds-100 numbers)

Algorithm N Minimum Maximum Mean Std. Deviation Std. Error Mean

[1]: GA (diversity=0.001) 250 1461.7100 1469.3400 1464.445200 1.3678982 .0865135

[2]: LS (Mutation rate = 0.01) 251 1461.6100 1468.6700 1464.322231 1.1742493 .0741180

[3]: GA (diversity=0.01) 250 1461.4700 1465.0400 1463.122960 .7025708 .0444345

[4]: LS (Mutation rate = 0.03) 251 1461.3700 1466.1400 1463.172590 .8164876 .0515362

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] 1.079 487.230 .281 .1229689 .1139213

[3] & [4] -.729 499 .466 -.0496296 .0680674

[1] & [3] -13.595 371.824 .000 -1.3222400 .0972574

[2] & [4] -12.735 445.939 .000 -1.1496414 .0902743

Referring to Table 17 and Figure 79, the obtained result means dismiss any significant

advantage between any approaches when the mutation rate is not optimised (t (487.230)

= 1.079, p = .281). The same findings are obtained when the mutation rate becomes more

optimised for the solution (t (499) = -.729, p .466). It is worse noting that the LS type of

142

algorithm found the best layout i.e. ACT-R latency = 1461.3700, for a population diversity

set to optimised 0.01 compared to the GS ACT-R latency = 1461.4700.

6.1.3.4 Discussion

The findings obtained in this experiment are consistent with the previous experiments

results. When the GA population size is set to 25 individuals, scaling up the user

interaction on the interface from 10 to 100 phone numbers does not make significant

changes in terms of differentiating both methods. The only major issues experienced with

the LS method is again the time taken to generate any solution which increases

substantially for the LS approach, a difference that is in a range of hours for the GA to days

for the LS method. It is worth mentioning that both presented systems in this thesis (i.e.

GA and LS) performed far better than the ones that were the subject of investigation in

(Golovine et al. 2010). Similarly to those published results, both LS and GA have found

better keypad layouts in terms of human interaction latencies than the original keypad

presented in Deininger (1960) report (Deininger 1960).

6.1.4 Experiment 4

6.1.4.1 Aims and objectives

The aim of this experiment is to determine if scaling up the population size makes a

difference if the behaviour of both approaches using the Bell layout problem. The

assumption is that the increase of the number of individuals should help both approaches

to find high quality by increasing the interaction pressure of the algorithms. The difference

with the previous experiment is that the number of individuals of the population is

increased from 25 to 50 individuals.

6.1.4.2 Experiment setup.

The experiment setup is the exactly the same as the previous experiment with the

number of interactions with the key pad remaining 100 phone numbers but the

population size is increased from 25 to 50 individuals. The pre-run found mutation rate

was passed over to the LS algorithm so both are in par, with the LS running for 25* 10000

or 50*10000 iterations. (No crossover exists for this algorithm). This rate was found to be

0.02 for a diversity of 0.01. Two series of experiments were setup to run for both

population diversities.

143

Figure 80: GA versus LS - 100 phones-25 and 50 individuals’ population

6.1.4.3 Experiment results

Perusing at Table 18 both GA and LS approach are capable to find layouts as good or

better as the original layout in the same manner regardless if the population size is set to

25 or 50 individuals. Looking closer at Figure 80, one can see also that all layouts found by

both methods are better in terms of ACT-R latencies as demonstrated by the previous

experiments. Referring to Table 18 and Figure 80, the obtained result means show a

significant advantage for both methods when the population is raised from 25 to 50

individuals (t (475.364) = 12.093, p = 0.000) and (t (481.013) = 14.075, p = 0.000) for

the GA and LS respectively. However comparing GA and LS using 50 individuals i.e. longer

search times, the difference is not significant (t (499) = 0.515, p = 0.607) with similar

findings for shorter run times i.e. using 25 individuals (t (499) = -1.047, p = 0.295).

6.1.4.4 Discussion

Increasing the population size from 25 to 50 individuals does make a significant

difference in terms of performance for both approaches in terms of ACT-R latencies.

However comparing the two approaches for the two setting of population size does not

provides any evidence that one approach performs better than the other. Similar to all

other experiments, the run time for the LS algorithm was much more time consuming that

it was for the GA method.

144

Table 18: versus LS (50 inds-100 numbers)

Algorithm N Minimum Maximum Mean Std. Deviation
Std. Error

Mean

[1]: Genetic Algorithm - 25
individuals

250 1461.49 1468.62 1464.49812 1.232195 0.0779309

[2]: Local Search - 25 individuals 251 1461.81 1468.56 1464.611474 1.1902927 0.0751306

[3]: Genetic Algorithm - 50
individuals

250 1461.34 1467.26 1463.2906 0.9870979 0.0624296

[4]: Local Search - 50 individuals 251 1461.04 1466.33 1463.245498 0.9732079 0.0614283

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] -1.047 499 0.295 -0.1133541 0.1082414

[3] & [4] 0.515 499 0.607 0.045102 0.0875811

[1] & [3] 12.093 475.364 0.000 1.20752 0.0998532

[2] & [4] 14.075 481.013 0.000 1.3659761 0.0970466

6.1.4.5 Discussion

Increasing the population size from 25 to 50 individuals does make a significant

difference in terms of performance for both approaches in terms of ACT-R latencies.

However comparing the two approaches for the two setting of population size does not

provides any evidence that one approach performs better than the other. Similar to all

other experiments, the run time for the LS algorithm was much more time consuming that

it was for the GA method.

6.1.5 Experiment 5: Optimising a calculator Interface

The purpose of this experiment is to take the calculator that was already used to

discuss the development of TOISE and demonstrate some of the powerful search of the

TOISE system. The interaction recording was achieved using the ROBOT recorder where

146 actions were performed on the calculator as shown in Figure 81.

Figure 81: Calculator Experiment conducted using the ROBOT recorder

145

The first experiment considers the original design where three areas are added and the

components that were part of this area in the original design are bound to designed areas.

Some components at the top of the application are the display component and control

components but were not used when exercising the software using the ROBOT. They are

shown using the yellow colour, which indicates that the TOISE will not attempt to shift

them during its runs. It was also decided for this run to have the keyboard keys remaining

static as well. This is an example where an already designed interface exists, and an

attempt to optimise some related components is made around the static components that

cannot be shifted. This interface is shown in Figure 82. User interaction is shown in Figure

83.

Figure 82: Experiment with three areas designed

Figure 83: Experiment with three areas designed (with user interaction)

The other experiment seen in Figure 84 conducted adds another dimension of difficulty

by adding another extra area. Unlike the previous tests where components were left loose

in any areas, this constrains the OFF, MODE and SHIFT function keys to remain in small

area just below the Visual Display area. The other major difficulties are the constraining of

the STO, RCL, M+, DEL and AC function key to another area. The difficulties stem from the

146

fact that the memory storage key STO, the recall key RCL and the key to add the answer to

the memory storage M+ are particularly tied with the + and = keys (see Figure 85) which

has the effect to draw those keys very close to each other to minimise the interaction

latency. Therefore the penalty associated with out of area and overlapping was raised

from the standard 5000, to the more appropriate 50000 to put more pressure regarding

the integrity of the layout. Hence, once the GA find a proper layout for the interface that

does not breach these rules, the focus is drawn on the user interaction within those areas.

Figure 84: Experiment using four areas to constrain components

Figure 85: Experiment using four areas to constrain components (with Actions)

A standard setting is used otherwise i.e. 50 individuals for this experiment. Some tests

were previously conducted to assess the population diversity using the simple user

interaction recording (41 interactions used only for run speed). 250 runs were conducted

for the diversity tests included a range of diversity values. The distribution curves for the

series of experiments are shown in Figure 86 . One can infer from these findings that any

diversity values ranging from 0.04 to 0.1 do produce similar results. Thus 0.1 was used to

conduct the experiments as this might push the GA to discover layouts that maybe come

below the two standard deviations threshold i.e. only diversity = 0.1 and 0.05 tests

147

contains more than one values below the two standard deviations. Looking at Table 19,

both perform similarly (t (50) = -.369, p = .713) but the skewness and kurtosis for the

diversity = 0.1 is smaller. In addition, this higher population diversity can be beneficial in

a complex problem as this.

The crossover for the main experiment was left to its standard value of 0.7 and each

run ran for 5000/10000/20000 generations. Around 35.250 billion user actions will be

assessed during these tests i.e. 50*10000*141*250.

Figure 86: Performance for difference diversities

Table 19: Diversities comparison

N Minimum Maximum Mean Std. Deviation Variance

Type Statistic Statistic Statistic Statistic Std. Error Statistic Statistic

Diversity=0.1 50 54.06480 54.65870 54.39645 0.01850 0.13082 0.01711

Diversity=0.05 50 54.08000 54.68310 54.40582 0.01743 0.12324 0.01519

Skewness and Kurtosis

Skewness Kurtosis

Statistic Std. Error Z Value Statistic Std. Error Z Value

Diversity=0.1 50 -0.17367 0.33660 0.51595 -0.00444 0.66191 0.00671

Diversity=0.05 50 -0.26856 0.33660 0.79787 0.30227 0.66191 0.45666

t-test for Equality of Means

t df Sig. (2-tailed) Mean Difference Std. Error Difference

-.369 98 .713 -.0093760 .0254178

6.1.5.1 Experiment results

The first noticeable fact that can be seen looking at the distribution curves for the

obtained data is that adding extra areas does impact on the quality of the solutions found

in terms of human cognitive and motor load that has to be achieved to complete this

sequence of actions using this interface.

148

Figure 87: Distribution curves for Calculator experiments (10000 generations)

This is re-enforced by the conducted T-Test shown in Table 20 (t (438.327) = -13.184,

p = .000), which shows that using only three areas produces better ACT-R latencies.

Table 20: Comparing Calculator experiments (10000 generations)

Algorithm N Minimum Maximum Mean
Std.

Deviation
Std. Error

Mean

[1]: 4 Areas Experiments 250 204.5010 205.4830 204.952256 .2000618 .0126530

[2]: 3 Areas Experiments 250 204.4370 205.2450 204.750628 .1358289 .0085906

T-Test

Test type t df
Sig. (2-
tailed)

Mean Difference
Std. Error
Difference

[1] & [2] -13.184 438.327 .000 -.2016280 .0152937

To assess the results the top 5% solutions as well as the solutions with an ACT-R

latency below two standard deviations were taken into account. Both approaches found

two solutions that were below the two standard deviations threshold.

149

Figure 88: Top two optimised (< 2* STDEV) layouts
using (4 areas) 10000 generations

Perusing Figure 88, the optimised layouts using the four areas approach design

suggests similar arrangements in many areas. The area on the left of the keypad is

arranged differently though despite containing many similarities. Both top areas that

contain the function keys have been laid out differently from the original to optimise the

user interaction in a similar fashion. The right area is also constant from for both layouts

but does contains some slight differences i.e. ^ and TAN. The optimised layouts provide a

gain of over 3 seconds in terms of ACT-R timings, which is a significant gain. For instance

the SHIFT, MODE and OFF function keys arrangement is seen in 92% of the top best

layouts. The same statistic is obtained for the DEL, STO, M+, RCL and AC function keys i.e.

92% of all evolved solutions, indicated a possible natural arrangement for those

components. The ANS key is found bottom right of the right area in 60% of the cases

indicating yet again a possibility of an appropriate location for this component.

Figure 89: optimised user interaction (4 areas) 10000 generations

150

The user interaction on both original and optimised interface for the four areas design

approach can be seen in Figure 89. The flow of the actions between the keys on the

optimised layout is more systematic, minimising the distance between the key that are

sequentially used in addition to minimise the cognitive load whilst exercising the user

interface. Appendix K includes all the top 5% layouts in terms of ACT-R timing and

provides more evidence that layouts optimised by TOISE based from the original layout

shown is Figure 88 are very similar and provide enough information to designer to place

the components in better locations on the interface.

The optimisation process when dealing with the three designated areas i.e. three areas

design method provides better cognitive latencies overall mostly due to the increased

freedom the genetic algorithm has in placing the components on the interface when

evolving the layout solutions. The best top 5% is shown in Figure 90.

Figure 90: Top three optimised (< 2* STDEV) layouts
using (3 areas) 10000 generations

However, the layouts are not as well laid as they were with the layouts designed with

four areas approach due to the lack of constraints. However, they provide useful

information regarding ways to optimise the calculator interface despite this fact. For

instance the DEL, ANS and AC function keys arrangement is found in 60% of the top

layouts. See Appendix L to peruse the other top layouts. The – and % keys arrangement is

present in 50% of the best layouts. The arrangement for the STO, RCL and M+ contains

only two possible layouts both of which are displayed in Figure 90, each one 50% of the

top best layouts. Any other layouts for those keys were not evolved by TOISE. Moreover,

the SIN and COS function keys are located in the same locations in all but one solutions,

which may indicate to the interface designer a natural position for those two keys.

151

Other results were obtained by fluctuating the number of generations of the genetic

algorithms and experiments were carried out with 5000 and 20000 generations to

investigate the quality of the solutions found by TOISE in terms of gain / loss related to

ACT-R timing. Figure 91 displays the ACT-R latencies distribution curves for those

experiments.

Figure 91: Comparison of 3/4 areas experiments
using different generation number

Perusing at Table 21, one realises that there is significant gains in increasing the

generation size from 5000 to 20000 as better average ACT-R latencies are found with both

the three areas and four areas methods. The latencies decrease from 204.836, 204.745

down to 204.699 for 5000, 10000 and 20000 generations respectively using the three

areas method, and from 204.998, 204.872 down to 204.809 for the same generations

using the four areas approach. The overall better performance for the three areas method

over the four areas approach is expected as the gain of freedom of placement of the

components helps the GA to explore the search space more thoroughly hence the increase

in performance for this method.

152

It is worth mentioning that the four areas running with 10000 and 20000 generations

is not significantly better in terms of the ACT-R timings as the three areas methods which

means that the latter running at 5000 generations i.e. very fast, seems to outperform most

of the four areas methods, yet again demonstrating that constraining an interface design

with areas, can impede on the quality of usability performance, as a trade-offs with design

cohesion, style and heuristic principles.

Table 22 provides statistical evidence that the three areas approach significantly

benefit of longer runs with means decreasing from 204.836 down to 204.699 as the length

of the runs increases, a trend that is similar for the four areas approach tabulated in table

23 for which the ACT-R latencies decrease from 204.998 down to 204.809.

Table 21: Comparing different approaches using different generation size for GA

Multiple Comparisons of 3 and 4 areas with different GA generation size

KIND Compared to Mean Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD 3 areas -
10000 gens

3 areas - 20000 gens .0456200* .0147799 .025 .003447 .087793

3 areas - 5000 gens -.0915680* .0147799 .000 -.133741 -.049395

4 areas - 10000 gens -.1272000* .0147799 .000 -.169373 -.085027

4 areas - 20000 gens -.0646360* .0147799 .000 -.106809 -.022463

4 areas - 5000 gens -.2534600* .0147799 .000 -.295633 -.211287

3 areas -
20000 gens

3 areas - 10000 gens -.0456200* .0147799 .025 -.087793 -.003447

3 areas - 5000 gens -.1371880* .0147799 .000 -.179361 -.095015

4 areas - 10000 gens -.1728200* .0147799 .000 -.214993 -.130647

4 areas - 20000 gens -.1102560* .0147799 .000 -.152429 -.068083

4 areas - 5000 gens -.2990800* .0147799 .000 -.341253 -.256907

3 areas - 5000
gens

3 areas - 10000 gens .0915680* .0147799 .000 .049395 .133741

3 areas - 20000 gens .1371880* .0147799 .000 .095015 .179361

4 areas - 10000 gens -.0356320 .0147799 .153 -.077805 .006541

4 areas - 20000 gens .0269320 .0147799 .452 -.015241 .069105

4 areas - 5000 gens -.1618920* .0147799 .000 -.204065 -.119719

4 areas -
10000 gens

3 areas - 10000 gens .1272000* .0147799 .000 .085027 .169373

3 areas - 20000 gens .1728200* .0147799 .000 .130647 .214993

3 areas - 5000 gens .0356320 .0147799 .153 -.006541 .077805

4 areas - 20000 gens .0625640* .0147799 .000 .020391 .104737

4 areas - 5000 gens -.1262600* .0147799 .000 -.168433 -.084087

4 areas -
20000 gens

3 areas - 10000 gens .0646360* .0147799 .000 .022463 .106809

3 areas - 20000 gens .1102560* .0147799 .000 .068083 .152429

3 areas - 5000 gens -.0269320 .0147799 .452 -.069105 .015241

4 areas - 10000 gens -.0625640* .0147799 .000 -.104737 -.020391

4 areas - 5000 gens -.1888240* .0147799 .000 -.230997 -.146651

4 areas - 5000
gens

3 areas - 10000 gens .2534600* .0147799 .000 .211287 .295633

3 areas - 20000 gens .2990800* .0147799 .000 .256907 .341253

3 areas - 5000 gens .1618920* .0147799 .000 .119719 .204065

4 areas - 10000 gens .1262600* .0147799 .000 .084087 .168433

4 areas - 20000 gens .1888240* .0147799 .000 .146651 .230997

Descriptive Statistics

 N Minimum Maximum Mean Std. Deviation Variance

 Statistic Statistic Statistic Statistic Std. Error Statistic Statistic

3 areas - 5000 gens 250 204.4970 205.4400 204.836448 .0088412 .1397920 .020
4 areas - 5000 gens 250 204.5620 205.5520 204.998340 .0127419 .2014672 .041

3 areas - 10000 gens 250 204.4050 205.1860 204.744880 .0089147 .1409532 .020

4 areas - 10000 gens 250 204.4810 205.2900 204.872080 .0116010 .1834286 .034
3 areas - 20000 gens 250 204.4080 205.0910 204.699260 .0080072 .1266048 .016

4 areas - 20000 gens 250 204.4410 205.2910 204.809516 .0116893 .1848233 .034

153

Table 22: Comparing different generation size for 3 areas approach

Algorithm: 3 areas N Minimum Maximum Mean
Std.

Deviation
Std. Error

Mean

[1]: 5000 generations 250 204.4970 205.4400 204.836448 .1397920 .0088412

[2]: 10000 generations 250 204.4050 205.1860 204.744880 .1409532 .0089147

[3]: 20000 generations 250 204.4080 205.0910 204.699260 .1266048 .0080072

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] 7.293 498 .000 .0915680 .0125554

[1] & [3] 11.501 498 .000 .1371880 .0119282

[2] & [3] 3.807 498 .000 .0456200 .0119827

Comparing the two approaches together in terms of cognitive and motor function load,

it is obvious that the gains are very small with a percentage decrease of 0.067% for the

three areas and 0.092% for the four areas method.

Table 23: Comparing different generation size for 4 areas approach

Algorithm: 4 areas N Minimum Maximum Mean
Std.

Deviation
Std. Error

Mean

[1]: 5000 generations 250 204.5620 205.5520 204.998340 .2014672 .0127419

[2]: 10000 generations 250 204.4810 205.2900 204.872080 .1834286 .0116010

[3]: 20000 generations 250 204.4410 205.2910 204.809516 .1848233 .0116893

T-Test

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference

[1] & [2] 7.327 498 .000 .1262600 .0172320

[1] & [3] 10.920 498 .000 .1888240 .0172915

[2] & [3] 3.799 498 .000 .0625640 .0164688

In terms of layout quality, Appendix11 and Appendix L display the top best 5% of

evolved designs. Table 24 and Table 25 tabulate the most prominent similar key

arrangements for both experiments, providing a similarity index for each approach. The

overall similarity index formula is shown below:

∑

(6.1)

Where S is the similarity index (percentage) for a series of layouts, n is the number of

layouts under scrutiny and is the number of re-occurrence as a percentage of a certain

amount of key or key arrangements that appears in all the layouts.

The index for the three areas approach is 65.71% and 80.86% for the four areas

method. This tells that using the latter design method provides more consistent layout

arrangements over a number of runs as it would by using the former design approach.

Hence even though the scoring in terms of usability is lower when using this method, the

154

compensation is the provision of better, cohesive and similar designs over a number of

TOISE runs.

The same experiment was carried out (250 runs) with only 5000 generations using

both approaches. Figure 92 displays the top best layout found in those runs for the three

areas design. What is noticeable is the user interaction compared to the original design.

Perusing the top 5% design layout in Appendix P a certain amount of similarity between

the solutions is perceived. For instance the [STO, RCL, M+] function key location are

similar in 83% of these top scorers. Table 24 provides a listing with the most visible

component placement similarities amongst the optimised designs. This method scored

66.20% and is the lowest of all the methods.

Figure 92: Top optimised (< 2* STDEV) layout
using (3 areas) 5000 generations

Many key arrangements can be seen with 5000 generations used alongside the three

areas design and some consistency in the design exists.

Using a four areas approach with only 5000 generations exhibits the same type of

behaviour as the three areas design method See Figure 93. For instance the [DEL, STO,

M+] and [RCL, AC] arrangement occurs in all the optimised layouts. The [SIN] function is

similar. The top 5% best optimised designs are displayed in Appendix N.

155

Figure 93: Top optimised (< 2* STDEV) layout
using (4 areas) 5000 generations

A look at Table 25 shows that the score for this design approach with 5000 generations

is 78.25% which is much higher than the three areas design approach indicating a higher

level of cohesion and consistency in terms of solutions throughout the design solutions.

The amount of generations for the genetic algorithm was increased to 20000

generations for both design methods. Figure 94 shows the best layout found over 250

runs for the three areas approach.

Figure 94 Top optimised (< 2* STDEV) using three areas
with 20000 GA generation size

Perusing at Appendix M and Figure 94 top 5% layout arrangements, one can see that

many layouts are consistent in terms of layout placement. For instance the [MODE, OFF,

X2] component arrangement is seen over 61%, the [COS] and [%] functions keys are

156

placed similarly in 69% of the cases. In Table 24 which provides more examples has a

similarity index for the main similar key arrangements of 60.56% for this experiment.

Figure 95: Top optimised (< 2* STDEV) layout
using (4 areas) 20000 generations

Table 24: Similarity of component placement (3 areas)

Type Function key Percentage similarity between designs Similarity

3 areas 5000 gens MODE,RCL,X2 67%

66.20%

 STO,RCL,M+ 83%

 (X-1) 75%

 nCr 42%

 COS 75%

 SIN 95%

 n 50%

 % 75%

 DEL,ANS,AC 50%

 - 50%

3 areas 10000 gens X2 60%

65.71%

 Mode 70%

 (x-1) 90%

 SIN 100%

 COS 80%

 LOG 50%

 Ln 70%

 STO,M+,RCL 50%

 STO,RCL,M+ 50%

 DEL,ANS,AC 50%

 % 60%

 = 70%

 - 60%

Type Function key Percentage similarity between designs Similarity

 OFF 60%

3 areas 20000 gens MODE,OFF,X2 61%

60.56%

 STO,M+,RCL 54%

 STO,RCL,M+ 46%

 COS 69%

 SIN 77%

 LOG 62%

 % 69%

 DEL,ANS,AC 69%

 X 38%

157

The same experiment using the four areas approach was carried over 250 runs and the

top solution is displayed in Figure 95. The best top 5% are displayed in Appendix O.

Perusing these layouts, one can recognise a lot of cohesion and similarity amongst the

range of optimised designs. Table 25 has a similarity score of 81.73%, showing that key

arrangements such as [SHIFT, MODE, OFF], [DEL, STO, M], [RCL, AC] and many others

occur over 100% of the cases. This is the top scorer over the entire set of experiments with

regards to similarity of layout evolution over 250 runs.

Table 25: Similarity of component placement (4 areas)

Type Function key Percentage similarity between designs Similarity

4 areas 5000 gens SHIFT,MODE,OFF 80%

78.25%

 SQRT 58%

 (X-1) 92%

 n 67%

 SIN 100%

 COS 58%

 DEL,STO,M+ 100%

 RCL,AC 100%

 ANS 67%

 = 58%

 - 67%

 X 92%

4 areas 10000 gens (X-1) 100%

80.86%

 SQRT 83%

 X2 67%

 I 83%

 COS 92%

 LOG 83%

 LN 75%

 NCr 83%

 SIN 92%

 N 58%

 DEL,STO,M+,RCL,AC 100%

 X 100%

 ANS 58%

 % 58%

4 areas 20000 gens SHIT,MODE,OFF 100%

81.73%

 DEL,STO,M+ 100%

 RCL,AC 100%

 SQRT 75%

 (X-1) 100%

 N 83%

 SIN 100%

 COS 92%

 X 92%

 TAN 67%

 LOG 50%

 = 67%

 % 67%

 X 83%

 - 50%

6.1.5.2 Discussion

The results discussed above are very encouraging. TOISE managed to find layout

arrangements that minimise the cognitive and motor functions load for all of its solutions

that were found during all the experiments conducted i.e. all the ACT-R timing were much

below the original latency of 207.718 seconds.

158

The experiments conducted and discussed in this chapter are complex as the genetic

algorithm had to deal with a very restricted space where to position the components, with

static components that provide barriers to the free movements. Thus a learning process

took place which helped to find good locations that do not resulted in penalties taking into

account the ACT-R pressure into account first, which was then followed by another

learning phase that focused mainly on the ACT-R pressure to fine-tune the layout and

optimise the interface layout evolving an interface that was better fitted for human

interaction.

In these experiments, some issues arose. First, varying some of the genetic algorithm

parameters can lead to improvements and drive the GA to evolve better solutions.

However the cost for these small gains in performance comes with a great increase of

extra computations and run time taken to evolve those new optimised layouts. For

instance a gain of 0.062% (from 204.99834 down to 204.87208) when doubling the

number of generations of the system from 5000 to 1000 generations, may not be

considered as valuable (even though 120.626 milliseconds is significant), compared to a

gain 1.327% (from 207.718 down to 204.99834 i.e. 2.71966 seconds) when optimising the

original layout using only 5000 generations, which is in terms of human cognition a very

significant value. However this lack of noticeable gain is compensated as when the number

of constraints such as areas is integrated into the interface design, and this is combined

with an increase of generations i.e. runs lasting longer, the design layouts are more

consistent, cohesive and despite the fact that may not be the best solution with regards to

ACT-R latencies and human interaction, they provide still a major gain in usability

compared to the original design.

TOISE dealt with this increase of complexity and generated consistent and cohesive

layouts, and highlighted many areas that can be beneficial in terms of design i.e. providing

ideas about the most likely locations for interface components etc. It is believed that TOISE

can provide assistance to any interface designers with regards to usability performance.

In terms of comparison with a local search algorithm, the main advantage is the speed

at which the GA finds the best solutions as the LS approach does seem to be able to find

good solutions provided very long run times. As suggested in all experiments, the

difference in computation times between the GA and LS approaches is in the order of

hours for the GA and days for the LS method.

159

Chapter 7. Conclusion

7.1 Development and issues

The ACT-R cognitive architecture is a mature computer-based simulation framework

that embodies theories of human cognition, human perception and motor functions. It

provides a formidable base for modelling simulated users and has been used to develop

simulated users in many projects. However, developing models for ACT-R is non-trivial

task, which demands expertise not only about the ACT-R framework itself but also about

the embedded theories of human cognition, human vision and motor functions, in addition

to a knowledge of the LISP programming language to extend and embed those models

with functionality. It is needless to mention that developing cognitive models is time

consuming, demanding expertise that often remains in the realm of specialists and is often

an expensive process and to be honest most probably far too complicated for most

software designers, UI designers or cognitive scientists.

The main usability assessment as an interactive process in software development is

often undermined because of cost both in terms of expenditure and time. Its reliance of

potential users and the organisational logistics makes this process difficult to undertake as

an iterative process. The response to this state of affair by the HCI community was the

development of specialised tools. We have discussed in this thesis a system called

CogTool, which has the potential to render usability testing more approachable to user

interface designers that are not usability specialists, and has had an impact in many

software developments by simulating users using ACT-R models. However this type of

software is only assessing already developed user interfaces and does not present ideas of

optimised interface layout.

The concept behind the system presented in this thesis called TOISE attempts to bridge

this gap by using simulated users, based on ACT-R models within an evolutionary

framework to proposed optimised user interfaces based on the original design idea.

In this respect, TOISE succeeded in its primary proposal as TOISE not only provides a

way to exercise user interaction on a user interface using a fully functional software using

its ROBOT module but it proposes evolved optimised interface layouts.

However, this research has stretched the limits of feasibility when interfacing the ACT-

R framework with external processes both in terms of functionality and speed of execution

and trade-offs were necessary to complete the software prototype to include the genetic

160

algorithm with its visual interface to run at a sensible speed that allow it to be used as a

toolkit.

There is much in the literature about the use of surrogate fitness evaluations when

dealing with evolutionary algorithms. It becomes often an option when the fitness

assessment of the individuals in a population is highly time-consuming, computationally

resource intensive or complex. In those instances surrogate fitness approximation is often

the only practical direction available. This domain is the domain of surrogate-assisted

evolutionary computation. (Zhou et al. 2007; Jin 2011)

Bearing this in mind, it is worth noting that the first version of TOISE was created to

interact directly with the underlying ACT-R framework, where a set of small composite

primitive actions for a user interaction were modelled and ran to provide the overall ACT-

R latency. As explained in earlier sections, the nature of the Lisp environment does not

lend itself to easy interfacing. Furthermore, the fitness assessments necessary for each of

the population individuals of the optimising algorithm were time-consuming,

computationally intensive and complex, leading to extremely long run times. Moreover

due to the intensity of resource demands and some spurious memory leaks (as discussed

in Section 5.11), the addition of further functionality became questionable with this

version, a state that was not factorised at the beginning of the project. This provided the

pretext and the drive for the creation of the next version of TOISE with the removal of the

ACT-R architecture which led to the porting and re-coding of the relevant ACT-R

functionality into C++ native code. As mentioned in section 5.12 which refers also to the

source code listings in Appendix J, the porting of ACT-R functionality into native code was

only made possible because of the atomic nature of the actions that are modelled; a

granularity that made this task possible and allowed for the development of extra

functionality such as more powerful mutation operators all of which leading to a

noticeable performance boost of the TOISE system.

Another factor that hampered the completion of the project and introduced some

limitations of functionality was the modelling of interaction and user interaction recording

into virtual models within the main software. Porting an entire Java API dealing with java

interface to a few C++ classes within the project proved challenging and not as

straightforward as originally thought, and led to some limitations in terms of interfaces

that can be properly optimised. For instance some of the Layout Managers (i.e. Grid Bag

Layout) are not consistent with TOISE as their intricate ways of placing the components in

the interface was too intricate to interpret given the time frame of the TOISE development.

161

In terms of usability, one of the main focuses that were perceived from the start of the

TOISE design was the removal of all technical settings with regards to the genetic

algorithm so to address one of the major concerns of adoption of the toolkit by software

designers. In this respect, many attempts have been made to alleviate the amount of

required actions (i.e. automatic mutation and crossover rates etc.) and thus TOISE

succeeded in this respect, but there is still a small amount of general parameters, most of

them often left at their default values, that affect the TOISE system performance when

dealing with intricate interfaces or complex interaction i.e. penalties pressure, population

size and residual diversity. However as seen in the previous chapter, some of those

settings are fine-tuning parameters that can be left at their default values for non-technical

minded users.

A point that has to be noted was the difficulties of creating mutation operators that

suited this type of project this thesis presents i.e. unsystematic heuristics. Finding ways to

move components on an interface that helps the GA evolving solutions and not impeding it

was in itself a challenging task.

Finally, there is another aspect that should be mentioned in this discussion. The scope

of this research was mainly focussing on creating and using surrogate users to assess the

quality and usability of user interfaces given some human recorded interaction. However

in terms of design there are other heuristic algorithms that when applied to user

interfaces can help improve usability, namely the concerns of aesthetic and graphical

design, which is often omitted by HCI researchers. Lack of aesthetic can lead to as much

user frustration as does poorly designed interfaces in terms of cognitive load for instance.

Ling for instance (Ling et al. 2000), proposes a set of measures that deals with user

perception and appreciation of UI focusing on balance (weighting of the interface

components on either sides of the horizontal and vertical axis), equilibrium (configuration

of the interface objects to implement a centre of forces which should coincide with the

centre of the interface, often used for many art work visual composition), symmetry

(balanced distribution of equivalent interface objects about a common vertical and

horizontal line, as symmetry creates balanced states), sequence (arrangements of

interface components that facilitate human eye movements by minimizing visual scanning

in configuring the interface layout so that users can move thought the layout from top-left

to bottom-right of the layout by attending the least number of visual targets, leading

therefore to faster performance) and complexity (measure of layout order and complexity

based on Birkhoff 1923) (Ling et al. 2000; Balinsky 2006). These measures could

therefore in theory be used by TOISE as extra objectives during the assessment of layout

162

fitness by the optimiser to increase TOISE capability not only to deliver designs that are

usable in terms of human cognition and motor functions but also usable in terms of

proportions and aesthetic, the latter so important in today’s new technologies.

A study carried out by Abubakar (Abubakar 2010), focussed on providing a CogTool

and user evaluation on the findings published by Golovine & et al. 2010 regarding

optimisation of the ubiquitous Bell’s keypad phone layout. This research provided

qualitative and quantitative measures of evaluation comparing completion tasks using the

original Bell’s keypad alongside two optimised layout obtained by TOISE, using both

CogTool and a limited amount of real users (ten participants) which used a specialised

solution tester that recorded completion tasks to assess completion times across the three

different layouts. In addition a questionnaire was created to provide more insight with

regards to some of the reasons that led to some of the finding obtained during the course

of this study. On one hand, the findings showed that the TOISE layouts performed better

than the Bell’s layout when tasks were modelled in CogTool. On the other hand, the user

evaluation came to a different conclusion whereby a significant amount of users preferred

the ubiquitous Bell’s layout rather than the TOISE optimised interfaces. Despite the fact

that the user performance results showed a significant variance between participants; a

point referred to in the literature on many occasions (Ritter et al. 2002), these findings

were expected, a fact reinforced by the qualitative survey where 37% of the participants

mentioned their familiarity with this keypad and the years of practice as the main factor

for their high performance with the original layout. On a positive note, these findings also

suggested that with practice, the completion timing for all three layouts decreased which

yet again agrees with the opinion that CogTool (and therefore TOISE’s predictions)

simulates expert users rather than novices.

Given the results provided by this study, a major improvement would be TOISE to

simulate novice users. One possible way to provide this functionality would be to have the

models actively searching the interface for the numbers used rather than suggesting the

right location for the objects as it is currently done. This points us to the work carried by

Halbr gge (Halbr gge et al. 2007) on ACT-CV. However given the complexity of the ACT-R

models that would be needed in TOISE, this would imply porting much of the ACT-R

framework to native code, which in itself would be a major task in itself.

163

7.2 Contributions and achievements

TOISE offers possibilities in the field of user interface design not only to assess user

interface but to optimise their layout to enhance their usability using a Darwinian

approach to evolution in conjunction to simulated users; a approach named in this thesis

as EvoCog.

1. TOISE provides a user interaction recorder that can record user interaction on

fully functional Java Software.

2. TOISE provides user interaction and user interface models as XML models that can

be easily re-scripted to suit various flavours of development.

3. TOISE optimises a user interface both in terms of human cognitive and motor

functions load using an evolutionally approach that is fast and reliable, providing

coherent and consistent optimised user interface designs over a number of runs.

7.3 Future work

The discussion in this thesis demonstrates that the concept embedded in TOISE is

potentially a valuable contribution to the HCI community. However TOISE needs to be re-

designed from ground up and to be modularised to provide a useful tool.

Moreover, as stated in the last section, there are many settings that should be removed

and automated. The concept of pre-run should therefore be extended to more areas to

increase its usability. As it stands, a certain amount of knowledge is required in the field of

evolutionary algorithms to understand the effect and causes that affect its functionality.

Usability heuristics have long been used in design and aesthetics plays a significant role

in the overall value of an interface design. Ling and colleagues have proposed a set of

metrics to measure the balance, equilibrium, symmetry and sequence of screen and

interface design (Ling et al. 2000).

The TOISE approach is capable of taking into account those criteria when assessing

interface designs which would be a valuable addition to the system.

164

Appendices

APPENDIX A: A TYPICAL G2A TRANSLATION USING A GOMSL MODEL

Content of the drag-drop-action-2.goms model file

This model need to be processed using after ensuring that the current package is indeed G2A running:
(in-package G2A)

Then running:
(input-model (pathname "G2A:data;jcg-drag-model.goms"))

Once the model is created in the running ACT-R, it must be saved to file:
(output-model *current-model* (pathname "G2A:data; GOMS-ACTR-model.lisp"))

;;;**
;;; Preamble
(CLEAR-ALL) (PM-RESET) (PM-START-HAND-AT-MOUSE)
;;;**
;;; Chunk types
(CHUNK-TYPE VISUAL-ITEM %ID %SCREEN-XY %SCREEN-X %SCREEN-Y CONTENT)
(CHUNK-TYPE AUDITORY-ENCODING %ID)
(CHUNK-TYPE LTM-ITEM %ID)
(CHUNK-TYPE TASK-ITEM %ID)
;;;**
;;; Chunks
(ADD-DM
 (VISUAL-SW1-OBJECT ISA VISUAL-LOCATION KIND "object1" SCREEN-X 809 SCREEN-Y 144)
 (SW1-OBJECT ISA VISUAL-ITEM %ID VISUAL-ITEM1 %SCREEN-XY EMPTY %SCREEN-X EMPTY %SCREEN-Y EMPTY CONTENT "object1")
 (VISUAL-SW2-OBJECT ISA VISUAL-LOCATION KIND "object2" SCREEN-X 354 SCREEN-Y 163)
 (SW2-OBJECT ISA VISUAL-ITEM %ID VISUAL-ITEM2 %SCREEN-XY EMPTY %SCREEN-X EMPTY %SCREEN-Y EMPTY CONTENT "object2"))
;;;**
;;; Goal type
(CHUNK-TYPE GOAL %STATE %LAST-LOCATION %NEXT-LOCATION %RETURN %PREVIOUS-RETURN %R0 %R1 %R2 %R3 %R4 [TARGET])
(CHUNK-TYPE RECORD %RETURN %PREVIOUS-RETURN [TARGET])
;;;**
;;; Top-level goal
(ADD-DM
 (GOAL ISA GOAL %STATE DRAGDROP1-ACTION-0 [TARGET] EMPTY %LAST-LOCATION
 EMPTY %NEXT-LOCATION EMPTY %RETURN EMPTY %PREVIOUS-RETURN EMPTY %R0
 EMPTY %R1 EMPTY %R2 EMPTY %R3 EMPTY %R4 EMPTY))
;;;**
;;; DRAGDROP1-ACTION
(P FIXED-Think-of-How-to-do-it-best-32
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-0
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-1
 !OUTPUT! (FIXED-THINK-OF-HOW-TO-DO-IT-BEST-32)
 !OUTPUT! (IN 'DRAGDROP1-ACTION)
 !EVAL! (START-TIMING 'DRAGDROP1-ACTION
 (- (PM-TIME)
 (PRODUCTION-DURATION '|FIXED-Think-of-How-to-do-it-best-32|)))
)
(P T38
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-3
 =VISUAL>
 ISA TEXT
 - VALUE "object1"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-1
 !OUTPUT! ("Escape: object1 not found")
)
(P FIND-34
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-1
 =VISUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-2
 +VISUAL-LOCATION>
 ISA VISUAL-LOCATION

165

)
(P ATTEND-35
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-2
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-3
 +VISUAL>
 ISA VISUAL-OBJECT
 SCREEN-POS =VISUAL-LOCATION
)
(P ENCODE-36
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-3
 =VISUAL>
 ISA TEXT
 VALUE =TEXT
 VALUE "object1"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>
 [TARGET] =VISUAL-LOCATION
 %STATE DRAGDROP1-ACTION-4
 !OUTPUT! ("Look-for-object-whose ((IS CONTENT Object1))")
)
(P POINT-TO-39
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-4
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-5
 +MANUAL>
 ISA HAND-TO-MOUSE
 !OUTPUT! ("Home-to")
)
(P T40
 =GOAL>
 ISA GOAL
 [TARGET] =TARGET41
 %STATE DRAGDROP1-ACTION-5
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %LAST-LOCATION =TARGET41
 %STATE DRAGDROP1-ACTION-6
 +MANUAL>
 ISA MOVE-CURSOR
 LOC =TARGET41
 !OUTPUT! ("Point-to ~A" =TARGET41)
)
(P HOLD-DOWN-42
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-6
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-7
 +MANUAL>
 ISA HAND-TO-MOUSE
 !OUTPUT! ("Home-to")
)
(P T43
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-7
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-8
 +MANUAL>
 ISA PRESS-MOUSE
)
(P T49
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-10
 =VISUAL>
 ISA TEXT
 - VALUE "object2"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>

166

 %STATE DRAGDROP1-ACTION-8
 !OUTPUT! ("Escape: object2 not found")
)
(P FIND-45
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-8
 =VISUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-9
 +VISUAL-LOCATION>
 ISA VISUAL-LOCATION
)
(P ATTEND-46
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-9
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-10
 +VISUAL>
 ISA VISUAL-OBJECT
 SCREEN-POS =VISUAL-LOCATION
)
(P ENCODE-47
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-10
 =VISUAL>
 ISA TEXT
 VALUE =TEXT
 VALUE "object2"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
==>
 =GOAL>
 [TARGET] =VISUAL-LOCATION
 %STATE DRAGDROP1-ACTION-11
 !OUTPUT! ("Look-for-object-whose ((IS CONTENT Object2))")
)
(P POINT-TO-50
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-11
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-12
 +MANUAL>
 ISA HAND-TO-MOUSE
 !OUTPUT! ("Home-to")
)
(P T51
 =GOAL>
 ISA GOAL
 [TARGET] =TARGET52
 %STATE DRAGDROP1-ACTION-12
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %LAST-LOCATION =TARGET52
 %STATE DRAGDROP1-ACTION-13
 +MANUAL>
 ISA MOVE-CURSOR
 LOC =TARGET52
 !OUTPUT! ("Point-to ~A" =TARGET52)
)
(P RELEASE-53
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-13
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-14
 +MANUAL>
 ISA HAND-TO-MOUSE
 !OUTPUT! ("Home-to")
)
(P T54
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-14
 =MANUAL-STATE>
 ISA MODULE-STATE
 MODALITY FREE
==>
 =GOAL>

167

 %STATE DRAGDROP1-ACTION-15
 +MANUAL>
 ISA RELEASE-MOUSE
)
(P RGA-56
 =GOAL>
 ISA GOAL
 %RETURN =RETURN
 %STATE DRAGDROP1-ACTION-15
==>
 =GOAL>
 %STATE DRAGDROP1-ACTION-16
 +RETRIEVAL>
 ISA RECORD
 %RETURN =RETURN
 !OUTPUT! ("RGA retrieval")
)
(P RGA-57
 =GOAL>
 ISA GOAL
 %STATE DRAGDROP1-ACTION-16
 =RETRIEVAL>
 ISA RECORD
 %RETURN =RETURN
 %PREVIOUS-RETURN =PREVIOUS-RETURN
==>
 =GOAL>
 %STATE =RETURN
 %RETURN =PREVIOUS-RETURN
 =RETRIEVAL>
 %RETURN #:G13373
 !OUTPUT! ("RGA")
 !EVAL! (END-TIMING 'DRAGDROP1-ACTION (PM-TIME))
)
;;;**
;;; Parameter settings
(SPP T43 :EFFORT 0.1) (SPP FIXED-THINK-OF-HOW-TO-DO-IT-BEST-32 :EFFORT 1.2)
;;;**
;;; Goal focus
(GOAL-FOCUS GOAL)
;;;And finally run:
(run-model (pathname "G2A:data; GOMS-ACTR-model.lisp ") 200)
Time 0.000: Vision found LOC63
 Time 0.000: Fixed-Think-Of-How-To-Do-It-Best-5 Selected
 FIXED-THINK-OF-HOW-TO-DO-IT-BEST-5
 IN DRAGDROP1-ACTION
 Time 1.200: Fixed-Think-Of-How-To-Do-It-Best-5 Fired
 Time 1.200: Find-7 Selected
 Time 1.250: Find-7 Fired
 Time 1.250: Module :VISION running command FIND-LOCATION
 Time 1.250: Vision found LOC63
 Time 1.250: Attend-8 Selected
 Time 1.300: Attend-8 Fired
 Time 1.300: Module :VISION running command MOVE-ATTENTION
 Time 1.385: Module :VISION running command ENCODING-COMPLETE
 Time 1.385: Vision sees TEXT62
 Time 1.385: T11 Selected
 Escape: object1 not found
 Time 1.435: T11 Fired
 Time 1.435: Find-7 Selected
 Time 1.485: Find-7 Fired
 Time 1.485: Module :VISION running command FIND-LOCATION
 Time 1.485: Vision found LOC63
 Time 1.485: Attend-8 Selected
 Time 1.535: Attend-8 Fired
 Time 1.535: Module :VISION running command MOVE-ATTENTION
 Time 1.620: Module :VISION running command ENCODING-COMPLETE
 Time 1.620: Vision sees TEXT62
 Time 1.620: T11 Selected
 Escape: object1 not found
 Time 1.670: T11 Fired
 Time 1.670: Find-7 Selected
 Time 1.720: Find-7 Fired
 Time 1.720: Module :VISION running command FIND-LOCATION
 Time 1.720: Vision found LOC66
 Time 1.720: Attend-8 Selected
 Time 1.770: Attend-8 Fired
 Time 1.770: Module :VISION running command MOVE-ATTENTION
 Time 1.855: Module :VISION running command ENCODING-COMPLETE
 Time 1.855: Vision sees TEXT61
 Time 1.855: Encode-9 Selected
 Look-for-object-whose ((IS CONTENT Object1))
 Time 1.905: Encode-9 Fired
 Time 1.905: Point-To-12 Selected
 Home-to
 Time 1.955: Point-To-12 Fired
 Time 1.955: Module :MOTOR running command HAND-TO-MOUSE
 Time 1.955: T13 Selected
 Point-to Loc66
 Time 2.005: T13 Fired
 Time 2.005: Module :MOTOR running command MOVE-CURSOR
 Time 2.205: Module :MOTOR running command PREPARATION-COMPLETE
 Time 2.255: Module :MOTOR running command INITIATION-COMPLETE
 Time 2.645: Device running command MOVE-CURSOR-ABSOLUTE
 Time 2.695: Module :MOTOR running command FINISH-MOVEMENT
 Time 2.695: Hold-Down-15 Selected
 Home-to
 Time 2.745: Hold-Down-15 Fired
 Time 2.745: Module :MOTOR running command HAND-TO-MOUSE

168

 Time 2.745: T16 Selected
 Time 2.845: T16 Fired
 Time 2.845: Module :MOTOR running command PRESS-MOUSE
 Time 2.845: Find-18 Selected
 Time 2.895: Find-18 Fired
 Time 2.895: Module :VISION running command FIND-LOCATION
 Time 2.895: Vision found LOC63
 Time 2.895: Attend-19 Selected
 Time 2.945: Attend-19 Fired
 Time 2.945: Module :VISION running command MOVE-ATTENTION
 Time 2.995: Module :MOTOR running command PREPARATION-COMPLETE
 Time 3.030: Module :VISION running command ENCODING-COMPLETE
 Time 3.030: Vision sees TEXT62
 Time 3.030: Encode-20 Selected
 Time 3.045: Module :MOTOR running command INITIATION-COMPLETE
 Time 3.055: Device running command OUTPUT-MOUSE-PRESS

<< Window "GOMS Window" got MOUSE PRESS at time 3055 >>
 Look-for-object-whose ((IS CONTENT Object2))
 Time 3.080: Encode-20 Fired
 Time 3.095: Module :MOTOR running command FINISH-MOVEMENT
 Time 3.095: Point-To-23 Selected
 Home-to
 Time 3.145: Point-To-23 Fired
 Time 3.145: Module :MOTOR running command HAND-TO-MOUSE
 Time 3.145: T24 Selected
 Point-to Loc63
 Time 3.195: T24 Fired
 Time 3.195: Module :MOTOR running command MOVE-CURSOR
 Time 3.395: Module :MOTOR running command PREPARATION-COMPLETE
 Time 3.445: Module :MOTOR running command INITIATION-COMPLETE
 Time 3.767: Device running command MOVE-CURSOR-ABSOLUTE
 Time 3.817: Module :MOTOR running command FINISH-MOVEMENT
 Time 3.817: Release-26 Selected
 Home-to
 Time 3.867: Release-26 Fired
 Time 3.867: Module :MOTOR running command HAND-TO-MOUSE
 Time 3.867: T27 Selected
 Time 3.917: T27 Fired
 Time 3.917: Module :MOTOR running command RELEASE-MOUSE
 Time 3.917: Rga-29 Selected
 RGA retrieval
 Time 3.967: Rga-29 Fired
 Time 3.967: Failure Retrieved
 Time 4.067: Module :MOTOR running command PREPARATION-COMPLETE
 Time 4.117: Module :MOTOR running command INITIATION-COMPLETE
 Time 4.127: Device running command OUTPUT-MOUSE-RELEASE

<< Window "GOMS Window" got MOUSE RELEASE at time 4127 >>
 Time 4.167: Module :MOTOR running command FINISH-MOVEMENT
 Time 4.167: Checking for silent events.
 Time 4.167: * Nothing to run: No productions, no events.
4.167
4.167
[1] G2A(13):

169

APPENDIX B: SAMPLE RUN OF G2A GENERATED MODEL USING TOISE1
……..
drag-drop-Action-with-moveto - 416 - 181 - 224 - 25 | 343 - 186 - 224 - 25 | 0
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 BUFFER Buffer GOAL copied chunk GOAL to GOAL-0
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0 REQUESTED NIL
 0.000 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-0
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-TASK
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-TASK
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-C
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-C
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 VISION Find-location
 0.100 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0
 0.100 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-1
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-C
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.100 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.150 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-C
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.150 VISION Move-attention VISUAL-SW3-OBJECT-0-1 NIL
 0.150 VISION Find-location
 0.150 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0
 0.150 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-2
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.300 VISION Preparation-complete TRGT0
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.398 VISION Complete-eye-movement TRGT0 #(174 201)
 0.398 PROCEDURAL CONFLICT-RESOLUTION
 0.498 VISION Preparation-complete TRGT0
 0.498 PROCEDURAL CONFLICT-RESOLUTION
 0.572 VISION Complete-eye-movement TRGT0 #(135 212)
 0.572 PROCEDURAL CONFLICT-RESOLUTION
 0.602 VISION Encoding-Complete VISUAL-SW3-OBJECT-0-1
 0.602 VISION SET-BUFFER-CHUNK VISUAL SW3-OBJECT
 0.602 BUFFER Buffer VISUAL copied chunk SW3-OBJECT to SW3-OBJECT-0
 0.602 PROCEDURAL CONFLICT-RESOLUTION
 0.602 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-C
 0.602 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.602 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.602 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.652 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-C
 0.652 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.652 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.652 PROCEDURAL CLEAR-BUFFER VISUAL
 0.652 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.652 VISION Find-location
 0.652 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.652 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0
 0.652 PROCEDURAL CONFLICT-RESOLUTION
 0.652 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-C
 0.652 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.652 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.672 VISION Preparation-complete TRGT0
 0.702 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-C
 0.702 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.702 PROCEDURAL MODULE-REQUEST MANUAL
 0.702 PROCEDURAL CLEAR-BUFFER MANUAL
 0.702 MOTOR HAND-TO-MOUSE
 0.702 PROCEDURAL CONFLICT-RESOLUTION
 0.742 VISION Complete-eye-movement TRGT0 #(135 210)
 0.742 PROCEDURAL CONFLICT-RESOLUTION
 0.742 PROCEDURAL PRODUCTION-SELECTED PRE-FIND-OBJECT-A
 0.742 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.742 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.792 PROCEDURAL PRODUCTION-FIRED PRE-FIND-OBJECT-A
 0.792 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.792 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.792 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.792 VISION Find-location
 0.792 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.792 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1
 0.792 PROCEDURAL CONFLICT-RESOLUTION
 0.792 PROCEDURAL PRODUCTION-SELECTED PRE-ATTEND-OBJECT-A
 0.792 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.792 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.842 PROCEDURAL PRODUCTION-FIRED PRE-ATTEND-OBJECT-A
 0.842 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.842 PROCEDURAL MODULE-REQUEST VISUAL
 0.842 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.842 PROCEDURAL CLEAR-BUFFER VISUAL
 0.842 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.842 VISION Move-attention VISUAL-SW1-OBJECT-0-1 NIL

170

 0.842 VISION Find-location
 0.842 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.842 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2
 0.842 PROCEDURAL CONFLICT-RESOLUTION
 0.942 VISION Preparation-complete TRGT1
 0.942 PROCEDURAL CONFLICT-RESOLUTION
 1.041 VISION Complete-eye-movement TRGT1 #(413 197)
 1.041 PROCEDURAL CONFLICT-RESOLUTION
 1.141 VISION Preparation-complete TRGT1
 1.141 PROCEDURAL CONFLICT-RESOLUTION
 1.162 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-1
 1.162 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 1.162 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0
 1.162 PROCEDURAL CONFLICT-RESOLUTION
 1.162 PROCEDURAL PRODUCTION-SELECTED PRE-ENCODE-OBJECT-A
 1.162 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.162 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.162 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.212 PROCEDURAL PRODUCTION-FIRED PRE-ENCODE-OBJECT-A
 1.212 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.212 PROCEDURAL CLEAR-BUFFER VISUAL
 1.212 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.212 PROCEDURAL CONFLICT-RESOLUTION
 1.212 PROCEDURAL PRODUCTION-SELECTED PRE-HAND-TO-MOUSE-FOR-A
 1.212 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.212 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.213 VISION Complete-eye-movement TRGT1 #(413 179)
 1.262 PROCEDURAL PRODUCTION-FIRED PRE-HAND-TO-MOUSE-FOR-A
 1.262 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.262 PROCEDURAL MODULE-REQUEST MANUAL
 1.262 PROCEDURAL CLEAR-BUFFER MANUAL
 1.262 MOTOR HAND-TO-MOUSE
 1.262 PROCEDURAL CONFLICT-RESOLUTION
 1.262 PROCEDURAL PRODUCTION-SELECTED PRE-MOVE-MOUSE-TO-A
 1.262 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.262 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.312 PROCEDURAL PRODUCTION-FIRED PRE-MOVE-MOUSE-TO-A
 1.312 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.312 PROCEDURAL MODULE-REQUEST MANUAL
 1.312 PROCEDURAL CLEAR-BUFFER MANUAL
 1.312 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-2
 1.312 PROCEDURAL CONFLICT-RESOLUTION
 1.312 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-A
 1.312 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.312 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.362 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-A
 1.362 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.362 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.362 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.362 VISION Find-location
 1.362 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.362 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3
 1.362 PROCEDURAL CONFLICT-RESOLUTION
 1.362 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-A
 1.362 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.362 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.362 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.412 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-A
 1.412 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.412 PROCEDURAL MODULE-REQUEST VISUAL
 1.412 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.412 PROCEDURAL CLEAR-BUFFER VISUAL
 1.412 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.412 VISION Move-attention VISUAL-SW1-OBJECT-0-3 NIL
 1.412 VISION Find-location
 1.412 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.412 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-4
 1.412 PROCEDURAL CONFLICT-RESOLUTION
 1.462 VISION Preparation-complete TRGT2
 1.462 PROCEDURAL CONFLICT-RESOLUTION
 1.469 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-3
 1.469 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 1.469 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-1
 1.469 PROCEDURAL CONFLICT-RESOLUTION
 1.469 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-A
 1.469 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.469 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.469 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.512 MOTOR PREPARATION-COMPLETE
 1.519 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-A
 1.519 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.519 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.519 PROCEDURAL CLEAR-BUFFER VISUAL
 1.519 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.519 VISION Find-location
 1.519 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.519 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0
 1.519 PROCEDURAL CONFLICT-RESOLUTION
 1.532 VISION Complete-eye-movement TRGT2 #(416 181)
 1.532 PROCEDURAL CONFLICT-RESOLUTION
 1.562 MOTOR INITIATION-COMPLETE
 1.562 PROCEDURAL CONFLICT-RESOLUTION
 1.662 MOTOR MOVE-CURSOR-ABSOLUTE #(416 181)
 1.662 PROCEDURAL CONFLICT-RESOLUTION
 1.712 MOTOR FINISH-MOVEMENT
 1.712 PROCEDURAL CONFLICT-RESOLUTION
 1.712 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A
 1.712 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.712 PROCEDURAL QUERY-BUFFER-ACTION MANUAL

171

 1.762 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A
 1.762 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.762 PROCEDURAL MODULE-REQUEST MANUAL
 1.762 PROCEDURAL CLEAR-BUFFER MANUAL
 1.762 MOTOR HAND-TO-MOUSE
 1.762 PROCEDURAL CONFLICT-RESOLUTION
 1.762 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-A
 1.762 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.762 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.812 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-A
 1.812 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.812 PROCEDURAL MODULE-REQUEST MANUAL
 1.812 PROCEDURAL CLEAR-BUFFER MANUAL
 1.812 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-4
 1.812 PROCEDURAL CONFLICT-RESOLUTION
 1.812 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-A
 1.812 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.812 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.862 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-A
 1.862 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.862 PROCEDURAL MODULE-REQUEST MANUAL
 1.862 PROCEDURAL CLEAR-BUFFER MANUAL
 1.862 MOTOR CLICK-MOUSE
 1.862 PROCEDURAL CONFLICT-RESOLUTION
 1.862 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-B
 1.862 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.862 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.912 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-B
 1.912 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.912 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.912 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.912 VISION Find-location
 1.912 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.912 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1
 1.912 PROCEDURAL CONFLICT-RESOLUTION
 1.912 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-B
 1.912 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.912 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.962 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-B
 1.962 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.962 PROCEDURAL MODULE-REQUEST VISUAL
 1.962 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.962 PROCEDURAL CLEAR-BUFFER VISUAL
 1.962 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.962 VISION Move-attention VISUAL-SW2-OBJECT-0-1 NIL
 1.962 VISION Find-location
 1.962 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.962 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2
 1.962 PROCEDURAL CONFLICT-RESOLUTION
 2.012 MOTOR PREPARATION-COMPLETE
 2.012 PROCEDURAL CONFLICT-RESOLUTION
 2.062 VISION Preparation-complete TRGT3
 2.062 MOTOR INITIATION-COMPLETE
 2.062 PROCEDURAL CONFLICT-RESOLUTION
 2.072 MOTOR OUTPUT-KEY #(28 2)
 2.072 PROCEDURAL CONFLICT-RESOLUTION
 2.140 VISION Complete-eye-movement TRGT3 #(341 178)
 2.140 PROCEDURAL CONFLICT-RESOLUTION
 2.162 MOTOR FINISH-MOVEMENT
 2.162 PROCEDURAL CONFLICT-RESOLUTION
 2.214 VISION Encoding-Complete VISUAL-SW2-OBJECT-0-1
 2.214 VISION SET-BUFFER-CHUNK VISUAL SW2-OBJECT
 2.214 BUFFER Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0
 2.214 PROCEDURAL CONFLICT-RESOLUTION
 2.214 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-B
 2.214 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.214 PROCEDURAL BUFFER-READ-ACTION VISUAL
 2.214 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 2.240 VISION Preparation-complete TRGT3
 2.264 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-B
 2.264 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.264 PROCEDURAL CLEAR-BUFFER VISUAL
 2.264 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 2.264 PROCEDURAL CONFLICT-RESOLUTION
 2.264 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B
 2.264 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.264 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.311 VISION Complete-eye-movement TRGT3 #(342 188)
 2.314 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B
 2.314 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.314 PROCEDURAL MODULE-REQUEST MANUAL
 2.314 PROCEDURAL CLEAR-BUFFER MANUAL
 2.314 MOTOR HAND-TO-MOUSE
 2.314 PROCEDURAL CONFLICT-RESOLUTION
 2.314 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-B
 2.314 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.314 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.364 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-B
 2.364 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.364 PROCEDURAL MODULE-REQUEST MANUAL
 2.364 PROCEDURAL CLEAR-BUFFER MANUAL
 2.364 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-2
 2.364 PROCEDURAL CONFLICT-RESOLUTION
 2.564 MOTOR PREPARATION-COMPLETE
 2.564 PROCEDURAL CONFLICT-RESOLUTION
 2.614 MOTOR INITIATION-COMPLETE
 2.614 PROCEDURAL CONFLICT-RESOLUTION
 2.714 MOTOR MOVE-CURSOR-ABSOLUTE #(343 186)
 2.714 PROCEDURAL CONFLICT-RESOLUTION

172

 2.764 MOTOR FINISH-MOVEMENT
 2.764 PROCEDURAL CONFLICT-RESOLUTION
 2.764 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-B
 2.764 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.764 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.814 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-B
 2.814 PROCEDURAL MODULE-REQUEST MANUAL
 2.814 PROCEDURAL CLEAR-BUFFER GOAL
 2.814 PROCEDURAL CLEAR-BUFFER MANUAL
 2.814 MOTOR CLICK-MOUSE
 2.814 PROCEDURAL CONFLICT-RESOLUTION
 2.964 MOTOR PREPARATION-COMPLETE
 2.964 PROCEDURAL CONFLICT-RESOLUTION
 3.014 MOTOR INITIATION-COMPLETE
 3.014 PROCEDURAL CONFLICT-RESOLUTION
 3.024 MOTOR OUTPUT-KEY #(28 2)
 3.024 PROCEDURAL CONFLICT-RESOLUTION
 3.114 MOTOR FINISH-MOVEMENT
 3.114 PROCEDURAL CONFLICT-RESOLUTION
 3.114 ------ Stopped because no events left to process
Execution time for drag-drop-Action-with-moveto is 3.114

drag-drop-Action-with-moveto - 259 - 49 - 150 - 16 | 135 - 210 - 237 - 267 | 0
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 BUFFER Buffer GOAL copied chunk GOAL to GOAL-0
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0 REQUESTED NIL
 0.000 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-TASK
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-TASK
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-C
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-C
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 VISION Find-location
 0.100 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0
 0.100 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-0
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-C
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.100 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.150 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-C
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.150 VISION Move-attention VISUAL-SW3-OBJECT-0-0 NIL
 0.150 VISION Find-location
 0.150 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0
 0.150 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-1
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.300 VISION Preparation-complete TRGT0
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.409 VISION Complete-eye-movement TRGT0 #(210 323)
 0.409 PROCEDURAL CONFLICT-RESOLUTION
 0.459 VISION Preparation-complete TRGT0
 0.459 PROCEDURAL CONFLICT-RESOLUTION
 0.535 VISION Complete-eye-movement TRGT0 #(206 375)
 0.535 PROCEDURAL CONFLICT-RESOLUTION
 0.583 VISION Encoding-Complete VISUAL-SW3-OBJECT-0-0
 0.583 VISION SET-BUFFER-CHUNK VISUAL SW3-OBJECT
 0.583 BUFFER Buffer VISUAL copied chunk SW3-OBJECT to SW3-OBJECT-0
 0.583 PROCEDURAL CONFLICT-RESOLUTION
 0.583 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-C
 0.583 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.583 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.583 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.633 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-C
 0.633 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.633 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.633 PROCEDURAL CLEAR-BUFFER VISUAL
 0.633 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.633 VISION Find-location
 0.633 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.633 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1
 0.633 PROCEDURAL CONFLICT-RESOLUTION
 0.633 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-C
 0.633 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.633 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.635 VISION Preparation-complete TRGT0
 0.683 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-C
 0.683 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.683 PROCEDURAL MODULE-REQUEST MANUAL
 0.683 PROCEDURAL CLEAR-BUFFER MANUAL
 0.683 MOTOR HAND-TO-MOUSE
 0.683 PROCEDURAL CONFLICT-RESOLUTION
 0.705 VISION Complete-eye-movement TRGT0 #(203 378)
 0.705 PROCEDURAL CONFLICT-RESOLUTION
 0.705 PROCEDURAL PRODUCTION-SELECTED PRE-FIND-OBJECT-A
 0.705 PROCEDURAL BUFFER-READ-ACTION GOAL

173

 0.705 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.755 PROCEDURAL PRODUCTION-FIRED PRE-FIND-OBJECT-A
 0.755 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.755 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.755 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.755 VISION Find-location
 0.755 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.755 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0
 0.755 PROCEDURAL CONFLICT-RESOLUTION
 0.755 PROCEDURAL PRODUCTION-SELECTED PRE-ATTEND-OBJECT-A
 0.755 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.755 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.805 PROCEDURAL PRODUCTION-FIRED PRE-ATTEND-OBJECT-A
 0.805 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.805 PROCEDURAL MODULE-REQUEST VISUAL
 0.805 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.805 PROCEDURAL CLEAR-BUFFER VISUAL
 0.805 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.805 VISION Move-attention VISUAL-SW1-OBJECT-0-0 NIL
 0.805 VISION Find-location
 0.805 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.805 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1
 0.805 PROCEDURAL CONFLICT-RESOLUTION
 0.905 VISION Preparation-complete TRGT1
 0.905 PROCEDURAL CONFLICT-RESOLUTION
 0.998 VISION Complete-eye-movement TRGT1 #(259 163)
 0.998 PROCEDURAL CONFLICT-RESOLUTION
 1.048 VISION Preparation-complete TRGT1
 1.048 PROCEDURAL CONFLICT-RESOLUTION
 1.130 VISION Complete-eye-movement TRGT1 #(258 49)
 1.130 PROCEDURAL CONFLICT-RESOLUTION
 1.179 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-0
 1.179 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 1.179 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0
 1.179 PROCEDURAL CONFLICT-RESOLUTION
 1.179 PROCEDURAL PRODUCTION-SELECTED PRE-ENCODE-OBJECT-A
 1.179 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.179 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.179 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.229 PROCEDURAL PRODUCTION-FIRED PRE-ENCODE-OBJECT-A
 1.229 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.229 PROCEDURAL CLEAR-BUFFER VISUAL
 1.229 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.229 PROCEDURAL CONFLICT-RESOLUTION
 1.229 PROCEDURAL PRODUCTION-SELECTED PRE-HAND-TO-MOUSE-FOR-A
 1.229 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.229 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.230 VISION Preparation-complete TRGT1
 1.279 PROCEDURAL PRODUCTION-FIRED PRE-HAND-TO-MOUSE-FOR-A
 1.279 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.279 PROCEDURAL MODULE-REQUEST MANUAL
 1.279 PROCEDURAL CLEAR-BUFFER MANUAL
 1.279 MOTOR HAND-TO-MOUSE
 1.279 PROCEDURAL CONFLICT-RESOLUTION
 1.279 PROCEDURAL PRODUCTION-SELECTED PRE-MOVE-MOUSE-TO-A
 1.279 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.279 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.300 VISION Complete-eye-movement TRGT1 #(259 49)
 1.329 PROCEDURAL PRODUCTION-FIRED PRE-MOVE-MOUSE-TO-A
 1.329 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.329 PROCEDURAL MODULE-REQUEST MANUAL
 1.329 PROCEDURAL CLEAR-BUFFER MANUAL
 1.329 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-1
 1.329 PROCEDURAL CONFLICT-RESOLUTION
 1.329 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-A
 1.329 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.329 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.379 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-A
 1.379 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.379 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.379 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.379 VISION Find-location
 1.379 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.379 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2
 1.379 PROCEDURAL CONFLICT-RESOLUTION
 1.379 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-A
 1.379 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.379 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.379 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.429 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-A
 1.429 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.429 PROCEDURAL MODULE-REQUEST VISUAL
 1.429 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.429 PROCEDURAL CLEAR-BUFFER VISUAL
 1.429 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.429 VISION Move-attention VISUAL-SW1-OBJECT-0-2 NIL
 1.429 VISION Find-location
 1.429 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.429 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3
 1.429 VISION Preparation-complete TRGT2
 1.429 PROCEDURAL CONFLICT-RESOLUTION
 1.475 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-2
 1.475 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 1.475 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-1
 1.475 PROCEDURAL CONFLICT-RESOLUTION
 1.475 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-A
 1.475 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.475 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.475 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION

174

 1.499 VISION Complete-eye-movement TRGT2 #(259 49)
 1.525 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-A
 1.525 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.525 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.525 PROCEDURAL CLEAR-BUFFER VISUAL
 1.525 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.525 VISION Find-location
 1.525 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.525 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2
 1.525 PROCEDURAL CONFLICT-RESOLUTION
 1.529 MOTOR PREPARATION-COMPLETE
 1.529 PROCEDURAL CONFLICT-RESOLUTION
 1.579 MOTOR INITIATION-COMPLETE
 1.579 PROCEDURAL CONFLICT-RESOLUTION
 2.015 MOTOR MOVE-CURSOR-ABSOLUTE #(259 49)
 2.015 PROCEDURAL CONFLICT-RESOLUTION
 2.065 MOTOR FINISH-MOVEMENT
 2.065 PROCEDURAL CONFLICT-RESOLUTION
 2.065 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A
 2.065 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.065 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.115 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A
 2.115 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.115 PROCEDURAL MODULE-REQUEST MANUAL
 2.115 PROCEDURAL CLEAR-BUFFER MANUAL
 2.115 MOTOR HAND-TO-MOUSE
 2.115 PROCEDURAL CONFLICT-RESOLUTION
 2.115 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-A
 2.115 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.115 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.165 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-A
 2.165 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.165 PROCEDURAL MODULE-REQUEST MANUAL
 2.165 PROCEDURAL CLEAR-BUFFER MANUAL
 2.165 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-3
 2.165 PROCEDURAL CONFLICT-RESOLUTION
 2.165 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-A
 2.165 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.165 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.215 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-A
 2.215 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.215 PROCEDURAL MODULE-REQUEST MANUAL
 2.215 PROCEDURAL CLEAR-BUFFER MANUAL
 2.215 MOTOR CLICK-MOUSE
 2.215 PROCEDURAL CONFLICT-RESOLUTION
 2.215 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-B
 2.215 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.215 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 2.265 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-B
 2.265 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.265 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 2.265 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 2.265 VISION Find-location
 2.265 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 2.265 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-3
 2.265 PROCEDURAL CONFLICT-RESOLUTION
 2.265 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-B
 2.265 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.265 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 2.315 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-B
 2.315 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.315 PROCEDURAL MODULE-REQUEST VISUAL
 2.315 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 2.315 PROCEDURAL CLEAR-BUFFER VISUAL
 2.315 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 2.315 VISION Move-attention VISUAL-SW2-OBJECT-0-3 NIL
 2.315 VISION Find-location
 2.315 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 2.315 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-4
 2.315 PROCEDURAL CONFLICT-RESOLUTION
 2.365 MOTOR PREPARATION-COMPLETE
 2.365 PROCEDURAL CONFLICT-RESOLUTION
 2.415 VISION Preparation-complete TRGT3
 2.415 MOTOR INITIATION-COMPLETE
 2.415 PROCEDURAL CONFLICT-RESOLUTION
 2.425 MOTOR OUTPUT-KEY #(28 2)
 2.425 PROCEDURAL CONFLICT-RESOLUTION
 2.506 VISION Complete-eye-movement TRGT3 #(126 204)
 2.506 PROCEDURAL CONFLICT-RESOLUTION
 2.515 MOTOR FINISH-MOVEMENT
 2.515 PROCEDURAL CONFLICT-RESOLUTION
 2.583 VISION Encoding-Complete VISUAL-SW2-OBJECT-0-3
 2.583 VISION SET-BUFFER-CHUNK VISUAL SW2-OBJECT
 2.583 BUFFER Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0
 2.583 PROCEDURAL CONFLICT-RESOLUTION
 2.583 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-B
 2.583 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.583 PROCEDURAL BUFFER-READ-ACTION VISUAL
 2.583 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 2.606 VISION Preparation-complete TRGT3
 2.633 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-B
 2.633 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.633 PROCEDURAL CLEAR-BUFFER VISUAL
 2.633 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 2.633 PROCEDURAL CONFLICT-RESOLUTION
 2.633 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B
 2.633 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.633 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.677 VISION Complete-eye-movement TRGT3 #(134 210)

175

 2.683 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B
 2.683 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.683 PROCEDURAL MODULE-REQUEST MANUAL
 2.683 PROCEDURAL CLEAR-BUFFER MANUAL
 2.683 MOTOR HAND-TO-MOUSE
 2.683 PROCEDURAL CONFLICT-RESOLUTION
 2.683 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-B
 2.683 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.683 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.733 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-B
 2.733 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.733 PROCEDURAL MODULE-REQUEST MANUAL
 2.733 PROCEDURAL CLEAR-BUFFER MANUAL
 2.733 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-4
 2.733 PROCEDURAL CONFLICT-RESOLUTION
 2.933 MOTOR PREPARATION-COMPLETE
 2.933 PROCEDURAL CONFLICT-RESOLUTION
 2.983 MOTOR INITIATION-COMPLETE
 2.983 PROCEDURAL CONFLICT-RESOLUTION
 3.083 MOTOR MOVE-CURSOR-ABSOLUTE #(135 210)
 3.083 PROCEDURAL CONFLICT-RESOLUTION
 3.133 MOTOR FINISH-MOVEMENT
 3.133 PROCEDURAL CONFLICT-RESOLUTION
 3.133 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-B
 3.133 PROCEDURAL BUFFER-READ-ACTION GOAL
 3.133 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 3.183 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-B
 3.183 PROCEDURAL MODULE-REQUEST MANUAL
 3.183 PROCEDURAL CLEAR-BUFFER GOAL
 3.183 PROCEDURAL CLEAR-BUFFER MANUAL
 3.183 MOTOR CLICK-MOUSE
 3.183 PROCEDURAL CONFLICT-RESOLUTION
 3.333 MOTOR PREPARATION-COMPLETE
 3.333 PROCEDURAL CONFLICT-RESOLUTION
 3.383 MOTOR INITIATION-COMPLETE
 3.383 PROCEDURAL CONFLICT-RESOLUTION
 3.393 MOTOR OUTPUT-KEY #(28 2)
 3.393 PROCEDURAL CONFLICT-RESOLUTION
 3.483 MOTOR FINISH-MOVEMENT
 3.483 PROCEDURAL CONFLICT-RESOLUTION
 3.483 ------ Stopped because no events left to process
Execution time for drag-drop-Action-with-moveto is 3.483

click-action-with-moveto - 343 - 186 - 224 - 25 - 202 - 379 - 131 - 23 | 0
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 BUFFER Buffer GOAL copied chunk GOAL to GOAL-0
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0 REQUESTED NIL
 0.000 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-TASK
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-TASK
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-A
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-A
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 VISION Find-location
 0.100 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.100 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-A
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.100 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.150 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-A
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.150 VISION Move-attention VISUAL-SW1-OBJECT-0-0 NIL
 0.150 VISION Find-location
 0.150 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.150 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.300 VISION Preparation-complete TRGT0
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.409 VISION Complete-eye-movement TRGT0 #(335 178)
 0.409 PROCEDURAL CONFLICT-RESOLUTION
 0.459 VISION Preparation-complete TRGT0
 0.459 PROCEDURAL CONFLICT-RESOLUTION
 0.498 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-0
 0.498 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 0.498 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0
 0.498 PROCEDURAL CONFLICT-RESOLUTION
 0.498 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-A
 0.498 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.498 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.498 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.530 VISION Complete-eye-movement TRGT0 #(344 185)
 0.548 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-A
 0.548 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.548 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION

176

 0.548 PROCEDURAL CLEAR-BUFFER VISUAL
 0.548 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.548 VISION Find-location
 0.548 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.548 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1
 0.548 PROCEDURAL CONFLICT-RESOLUTION
 0.548 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A
 0.548 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.548 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.598 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A
 0.598 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.598 PROCEDURAL MODULE-REQUEST MANUAL
 0.598 PROCEDURAL CLEAR-BUFFER MANUAL
 0.598 MOTOR HAND-TO-MOUSE
 0.598 PROCEDURAL CONFLICT-RESOLUTION
 0.598 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-B
 0.598 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.598 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.648 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-B
 0.648 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.648 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.648 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.648 VISION Find-location
 0.648 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.648 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2
 0.648 PROCEDURAL CONFLICT-RESOLUTION
 0.648 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-B
 0.648 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.648 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.698 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-B
 0.698 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.698 PROCEDURAL MODULE-REQUEST VISUAL
 0.698 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.698 PROCEDURAL CLEAR-BUFFER VISUAL
 0.698 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.698 VISION Move-attention VISUAL-SW2-OBJECT-0-2 NIL
 0.698 VISION Find-location
 0.698 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.698 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-3
 0.698 PROCEDURAL CONFLICT-RESOLUTION
 0.798 VISION Preparation-complete TRGT1
 0.798 PROCEDURAL CONFLICT-RESOLUTION
 0.892 VISION Complete-eye-movement TRGT1 #(190 352)
 0.892 PROCEDURAL CONFLICT-RESOLUTION
 0.992 VISION Preparation-complete TRGT1
 0.992 PROCEDURAL CONFLICT-RESOLUTION
 1.065 VISION Complete-eye-movement TRGT1 #(202 375)
 1.065 VISION Preparation-complete TRGT1
 1.065 PROCEDURAL CONFLICT-RESOLUTION
 1.068 VISION Encoding-Complete VISUAL-SW2-OBJECT-0-2
 1.068 VISION SET-BUFFER-CHUNK VISUAL SW2-OBJECT
 1.068 BUFFER Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0
 1.068 PROCEDURAL CONFLICT-RESOLUTION
 1.068 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-B
 1.068 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.068 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.068 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.118 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-B
 1.118 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.118 PROCEDURAL CLEAR-BUFFER VISUAL
 1.118 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.118 PROCEDURAL CONFLICT-RESOLUTION
 1.118 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B
 1.118 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.118 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.135 VISION Complete-eye-movement TRGT1 #(202 379)
 1.168 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B
 1.168 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.168 PROCEDURAL MODULE-REQUEST MANUAL
 1.168 PROCEDURAL CLEAR-BUFFER MANUAL
 1.168 MOTOR HAND-TO-MOUSE
 1.168 PROCEDURAL CONFLICT-RESOLUTION
 1.168 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-B
 1.168 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.168 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.218 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-B
 1.218 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.218 PROCEDURAL MODULE-REQUEST MANUAL
 1.218 PROCEDURAL CLEAR-BUFFER MANUAL
 1.218 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-3
 1.218 PROCEDURAL CONFLICT-RESOLUTION
 1.418 MOTOR PREPARATION-COMPLETE
 1.418 PROCEDURAL CONFLICT-RESOLUTION
 1.468 MOTOR INITIATION-COMPLETE
 1.468 PROCEDURAL CONFLICT-RESOLUTION
 1.781 MOTOR MOVE-CURSOR-ABSOLUTE #(202 379)
 1.781 PROCEDURAL CONFLICT-RESOLUTION
 1.831 MOTOR FINISH-MOVEMENT
 1.831 PROCEDURAL CONFLICT-RESOLUTION
 1.831 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-B
 1.831 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.831 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.881 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-B
 1.881 PROCEDURAL MODULE-REQUEST MANUAL
 1.881 PROCEDURAL CLEAR-BUFFER GOAL
 1.881 PROCEDURAL CLEAR-BUFFER MANUAL
 1.881 MOTOR CLICK-MOUSE
 1.881 PROCEDURAL CONFLICT-RESOLUTION
 2.031 MOTOR PREPARATION-COMPLETE

177

 2.031 PROCEDURAL CONFLICT-RESOLUTION
 2.081 MOTOR INITIATION-COMPLETE
 2.081 PROCEDURAL CONFLICT-RESOLUTION
 2.091 MOTOR OUTPUT-KEY #(28 2)
 2.091 PROCEDURAL CONFLICT-RESOLUTION
 2.181 MOTOR FINISH-MOVEMENT
 2.181 PROCEDURAL CONFLICT-RESOLUTION
 2.181 ------ Stopped because no events left to process
Execution time for click-action-with-moveto is 2.181

click-action-with-moveto - 202 - 379 - 131 - 23 - 571 - 293 - 51 - 23 | 0
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 BUFFER Buffer GOAL copied chunk GOAL to GOAL-0
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0 REQUESTED NIL
 0.000 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-TASK
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-TASK
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-A
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.100 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-A
 0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.100 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.100 VISION Find-location
 0.100 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.100 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-A
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.100 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.150 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-A
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL
 0.150 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL
 0.150 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.150 VISION Move-attention VISUAL-SW1-OBJECT-0-1 NIL
 0.150 VISION Find-location
 0.150 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 0.150 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.300 VISION Preparation-complete TRGT0
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.406 VISION Complete-eye-movement TRGT0 #(130 323)
 0.406 PROCEDURAL CONFLICT-RESOLUTION
 0.456 VISION Preparation-complete TRGT0
 0.456 PROCEDURAL CONFLICT-RESOLUTION
 0.536 VISION Complete-eye-movement TRGT0 #(207 382)
 0.536 PROCEDURAL CONFLICT-RESOLUTION
 0.599 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-1
 0.599 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 0.599 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0
 0.599 PROCEDURAL CONFLICT-RESOLUTION
 0.599 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-A
 0.599 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.599 PROCEDURAL BUFFER-READ-ACTION VISUAL
 0.599 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 0.636 VISION Preparation-complete TRGT0
 0.649 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-A
 0.649 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.649 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.649 PROCEDURAL CLEAR-BUFFER VISUAL
 0.649 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.649 VISION Find-location
 0.649 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.649 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0
 0.649 PROCEDURAL CONFLICT-RESOLUTION
 0.649 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A
 0.649 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.649 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 0.699 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A
 0.699 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.699 PROCEDURAL MODULE-REQUEST MANUAL
 0.699 PROCEDURAL CLEAR-BUFFER MANUAL
 0.699 MOTOR HAND-TO-MOUSE
 0.699 PROCEDURAL CONFLICT-RESOLUTION
 0.707 VISION Complete-eye-movement TRGT0 #(202 379)
 0.707 PROCEDURAL CONFLICT-RESOLUTION
 0.707 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-B
 0.707 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.707 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 0.757 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-B
 0.757 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.757 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.757 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.757 VISION Find-location
 0.757 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.757 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1
 0.757 PROCEDURAL CONFLICT-RESOLUTION
 0.757 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-B
 0.757 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.757 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION

178

 0.807 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-B
 0.807 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.807 PROCEDURAL MODULE-REQUEST VISUAL
 0.807 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 0.807 PROCEDURAL CLEAR-BUFFER VISUAL
 0.807 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.807 VISION Move-attention VISUAL-SW2-OBJECT-0-1 NIL
 0.807 VISION Find-location
 0.807 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 0.807 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2
 0.807 PROCEDURAL CONFLICT-RESOLUTION
 0.907 VISION Preparation-complete TRGT1
 0.907 PROCEDURAL CONFLICT-RESOLUTION
 1.021 VISION Complete-eye-movement TRGT1 #(628 285)
 1.021 PROCEDURAL CONFLICT-RESOLUTION
 1.121 VISION Preparation-complete TRGT1
 1.121 PROCEDURAL CONFLICT-RESOLUTION
 1.197 VISION Complete-eye-movement TRGT1 #(574 293)
 1.197 PROCEDURAL CONFLICT-RESOLUTION
 1.241 VISION Encoding-Complete VISUAL-SW2-OBJECT-0-1
 1.241 VISION SET-BUFFER-CHUNK VISUAL SW2-OBJECT
 1.241 BUFFER Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0
 1.241 PROCEDURAL CONFLICT-RESOLUTION
 1.241 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-B
 1.241 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.241 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.241 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.247 VISION Preparation-complete TRGT1
 1.291 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-B
 1.291 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.291 PROCEDURAL CLEAR-BUFFER VISUAL
 1.291 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.291 PROCEDURAL CONFLICT-RESOLUTION
 1.291 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B
 1.291 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.291 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.317 VISION Complete-eye-movement TRGT1 #(571 293)
 1.341 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B
 1.341 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.341 PROCEDURAL MODULE-REQUEST MANUAL
 1.341 PROCEDURAL CLEAR-BUFFER MANUAL
 1.341 MOTOR HAND-TO-MOUSE
 1.341 PROCEDURAL CONFLICT-RESOLUTION
 1.341 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-B
 1.341 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.341 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.391 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-B
 1.391 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.391 PROCEDURAL MODULE-REQUEST MANUAL
 1.391 PROCEDURAL CLEAR-BUFFER MANUAL
 1.391 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-2
 1.391 PROCEDURAL CONFLICT-RESOLUTION
 1.591 MOTOR PREPARATION-COMPLETE
 1.591 PROCEDURAL CONFLICT-RESOLUTION
 1.641 MOTOR INITIATION-COMPLETE
 1.641 PROCEDURAL CONFLICT-RESOLUTION
 1.931 MOTOR MOVE-CURSOR-ABSOLUTE #(571 293)
 1.931 PROCEDURAL CONFLICT-RESOLUTION
 1.981 MOTOR FINISH-MOVEMENT
 1.981 PROCEDURAL CONFLICT-RESOLUTION
 1.981 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-B
 1.981 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.981 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.031 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-B
 2.031 PROCEDURAL MODULE-REQUEST MANUAL
 2.031 PROCEDURAL CLEAR-BUFFER GOAL
 2.031 PROCEDURAL CLEAR-BUFFER MANUAL
 2.031 MOTOR CLICK-MOUSE
 2.031 PROCEDURAL CONFLICT-RESOLUTION
 2.181 MOTOR PREPARATION-COMPLETE
 2.181 PROCEDURAL CONFLICT-RESOLUTION
 2.231 MOTOR INITIATION-COMPLETE
 2.231 PROCEDURAL CONFLICT-RESOLUTION
 2.241 MOTOR OUTPUT-KEY #(28 2)
 2.241 PROCEDURAL CONFLICT-RESOLUTION
 2.331 MOTOR FINISH-MOVEMENT
 2.331 PROCEDURAL CONFLICT-RESOLUTION
 2.331 ------ Stopped because no events left to process
Execution time for click-action-with-moveto is 2.331

179

APPENDIX C: AN EXAMPLE OF MACROS TO RUN ACT-R INTERACTION PRIMITIVE

DRAG&DRAP
(defmacro drag-drop-Action-macro(obj1X obj1Y obj1W obj1H obj2X obj2Y obj2W obj2H thinking)
 `(progn
 (reset)
 (define-model TESTMODEL
 (set-cursor-position-fct *last-cursor-position*)
 (start-hand-at-mouse)
 (set-cursor-position-fct *last-cursor-position*)
 (chunk-type (VISUAL-ITEM (:include visual-object))CONTENT)
 (chunk-type IDTR-ACTION %ID)
 (chunk-type (a-object-location (:include visual-location)))
 (chunk-type (b-object-location (:include visual-location)))
 (chunk-type (a-object (:include visual-object)) CONTENT)
 (chunk-type (b-object (:include visual-object)) CONTENT)
 (chunk-type GOAL STATE %LAST-LOCATION [SRC-TARGET] [DEST-TARGET])
 (define-chunks (a-object isa chunk))
 (define-chunks (b-object isa chunk))
 (add-dm

 (FIND-OBJECT-A-ACTION ISA IDTR-ACTION) (ATTEND-OBJECT-A-ACTION ISA IDTR-ACTION)
 (ENCODE-OBJECT-A-ACTION ISA IDTR-ACTION) (HAND-TO-MOUSE-FOR-A-ACTION ISA IDTR-ACTION)
 (MOUSE-MOVES-A-ACTIONS ISA IDTR-ACTION) (ATTEND-OBJECT-A-ACTION4 ISA IDTR-ACTION)
 (CLICK-MOUSE-OVER-A-ACTION ISA IDTR-ACTION) (FIND-OBJECT-B-ACTION ISA IDTR-ACTION)
 (ATTEND-OBJECT-B-ACTION ISA IDTR-ACTION) (ENCODE-OBJECT-B-ACTION ISA IDTR-ACTION)
 (HAND-TO-MOUSE-FOR-B-ACTION ISA IDTR-ACTION) (MOVE-MOUSE-TO-B-ACTION ISA IDTR-ACTION)
 (ATTEND-OBJECT-A-ACTION2 ISA IDTR-ACTION) (MOUSE-MOVES-B-ACTIONS ISA IDTR-ACTION)
 (START-ACTION ISA IDTR-ACTION %ID START-ACTION)
 (THINKING ISA IDTR-ACTION %ID THINKING)
 (GOAL ISA GOAL STATE START-ACTION [SRC-TARGET] EMPTY [DEST-TARGET] EMPTY %LAST-LOCATION EMPTY)
)
 (P OBJECT-A-NOT-FOUND
 =GOAL>
 ISA GOAL
 STATE ENCODE-OBJECT-A-ACTION
 =VISUAL>
 ISA TEXT
 - VALUE "object1"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
 ==>
 =GOAL>
 STATE FIND-OBJECT-A-ACTION
)
 (P THINKING-TASK
 =GOAL>
 ISA GOAL
 STATE THINKING
 ==>
 =GOAL>
 STATE FIND-OBJECT-A-ACTION
)
 (P FIND-OBJECT-A
 =GOAL>
 ISA GOAL
 STATE FIND-OBJECT-A-ACTION
 ?visual>
 STATE FREE
 ==>
 =GOAL>
 STATE ATTEND-OBJECT-A-ACTION

 +VISUAL-LOCATION>
 ISA a-object-location
 :attended NIL
)
 (P ATTEND-OBJECT-A
 =GOAL>
 ISA GOAL
 STATE ATTEND-OBJECT-A-ACTION

 =VISUAL-LOCATION>
 ISA a-object-location
 SCREEN-X =X
 ?visual>
 STATE FREE
 ==>
 =GOAL>
 STATE ENCODE-OBJECT-A-ACTION
 +VISUAL>
 ISA MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +VISUAL-LOCATION>
 ISA a-object-location
)
 (P ENCODE-OBJECT-A
 =GOAL>
 ISA GOAL
 STATE ENCODE-OBJECT-A-ACTION
 =VISUAL>
 ISA a-object
 VALUE =TEXT
 VALUE "object1"
 =VISUAL-LOCATION>
 ISA a-object-location

180

 ==>
 =GOAL>
 [SRC-TARGET] =VISUAL-LOCATION
 STATE HAND-TO-MOUSE-FOR-A-ACTION
 +VISUAL-LOCATION>
 ISA VISUAL-LOCATION
)
 (P HAND-TO-MOUSE-FOR-A
 =GOAL>
 ISA GOAL
 STATE HAND-TO-MOUSE-FOR-A-ACTION
 ?manual>
 STATE FREE
 ==>
 =GOAL>
 STATE MOUSE-MOVES-A-ACTIONS
 +MANUAL>
 ISA HAND-TO-MOUSE
)
 (P MOVE-MOUSE-TO-A
 =GOAL>
 ISA GOAL
 [SRC-TARGET] =THETARGET-A
 STATE MOUSE-MOVES-A-ACTIONS
 ?manual>
 STATE FREE
 ==>
 =GOAL>
 %LAST-LOCATION =THETARGET-A
 [SRC-TARGET] EMPTY
 STATE CLICK-MOUSE-OVER-A-ACTION
 +MANUAL>
 ISA MOVE-CURSOR
 LOC =THETARGET-A
)
 (P CLICK-MOUSE-OVER-A
 =GOAL>
 ISA GOAL
 STATE CLICK-MOUSE-OVER-A-ACTION
 ?manual>
 STATE FREE
 ==>
 =GOAL>
 STATE FIND-OBJECT-B-ACTION
 +MANUAL>
 ISA CLICK-MOUSE
)
 (P OBJECT-B-NOT-FOUND
 =GOAL>
 ISA GOAL
 STATE ENCODE-OBJECT-B-ACTION
 =VISUAL>
 ISA TEXT
 - VALUE "object2"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION
 ==>
 =GOAL>
 STATE FIND-OBJECT-B-ACTION
)
 (P FIND-OBJECT-B
 =GOAL>
 ISA GOAL
 STATE FIND-OBJECT-B-ACTION
 ?visual>
 STATE FREE
 ==>
 =GOAL>
 STATE ATTEND-OBJECT-B-ACTION

 +VISUAL-LOCATION>
 ISA b-object-location
 :ATTENDED NIL
)
 (P ATTEND-OBJECT-B
 =GOAL>
 ISA GOAL
 STATE ATTEND-OBJECT-B-ACTION
 =VISUAL-LOCATION>
 ISA b-object-location
 ==>
 =GOAL>
 STATE ENCODE-OBJECT-B-ACTION
 +VISUAL>
 ISA MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +VISUAL-LOCATION>
 ISA b-object-location
)
 (P ENCODE-OBJECT-B
 =GOAL>
 ISA GOAL
 STATE ENCODE-OBJECT-B-ACTION
 =VISUAL>
 ISA b-object
 VALUE =TEXT
 VALUE "object2"
 =VISUAL-LOCATION>
 ISA VISUAL-LOCATION

181

 ==>
 =GOAL>
 [DEST-TARGET] =VISUAL-LOCATION
 STATE HAND-TO-MOUSE-FOR-B-ACTION
)
 (P HAND-TO-MOUSE-FOR-B
 =GOAL>
 ISA GOAL
 STATE HAND-TO-MOUSE-FOR-B-ACTION
 ?manual>
 STATE FREE
 ==>
 =GOAL>
 STATE MOVE-MOUSE-TO-B-ACTION
 +MANUAL>
 ISA HAND-TO-MOUSE
)
 (P MOVE-MOUSE-TO-B
 =GOAL>
 ISA GOAL
 [DEST-TARGET] =THETARGET-B
 STATE MOVE-MOUSE-TO-B-ACTION
 ?manual>
 STATE FREE
 ==>
 =GOAL>
 %LAST-LOCATION =THETARGET-B
 [DEST-TARGET] EMPTY
 STATE MOUSE-MOVES-B-ACTIONS

 +MANUAL>
 ISA MOVE-CURSOR
 LOC =THETARGET-B
)
 (P CLICK-MOUSE-OVER-B
 =GOAL>
 ISA GOAL
 STATE MOUSE-MOVES-B-ACTIONS
 ?manual>
 STATE FREE
 ==>
 +MANUAL>
 ISA CLICK-MOUSE
 -GOAL>
)
 (SPP THINKING-TASK :at 1.2)
 (GOAL-FOCUS GOAL)
 (sgp :v T :needs-mouse T :show-focus t :trace-detail high)
)
 (cond
 (
 (> ,thinking 0)
 (p-fct
 (list
 'START-TASK
 '=GOAL>
 'ISA 'GOAL
 'STATE 'START-ACTION
 '==>

 '=GOAL>
 'STATE 'THINKING
)
)
 (SPP THINKING-TASK :at 1.2)
)
 (
 (= ,thinking 0)
 (p-fct
 (list
 'START-TASK
 '=GOAL>
 'ISA 'GOAL
 'STATE 'START-ACTION
 '==>
 '=GOAL>
 'STATE 'FIND-OBJECT-A-ACTION
)
)
)
)
 (let (
 (visual-location-chunks nil)
 (visual-object-chunks nil)
)
 (push (car (define-chunks-fct `((
 VISUAL-SW1-OBJECT
 isa a-object-location
 color black
 value a-object
 kind a-object
 screen-x ,obj1X
 screen-y ,obj1Y
 width ,obj1W
 height ,obj1H)))) visual-location-chunks)
 (push (car (define-chunks-fct `((
 VISUAL-SW2-OBJECT
 isa b-object-location
 color black

182

 value b-object
 kind b-object
 screen-x ,obj2X
 screen-y ,obj2Y
 width ,obj2W
 height ,obj2H)))) visual-location-chunks)
 (push (define-chunks-fct `((
 SW1-OBJECT
 isa a-object
 CONTENT "object1"
 value "object1"
 width ,obj1W
 height ,obj1H))) visual-object-chunks)
 (push (define-chunks-fct `((
 SW2-OBJECT
 isa b-object
 CONTENT "object2"
 value "object2"
 width ,obj2W
 height ,obj2H))) visual-object-chunks)
 (let (
 (the-device (pairlis visual-location-chunks visual-object-chunks))
)
 (install-device the-device)
 (proc-display)
 (run 100)
 (delete-model)
)
)
)
)

183

APPENDIX D: SAMPLE RUN USING THE DRAG AND DROP MACRO
Run for: drag-drop-Action - 55 - 7 - 10 - 40 | 267 - 237 - 50 - 40 | 1

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 BUFFER Buffer GOAL copied chunk GOAL to GOAL-0
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0 REQUESTED NIL
 0.000 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START-TASK
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START-TASK
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-SELECTED THINKING-TASK
 0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.250 PROCEDURAL PRODUCTION-FIRED THINKING-TASK
 1.250 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.250 PROCEDURAL CONFLICT-RESOLUTION
 1.250 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-A
 1.250 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.250 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.300 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-A
 1.300 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.300 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.300 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.300 VISION Find-location
 1.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.300 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1
 1.300 PROCEDURAL CONFLICT-RESOLUTION
 1.300 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-A
 1.300 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.300 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.300 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
 1.350 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-A
 1.350 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.350 PROCEDURAL MODULE-REQUEST VISUAL
 1.350 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.350 PROCEDURAL CLEAR-BUFFER VISUAL
 1.350 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.350 VISION Move-attention VISUAL-SW1-OBJECT-0-1 NIL
 1.350 VISION Find-location
 1.350 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.350 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2
 1.350 PROCEDURAL CONFLICT-RESOLUTION
 1.500 VISION Preparation-complete TRGT0
 1.500 PROCEDURAL CONFLICT-RESOLUTION
 1.576 VISION Complete-eye-movement TRGT0 #(58 8)
 1.576 PROCEDURAL CONFLICT-RESOLUTION
 1.617 VISION Encoding-Complete VISUAL-SW1-OBJECT-0-1
 1.617 VISION SET-BUFFER-CHUNK VISUAL SW1-OBJECT
 1.617 BUFFER Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0
 1.617 PROCEDURAL CONFLICT-RESOLUTION
 1.617 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-A
 1.617 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.617 PROCEDURAL BUFFER-READ-ACTION VISUAL
 1.617 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.667 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-A
 1.667 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.667 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.667 PROCEDURAL CLEAR-BUFFER VISUAL
 1.667 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.667 VISION Find-location
 1.667 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0
 1.667 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3
 1.667 PROCEDURAL CONFLICT-RESOLUTION
 1.667 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A
 1.667 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.667 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.676 VISION Preparation-complete TRGT0
 1.717 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A
 1.717 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.717 PROCEDURAL MODULE-REQUEST MANUAL
 1.717 PROCEDURAL CLEAR-BUFFER MANUAL
 1.717 MOTOR HAND-TO-MOUSE
 1.717 PROCEDURAL CONFLICT-RESOLUTION
 1.717 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-A
 1.717 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.717 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.746 VISION Complete-eye-movement TRGT0 #(55 7)
 1.767 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-A
 1.767 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.767 PROCEDURAL MODULE-REQUEST MANUAL
 1.767 PROCEDURAL CLEAR-BUFFER MANUAL
 1.767 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-2
 1.767 PROCEDURAL CONFLICT-RESOLUTION
 1.767 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-A
 1.767 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.767 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 1.817 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-A
 1.817 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.817 PROCEDURAL MODULE-REQUEST MANUAL
 1.817 PROCEDURAL CLEAR-BUFFER MANUAL
 1.817 MOTOR CLICK-MOUSE
 1.817 PROCEDURAL CONFLICT-RESOLUTION
 1.817 PROCEDURAL PRODUCTION-SELECTED FIND-OBJECT-B
 1.817 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.817 PROCEDURAL QUERY-BUFFER-ACTION VISUAL

184

 1.867 PROCEDURAL PRODUCTION-FIRED FIND-OBJECT-B
 1.867 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.867 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.867 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.867 VISION Find-location
 1.867 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.867 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0
 1.867 PROCEDURAL CONFLICT-RESOLUTION
 1.867 PROCEDURAL PRODUCTION-SELECTED ATTEND-OBJECT-B
 1.867 PROCEDURAL BUFFER-READ-ACTION GOAL
 1.867 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 1.917 PROCEDURAL PRODUCTION-FIRED ATTEND-OBJECT-B
 1.917 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 1.917 PROCEDURAL MODULE-REQUEST VISUAL
 1.917 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
 1.917 PROCEDURAL CLEAR-BUFFER VISUAL
 1.917 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 1.917 VISION Move-attention VISUAL-SW2-OBJECT-0-0 NIL
 1.917 VISION Find-location
 1.917 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0
 1.917 BUFFER Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1
 1.917 PROCEDURAL CONFLICT-RESOLUTION
 1.967 MOTOR PREPARATION-COMPLETE
 1.967 PROCEDURAL CONFLICT-RESOLUTION
 2.017 VISION Preparation-complete TRGT1
 2.017 MOTOR INITIATION-COMPLETE
 2.017 PROCEDURAL CONFLICT-RESOLUTION
 2.027 MOTOR OUTPUT-KEY #(28 2)
 2.027 PROCEDURAL CONFLICT-RESOLUTION
 2.117 MOTOR FINISH-MOVEMENT
 2.117 PROCEDURAL CONFLICT-RESOLUTION
 2.119 VISION Complete-eye-movement TRGT1 #(268 233)
 2.119 PROCEDURAL CONFLICT-RESOLUTION
 2.177 VISION Encoding-Complete VISUAL-SW2-OBJECT-0-0
 2.177 VISION SET-BUFFER-CHUNK VISUAL SW2-OBJECT
 2.177 BUFFER Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0
 2.177 PROCEDURAL CONFLICT-RESOLUTION
 2.177 PROCEDURAL PRODUCTION-SELECTED ENCODE-OBJECT-B
 2.177 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.177 PROCEDURAL BUFFER-READ-ACTION VISUAL
 2.177 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
 2.219 VISION Preparation-complete TRGT1
 2.227 PROCEDURAL PRODUCTION-FIRED ENCODE-OBJECT-B
 2.227 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.227 PROCEDURAL CLEAR-BUFFER VISUAL
 2.227 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 2.227 PROCEDURAL CONFLICT-RESOLUTION
 2.227 PROCEDURAL PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B
 2.227 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.227 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.277 PROCEDURAL PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B
 2.277 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.277 PROCEDURAL MODULE-REQUEST MANUAL
 2.277 PROCEDURAL CLEAR-BUFFER MANUAL
 2.277 MOTOR HAND-TO-MOUSE
 2.277 PROCEDURAL CONFLICT-RESOLUTION
 2.277 PROCEDURAL PRODUCTION-SELECTED MOVE-MOUSE-TO-B
 2.277 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.277 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.289 VISION Complete-eye-movement TRGT1 #(267 237)
 2.327 PROCEDURAL PRODUCTION-FIRED MOVE-MOUSE-TO-B
 2.327 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 2.327 PROCEDURAL MODULE-REQUEST MANUAL
 2.327 PROCEDURAL CLEAR-BUFFER MANUAL
 2.327 MOTOR MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-1
 2.327 PROCEDURAL CONFLICT-RESOLUTION
 2.527 MOTOR PREPARATION-COMPLETE
 2.527 PROCEDURAL CONFLICT-RESOLUTION
 2.577 MOTOR INITIATION-COMPLETE
 2.577 PROCEDURAL CONFLICT-RESOLUTION
 2.838 MOTOR MOVE-CURSOR-ABSOLUTE #(267 237)
 2.838 PROCEDURAL CONFLICT-RESOLUTION
 2.888 MOTOR FINISH-MOVEMENT
 2.888 PROCEDURAL CONFLICT-RESOLUTION
 2.888 PROCEDURAL PRODUCTION-SELECTED CLICK-MOUSE-OVER-B
 2.888 PROCEDURAL BUFFER-READ-ACTION GOAL
 2.888 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
 2.938 PROCEDURAL PRODUCTION-FIRED CLICK-MOUSE-OVER-B
 2.938 PROCEDURAL MODULE-REQUEST MANUAL
 2.938 PROCEDURAL CLEAR-BUFFER GOAL
 2.938 PROCEDURAL CLEAR-BUFFER MANUAL
 2.938 MOTOR CLICK-MOUSE
 2.938 PROCEDURAL CONFLICT-RESOLUTION
 3.088 MOTOR PREPARATION-COMPLETE
 3.088 PROCEDURAL CONFLICT-RESOLUTION
 3.138 MOTOR INITIATION-COMPLETE
 3.138 PROCEDURAL CONFLICT-RESOLUTION
 3.148 MOTOR OUTPUT-KEY #(28 2)
 3.148 PROCEDURAL CONFLICT-RESOLUTION
 3.238 MOTOR FINISH-MOVEMENT
 3.238 PROCEDURAL CONFLICT-RESOLUTION
 3.238 ------ Stopped because no events left to process

Execution time for drag-drop-Action is 3.238

185

APPENDIX E: LISP HELPER DEBUGGING FUNCTIONALITY CODE

Stepper Code

(defun start-threaded-process (name function)
 (setf *threaded-process* (mp::process-run-function name #'(lambda ()(in-package :cl-user)(funcall function))))
)

(defun threaded-process-kill (process)
 (if
 (not(equal process nil))
 (mp::process-kill process)
)
)

(defun stop-threaded-process()
 (if
 (not (equal *threaded-process* nil))
 (progn
 (format *error-output* "Stopping the threaded process. threadRunning:~%")
 (threaded-process-kill *threaded-process*)
 (setf *threaded-process* nil)
)
)
)

(defvar *stepper-process* nil)
(defvar *stepper-thread-running* nil)

(defun stepper-run-process (name function)
 (setf *stepper-process* (mp::process-run-function name #'(lambda ()(in-package :cl-user)(funcall function))))
)

(defun stepper-process-kill (process)
 (if
 (not(equal process nil))
 (mp::process-kill process)
)
)

(defun stepper-process-loop()
 (if
 (not(equal *stepper-process* nil))
 (progn
 (if
 (not(equal *stepper-thread-running* t))
 (progn
 (setf *stepper-thread-running* t)
 (run-my-stepper)
 (sleep 2)
)
)
)
)
)

(defun stop-stepper-process()
 (if
 (not (equal *stepper-process* nil))
 (progn
 (stepper-process-kill *stepper-process*)
 (setf *stepper-process* nil)
)
)
)

(defun start-stepper-process()
 (stepper-run-process "Running Lisp stepper application" #'(lambda () (run-my-stepper)))
)

(defun updateDLLStepperInfo(info)
 (updateSteppingInformation info)
)

(defun run-my-stepper ()
 (stepperRunStartedToNative)

 (setf *abort-stepping* nil)
 (verify-current-mp
 "run-step called with no current meta-process."
 (flet (
 (test (mp next-time count)
 (declare (ignore next-time count))
 (loop
 (let (
 (event (car (meta-p-events mp)))
)

 (when (null (meta-p-events mp))
 (format t "No more events to process")
 (stepperRunFinishedToNative)
 (return t)
)
 (updateSteppingInformation
 (format nil "~A|~A|~A|~A|~A|~A~%"

186

 (evt-time event)
 (evt-module event)
 (evt-details event)
 (evt-action event)
 (evt-destination event)
 (evt-params event)

)
)
 (while *wait-for-stepping*
 (uni-process-system-events)
 (sleep 0.1)
 (if
 (equal *abort-stepping* t)
 (progn
 (format t "~%------STEPPER STOPPING -------~%")
 (stepperRunFinishedToNative)
 (return t)
)
)
)
 (if
 (not (equal *abort-stepping* t))
 (progn
 (setf *wait-for-stepping* T)
 (return nil)
)
 (progn
 (format t "~%------STEPPER STOPPED -------~%")
 (stepperRunFinishedToNative)
 (return t)
)
)
)
)
)
)
 (multiple-value-bind (time events break)
 (run-sched-queue (current-mp) #'test :real-time nil)
 (unless break
 (send-run-terminated-events (current-mp))
 (stepperRunFinishedToNative)
)
 (values time events break)
)
)
)
)
(defun stepperStep ()
(has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (setf *wait-for-stepping* nil)
)
)
)

(defun initialisingStepper ()
(has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (start-stepper-process)
)
)
)

(defun removingStepper ()
(has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (setf *abort-stepping* t)
 (stop-stepper-process)
)
)
)

Procedural rule information retrieval

(defun return-productions ()
(has-current-mp
"No Meta process present."
(has-current-model
 "No model loaded"

 (let ((prod (get-module procedural)))
 (if prod
 (procedural-productions prod)
 (print-warning "No procedural module found")
)
)
)
)
)

(defun return-production-name-cs(cs)

187

 (production-name (get-production (car cs)))
)

(defun return-production-name(prod)
 (production-name prod)
)

(defun production-u-value (prod)
 (caar (no-output (spp-fct (list prod :u)))))

(defun return-productions-names ()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let ((prod (get-module procedural)))
 (if prod
 (let (
 (names-list nil)
 (all-productions-names (mapcar #'production-name (procedural-productions prod)))
)
 (dolist (production-name all-productions-names)
 (let ((production (get-production production-name)))
 (if production
 (progn
 (push "|" names-list)
 (push production-name names-list)
)
 (format nil "No production named ~S is defined" production-name)
)
)
)
 (reverse names-list)
)
 (format nil "No procedural module found")
)
)
)
)
)

(defun send-DLL-productions-names()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (return-productions-names))
)
)
)

(defun send-DLL-productions-parameters(prod-name)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (getProductionUtilities (get-Production-Parameters-From-Name prod-name))
)
)
)

(defun coerce-our-list-to-vector(mylist)
 (let (
 (myinternallist (coerce mylist 'vector))
)
 myinternallist
)
)

(defun coerce-a-list-to-vector-pairs(mylist)
 (let (
 (myinternallist (coerce mylist 'vector))
 (count 3)
 (my-vector nil)
)
 (setq my-vector (make-array '(count 2)))
)
)

(defun get-Production-Information-From-Name(prodname)
 (formatOutput-Production-Details-From-Name prodname)
)

Chunks information retrieval

(defun return-chunks-names ()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let ((dm (get-module declarative)))
 (if dm
 (let (
 (names-list nil)
)
 (dolist (chunk (all-dm-chunks dm))
 (if chunk

188

 (progn
 (push "|" names-list)
 (push chunk names-list)
)
 (format nil "Declarative chunk not defined")
)
)
 (reverse names-list)
)
 (format nil "No declarative module found")
)
)
)
)
)

(defun send-DLL-chunks-names()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (return-chunks-names))
)
)
)

(defun display-all-chunks ()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let ((dm (get-module declarative)))
 (if dm
 (dolist (chunk (all-dm-chunks dm))
 (format nil "~%CHUNK IS: ~a" chunk)
)
 (format nil "No declarative memory module found")
)
)
)
)
)

(defconstant *JCG-pprint-chunk-string*
 (formatter
 "~S ~:[(~s)~;~*~] ~%~@[~S~%~] ISA ~S~% *************| ~:{ ~s ~s~%~} |**********")
 "compiled format string for printing chunks")
)

(defun JCG-pprint-a-chunk (chunk-name &optional (w-params t))
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let (
 (chunk (get-chunk chunk-name))
 (resOut "")
)
 (if chunk
 (progn
 (setf resOut
 (format nil
 "~S~:[(~s)~;~*~]~%~@[~S~%~] ISA ~S~%~:{ ~s ~s~%~} ~% ~@[--Chunk Parameters--~%~:{ ~s ~s~%~}~]~%~%"
 chunk-name
 (eql chunk-name (act-r-chunk-name chunk))
 (act-r-chunk-name chunk)
 (act-r-chunk-documentation chunk)
 (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))
 (mapcan #'(lambda (slot-name)
 (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk))
 (when (or exists
 (car (no-output (sgp-fct (list :show-all-slots))))
 (not (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))))
)
 (list (list slot-name value))
)
)
)
 (ct-slot-names (act-r-chunk-chunk-type chunk))
)
 (mapcar #'(lambda (param)
 (list (act-r-chunk-parameter-name param)
 (progn
 (funcall (act-r-chunk-parameter-accessor param) chunk-name)
)
)
)
 chunk-parameters-list
)
)
)
 resOut
)
 (format nil "~%No chunk of name:~a~% " chunk-name)
)
)
)
)

189

)

Loading ACT-R models

 (defun loadingModel(filename)
 (declare (ignore filename))
 (if (or *stepper-open* *running-actr*)
 (list 0 "ACT-R currently running or the stepper is open.")
 (unwind-protect
 (progn
 (setf *running-actr* t)
 (let ((result (safe-load filename t)))
 (setf *running-actr* nil)
 (format t (if (= 1 (first result)) "~%#|## Model ~a loaded. ##|#~%" "~%#|## Failed loading model ~a. ##|#~%") filename)
 result
)
)
 (setf *running-actr* nil)
)
)
)

(defun runningModel (run_time)
 (declare (ignore run_time))
 (unwind-protect
 (if *running-actr*
 (model-warning "Run button has no effect because model still running when pressed.")
 (progn (setf *running-actr* t)
 (run run_time)
)
)
 (setf *running-actr* nil)
)
)

(defun reloadingModel ()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (reload-model nil)
)
)
)

Buffers information retrieval

(defun JCG-buffer-status-fct (buffer-names-list)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let (
 (res nil)
 (resOut "")
)
 (dolist (buffer-name (if buffer-names-list
 buffer-names-list
 (buffers))
 res)
 (let ((buffer (buffer-instance buffer-name)))
 (if buffer
 (progn
 (setf resOut
 (format nil
 "Buffer Name: ~S |
 Buffer Empty: ~S |
 Buffer Full: ~S |
 Buffer Requested: ~S |
 Buffer Unrequested: ~S |
 State Free: ~S |
 State Error: ~S |
 "
 buffer-name
 (query-buffer buffer-name '((buffer . empty)))
 (query-buffer buffer-name '((buffer . full)))
 (query-buffer buffer-name '((buffer . requested)))
 (query-buffer buffer-name '((buffer . unrequested)))
 (query-buffer buffer-name '((state . free)))
 (query-buffer buffer-name '((state . error)))
)
)
)
)
)
)
 resOut
)
)
)
)

(defun JCG-buffer-chunk-fct (buffer-names-list)
 (has-current-mp
 "No Meta process present."
 (has-current-model

190

 "No model loaded"
 (let (
 (res nil)
 (resOut "")
)
 (dolist (buffer-name (if buffer-names-list
 buffer-names-list
 (buffers))
 res)
 (let* ((buffer (buffer-instance buffer-name)))
 (if buffer
 (let ((chunk (act-r-buffer-chunk buffer)))
 (setf resOut
 (format nil "Buffer Name: ~S ~%Chunk Inside: ~S ~%Base Chunk: ~@[[~s]~] ~%~%--Chunk Information--~%~a~%"
 buffer-name
 chunk
 (when chunk
 (chunk-copied-from-fct chunk)
)
 (when buffer-names-list
 (progn
 (JCG-pprint-a-chunk chunk)
)
)
)
)
 (push-last (if buffer-names-list
 chunk
 (cons buffer-name chunk))
 res)
)
 (push-last (if buffer-names-list
 :error
 (cons :error nil))
 res)
)
)
)
 resOut
)
)
)
)

(defun return-buffers-names ()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let (
 (names-list nil)
)
 (dolist (buffer (buffers))
 (if buffer
 (progn
 (push "|" names-list)
 (push buffer names-list)
)
 (format nil "Buffer not defined")
)
)
 (reverse names-list)
)
)
)
)

(defun send-DLL-buffers-names()
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (return-buffers-names))
)
)
)

(defun get-Chunk-Parameters-From-Name(chunk)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (get-Chunk-Information-From-Name chunk)
)
)
)

(defun get-Buffer-Parameters-From-Name(buffer)
(has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (get-Buffer-Information-From-Name buffer)
)
)
)

191

(defun get-BufferStates-Parameters-From-Name(buffer)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (JCG-buffer-status-fct (list (intern buffer))))
)
)
)

(defun get-Buffer-Information-From-Name(buffer-name)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (JCG-buffer-chunk-fct (list (intern buffer-name))))
)
)
)
(defun get-BufferStates-Information-From-Name(buffer-name)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (format nil "~a" (JCG-buffer-status-fct (list (intern buffer-name))))
)
)
)

(defun get-Chunk-Information-From-Name(chunk-name)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let ((dm (get-module declarative)))
 (if dm
 (let* (
 (chunk (intern chunk-name))
 (similarChunks (get-all-chunk-similarities dm chunk))
 (thechunk (get-chunk chunk))
 (aString (string (format nil "~%[~a] buffer Chunk Details: " chunk-name)))
)
 (if chunk
 (progn
 (setf aString (concatenate 'string aString
 (format nil "~%Details for chunk ~S inside ~a buffer: ~:[(~s) ~; ~* ~] ~% ~@[~S~%~] ISA ~S ~% ~:{ ~s ~s~%~}"
 chunk-name
 (act-r-chunk-name thechunk)
 (eql theChunk (act-r-chunk-name thechunk))
 (act-r-chunk-name thechunk)
 (act-r-chunk-documentation thechunk)
 (act-r-chunk-type-name (act-r-chunk-chunk-type thechunk))
 (mapcan #'(lambda (slot-name)
 (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists thechunk))
 (when (or exists
 (car (no-output (sgp-fct (list :show-all-slots))))
 (not
 (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type thechunk)))
)
)
 (list (list slot-name value))
)))
 (ct-slot-names (act-r-chunk-chunk-type thechunk))
)))
)
 (setf aString (concatenate 'string aString

 (format nil "~@[~%parameters for chunk ~a inside buffer:~a~%~:{ ~s ~s~%~}~]~%"
 chunk-name
 (act-r-chunk-name theChunk)
 (mapcar #'(lambda (param)
 (list (act-r-chunk-parameter-name param)
 (funcall (act-r-chunk-parameter-accessor param) chunk)
)
)
 chunk-parameters-list
))))
 aString
)
 (format nil "Not a chunk- NIL")
)
)
 (format nil "No declarative module found")
))))
)

IDTR Hook helper code for information retrieval

(defun IDTR-chunk-merge-hook (mc)
)

(defun formatOutput-chunk-spec (chunk-spec)
 (let (
 (aString (string ""))
)
 (when (act-r-chunk-spec-p chunk-spec)
 (setf aString (concatenate 'string aString (format nil "ISA ~A" (chunk-spec-chunk-type chunk-spec))))
 (dolist (slot (act-r-chunk-spec-slots chunk-spec))
 (if (eql '= (act-r-slot-spec-modifier slot))

192

 (setf aString (concatenate 'string aString (format nil "~%~s ~S"
 (act-r-slot-spec-name slot)
 (act-r-slot-spec-value slot)))
)
 (setf aString (concatenate 'string aString (format nil "~% ~2a ~s ~S"
 (act-r-slot-spec-modifier slot)
 (act-r-slot-spec-name slot)
 (act-r-slot-spec-value slot)))
)
)
)
)
 aString
)
)

(defun IDTR-retrieval-request-hook (request)
 (if (not (null request))
 (let* (
 (request-type (act-r-chunk-spec-type request))
 (request-type-name (act-r-chunk-type-name request-type))
 (request-type-slots (act-r-chunk-type-slots request-type))
)
 (hookOutputInformation 0 "retrieval-request" "Chunk" (coerce
 (format nil "Request type name: ~a
 ~%request slots:~%~a
 ~%request bindings:~%~a
 ~%request:~%~a~%
 "
 request-type-name
 request-type-slots
 (formatOutput-chunk-spec request)
 request
)
 'string) 1)
)
)
)

(defun IDTR-retrieval-set-hook (ret-set)
 (dolist (x ret-set)
 (if x
 (let* (
 (chunk (get-chunk x))
 (theChunk (act-r-buffer-chunk chunk))
 (chunk-name (act-r-chunk-name chunk))
 (aString (string (format nil "Buffer: ~a" chunk-name)))
)
 (if chunk
 (progn
 (setf aString (concatenate 'string aString
 (format nil "~%~%Details for chunk ~a: ~:[(~s) ~; ~* ~] ~% ~@[~S~%~] ISA ~S ~% ~:{ ~s ~s~%~}"
 chunk-name
 (eql chunk-name (act-r-chunk-name chunk))
 (act-r-chunk-name chunk)
 (act-r-chunk-documentation chunk)
 (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))
 (mapcan #'(lambda (slot-name)
 (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk))
 (when (or exists
 (car (no-output (sgp-fct (list :show-all-slots))))
 (not
 (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)))
)
)
 (list (list slot-name value))
)
)
)
 (ct-slot-names (act-r-chunk-chunk-type chunk))
)
)
))
 (setf aString (concatenate 'string aString
 (format nil "~@[~%parameters for chunk ~a:~%~:{ ~s ~s~%~}~]~%"
 chunk-name
 (mapcar #'(lambda (param)
 (list (act-r-chunk-parameter-name param)
 (funcall (act-r-chunk-parameter-accessor param) x)
)
)
 chunk-parameters-list
)
)
))
 (hookOutputInformation 0 "retrieval-set" "Chunk set" aString 1)
)
)
)
)
)
)

(defun formatOutput-bufferChunk-details(bufferChunk)
 (if bufferChunk
 (progn
 (let* (
 (aString (string (format nil "~%[~a] buffer Chunk Details: " (act-r-chunk-name bufferChunk))))
 (theChunk (act-r-buffer-chunk bufferChunk))

193

 (chunk (get-chunk theChunk))
)
 (if (not (null chunk))
 (progn
 (setf aString (concatenate 'string aString
 (format nil "~%Details for chunk ~S inside ~a buffer: ~:[(~s) ~; ~* ~] ~% ~@[~S~%~] ISA ~S ~% ~:{ ~s ~s~%~}"
 theChunk
 (act-r-chunk-name bufferChunk)
 (eql theChunk (act-r-chunk-name chunk))
 (act-r-chunk-name chunk)
 (act-r-chunk-documentation chunk)
 (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))
 (mapcan #'(lambda (slot-name)
 (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk))
 (when (or exists
 (car (no-output (sgp-fct (list :show-all-slots))))
 (not
 (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)))
)
)
 (list (list slot-name value))
)
)
)
 (ct-slot-names (act-r-chunk-chunk-type chunk))
))))
 (setf aString (concatenate 'string aString

 (format nil "~@[~%parameters for chunk ~a inside buffer:~a~%~:{ ~s ~s~%~}~]~%"
 theChunk
 (act-r-chunk-name bufferChunk)
 (mapcar #'(lambda (param)
 (list (act-r-chunk-parameter-name param)
 (funcall (act-r-chunk-parameter-accessor param) theChunk)
)
)
 chunk-parameters-list
))))
 aString
)
 " No internal Chunk"
)
)
)
 " No internal Chunk"
)
)

(defun formatOutput-buffer-list(buffers-list)
 (let ((aString (string "")))
 (if (listp buffers-list)
 (progn
 (dolist (buffer buffers-list)
 (if (buffer-exists buffer)
 (progn
 (let* (
 (bufferChunk (buffer-instance buffer))
)
 (if bufferChunk
 (setf aString (concatenate 'string aString (formatOutput-bufferChunk-details bufferChunk)))
)
)
)
 (setf aString (concatenate 'string aString " [" (coerce-string buffer)": does not exists] "))
)
)
)
 (setf aString (concatenate 'string aString " []"))
)
 aString
)
)

(defun formatOutput-Production-Parameters(the-prod)
 (if the-prod
 (let ((prod-name (production-name the-prod)))
 (format nil "~% utility: ~6,3F~% u: ~6,3F~% at: ~6,3F~% reward: ~6,3F~%"
 (no-output (caar (spp-fct (list prod-name :utility))))
 (no-output (caar (spp-fct (list prod-name :u))))
 (no-output (caar (spp-fct (list prod-name :at))))
 (no-output (caar (spp-fct (list prod-name :reward))))
)
)
)
)

(defun formatOutput-Production-Variables(the-prod)
 (if the-prod
 (let (
 (aString (string ""))
 (variables-list (production-bindings the-prod))
)
 (dolist (variable variables-list)
 (setf aString (concatenate 'string aString (format nil "~%~a: ~a" (car variable) (cdr variable))))
)
 aString
)
)
)

194

(defun formatOutput-Production-Details-From-Name(prod-name)
 (has-current-mp
 "No Meta process present."
 (has-current-model
 "No model loaded"
 (let*
 (
 (the-prod (get-production (intern prod-name)))
 (left-hand-side (production-lhs the-prod))
 (right-hand-side (production-rhs the-prod))
 (lhs-buffer-list (production-lhs-buffers the-prod))
 (rhs-buffer-list (production-rhs-buffers the-prod))
)

 (format nil " Production: ~a
 ~%Production Name: ~%~a
 ~%Production Variables: ~%~a
 ~%Production bindings:~a
 ~%Production parameters:~a
 ~%Internal chunks details for buffers [LHS] >>>>>:~% ~a
 ~%Internal chunks details for buffers [RHS] >>>>>:~% ~a
 ~%Production LHS: ~%~a
 ~%Production RHS: ~%~a
 ~%Whole Production: ~%~a
 "
 prod
 (production-name the-prod)
 (production-variables the-prod)
 (formatOutput-Production-Variables the-prod)
 (formatOutput-Production-Parameters the-prod)
 (formatOutput-buffer-list lhs-buffer-list)
 (formatOutput-buffer-list rhs-buffer-list)
 left-hand-side
 right-hand-side
 the-prod
)
)
)
)
)

(defun formatOutput-Production-Details(the-prod prod &rest headers)
 (let*
 (
 (left-hand-side (production-lhs the-prod))
 (right-hand-side (production-rhs the-prod))
 (lhs-buffer-list (production-lhs-buffers the-prod))
 (rhs-buffer-list (production-rhs-buffers the-prod))
)
 (hookOutputInformation 0 (coerce-string (first headers)) (coerce-string (second headers)) (coerce
 (format nil " Production: ~a
 ~%Production Name: ~%~a
 ~%Production Variables: ~%~a
 ~%Production bindings:~a
 ~%Production parameters:~a
 ~%Internal chunks details for buffers [LHS] >>>>>:~% ~a
 ~%Internal chunks details for buffers [RHS] >>>>>:~% ~a
 ~%Production LHS: ~%~a
 ~%Production RHS: ~%~a
 ~%Whole Production: ~%~a
 "
 prod
 (production-name the-prod)
 (production-variables the-prod)
 (formatOutput-Production-Variables the-prod)
 (formatOutput-Production-Parameters the-prod)
 (formatOutput-buffer-list lhs-buffer-list)
 (formatOutput-buffer-list rhs-buffer-list)
 left-hand-side
 right-hand-side
 the-prod
)
 'string) (third headers))
)
)

(defun IDTR-cycle-hook (prod)
(if (null prod)
 (hookOutputInformation 0 "Cycle-hook" "Production Firing:" "Production NULL" 1)
 (progn
 (let ((the-prod (get-production prod)))
 (formatOutput-Production-Details the-prod prod "cycle-hook" "Production Firing:" 1)
)
)
)
)

(defun IDTR-conlict-resolution-hook (cs)
(if (null cs)
 (hookOutputInformation 0 "Conflict-resolution" "Winning Production:" "Production NULL" 1)
 (progn
 (let ((the-prod (get-production (car cs))))
 (formatOutput-Production-Details the-prod (car cs) "Conflict-resolution" "Winning Production:" 1)
)
)
)
 nil
)

195

(defun IDTR-retrieved-chunk-hook (rc)
 (let (
 (chunk (get-chunk rc))
 (theChunk (act-r-buffer-chunk chunk))
 (aString (string (format nil "Buffer: ~a" chunk-name)))
)
 (progn
 (setf aString (concatenate 'string aString
 (format nil "~%~%Details for chunk ~a: ~:[(~s) ~; ~* ~] ~% ~@[~S~%~] ISA ~S ~% ~:{ ~s ~s~%~}"
 rc
 (eql chunk-name (act-r-chunk-name chunk))
 (act-r-chunk-name chunk)
 (act-r-chunk-documentation chunk)
 (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))
 (mapcan #'(lambda (slot-name)
 (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk))
 (when (or exists
 (car (no-output (sgp-fct (list :show-all-slots))))
 (not
 (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)))
)
)
 (list (list slot-name value))
)
)
)
 (ct-slot-names (act-r-chunk-chunk-type chunk))
)
)
))
 (setf aString (concatenate 'string aString
 (format nil "~@[~%parameters for chunk ~a:~%~:{ ~s ~s~%~}~]~%"
 rc
 (mapcar #'(lambda (param)
 (list (act-r-chunk-parameter-name param)
 (funcall (act-r-chunk-parameter-accessor param) rc)
)
)
 chunk-parameters-list
)
)
))
 (hookOutputInformation 0 "retrieval-set" "Chunk set" aString 1)
)
)
)

(defstruct IDTR-module
 esc
 model-name
)

(defun reset-IDTR-module (IDTR-mod)
 (when IDTR-mod
 (sgp
 :conflict-set-hook IDTR-conlict-resolution-hook
 :retrieval-request-hook IDTR-retrieval-request-hook
 :retrieval-set-hook IDTR-retrieval-set-hook
 :cycle-hook IDTR-cycle-hook
 :retrieved-chunk-hook IDTR-retrieved-chunk-hook
 :chunk-merge-hook IDTR-chunk-merge-hook
 :chunk-add-hook IDTR-chunk-add-hook
)
))

(defun create-IDTR-module (model-name)
 (declare (ignore model-name))
 (make-IDTR-module :model-name model-name)
)

(defun delete-IDTR-module (IDTR-mod)
 (declare (ignore IDTR-mod))
)

(defun IDTR-params (IDTR-mod param)
)

(defun IDTR-module-queries (value)
)

(defun define-IDTR-module()
 (clear-all)
 (define-module-fct 'IDTR-MODULE nil

 (list (define-parameter :esc :owner nil))

 :params 'IDTR-params
 :creation 'create-IDTR-module
 :reset '(nil reset-IDTR-module)
 :version "2.0"
 :documentation "A module to handle the IDTR module"
 :delete 'delete-IDTR-module
)
)

(defun undefine-IDTR-module()
 (clear-all)
 (undefine-module-fct 'IDTR-MODULE)

196

)

Executer helper code

(defun cmd-executerLauncher (cmd args)
 (ignore-errors
 (cmd-executer cmd args)
)
)

(defun coerce-string (thing)
 "Make a thing (number, symbol, string) into a string."
 (princ-to-string thing)
)

(defmacro gen-prod (goal name)
 `(gentemp (concatenate 'string (coerce-string ,goal) (coerce-string ,name)))
)

(defmacro genp (goal name)
 `(gentemp (concatenate 'string (coerce-string ,goal) "-" (coerce-string ,name) "-"))
)

 (defmacro gent (goal name)
 `(gentemp (concatenate 'string (coerce-string ,goal) "-type-" (coerce-string ,name) "-")))

(defun time-string ()
 (multiple-value-bind (s m h) (get-decoded-time)
 ;(DECODE-UNIVERSAL-TIME (GET-UNIVERSAL-TIME)) ;(get-decoded-time);(get-universal-time);
 (format nil "~A:~2,,,'0@A:~2,,,'0@A" (+ 1 h) m s))
)

(defun string-split (split-string astring)
 "Returns a list containing items in 'string' split from occurrences of 'split-string'."
 (loop with l = (length split-string)
 for n = 0 then (+ pos l)
 for pos = (search split-string astring :start2 n)
 if pos
 collect (subseq astring n pos)
 else
 collect (subseq astring n)
 while pos
)
)

(defun string-to-list (s)
 (assert (stringp s) (s) "~s should be a string but is not")
 (coerce s 'list)
)

(defun convert-strings-integer(my-list)
 (loop for x in my-list
 collect (locale-parse-number x)
)
)

(defun vector-to-list (vec)
 (let* (
 (new-list nil)
)
 (dotimes (i (length vec))
 (push (aref vec i) new-list)
)
 (reverse new-list)
)
)

(defun list-to-vector-a (list)
 (let* (
 (length (length list))
 (vec (make-array length))
)
 (dotimes (i length)
 (setf (aref vec i) (pop list))
)
 vec
)
)

(defun string-arguments-to_list (args)
 (let* (
 (new-list (string-split " " args))
 (new-list-length (length new-list))
 (my-vector (list-to-vector-a new-list))
 (my-vector-length (length my-vector))
 (new-object-vector (make-array new-list-length))
)
 (dotimes (i my-vector-length)
 (let* (
 (vector-item (aref my-vector i))
 (item-bits (string-split ":" vector-item))
)
 (cond
 ((string= "s" (first item-bits))
 (setf (aref new-object-vector i) (second item-bits))

197

)
 ((string= "i" (first item-bits))
 (setf (aref new-object-vector i) (parse-integer (second item-bits)))
)
)
)
)
 (vector-to-list new-object-vector)
)
)

(defun cmd-executer (operation &rest argument-list)
 (let* (
 (timing)
 (args (string-arguments-to_list (first argument-list)))
 (args-length (length args))
 (newOp (symbol-function (find-symbol (string-upcase operation))))
)
 (if (equal (first args) NIL)
 (progn
 (setq timing (apply newOp nil))
)
 (progn
 (setq timing (apply newOp args))
)
)
 (format nil "~a" timing)
)
)

 (defun cmds-to_list (args)
 (let* (
 (timing)
 (new-list (string-split "@" args))
 (new-list-length (length new-list))
 (my-vector (list-to-vector-a new-list))
 (my-vector-length (length my-vector))
 (new-object-vector (make-array new-list-length))
)
 (setq timing 0.0)
 (dolist (item new-list)
 (let (
 (newcmd-list (string-split "^" (coerce-string item)))
)
 (declare (dynamic-extent newcmd-list))
 (setq timing (+ timing (cmd-executer (car newcmd-list) (car (cdr newcmd-list))))))
)
 timing
)
)

(defun thenewtestfunction (data)
 (if (not(equal (length data) 0))
 (cmds-to_list data)
)
)

198

APPENDIX F: MUTATION SYSTEM PUMP
int GANewMutator::IDTR_Mutator(GAGenome & c, float pmut){
 genesPtr = &(GA1DArrayAlleleGenome<float>&)c; //retreive the genes from Galib
 //retreive the user data were some metrics and pointers are kept
 data = (UserData *)genesPtr->userData();
 genesSize = genesPtr->size();//get number of genes
 //Create some masks to hold some status about genes and mutator selection
//the muationsMask is passed to retrieve from the operators
//which actual genes was affected by the mutation system
 mutationsMask = (int*) calloc (genesSize,sizeof(int));
 mutationMaskFilter = (int*) calloc (genesSize,sizeof(int));
 //if we do have created thos masks
 if (mutationsMask!=NULL && mutationMaskFilter != NULL){
 //Randomise the gene status. 1 means they will undergo mutation. 0 otherwise
 genesAffected = 0;
 if(GAFlipCoin(0.95)){ //a small chance that only one gene will be mutated. i.e. 5%
 for (i = 0; i < genesSize; i+=2){ //if a selection of selection of genes is selected
 //flip a coin to decide the status taking the mutation rate into account
 if(GAFlipCoin(pmut)){
 //a pair of adjacent genes are going to be mutated i.e. X&Y coordinated
 mutationMaskFilter[i] = 1;mutationMaskFilter[i+1] = 1;
 }else{
 mutationMaskFilter[i] = 0;mutationMaskFilter[i+1] = 0;
 }
//increasse the amount index if selected genes for mutation
 genesAffected += 2;
 }
 }else{
 //if one a single gene is selected, get a random X coordinate from the pool
 int mutatatedGeneIndex = IDTR_GAEvenRandomInt(0, genesSize);
 for (i = 0; i < genesSize; i+=2){ //make that all are turned off
 mutationMaskFilter[i] = 0;mutationMaskFilter[i+1] = 0;
 }
//and turn the selected pair on
 mutationMaskFilter[mutatatedGeneIndex] = 1;mutationMaskFilter[mutatatedGeneIndex+1] = 1;
 }
 //randomise which mutator to fire using masks from our pool of 12 operators
 int nbMutators = 12;
 //get a mutation operator at random
 //int mutatorIndex = mutatorIndex = GARandomInt(0,nbMutators-1);
 int mutatorIndex = 0;
 if(!data->configInstance->goodLayoutFound) //if a workable layout not found
 mutatorIndex = GARandomInt(0,nbMutators-1); //then get any operator at random
 else{
 if (GAFlipCoin(0.50)){ //if the toss of a coing is favorable, select any oprator
 mutatorIndex = GARandomInt(0,nbMutators-1);
 } else{//otherwise
 if(GAFlipCoin(0.50)) //toss a coin to select which of the sticking operator to select
 mutatorIndex = 10; //stick to a related component by an action
 else
 mutatorIndex = 9; //stick to any component in the layout
 }
 }
 geneMutationProb = pmut; //ensure that the operators are getting the mutationrate
 //randomise the genes that will be mutated
 randomizer.setup(&geneMutationProb, &genesSize, mutationMaskFilter);
//retreive from the randomiser a pointer to the genes to pass to the operators
 genesLoc = randomizer.getValuesVecPtr();
//ensure that the oprators know how mny genes will be affected
 genesLocSize = genesLoc->size();
mutationOperators[mutatorIndex](); //invoke the selected mutator
 //retreive the total number of mutation to return to Galib for tis stats
 mutations = 0;
 for (int i = 0; i < genesSize; i++){
 if (mutationsMask[i] > 0)
 mutations += mutationsMask[i];
 }
 //clean up
 if (mutationMaskFilter) free (mutationMaskFilter);
 if (mutationsMask) free (mutationsMask);
//and return the number of mutations that took place to Galib
 return mutations;
 }
 return 0;
}

199

APPENDIX G: BLOCK RANDOM MUTATION OPERATOR
void RandomBlockComponentsShift(){
 //get random horizontal, vertical direction
 leftORright = (GALEFTRIGHT) GARandomBit(); upORdown = (GAUPDOWN)GARandomBit();
 direction = (GADIRECTION)GARandomInt(0,2);
 w = data->width; h = data->height; //retreive metrics of the layout
 //compute random nudging value
 offsetXVal = _GARandomFloat_(&minFloatRandom,&w); offsetYVal = _GARandomFloat_(&minFloatRandom,&h);
 while (genesLocSize > 0){ // while there are still a number of genes pairs to mutate
 //retreive both X and Y index for coordinate of a component
 destX = randomizer.getRandomNoReplacement();
 genesLocSize = randomizer.getNumberValuesInVector();
 destY = destX + 1;
 if (destX < 0) break; //if errors break away to terminate process
 //reteive the actual value of component coordinates i.e. gene values
 valX = newValX = genesPtr->gene(destX); valY = newValY = genesPtr->gene(destY);
 //and retrieve the metrics of the component i.e. width and height
 XcompMetric = data->GUI_metrics[destX]; YcompMetric = data->GUI_metrics[destY];
 //if direction is horizontal i.e. going left or right
 if(direction == GOING_HONRIZONTAL){
 //if left was selected
 if (leftORright == GOING_LEFT){
 newValX = valX - offsetXVal; //shift component to left
 //deal with situation when outside the layout
 //by shifting by a reflective amount the other side
 if (newValX < 0) newValX = abs(newValX) + 1;
 }else{//if going right
 newValX = valX + offsetXVal; //shift component to right
 //deal with situation when outside the layout
 if (newValX + XcompMetric > w) newValX = newValX - ((newValX + XcompMetric) - w) - 1;
 }
 genesPtr->gene(destX, newValX); //save new location in the chromosome
 mutationsMask[destX]++; //and increase mutation number
 //if the direction is to go vertically
 }else if (direction == GOING_VERTICAL){
 if (upORdown == GOING_UP){ //if selected direction is to go upward
 newValY = valY - offsetYVal; //shift component upward
 if (newValY < 0) newValY = abs(newValY) + 1; //and deal with situation when outside the layout
 }else{//if doing downward
 newValY = valY + offsetYVal; //shift component downward
 //and deal with situation when outside the layout
 if (newValY + YcompMetric > h) newValY = newValY - ((newValY + YcompMetric) - h) - 1;
 }
 genesPtr->gene(destY, newValY); //save new location in the chromosome
 mutationsMask[destY]++; //and increase mutation number
} else if (direction == GOING_DIAGONAL){ //if the direction is to go diagonally
 if (leftORright == GOING_LEFT){ //if one of selected direction is to left
 newValX = valX - offsetXVal; //shift component on the left
 if (newValX < 0) newValX = abs(newValX) + 1; //and deal with situation when outside the layout
 }else{{//if doing on the right
 newValX = valX + offsetXVal; shift component to the right
 //and deal with situation when outside the layout
 if (newValX + XcompMetric > w)
 newValX = newValX - ((newValX + XcompMetric) - w) - 1; //newValX - (w-newValX) - 1;
 }
 if (upORdown == GOING_UP){ {{//if doing on upward
 newValY = valY - offsetYVal; shift component upward
 //and deal with situation when outside the layout
 if (newValY < 0) newValY = abs(newValY) + 1;
 }else{ {{//if doing downward
 newValY = valY + offsetYVal; //shift component downward
 //and deal with situation when outside the layout
 if (newValY + YcompMetric > h)
 newValY = newValY - ((newValY + YcompMetric) - h) - 1; //newValY - (newValY - h) -1;
 }
 //save new location in the chromosome
 genesPtr->gene(destX, newValX);
 genesPtr->gene(destY, newValY);
 //and increase mutation number
 mutationsMask[destX]++;
 mutationsMask[destY]++;
 }
 }
}

200

APPENDIX H: TOISE 2-POINTS CROSSOVER
int GACrossovers::IDTRTwoPointPairCrossover(const GAGenome& p1, const GAGenome& p2, GAGenome* c1, GAGenome* c2){
 //retrieve the genome from Galib
 const GA1DArrayGenome<float>& mom=DYN_CAST(const GA1DArrayGenome<float>&, p1);
 const GA1DArrayGenome<float>& dad=DYN_CAST(const GA1DArrayGenome<float>&, p2);
 int ofsprings = 0; float geneX = 0.0f; float geneY = 0.0f;
 //retrieve Mum and Dad chomosome length
 mumLength = mom.length();
 dadLength = dad.length();
 //get a random value for cutting location
 pos1 = GAUtils::getEvenRandomINT(&zeroIntVal, &mumLength);
 pos2 = GAUtils::getEvenRandomINT(&zeroIntVal, &mumLength);
 //if genes properly retreived and we have two of them i.e. need 2 ofsprings
 //NOTE: be careful that some type of GA only generate 1 ofspring
 if(c1 && c2){
 //cast the genomes to buffers of genes
 GA1DArrayGenome<float> &sis=DYN_CAST(GA1DArrayGenome<float>&, *c1);
 GA1DArrayGenome<float> &bro=DYN_CAST(GA1DArrayGenome<float>&, *c2);
 //if it happens that random values are not the right way, swap them
 if (pos1 > pos2)
 SWAP(pos1,pos2);
 //compute length of segment
 int len = pos2-pos1;
 //toss a coin to decide which way round the infomration is transfer to next generation
 if(GARandomBit()){
 //copy gene information from parents to one child i.e. MUM, DAD,MUM
 sis.copy(mom, 0, 0, pos1);
 sis.copy(dad, pos1, pos1, len);
 sis.copy(mom, pos2, pos2, mumLength-pos2);
 //repeat process for other child i.e. DAD, MUM,DAD
 bro.copy(dad, 0, 0, pos1);
 bro.copy(mom,pos1, pos1, len);
 bro.copy(dad, pos2, pos2, dadLength-pos2);
 }else{
 //copy gene information from parents to one child i.e. DAD, MUM,DAD
 sis.copy(dad, 0, 0, pos1);
 sis.copy(mom, pos1, pos1, len);
 sis.copy(dad, pos2, pos2, dadLength-pos2);
 //repeat process for other child i.e. MUM, DAD,MUM
 bro.copy(mom, 0, 0, pos1);
 bro.copy(dad,pos1, pos1, len);
 bro.copy(mom, pos2, pos2, mumLength-pos2);
 }
 //tell Galib 2 ofsprings were generated
 ofsprings = 2;

 }
 //if only 1 ofspring is needed
 else if(c1 || c2){
 //cast the genomes to buffers of genes
 GA1DArrayGenome<float> &kid = (c1 ? DYN_CAST(GA1DArrayGenome<float> &, *c1) :
 DYN_CAST(GA1DArrayGenome<float> &, *c2));
 //if it happens that random values are not the right way, swap them
 if (pos1 > pos2)
 SWAP(pos1,pos2);
 //compute length of segment
 int len = pos2-pos1;
 toss a coin to decide which way round the infomration is transfer to next generation
 if(GARandomBit()){
 //copy gene information from parents to one child i.e. MUM, DAD,MUM
 kid.copy(mom, 0, 0, pos1);
 kid.copy(dad, pos1, pos1, len);
 kid.copy(mom, pos2, pos2, mumLength-pos2);
 }
 else{
 copy gene information from parents to one child i.e. DAD, MUM,DAD
 kid.copy(dad, 0, 0, pos1);
 kid.copy(mom, pos1, pos1, len);
 kid.copy(dad, pos2, pos2, mumLength-pos2);
 }
 //tell Galib 1 ofsprings were generated
 ofsprings = 1;
 }
 return ofsprings;
}

201

APPENDIX I: GA PENALTY ALGORITHMS
float JavaObjectsManager::getAreaOverlapPenaltiesFactor(){

 long interceptAreaCumul = 0.0f;
 JavaComponent* compA = NULL;
 register int i;
 register int j;
 long totalArea = 0;
 std::vector<JavacompSymbols> symbolsVec;

 for (compA = (JavaComponent*)firstComponent; compA;){
 /*
 We need to ensure that static components are not taken into account and
 that they are allowed to move on the layout
 Any other components are saved to a symbol that will calculate anything needed et
 */
 if (compA && compA->allowed
 && (isComponentAllowedToMove(&compA->baseClass, &compA->className)
 || compA->className.compare("javax.swing.JMenuBar") == 0)

){
 JavacompSymbols symbol;
 //get the component metrics into the symbol
 compA->fillSymbol(symbol);
 //increase ID
 compTotal ++;
 symbol.id = compTotal;
 //push it into a vector
 symbolsVec.push_back(symbol);
 }
 //next component
 compA = (JavaComponent*)compA->nextComponent;
 }

 //we now detect the amount of interceptions for each components
 for (i = 0; i < (int)symbolsVec.size(); i++){
 for (j = 0; j < (int)symbolsVec.size(); j++){

 //ensure that we do not into account a component overlapping with itself
 if (symbolsVec[j].id == symbolsVec[i].id)
 break;

 //increase the total area by the area of this component
 totalArea += symbolsVec[j].area;

 //model the GUI components as a CRECT objects so we can use its functionality
 rectA = CRect(symbolsVec[i].x, symbolsVec[i].y,
 symbolsVec[i].x + symbolsVec[i].width, symbolsVec[i].y + symbolsVec[i].height);
 rectB = CRect(symbolsVec[j].x, symbolsVec[j].y,
 symbolsVec[j].x + symbolsVec[j].width, symbolsVec[j].y + symbolsVec[j].height);

 //get the intersection CRECT for both object to compare for overlap
 interRes = intersecRect.IntersectRect(rectA, rectB) == 1;

 //if overlap it exists
 if (interRes){

 //calculate the intersection area
 interceptArea = intersecRect.Width() * intersecRect.Height();

 //and increase the total overlap area
 interceptAreaCumul += interceptArea;
 }
 }
 }
 //and return the fraction of overlap compared to total component area
 return (interceptAreaCumul * 1.0f)/(totalArea * 1.0f);
}

float JavaObjectsManager::getOutofAreaPenalties(){

//do a little checks to beging with
 configInstance->javaManagerBusy = true;
 if(areasManager->getNumberAreas() == 0)
 return 0.0f;
 penalties = 0;
 //for each component in the layout
 for (comp = (JavaComponent*)firstComponent; comp;){
 crectA.SetRect(comp->x, comp->y,comp->x+comp->width, comp->y + comp->height);
//if the component is bound to an area
 if(comp->bindedToArea){
//get the area
 area = areasManager->getAreaFromID(&comp->areaID);
 //if we have one
 if (area){
//translate this area to a CRect component and apply the penalties
 areaRect.SetRect(area->topLeft,area->bottomRight);
 if (crectA.left < areaRect.left || crectA.right > areaRect.right
 ||crectA.top < areaRect.top ||crectA.bottom > areaRect.bottom){
 penalties += 6;
 if(areaRect.PtInRect(crectA.CenterPoint()))
 penalties -= 1;
 if(areaRect.PtInRect(area->bottomRight))
 penalties -= 1;
 if(areaRect.PtInRect(CPoint(area->topLeft.x, area->bottomRight.y)))

202

 penalties -= 1;
 if(areaRect.PtInRect(CPoint(area->bottomRight.x, area->topLeft.y)))
 penalties -= 1;
 }
 }

 //the component make be in an area it is not supposed to be in
//so attempt to get it
 Area* OtherArea = areasManager->getAreaForPoint(CPoint(crectA.CenterPoint()));
 CRect intersecRect;
 //if it exists
 if(OtherArea){
 //and we have an area
 if(area){
 //make sure we are not penalising for being in tis own area!
 if(OtherArea->getID() != area->getID()){
 //if if there is any intersect
 CRect crectB;
 CPoint p1 = OtherArea->topLeft;
 CPoint p2 = OtherArea->bottomRight;
 crectB.SetRect(OtherArea->topLeft, OtherArea->bottomRight);
 //if included increase the peanlties points
 bool interRes = intersecRect.IntersectRect(areaRect, crectB) == 1;
//and if there is penalise this component
 if(interRes)
 penalties += 6;
 }
 }
 }
 }
//next component
 comp = (JavaComponent*)comp->nextComponent;
 }
 //we are not doing anything anymore
 configInstance->javaManagerBusy = false;
 //return overall penalties
 return penalties ;
}

203

APPENDIX J: GENETIC ALGORITHM SURROGATE METHOD EXAMPLE

inline float timingDragDropActionMoveTo(ActionRecord* actionRecord){

timing = 0.0f; cartesianLength = 0.0f; angleForCartesianDistance = 0.0f;

approachWidth = 0.0f; lengthDegrees = 0.0f; newFitts_coefficient = 0.0f;

last_x = actionRecord->action1_x; last_y = actionRecord->action1_y;

lastWidth = actionRecord->action1_width;lastHeight = actionRecord->action1_height;

from_x = actionRecord->action2_x; from_y = actionRecord->action2_y;

fromWidth = actionRecord->action2_width; fromHeight = actionRecord->action2_height;

to_x = actionRecord->action3_x; to_y = actionRecord->action3_y;

toWidth = actionRecord->action3_width; toHeight = actionRecord->action3_height;

fitts_time = 0.0f; prep_time = 0.05f;

lastAngleForCartesianDistance = 0.0f; lastLengthDegrees = 0.0f;

start_time = 0.485f; dir = false;

dist = false; finish_time = 0.0f; //(+ (burst-time module) (exec-time mvmt))

exec_time = 0.0f; //(+ (init-time mtr-mod) fitts)

realFittsVal = 0.0f; nfeats = 0;

//the first action will be a cursor one

//cursor-ply is based on ply itself descendant from hfrt-movement which style is:HAND_FINGER_R_THETA

actionStyle = HAND_FINGER_R_THETA; lastActionStyle = NOSTYLE;

styleFeatures = featureNumberForActionStyle[actionStyle];

//FOCUSING AND MOVING OVER THE FIRST ORIGN TARGET I.E. last_x,last_y,last_x-1,last_y-1

//WE MOVE TO THE TARGET A AND WE HAVE SET UP THE CURSOR AND HAND POSITION TO TARGET A MINUS 1 FOR

BOTH X //AND Y METRICS

//WE DO THIS QUICK CALL TO GET THE ANGLE AND LENGTH SO IT CAN BE USED TO CALCULATE THE DIFFERENCE IN

//FEATURES FOR THE NEXT ACTIONS

last_x1 = last_x-1; last_y1 = last_y-1;

move_cursor_calculations(cartesianLength,angleForCartesianDistance,

approachWidth,lengthDegrees,&lastWidth,&lastHeight,&last_x1,&last_y1,&last_x,&last_y);

newFitts_coefficient = fitts_coefficient_func();

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient);

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle,

&lastAngleForCartesianDistance,&angleForCartesianDistance,&lastLengthDegrees,&lengthDegrees)

;

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees;

//THE STYLE REMAINS THE SAME

lastActionStyle = actionStyle; actionStyle = HAND_FINGER_R_THETA;

//WE ARE MOVING TOWARD TARGET A. THIS SHOULD BE LIKE THIS NOT PASSING THE HEIGHT INSTEAD OF THE WIDTH

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idt

h,&fromHeight,&last_x,&last_y,&from_x,&from_y);

newFitts_coefficient = fitts_coefficient_func();

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient);

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle,

 &lastAngleForCartesianDistance,&angleForCartesianDistance,&lastLengthDegrees,&lengthDegrees)

;

prep_time = computePrepTime(nfeats);

timing = 1.02f;

if (cartesianLength == 0.0f){

 finish_time = 0.285f;

 timing += finish_time;

 timing += 0.185f;

}else{

 finish_time = fitts_time + 0.05f + 0.05f;

 timing += prep_time + finish_time;

 timing += 0.235f;

 if (prep_time == 0.0f){

 timing += 0.035f;

 }

}

timing += 0.0000001729f; timing += 0.165f; lastTiming = timing;

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees;

//THE STYLE REMAINS THE SAME

lastActionStyle = HAND_FINGER_R_THETA; actionStyle = HAND_FINGER_R_THETA;

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idt h,&fromHeight,&last_x,&last_y,&from_x,&from_y);

newFitts_coefficient = fitts_coefficient_func();

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient);

nfeats = getNumberDifferentFeatures(

 dir,dist,&lastActionStyle,&actionStyle,&lastAngleForCartesianDistance,&angleForCartesianDist

ance

 ,&lastLengthDegrees,&lengthDegrees);

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees;

//THE STYLE REMAINS THE SAME

lastActionStyle = actionStyle; actionStyle = HAND_FINGER_R_THETA;

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idth,&fromHeight,&from_x,&from_y,&from_x,&from_y);

newFitts_coefficient = fitts_coefficient_func();

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient);

204

nfeats = getNumberDifferentFeatures(

dir,dist,&lastActionStyle,&actionStyle,&lastAngleForCartesianDistance,&angleForCartesianDistance,&las

tLengthDegrees,&lengthDegrees);

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees;

//WE JUST USE THE PUNCH STYLE FOR CLICKING

lastActionStyle = PUNCH; actionStyle = HAND_FINGER_R_THETA;

move_cursor_calculations(cartesianLength,lastAngleForCartesianDistance,approachWidth,lastLengthDegree

s,&

 toWidth,&toHeight,&from_x,&from_y,&to_x,&to_y);

newFitts_coefficient = fitts_coefficient_func();

fitts_time = fittsFunc(realFittsVal, &lastLengthDegrees, &approachWidth, &newFitts_coefficient);

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle,

 &angleForCartesianDistance,&lastAngleForCartesianDistance,&lengthDegrees,&lastLengthDegrees)

;

prep_time = computePrepTime(nfeats);

if (cartesianLength == 0.0f){

 finish_time = 0.285f; timing += finish_time; timing += 0.150f;

}else{

 finish_time = fitts_time + 0.05f + 0.05f;

 timing += prep_time + finish_time; timing += 0.050f; timing += 0.300f;

 if (prep_time == 0.0f){ timing += 0.035f;}

}

return timing;

}

inline void move_cursor_calculations(float& cartesianDistance,float& angle,float& approachWidth,
 float& angleForDistance, float* width, float* height, float* from_x, float* from_y,
 float* to_x, float* to_y){
//we first use the cartesian coodinates x1 y1 x2 y2 of our 2 points to get the distance from the
//cartesian distance between those points and the angle from origin to this tangent
xy_to_polar(angle, cartesianDistance, from_x, from_y, to_x, to_y);
angleForDistance = distanceToangle(&cartesianDistance);
//now the width in pixels in the GUI must be re-calculated with eye position and distance from screen
approachWidth = calcApproach_width(width,height,angle);

if (approachWidth <= 0.0f){
 approachWidth = 1.0f;
}
}

//this is computed by the CURSOR-PLY in the compute-exec-time function of motor.lisp
//which seems to do that only. The cursor-ply object is created in the move-cursor function
//as part of the "prepare-movement" process
inline float fitts_coefficient_func(){
return exp(control_order) * fitts_coefficient;
}

inline float fittsFunc(float& realFittsVal, float* lengthDegrees, float* approachWidth,
 float* fittsCoefficient){
realFittsVal = *fittsCoefficient *(log((*lengthDegrees/*approachWidth)+0.5)/log(2.0f));
result = realFittsVal;
if (result < min_fitts_time)
 result =min_fitts_time;
return result;
}

inline float calcAngle(float* p1_x, float* p1_y, float* p2_x, float* p2_y){
a_x = *p2_x - *p1_x; a_y = *p2_y - *p1_y; b_x = 1.0; b_y = 0.0;
return acos((a_x*b_x+a_y*b_y)/sqrt(a_x*a_x+a_y*a_y));
}

inline void xy_to_polar (float& angle, float& distance, float* from_x, float* from_y, float* to_x,
 float* to_y){
//we first calculate the distance between those 2 points
distance = cartesianDistance(from_x, from_y, to_x, to_y);
//and then returns the angle of to the tangent between those 2 points
if (distance == 0.0f) angle = 0.0f; else angle = atan2(*to_y-*from_y,*to_x-*from_x);
}
inline float degreesToRadian(float* degrees){
//return degrees * PI / 180.0f;
return D_toR_(*degrees);
}

inline float radianTodegrees(float* radians){
//return radians * 180 / PI;
return R_toD_(*radians);
}

inline float angleTopixels_mth(float* angle){
float result = distanceFromScreen * tan(degreesToRadian(angle)) * screenDPI;
return result;
}

205

inline float distanceToangle(float* pixels){
//we have a distance in pixels and we are looking from a certain distance from the screen.
//We first adjust it for the screen DPI
//we can get the angle of sight using the R=atan(X/Y) where X=pixels and Y distance = //distanceFromScreen. We then return the degrees
rather than radians.
distanceAngle = atan((*pixels / screenDPI) / distanceFromScreen);
return radianTodegrees(&distanceAngle);
}

inline float cartesianDistance(float* from_x, float* from_y, float* to_x, float* to_y){
return sqrt((*to_x-*from_x)*(*to_x-*from_x) + (*to_y-*from_y)*(*to_y-*from_y));
}

inline float calcApproach_width(float* width, float* height, float& polar_angle){
critical_theta = atan2(*height,*width); theta = abs(polar_angle);
if (theta > _PI_/2.0f) theta = _PI_ - theta;
float result = 0.0f;
if(theta == 0.0f) result = *width;
else if(theta == _PI_/2.0f) result = *height;
else if (theta == critical_theta) result = cartesianDistance(height,width,height,width);
else if (theta < critical_theta) result = *width / cos(theta);
else result = *height / cos(_PI_/2.0f - theta);
return = distanceToangle(&result);
}

206

APPENDIX K: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000

GENERATION SIZE

Design Layout ACT-R latency

204.481

204.484

204.535

204.536

204.544

204.549

204.552

207

204.565

204.567

204.567

204.569

204.575

208

APPENDIX L: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000

GENERATION SIZE

Design Layout ACT-R latency

204.405

204.413

204.426

204.48

204.494

204.503

204.503

209

204.523

204.524

204.531

210

APPENDIX M: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000

GENERATION SIZE

Design Layout ACT-R latency

204.408

204.457

204.461

204.48

204.483

204.484

204.487

211

204.494

204.501

204.511

204.512

204.514

204.514

212

APPENDIX N: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000

GENERATION SIZE

Design Layout ACT-R latency

204.562

204.607

204.618

204.621

204.631

204.633

204.651

213

204.659

204.660

204.662

204.678

204.679

214

APPENDIX O: TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000

GENERATION SIZE

Design Layout ACT-R latency

204.441

204.451

204.470

204.495

204.497

204.500

204.500

215

204.506

204.509

204.510

204.516

204.531

216

APPENDIX P: TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000

GENERATION SIZE

Design Layout ACT-R latency

204.497

204.515

204.569

204.579

204.600

204.605

204.615

217

204.616

204.621

204.629

204.630

204.632

218

References

1. AbuBakar, 2010, Evaluation and Cognitive Modelling. Unpublished Master’s

Dissertation, The School of Computing Science & Digital Media, The Robert

Gordon University,Aberdeen.

2. Adusumilli, Bein, D. & Bein, W., 2007. A Genetic Algorithm for the Two Machine

Flow Shop Problem. p.8.

3. Ajenblit & Wainwright, 1998. Applying Genetic Algorithms to the U-Shaped

Assembly Line Balancing Problem. Proceedings of the 1998 IEEE International

Conference on Evolutionary Computation (ICEC'98),,part of WCCI, Anchorage,

Alaska, May 4-9, p.5.

4. Almasri, 2005. What We Can Learn From SILK and DENIM. School of Computer

Science, McGill University, p.42.

5. Ames & Jie, 2004. Critical Paths for GUI Regression Testing. University of

California, Santa Cruz.

6. Anderson, Matessa & Lebiere, 1997. ACT-R: A Theory of Higher Level Cognition

and Its Relation to Visual Attention. Human-Computer Interaction, 12(4),

pp.439–462.

7. Anderson, 1996. ACT: A simple theory of complex cognition. American

Psychologist, 51(4), p.355.

8. Anderson, 1993. Rules of the mind, Lawrence Erlbaum.

9. Anderson & Lebiere, 1998. The atomic components of thought, Lawrence

Erlbaum.

10. Anderson & Schunn, 2000. Implications of the ACT-R learning theory: No magic

bullets. Advances in instructional psychology, 5, pp.1–34.

11. Anderson et al., 2004. An Integrated Theory of the Mind. Psychological Review,

111(4), pp.1036–1060.

12. Ando & Iba 2000. Analog Circuit Design with Variable Length Chromosomes-

andoCEC2000. p.8.

13. Apple, 2012. Apple Development Centre Apple, ed. developer.apple.com.

Available at: https://developer.apple.com/library/ios/

#documentation/UserExperience/

Conceptual/MobileHIG/Introduction/Introduction.html [Accessed 2012].

14. Balakrishnan, J. & Cheng, C.H., 2000. Genetic search and the dynamic layout

problem. Computers and Operations Research, (27), pp.587–593.

15. Balaprakash, Wild & Hovland, 2012. An Experimental Study of Global and Local

Search Algorithms in Empirical Performance Tuning. Proceedings of the 10th

International Meeting on High- performance Computing for Computational

Science (VECPAR 2012).

16. Balinsky, 2006. Evaluating interface aesthetics: measure of symmetry. Digital

Publishing. Edited by Allebach, 6076, pp.52–63.

17. Bäck, 1989. Optimization by means of genetic algorithms. Technical University of

Ilmenau, pp.163–169.

18. Bevan, 1998. ISO 9241: Ergonomic requirements for office work with visual

display terminals (VDTs)-Part 11: Guidance on usability. TC, 159.

219

19. Bevan & Ferre, 2010. Usability Planner: Development of a Tool to Support the

Selection and Estimation of Cost Benefits of UCD Methods. Submitted to HCSE.

20. Bielman, 2006. CFFI-SYS Interface Specification. pp.1–13.

21. Biswas, 2007. Simulating HCI for special needs. SIGACCESS Accessibility and

Computing , Issue 89.

22. Biswas & Robinson, 2010. A brief survey on user modelling in HCI. Intelligent

Techniques for Speech, Image and Language Processing, Springer-Verlag.

23. Biswas & Robinson, 2008. A Case Study of Simulating HCI for Special Needs.

Designing Inclusive Futures, pp.175–184.

24. Biswas & Robinson, 2008. Automatic evaluation of assistive interfaces. In IUI '08:

Proceedings of the 13th international conference on Intelligent user interfaces.

ACM Request Permissions.

25. Biswas & Robinson, 2007. Simulation to predict performance of assistive

interfaces. Proceedings of the 9th international ACM SIGACCESS conference on

Computers and accessibility, pp.227–228.

26. Biswas, Bhattacharya & Samanta, 2005. User Model to Design Adaptable

Interfaces for Motor-Impaired Users. Audio, Transactions of the IRE Professional

Group on, pp.1–6.

27. Blouin & Fadel, 2002. GA-based multi-material structural optimization using

stepwise mesh refinement. … Analysis and Optimization.

28. Bolton, Bass & Siminiceanu, R.I., 2012. Generating phenotypical erroneous human

behavior to evaluate human–automation interaction using model checking.

International Journal of Human-Computer Studies, pp.1–19.

29. Booch, 1986. Object-oriented development. IEEE Trans Software Eng.

30. Bothell, 2008. ACT-R 6.0 Reference Manual. pp.1–358.

31. Bowen, 2012. Windows Template Library. wtl.sourceforge.net. Available at:

http://wtl.sourceforge.net/?source=navbar [Accessed 2012].

32. Brewbaker, 2008. Optimizing stylus keyboard layouts with a genetic algorithm:

customization and internationalization. Dept. of Computer Science, Iowa State

University.

33. Bryson, 2001. Intelligence by Design: Principles of Modularity and Coordination

for Engineering Complex Adaptive Agents.

34. Burk et al., 1998. Putting more genetics into genetic algorithms. Evolutionary

Computation, 6(4), pp.387–410.

35. Byrne, 2003. A mechanism-based framework for predicting routine procedural

errors. In Proceedings of the Twenty-Fifth Annual Conference of the Cognitive

Science Society. Austin, TX.

36. Byrne, 2005. Cognitive architectures in HCI: Present work and future directions.

Proceedings of the 11th International Conference on Human Computer

Interaction, Las Vegas, NV.

37. Byrne et al., 1999. Eye tracking the visual search of click-down menus.

Proceedings of the SIGCHI conference on Human factors in computing systems:

the CHI is the limit, pp.402–409.

38. Byrne, 2001. ACT-R/PM and menu selection: applying a cognitive architecture to

HCI. International Journal of Human-Computer Studies, 55(1), pp.41–84.

39. Byrne, 2008. Cognitive Architecture. pp.1–21.

220

40. Byrne & Anderson, 2000. Serial Modules in Parallel: The Psychological Refractory

Period and Perfect Time-Sharing.

41. Byrne & Kirlik, 2005. Using computational cognitive modeling to diagnose

possible sources of aviation error. The International Journal of Aviation

Psychology, 15(2), pp.135–155.

42. Card, Moran & Newell, 1980. The keystroke-level model for user performance

time with interactive systems. Communications of the ACM, 23(7), pp.396–410.

43. Card, Moran & Newell, 1983. The psychology of human-computer interaction,

CRC.

44. Carroll, 1997. Human-Computer Interaction: Psychology as a Science of Design.

Annual review of psychology.

45. Carroll, 1988. Human–Computer Interaction. p.370. Available at:

http://onlinelibrary.wiley.com/doi/10.1002/0470018860.s00545/full

[Accessed March 16, 2011].

46. Carroll, 1999. Five Reasons for Scenario-Based Design. In HICSS '99: Proceedings

of the Thirty-Second Annual Hawaii International Conference on System Sciences.

IEEE Computer Society.

47. Carroll, 2002. Scenarios and Design Cognition. In RE '02: Proceedings of the 10th

Anniversary IEEE Joint International Conference on Requirements Engineering.

IEEE Computer Society.

48. Chesbrough & Rosenbloom, 2002. The role of the business model in capturing

value from innovation: evidence from Xerox Corporation's technology spin‐off

companies. Industrial and Corporate Change.

49. Chong & Wray, 2006. Unified theories of cognition, Wiley Online Library.

50. Christou, 2007. CoDeIn: A Knowledge-based Framework for the Description and

Evaluation of Reality-based Interaction,

51. Couckuyt et al., 2011. Automatic surrogate model type selection during the

optimization of expensive black-box problems. pp.4269–4279.

52. Crystal & Ellington, 2004. Task analysis and human-computer interaction:

approaches, techniques, and levels of analysis. Tenth Americas Conference on

Information Systems.

53. Dahl, 2004. The birth of object orientation: The Simula languages. From Object-

Orientation to Formal Methods.

54. Das & Stuerzlinger, 2007. A cognitive simulation model for novice text entry on

cell phone keypads. In ECCE '07: Proceedings of the 14th European conference on

Cognitive ergonomics: invent! explore. ACM.

55. Dawson, 2010. Game Creation using OGRE – Object-Oriented Graphics Rendering

Engine. pp.1–24.

56. Deininger, 1960. Human factors engineering studies of the design and use of

pushbutton telephone sets. Bell System Technical Journal, 39, pp.995–1012.

57. Dillon, 2005. Encyclopedia of Cognitive Science. p.16.

58. Dillon, Sweeney & Maguire, 1994. A survey of usability engineering within the

European IT industry - Current practice and needs. People and computers VIII:

proceedings of HCI 93, Loughborough, September 1993, (7), p.81.

59. Dorman & Gaudiano, 1998. Motivation. In Handbook of Brain Theory and Neural

Networks. M. Arbib (Ed.). Cam- bridge, MA: MIT Press., pp. 1–15.

221

60. Dufilie et al., 2012. Weave: A Web-based Architecture Supporting Asynchronous

and Real-time Collaboration.

61. Fahimuddin, 2003. PLATON Optimisation Using GALib.

62. Fleetwood & Byrne, 2001. Modeling Icon Search in ACT-R/PM. ICCM 2001.

63. Fleetwood & Byrne, 2006. Modeling the visual search of displays: a revised ACT-R

model of icon search based on eye-tracking data. Human-Computer Interaction,

21(2), pp.153–197.

64. Fleetwood & Byrne, 2003. Modeling the visual search of displays: A revised ACT-

R/PM model of icon search based on eye-tracking and experimental data.

Proceedings of the Fifth International Conference on Cognitive Modeling, pp.87–

92.

65. Fleetwood et al., 2006. Putting the Brain in the Box for Human-System Interface

Evaluation. Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, 50(11), pp.1165–1169.

66. Fogel, 1994. An introduction to simulated evolutionary optimization. Neural

Networks, IEEE Transactions on, 5(1), pp.3–14.

67. Forrest & Mitchell, 1993. What makes a problem hard for a genetic algorithm?

Some anomalous results and their explanation. Machine Learning, 13(2), pp.285–

319.

68. Friedman, 2009. Network-on-chip placement & Routing Overview. p.15.

69. Fu, 2001. The influence of experienced effort on learning and choice solution

paths in a simple navigation task. In Fourth International Conference on

Cognitive Modeling. pp. 279–280.

70. Fu, 2003. Adaptive Planning in Problem Solving-Cost-Benefit Tradeoffs Under

Bounded Rationality. University of Hong Kong.

71. Fu & Pirolli 2007. SNIF-ACT: A cognitive model of user navigation on the World

Wide Web. Human-Computer Interaction, 22(4), pp.355–412.

72. Gamsriegler, 2006. Reasons for success of usability measures in small-sized

software development companies.

73. Gary & Adrian, 2008. Learning OpenCV.

74. Gero, 1999. A Genetic Programming Approach To The Space Layout Planning

Problem. in R. Junge (ed.), CAAD Futures 1997, Kluwer, Dordrecht, pp.875–884.

75. Gersh, McKneely & Remington, 2005. Cognitive engineering: Understanding

human interaction with complex systems. Johns Hopkins APL technical digest,

26(4), pp.377–382.

76. Ginbayashi, 2004. Latest progress and trends in Java/EJB technologies. FUJITSU

Sci Tech J.

77. Goldberg & Deb, 1991. A comparative analysis of selection schemes used in

genetic algorithms. Foundations of genetic algorithms, 1, pp.69–93.

78. Golovine, McCall & O'Brian Holt, 2010. Evolving interface designs to minimize

user task times as simulated in a cognitive architecture. Evolutionary

Computation (CEC), 2010 IEEE Congress on, pp.1–7.

79. Gray & Altman, 1999. Cognitive modeling and human-computer interaction.

International encyclopedia of ergonomics and human factors. New York: Taylor &

Francis, Ltd.

222

80. Gray, John & Atwood, 1993. Project Ernestine: Validating a GOMS analysis for

predicting and explaining real-world task performance. Human-Computer

Interaction, 8(3), pp.237–309.

81. Gregori, 2012. Introduction to Computer Vision using OpenCV. In 2012

Embedded Systems Conference in San Jose. pp. 1–34.

82. Grosz, 2005. Beyond mice and menus. Proceedings of the American Philosophical

Society, 149(4), pp.529–543.

83. Grudin, 2005. Three faces of human-computer interaction. Annals of the History

of Computing, IEEE, 27(4), pp.46–62.

84. Haapasalo & Kess, 2002. Usability evaluation of user interfaces in complex tasks–

Does CAD UI apply to practical work in architecture? In Twenty-Sixth Annual

International Computer Software and Application Conference (COMPSAC 2002).

85. Halbrugge et al., 2007. ACT-CV: Die Erweiterung von ACT-R um

Bildverarbeitungsalgorithmen erlaubt die schnelle Erzeugung mächtiger

Benutzermodelle. Simulationsgestützte Systemgestaltung - DGLR-Bericht, 04,

pp.313–331.

86. Halbrugge, Deml & Neumann, 2008. A Cognitive Model of Visual Search on

Direction Signs alongside the Autobahn.

87. Hancock, 1994. An empirical comparison of selection methods in evolutionary

algorithms. Evolutionary Computing, pp.80–94.

88. Harik, Lobo & Goldberg, 1999. The Compact Genetic Algorithm. IEEE

Transactions on Evolutionary Computation, 3(4), pp.523–528.

89. Hartwig, Darolti & Herczeg, 2003. Lightweight Usability Engineering Scaling

Usability-Evaluation to a Minimum? Human Computer Interaction-Theory and

Practice (Part I), London: Lawrence Erlbaum Associates Publishers, pp.474–478.

90. Haupt & Haupt, 2004. Practical Genetic Algorithms 2nd ed, Wiley-Blackwell.

91. Ho & Perng, 2009. An Application of Genetic Simulation Approach to Layout

Problem in Robot Arm Assembly Factory. p.7.

92. Holland, 1975. Adaptation in Natural and Artificial Systems, The University of

Michigan Press.

93. Holzhamper & Seppelt, 2007. A generic tool for optimising land-use patterns and

landscape structures. Environmental Modelling & Software 22 (2007)

1801e1804, p.4.

94. Hooda, 2012. An Automation of Software Testing: A Foundation for the Future.

International Journal of Latest Research in Science and Technology, 1(2), pp.152–

154.

95. Huang, Breheny & Ma, 2012. A Selective Review of Group Selection in High

Dimensional Models. Audio, Transactions of the IRE Professional Group on.

96. Intel, 2010. open source computer vision library, Intel Corporation,

97. Irby et al., 1977. A methodology for user interface design. Systems Development,

Xerox.

98. Ismail, Abiddin & Hassan, 2011. Improving the Development of Postgraduates’

Research and Supervision. International Education Studies, 4(1), p.p78.

99. Ivory & Hearst, 1999. Automated usability evaluation of WIMP and Web

interfaces. Submitted for publication.

100. Ivory & Hearst, 2001. The state of the art in automating usability evaluation of

user interfaces. ACM Computing Surveys (CSUR), 33(4), pp.470–516.

223

101. Jadaan, Rajamani & Rao, 2008. Improved selection operator for ga. Journal of

Theoretical and Applied Information Technology, 4(4), p.269277.

102. Jagielski & Gero, 2009. A Genetic Programming Approach to the Space Layout

Planning Problem. CAAD Futures, 875, pp.875–884.

103. Jang, Kim & Russell, 2003. Manage Space for Construction Facilities on High-rise

Buildings. Proceedings of Construction Research Congress: Winds of Change:

Integration and Innovation In Construction, ASCE Construction Congress VII,

Honolulu, HI, pp.19–21.

104. Jin, 2011. Surrogate-assisted evolutionary computation: Recent advances and

future challenges. Swarm and Evolutionary Computation, 1(2), pp.61–70.

105. John et al., 2004. Predictive human performance modelling made easy.

Proceedings of the SIGCHI conference on Human factors in computing systems,

pp.455–462.

106. John, 2008. CogTool User Guide,

107. John, 2010. Reducing the variability between novice modelers: Results of a tool

for human performance modeling produced through Human-Centered Design.

Proceedings of the 19th Annual Conference on Behavior Representation in

Modeling and Simulation (BRIMS), pp.22–25.

108. John & Kieras, 1994. The GOMS Family of Analysis Techniques: Tools for Design

and Evaluation. The GOMS Family of Analysis Techniques: Tools for Design and

Evaluation.

109. John & Kieras, 1996. The GOMS family of user interface analysis techniques:

comparison and contrast. Transactions on Computer-Human Interaction (TOCHI,

3(4).

110. John & Kieras, 1996. Using GOMS for user interface design and evaluation: which

technique? ACM Transactions on Computer-Human Interaction (TOCHI), 3(4),

pp.287–319.

111. John & Prevas, 2003. New tools for modeling for HCI evaluation. p.3.

112. John & Salvucci, 2005. Multipurpose prototypes for assessing user interfaces in

pervasive computing systems. Pervasive Computing, IEEE, 4(4), pp.27–34.

113. Johnson et al., 2002. A Model of Spatio-Temporal Coding of Memory for

Multidimensional Stimuli. 24th Annual Meeting of the Cognitive Science Society,

p.6.

114. K Card, P Moran & Newell, 1983. The psychology of human-computer interaction .

In The psychology of human-computer interaction. CRC, p. 488.

115. Kahne, 1997. A genetic algorithm-based place-and-route compiler for a run-time

reconfigurable computing system. Virginia Polytechnic Institute and State

University.

116. Karat, 1993. Usability engineering in dollars and cents. Software, IEEE, 10(3),

pp.88–89.

117. Karray et al., 2008. Human-computer interaction: Overview on state of the art.

International Journal on Smart Sensing and Intelligent Systems, 1(1), pp.137–

159.

118. Kay, 1972. A personal computer for children of all ages. In Proceedings of the

ACM national conference.

119. Kay, 1996. The Early History of Smalltalk. History of Programming Languages II,

p.535.

224

120. Kay & Goldberg, 1977. Personal dynamic media. Computer, 10(3), pp.31–41.

121. Kieras, 1996. A Guide to GOMS Model Usability Evaluation using NGOMSL.

ukpmcacuk.

122. Kieras, 1997. Task analysis and the design of functionality. Handbook of

computer science and engineering, CRC Press, Inc.

123. Kieras, 1999. A guide to GOMS model usability evaluation using GOMSL and

GLEAN3. Ann Arbor, MI.

124. Kieras, 2005. Computational Modeling of Human Multiple-Task Performance.

125. Kieras, 2006. A Guide to GOMS Model Usability Evaluation using GOMSL and

GLEAN4. 2006 [cited September 20th, 2006].

126. Kieras, 2011. Extending and Applying the EPIC Architecture for Human Cognition

and Performance, DTIC Document.

127. Kieras & Meyer, 1994. The EPIC architecture for modeling human information-

processing and performance: A brief introduction.

128. Kieras & Meyer, 1997. An overview of the EPIC architecture for cognition and

performance with application to human-computer interaction. Human-Computer

Interaction, 12(4), pp.391–438.

129. Kieras & Meyer, 2004. The EPIC architecture: Principles of operation,

130. Kieras, Wood & Meyer, 1997. Predictive engineering models based on the EPIC

architecture for a multimodal high-performance human-computer interaction

task. ACM Transactions on Computer-Human Interaction (TOCHI), 4(3), pp.230–

275.

131. Kindler, 2007. Simulation and 40 Years of Object-Oriented Programming.

132. Kirkpatrick, Gelatt & Vecchi, 1983. Optimization by Simulated Annealing. Science,

220(4), pp.671–680.

133. Klanac et al., 2008. Structural omni-optimization of a tanker. 7th International

Conference on Computer and IT Applications in the Maritime Industries, COMPIT,

8, pp.537–550.

134. Kljajevic, 2008. Cognitive Models as Usability Testing Tools. igi-globalcom.

135. Koehn, 1994. Combining Genetic Algorithms and Neural Networks: The Encoding

Problem. p.67.

136. Konak, Coit & Smith, 2006. Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), pp.992–

1007.

137. Lacevic, Konjicija & Avdagic, 2007. Population diversity measure based on

singular values of the distance matrix. Audio, Transactions of the IRE Professional

Group on, pp.1863–1869.

138. Laird, 2012. The Soar Cognitive Architecture, The MIT Press, 55 Hayward Street,

Cambridge, MA 02142-1315 USA.

139. Laird & Congdon, 1998. The Soar User’s Manual Version 9.3.

140. Laird & Rosenbloom, 1992. In pursuit of mind: the research of Allen Newell. AI

Magazine, 13(4), p.17.

141. Landay, 1996. SILK: sketching interfaces like krazy. Conference companion on

Human factors in computing systems: common ground, pp.398–399.

142. Landay & Myers, 1993. Extending an existing user interface toolkit to support

gesture recognition. INTERACT“93 and CHI”93 conference companion on Human

factors in computing systems, pp.91–92.

225

143. Lane, 2007. The power of the bond between cause and effect: Jay Wright

Forrester and the field of system dynamics. System dynamics review, 23(2‐3),

pp.95–118.

144. Langtangen, 2009. Python Scripting for Computational Science. Python Scripting

for Computational Science, 3rd edition.

145. Lebiere, 2006. ACT. Encyclopaedia of Cognitive Science.

146. Lebiere et al., 2002. IMPRINT/ACT-R: Integration of a task network modeling

architecture with a cognitive architecture and its application to human error

modeling. Simulation Series, 34(3), pp.13–18.

147. Lebiere et al., 2005. Integrating Modeling and Simulation into a General-Purpose

Tool. human-factors.arc.nasa.gov.

148. Lewis & Rieman, 1993a. Task Centered User Interface Design: A Practical

Introduction. University of Colorado, Boulder. This is shareware book that is

available online at the following url: ftp://ftp. cs. colorado. edu/pub/cs/distribs/

clewis/HCI-Design-Book.

149. Lidwell, Holden, & Buttler, 2003. Universal Principles of Design 1st ed, Rockport

Publishers Inc. Available at:

http://www.qbookshop.com/products/153021/9781592530076/Universal-

Principles-of-Design.html.

150. Lif et al., 2003. A Structural Approach to Prototype Design in Iterative System

Development,

151. Lim et al., 2007. A study on metamodeling techniques, ensembles, and multi-

surrogates in evolutionary computation. pp.1288–1295.

152. Lin et al., 1999. DENIM: Finding a Tighter Fit Between Tools and Practice for Web

Site. DENIM: Finding a Tighter Fit Between Tools and Practice for Web Site.

153. Ling, Samsudin & Abduliah, 2000. Aesthetic measures for assessing graphic

screen. Journal of Information Science and Engineering, 16(97), p.116.

154. Lohn, Larchev & DeMara, 2002. A Genetic Representation for Evolutionary Fault

Recovery in FPGAs. International Conf. on Military and Aerospace Programmable

Logic Devices, Laurel, MD.

155. Luke & Spector, 2010. A Comparison of Crossover and Mutation in Genetic

Programming. p.9.

156. Luke & Spector, 2010. A Revised Comparison of Crossover and Mutation in

Genetic Programming. p.8.

157. Luo & Siewiorek, 2007. KLEM: A Method for Predicting User Interaction Time and

System Energy Consumption during Application Design. In ISWC '07: Proceedings

of the 2007 11th IEEE International Symposium on Wearable Computers. IEEE

Computer Society, pp. 69–76.

158. Machover, 1994. Four decades of computer graphics. Computer Graphics and

Applications, IEEE, 14(6), pp.14–19.

159. Macleod, 1994. Usability: Practical methods for testing and Improvement.

Proceedings of the Norwegian Computer Society Software, 94, p.4.

160. Manikas & Cain, 1996. Genetic algorithms vs. simulated annealing: A comparison

of approaches for solving the circuit partitioning problem. Pittsburgh (PA):

University of Pittsburgh.

161. Maveryx, 2011. Maveryx User Manual, Maveryx.

226

162. McGrenere, 1998. Learning to use complex computer technology: The importance

of user interface design. PhD Depth Paper, Department of Computer Science,

University of Toronto.

163. Metropolis et al., 1953. Equation of state calculations by fast computing

machines. The journal of chemical physics, 21, p.1087.

164. Miller & Goldberg, 1995. Genetic Algorithms, Tournament Selection, and the

Effects of Noise. Complex Systems, 9, pp.193–212.

165. Miller & Goldberg, 1996. Genetic algorithms, selection schemes, and the varying

effects of noise. Evol Comput. MIT Press. Cambridge, MA, USA, 4(2), pp.113–131.

166. Mitchell, 1996. An introduction to genetic algorithms. An introduction to genetic

algorithms.

167. Mitchell & Forrest, 1994. Genetic algorithms and artificial life. Artificial Life, 1(3),

pp.267–289.

168. Myers, 1993. Why are human-computer interfaces difficult to design and

implement?

169. Narahara & Terzidis, 2007. Multiple-constraint Genetic Algorithm in Housing

Design. p.8.

170. Newell, 1990. Unified Theories of Cognition, Harvard University Press,

Cambridge, Massachusetts.

171. Newman et al., 2003. DENIM: An informal web site design tool inspired by

observations of practice. Human-Computer Interaction, 18(3), pp.259–324.

172. Newman, 1968. A system for interactive graphical programming. In AFIPS Spring

Joint Computing Conference. pp. 47–54.

173. Nielsen, 1994. Guerrilla HCI: Using Discount Usability Engineering to Penetrate

the Intimidation Barrier. useit. com, Papers and essays. Acedido em 12 de Julho

de 2005.

174. Nolle et al., 2002. Simulated annealing and genetic algorithms applied to finishing

mill optimisation for hot rolling of wide steel strip. International Journal of

Knowledge Based Intelligent Engineering Systems, 6(2), pp.104–111.

175. Nygaard & Dahl, 1981. The development of the SIMULA languages R. L. Wexelblat,

ed., ACM.

176. Oliver, Monmarche & Venturini, 2002. Interactive design of web sites with a

genetic algorithm. Proceedings of the IADIS International Conference

www/Internet, pp.355–362.

177. Olson & Olson, 2003. Human-Computer Interaction: Psychological Aspects of the

Human Use of Computing. Annual review of psychology, 54(1), pp.491–516.

178. OpenCV, 2012. OpenCV. opencv.org. Available at: http://opencv.org/ [Accessed

2012].

179. Osman, Georgy & Ibrahim, 2003. A hybrid CAD-based construction site layout

planning system using genetic algorithms. Automation in Construction, 12,

pp.749 – 764.

180. Pang & Schauder, 2007. The culture of information systems in knowledge-

creating contexts: The Role of user-centred design. Informing Science:

International Journal of an Emerging Transdiscipline, 10, pp.203–235.

181. Peebles & Bothell, 2004. Modelling performance in the Sustained Attention to

Response Task. p.6.

227

182. Perrins, 2008. Introduction to the Dojo Toolkit. In 2008 IBM Corporation. IBM

Software Group Lab Services. pp. 1–40.

183. Petrovic, 2001. Solving LEGO brick layout problem using Evolutionary

Algorithms. Informatikkonferanse NIK'2001, p.11.

184. Pérez et al., 2005. Optimal Layout Design for Milk Goats Livestock Farms Using

Genetic Algorithms. p.17.

185. Purvis, 2009. A Genetic Algorithm Approach to Automated Custom Document

Assembly. p.6.

186. Rajanen, 2011. Applying usability cost-benefit analysis - explorations in

commercial and open source software development contexts,

187. Rajanen & Jokela, 2007. Analysis of Usability Cost-Benefit Models.

188. Redmond & Smith, 1975. Project Whirlwind,

189. Reeves, 2003. Genetic algorithms, Springer.

190. Ride, 2012. ER1: Personal Robot System. Evolution Robotics. Available at:

http://evo.stage.la.idealab.com/er1/ [Accessed 2012].

191. Rieman, Young & Howes, 1996. A dual-space model of iteratively deepening

exploratory learning. International Journal of Human-Computer Studies, 44(6),

pp.743–775.

192. Ritter, 2003. Techniques for modeling human performance in synthetic

environments, Human Systems Information Analysis Center.

193. Ritter & Young, 2001. Embodied models as simulated users: Introduction to this

special issue on using cognitive models to improve interface design. International

Journal of Human-Computer Studies, 55(1), pp.1–14.

194. Ritter et al., 2006. Providing user models direct access to interfaces: an

exploratory study of a simple interface with implications for HRI and HCI.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions

on, 36(3), pp.592–601.

195. Ritter, Jones & Baxter, 1998. Reusable models and graphical interfaces: Realising

the potential of a unified theory of cognition. Mind modeling-A cognitive science

approach to reasoning, learning and discovery, pp.83–109.

196. Ritter, Kukreja & St-Amant, 2007. Including a model of visual processing with a

cognitive architecture to model a simple teleoperation task. Journal of Cognitive

Engineering and Decision Making, 1(2), pp.121–147.

197. Ritter, van Rooy & St-Amant, 2002. A user modeling design tool based on a

cognitive architecture for comparing interfaces. Computer-Aided Design of User

Interfaces III, Proceedings of the 4th International Conference on Computer-

Aided Design of User Interfaces CADUI, pp.111–118.

198. Rosson & Carroll, 2009. Scenario based design. Human‐computer interaction.

Boca Raton, FL, pp.145–162.

199. Roth, Patterson & Mumaw, 2002. Cognitive engineering: issues in user-centered

system design. Encyclopedia of software engineering, pp.163–179.

200. Salvucci, 2000. A Model of Eye Movements and Visual Attention.

201. Salvucci, 2001. An integrated model of eye movements and visual encoding.

Cognitive Systems Research, 1(4), pp.201–220.

202. Salvucci, 2001. Predicting the effects of in-car interface use on driver

performance: An integrated model approach. International Journal of Human-

Computer Studies, 55(1), pp.85–107.

228

203. Salvucci, 2001. Predicting the effects of in-car interfaces on driver behavior using

a cognitive architecture. Proceedings of the SIGCHI conference on Human factors

in computing systems, pp.120–127.

204. Salvucci, 2001. Predicting the effects of in-car interface use on driver

performance: An integrated model approach. International Journal of Human-

Computer Studies, 55(1), pp.85–107.

205. Salvucci, 2002. Modeling driver distraction from cognitive tasks. Proceedings of

the 24th Annual Conference of the Cognitive Science Society, pp.792–797.

206. Salvucci & Lee, 2003. Simple cognitive modeling in a complex cognitive

architecture. CHI 2003. ACM Conference on Human Factors in Computing

Systems, CHI Letters, 5(1), pp.265–272.

207. Salvucci, 2005. A multitasking general executive for compound continuous tasks.

Cognitive Science, 29(3), pp.457–492.

208. Salvucci, Boer & Liu, 2001. Toward an integrated model of driver behavior in

cognitive architecture. Transportation Research Record: Journal of the

Transportation Research Board, 1779(-1), pp.9–16.

209. Salvucci et al., 2005. Distract-R: Rapid prototyping and evaluation of in-vehicle

interfaces. Proceedings of the SIGCHI conference on Human factors in computing

systems, pp.581–589.

210. Salvucci & Macuga, 2002. Predicting the effects of cellular-phone dialing on driver

performance. Cognitive Systems Research, 3(1), pp.95–102.

211. Salvucci, Taatgen & Kushleyeva, 2006. Learning when to switch tasks in a

dynamic multitasking environment. Proceedings of the seventh international

conference on cognitive modeling, pp.268–273.

212. Schultheis, Barkowsky & Bertel, 2006. LTMC - An Improved Long-Term Memory

for Cognitive Architectures. p.6.

213. Shah et al., 2003. Connecting a cognitive model to dynamic gaming environments:

Architectural and image processing issues. Proceedings of the Fifth International

Conference on Cognitive Modeling (ICCM), pp.189–194.

214. Shoup, 2001. SuperPaint: An early frame buffer graphics system. Annals of the

History of Computing.

215. Sivaraj & Ravichandran, 2011. A review of selection methods in genetic

algorithm. International Journal of Engineering Science and Technology, 3(5),

pp.3792–3797.

216. Smith, 1975. Pygmalion: a creative programming environment., p.243.

217. Smith et al., 1986. The star user interface: an overview. pp.383–396. Available at:

http://www.worldcat.org/title/national-computer-conference-june-16-19-1986-

las-vegau-nevada/oclc/255548197 [Accessed March 19, 2011].

218. Sonnenburg et al., 2010. The SHOGUN machine learning toolbox. The Journal of

Machine Learning Research, 11, pp.1799–1802.

219. Spears, 1993. Crossover or Mutation. p.17.

220. St Amant & Ritter, 2004. Automated GOMS–to–ACT-R model generation.

Proceedings of the Sixth International Conference on Cognitive Modeling.

221. St Amant et al., 2005. Image processing in cognitive models with SegMan.

Proceedings of the 11th International Conference on Human-Computer

Interaction, HCII, 2005.

229

222. St Amant, Horton & Ritter, 2004. Model-based evaluation of cell phone menu

interaction. Proceedings of the SIGCHI conference on Human factors in

computing systems, pp.343–350.

223. St-Amant, Freed & Ritter, 2005. Specifying ACT-R models of user interaction with

a GOMS language. Cognitive Systems Research.

224. St Amant, McBride & Ritter, 2006. AI support for building cognitive models. In

Proceedings of the Twenty-First National Conference on Artificial Intelligence

(AAAI), Nectar Track, Menlo Park.

225. Stewart & West, 2006. Deconstructing ACT-R. Proceedings of the seventh

international conference on cognitive modeling, pp.298–303.

226. Stone et al., 2005. User Interface Design and Evaluation (Interactive

Technologies), Morgan Kaufmann.

227. Sutherland, 1964. Sketch pad a man-machine graphical communication system.

In Proceedings of the SHARE design automation workshop. pp. 6.329–6.346.

228. SWIG, 2012. SWIG Documentation. Pp.1–731.

229. Taatgen, 1996. A model of free-recall using the ACT-R. Benelearn, p.10.

230. Tate & Smith, 1998. Expected Allele Coverage and the Role of Mutation in Genetic

Algorithms. p.7.

231. Teo & John, 2006. Comparisons of keystroke-level model predictions to observed

data. CHI “06: CHI ”06 extended abstracts on Human factors in computing

systems.

232. Teo & John, 2011. The Evolution of a Goal‐Directed Exploration Model: Effects of

Information Scent and GoBack Utility on Successful Exploration. Topics in

Cognitive Science, 3(1), pp.154–165.

233. Teo, John & Pirolli, 2007. Towards a tool for predicting user exploration. CHI “07:

CHI ”07 extended abstracts on Human factors in computing systems.

234. Thapatsuwan, Chainate & Pongcharoen, 2007. Improving Packing Efficiency for

Shipping Container. International Journal of the Computer, the Internet and

Management, 15(4), pp.24.1–6.

235. Thierens, 2002. Adaptive mutation rate control schemes in genetic algorithms.

Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on,

1, pp.980–985.

236. Thompson & Stevenson, 2011. Mobile Augmented Reality for Grocery Shopping.

Symposium (MICS) Conference, Duluth, MN.

237. TNO, 2012. TNO. Usability Testing .nl. Available at:

http://www.usabilitytesting.nl/ usability_test.html [Accessed 2012].

238. Troutt & Sheiner, 2007. Human-Computer Interface Design and Usability Testing.

pp.1–20.

239. Van Rooy, Ritter & St-Amant, 2002. Using a simulated user to explore human

robot interfaces. Article under review. Draft at http://www4. ncsu.

edu/stamant/papers/ HRI-v4_06-25. pdf.

240. Vera et al., 2005. Automating human-performance modeling at the millisecond

level. Human-Computer Interaction, 20(3), pp.225–265.

241. Verhaegh, Aarts & Korst, 2006. Intelligent Algorithms in Ambient and Biomedical

Computing, Dordrecht: Springer.

242. Wall, 1996. A genetic algorithm for resource-constrained scheduling.

243. Wall, 1998. GAlib: A C++ Library of Genetic Algorithm Components. p.104.

230

244. Wall, 2011. Abbot framework for automated testing of Java GUI components and

programs. abbot.sourceforge.net. Available at:

http://abbot.sourceforge.net/doc/overview.shtml [Accessed 2011].

245. Woods & Roth, 1988. Cognitive engineering: human problem solving with tools.

Human Factors, 30(4).

246. Yang, Shan & Yeh, 2002. The Study of Optimal Slurry Wall Unit Layout by Genetic

Algorithm. The Ninth International Conference on Computing in Civil and

Building Engineering, p.6.

247. Zachary et al., 2001. 5. The application of human modeling technology to the

design, evaluation and operation of complex systems. In Emerald Group

Publishing Limited.

248. Zhai, 2004. The Computer Mouse and Related Input Devices. In Berkshire

Encyclopedia of Human-Computer Interaction. W.S. Bainbridge (ed).

249. Zhou et al., 2007. Combining Global and Local Surrogate Models to Accelerate

Evolutionary Optimization. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 37(1), pp.66–76.

250. Zhu, 2003. Population Diversity in Genetic Algorithm for Vehicle Routing

Problem with Time Windows. Department of Computer Science, National

University of Singapore.

251. Zitzler, Deb & Thiele 2000. Comparison of multiobjective evolutionary

algorithms: empirical results. Evolutionary Computation, 8(2), pp.173–195.

	Golovine PhD thesis coversheet
	Jean Claude Golovine Thesis 2013

