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Abstract 

The research reported and discussed in this thesis represents a novel approach to User 

Interface evaluation and optimisation through cognitive modelling. This is achieved 

through the development and testing of a toolkit or platform titled Toolkit for 

Optimisation of Interface System Evolution (TOISE). The research is conducted in two 

main phases. In phase 1, the Adaptive Control of Thought Rational (ACT-R) cognitive 

architecture is used to design Simulated Users (SU) models. This allows models of user 

interaction to be tested on a specific User Interface (UI). In phase 2, an evolutionary 

algorithm is added and used to evolve and test an optimised solution to User Interface 

layout based on the original interface design. The thesis presents a technical background, 

followed by an overview of some applications in their respective fields. The core concepts 

behind TOISE are introduced through a discussion of the Adaptive Control of Thought – 

Rational (ACT-R) architecture with a focus on the ACT-R models that are used to simulate 

users. The notion of adding a Genetic Algorithm optimiser is introduced and discussed in 

terms of the feasibility of using simulated users as the basis for automated evaluation to 

optimise usability. The design and implementation of TOISE is presented and discussed 

followed by a series of experiments that evaluate the TOISE system. While the research 

had to address and solve a large number of technical problems the resulting system does 

demonstrate potential as a platform for automated evaluation and optimisation of user 

interface layouts. The limitations of the system and the approach are discussed and 

further work is presented. It is concluded that the research is novel and shows 

considerable promise in terms of feasibility and potential for optimising layout for 

enhanced usability. 
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Chapter 1. Introduction 

While the fundamental lessons of Human Computer Interaction (HCI) as a field of study 

is important, the significance of user experience design in the interface design and 

engineering should not be under estimated. Users are often faced with interfaces created 

by software engineers. Theses engineers are highly trained specialists, who tends however 

to focus less on aspects of user interaction than they are on the software functionality. It is 

often the case that users tend to be seen as secondary participants in the application 

development process, who are often considered once the software development life cycle 

is nearing completion, which is after the functionality is tested. It is most often seen that 

users need to conform to the requirements of the application and its interfaces created by 

the developers, as opposed to the idea of the design of the application being a 

collaborative activity between those users and the system developers. 

As new technologies such as new mobile innovations impact on our daily life, a new 

type of computer user interfaces and users emerges. Today’s computer interfaces have 

become much more interactive, complex and ubiquitous in many devices, and users spent 

much more time interacting with them as part of their day-to-day lives. For example, not 

only these users utilise this technology as tools as part of their professional lives but often 

in their private life too for leisure, such as communication and entertainment. This new 

generation of users and devices highlights the necessity to develop software and interfaces 

fit for purpose for the highly diverse population of users. 

HCI has emerged alongside computer technologies as it soon became apparent that 

sophistication of software is pointless unless the users can interact properly with its 

interfaces. When software is designed, it is embedded with functionality that is only 

perceived when users use the system efficiently and represents what this system can do 

and above all what it is marketed for. The usability of this software is the degree by which 

it is used in terms of efficiency when users perform a series of possible tasks using the 

system. Thus as Karray stipulates, a balance is needed between the actual functionality 

and the usability to demonstrate efficiency (Bevan 1998; Karray et al. 2008). 

Usability has potential benefits for software development companies such as increased 

productivity and customer satisfaction (Haapasalo and Kess 2002; Rajanen and Jokela 
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2007; Kljajevic 2008) as it brings effectiveness and efficiency to the product. It is 

increasingly significant for leading world software companies to use usability factor in 

high profile advertising (Karat 1993; Myers 1993; Byrne 2008; Macleod 1994; McGrenere 

1998; Gamsriegler 2006). As Macleod states, usability tends to be linked with 

minimization of errors and staff training, efficient use of software and lower staff turnover, 

which stir Usability Evaluation (UE) as an essential part of the development to ensure that 

user interfaces (UIs) enable users to achieve goals effectively in line with Standards such 

as ISO9241 (Nielsen 1994; Bevan 1998; Lebiere et al. 2005; Lane 2007; Ismail et al. 2011). 

As Haapasalo and Kess stipulate, it is more likely that people operates computer systems 

to be productive but not essentially to be creative and thus, software development is often 

driven around routine tasks (Redmond & Smith 1975; Haapasalo & Kess 2002; Lif et al. 

2003; Anderson et al. 2004). McGrenere noted that most users are now faced with more 

functionality in their computerised systems and marketing was often perceived as the 

driving force behind this increase of features even though surveys report that heavily 

featured applications are often the cause for a decrease of productivity. This statement is 

more accurate than ever today with consumerism having become a major part of our daily 

life and users purchase computer software and electronic devices in the same manner as 

they would with any other products i.e. they want more features and functionality for their 

money even though it is unlikely those devices extra functions that are often heavily 

marketed will ever be used by the majority of users (Sutherland 1964; Lewis & Rieman 

1993; Anderson 1996; McGrenere 1998; Lebiere 2006). 

HCI research has made the case for usability evaluation as part of the design process 

that leads to interface optimisation. However, given the known potential benefits, there 

are comparatively few software developments that undertake usability testing as part of 

their software development life cycle, as often management experience difficulties to 

establish immediate potential advantages. In addition, another aspect is that usability 

evaluation often competes in terms of budget share with other development teams (Karat 

1993; Anderson & Lebiere 1998; Troutt & Sheiner 2007). Many software designers refrain 

from using usability as an iterative process in their software development as the process is 

perceived as too time consuming and expensive; especially regarding the techniques 

involved too intimidating in their complexity (Newell 1990; Dillon et al. 1994; Nielsen 

1994; Lif et al. 2003; Das and Stuerzlinger 2007; Pang & Schauder 2007; Ismail et al. 

2011). 

Most large projects are developed using version of the waterfall method, which 

decomposed the entire process into a series of well-defined sequential phases. It starts 
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with the requirement analysis, and then a set of specification documents is drawn for it. 

The project is then planned and the design phase starts. Once completed, the 

implementation is undertaken; with a phase of integration, testing and maintenance that 

ends the project development. In this model there is no formal mechanism for feedback 

from one phase of the development to previous phases which often impairs maximising 

usability.  

Even though this model has been proven to fail in many cases it is still used as it allows 

companies to define responsibilities and budgets easily. This state of affair has major 

consequences as testing is achieved by a very limited sample of potential users which can 

be problematic when an attempt of optimization of interfaces is necessary (Lewis & 

Rieman 1993; Kieras 1997). 

Therefore, usability in software engineering is often neglected despite over thirty years 

of research discussion on the HCI scene (Nygaard & Dahl 1981; K Card et al. 1983; John et 

al. 2004; Troutt and Sheiner 2007).  Cost is often always the limiting factor rather than the 

belief that usability is being considered un-beneficial, as it is known that well-designed 

software increases productivity, reduces human errors and makes software more 

enjoyable to users, which in terms of marketing is an important point. Dillon (1994) 

surveyed current practices in usability engineering and found that those benefits could be 

measured by a reduction of training and learning time most feedback from the 

professionals demonstrated a view that reflected a vague nature of the concept. However 

this survey also reported that 52% of the respondents reported that their organisation 

perceived usability as “Essential” while 19% of the respondents viewed it as unnecessary. 

95% suggested that a solid knowledge of the users, tasks and their working environment 

was very important suggesting most of the respondents had a realistic opinion in terms of 

usability and related variables. However, 64% of them reported having difficulties with 

usability because of limited time and resources (Dillon et al. 1994; Dorman and Gaudiano 

1998; Ivory and Hearst 1999; Ivory and Hearst 2001). This statement is still valid today. 

There is however another school of thought that has emerged and rejects the 

traditional waterfall development path and has moved in a more participatory design 

model where systems are designed by both the designers and users working together with 

the common goal of making the system fit for purpose (Lebiere et al. 2005; Pang and 

Schauder 2007; Bolton et al. 2012), in effect moving the process from “designing for” to 

“designing with” (Card et al. 1980; Lewis and Rieman 1993; Anderson et al. 2004). 
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To improve the undertaking of usability evaluation many HCI specialists have 

responded by providing specialised tools and usability guides to designers to validate and 

evaluate their designs in an attempt to optimise them to aid designers to assess their 

software interfaces at low cost both in terms of modelling and financial, thus promoting 

usability (Anderson 1996; John et al. 2004; Grudin 2005; Lebiere 2006). 

 Automated tools are increasingly been researched (Card et al. 1983; Ivory & Hearst 

1999; Ivory & Hearst 2001; Crystal and Ellington 2004), but automatic optimisation of UI 

is a field that remains undeveloped.  

The goal of the research that is presented in this thesis is to provide tools for design 

and research titled: Toolkit for Optimisation of Interface Systems through Evolution 

(TOISE). TOISE will automatically optimise an interface to provide clues to the designer on 

how to place components on interfaces to alleviate some of the cognitive load and human 

motor functions when interacting with them, by using a cognitive architecture; namely 

ACT-R/PM. This approach is referred to in this thesis as an EvoCog approach. TOISE 

attempts to automatically evolve a near optimal layout for an interface, thus the essence of 

the research presented in this thesis is related to automatic optimisation of user 

interfaces. What TOISE will not do is to combine HCI heuristics or other design principles1 

(Lidwell et al. 2003) that designers may use as part of design and their usability activities. 

This toolkit was conceived to concentrate on human cognition and motor functions, as 

part of its functionality and its novelty is the combination of a genetic algorithm using 

ACT-R as a human simulator, replacing expensive and incremental human-driven activities 

with a relatively rapid and inexpensive meta-heuristic search of a much larger design 

space that normal human approaches would not be able to carry out. 

1.1 Thesis organisation 

The argument that is presented in this work is that a software prototype is developed 

by demonstration using the user interaction recorder i.e. Robot, which produces a 

complete and well-described interaction model for a specific interface. This model is then 

loaded into an evolutionary engine that uses some of its metrics i.e. locations of all the 

widgets contained in the interface and construct a population that is evolved using a 

cognitive model as part of its fitness assessment. TOISE will over time evolve an optimal 

                                                             

1 Principles referred for instance to as 80/20 rule, accessibility, affordance, alignment, colour and consistency 
to name but a few presented in the Universal Principles of Design publication by the authors. 



5 

 

layout solution that will minimize both human cognitive load and motor functions when 

interacting with the interface for some series of specific goals. 

The sections in this thesis are going to follow this structure. The first part of this 

document will concentrate on the introduction. Chapter 2 will provide a brief discussion 

on the historical background of HCI. Chapter 3 will review the literature related to 

cognitive modelling whilst chapter 4 will presents an overview of relevant research in the 

field of layout optimization using evolutionary algorithm. Chapter 5 will discuss in detail 

the TOISE approach and software, first by discussing the user interaction recording, then 

by presenting a comprehensive look at the cognitive modelling. The next section will 

present the evolutionary algorithms used in TOISE. Chapter 6 discusses a series of 

experiments demonstrating the abilities of TOISE to generate optimised design. 

Finally chapter 7 will conclude the thesis by summarizing the advantages and the 

disadvantages of TOISE as well as problems encountered during the development of the 

software and provide some constructive directions for future work. 
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Chapter 2.  Review of major milestones and relevant literature 

The evaluation of usability is increasingly becoming more important as a major part of 

any software development project and a range of methods and tools have been available to 

professionals and other groups to support their endeavour for some time. According to 

Andrew Dillon, usability is a measure relating to a user interface quality that is connected 

to its effectiveness, efficiency and user satisfaction when using this UI attempting to 

perform a series of tasks (Dillon 2005). This description of usability is close to the ISO 

9241:11. 

With the ubiquitous nature of computers (Christou 2007) and users experience and 

diversity becoming broader; software and user Interfaces must cater for this extensive 

range of users. Without a good knowledge of the target users, computer interfaces may 

become usable but their usefulness will often be debatable.  Therefore, any computer 

system should be designed for the needs and capabilities of these target users for who 

there are intended. 

 

Figure 1: Waterfall software development process 

One way to achieve this is by utilising a known approach that is gaining a wider 

acceptance (Bevan and Ferre 2010) named User-Centred Design (UCD), which includes 

the users throughout the design and development phases. This approach not only focuses 

on understanding target users but also focuses on understanding the tasks (or series of 

tasks) that are performable on the system, and furthermore the environment in which 

they operate in (Gersh et al. 2005). In addition, potential users are involved throughout 
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the whole development of the systems, thus insuring and acceptable level of usability 

feedback from one lifecycle stage to another. This approach contrasts with the more 

traditional sequentially based waterfall cycle (Stone et al. 2005) in which each part of the 

cycle is an independent part of the software development that is completed before the 

next phase in the sequence is started (Zachary et al. 2001).  However in reality iterations 

between the different stages of development take place to allow some overlapping 

between the phases where information that is needed is fed back so alterations can be 

implemented (Zachary et al. 2001). The classic process is displayed in Figure 1. In this 

type of development, user testing and evaluation often take place at the end of the cycle 

which implies that by that stage changes are often more difficult and costly to achieve as 

the development is nearing completion, which also often precludes the information to flow 

from one stage to another as often one phase starts when the previous one was completed. 

This approach contrasts with the UCD approach (See Figure 2). As per the classical 

waterfall approach, it starts with a good knowledge of the target users’ analysis. This leads 

to a set of requirements being drawn that contributes to the design of the software and its 

interfaces. Once a design is compiled, a prototype is created that is used as a basis for 

implementation (and user testing). The major difference between the UCD and the Classic 

approach is that users are involved throughout the whole process at each and every phase, 

and the feedback that is obtained is always taken into consideration at all stages of the 

development. 

 

Figure 2: User Centred Design (UCD) 

Although the concept of usability is perceived as key to the design of software and user 

interface in particular, its integration within the development lifecycle is often restricted 

to one user evaluation in more classical methodology (Hartwig et al. 2003; Kljajevic 2008). 

The UCD model of development tends in theory to re-adjust the potential of usability 
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evaluation by integrating the human-in-the-loop in all the phases of the interface 

development where the collected data can play a significant role to indicate usability 

improvements focusing on specific user groups for specific tasks. However, one of the 

main issues with usability evaluation is that it can become impractical or prohibitive in 

terms of cost i.e. conducting evaluation on population samples of pilots; doctors etc., but 

also in terms of logistics, that is consulting these participants repeatedly can be 

problematic (Byrne 2008). 

One approach to solve this problem it the use of quantitatively realistic models based 

on these participants to replace the human-in-the-loop that can assess user interfaces, 

making the evaluation process more straightforward than using real users. These models, 

whether there are based on Goals Operators Methods Selections (GOMS) or cognitive 

architectures, act as surrogate users, which ultimately produce quantitative values such as 

execution times and error rates (Gamsriegler 2006). 

The research presented in this thesis uses cognitive models as surrogate users and uses 

the metrics obtained during their usability assessment as the fundamental part of an 

optimization process, which ultimately provides user interfaces that minimize cognitive 

and motor load. 

This essentially means that early in the design process, cognitive models are used to 

predict user performance when interacting with a specific UI architecture. This approach 

potentially allows developers to use evaluation data (provided by the cognitive model) 

which can help guide the design process and be of use well before any user evaluations are 

involved (Ritter et al. 2002; Fleetwood et al. 2006). It follows that predictions of human 

performance using software models has the potential to be of great practical value but, 

unfortunately, it is a difficult process to perform owing to the considerable difficulties with 

the creation of cognitive models based on and created from a set of criteria defined by 

experimental user test data. This is in part due to the complexities of collecting 

experimental data requiring specialist expertise and a great deal of resources. 

Unfortunately, there is not a great deal of data in the public domain, partly due to state-of-

the-art research being funded by organisations such as NASA and the United States Air 

Force (Lebiere et al. 2005; Lane 2007).  

The research reported and presented in this thesis involves an approach that will 

ultimately facilitate the modelling of human behaviour and the enhancement of user 

interfaces at the level of cognitive, perceptual, and motor operations using the unified 
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cognitive architecture referred to as Adaptive Control of Thought – Rational (ACT-R) 

(Sutherland 1964; Redmond and Smith 1975; Anderson 1996; Anderson et al. 2004; 

Lebiere 2006) which allows cognitive tasks to be modelled and thereafter run. ACT-R is 

discussed in detail in section 3.3.3. In short, ACT-R (Anderson & Lebiere 1998) is a 

modular architecture that embodies the theories of cognition, perception and motor 

behaviour (Das and Stuerzlinger 2007), which is composed of a series of interacting 

modules such as declarative and procedural memories, perceptual frameworks such as the 

visual and auditory modules and motor frameworks such as the motor and speech 

modules. They are coordinated by a central production system (Newell 1990), which 

matches the content of the different modules’ buffer to fire the best production rule. 

Thus in order to facilitate the modelling tasks to produce enhanced user interfaces, the 

system that is presented in this thesis involves the retrieval of cognitive predictions and 

metrics that will be used to improve the usability and design of these software interfaces 

in terms of efficiency in a real-time setting by using a genetic algorithm that will ultimately 

attempt to evolve a solution using the ACT-R predictions whilst a special module will 

retrieve all the user interactions relating to a specific prototype interface.  

The main research question in this thesis is answered through two approaches: ACT-R 

and optimisation. This duality makes this work somewhat complex to present, as both 

approaches are based on fundamental principles i.e. human cognition and Darwinian 

principles.  

For this reason, the following sections will present a historical overview of HCI and its 

emergence. Sections associated with cognitive architectures and modelling will follow 

where applications that relate to the presented research in this thesis are discussed. 

Further sections on Genetic algorithms will explain some major concepts on 

evolutionary algorithms providing examples of usage.  In the next Chapter TOISE is 

presented and discussed. 
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2.1 Historical background 

There is little doubt that research during World War II led to new understandings of 

human factors (Kieras 1997) as new technologies were invented during that period such 

as Radio Detection and Ranging (RADAR) systems. Human beings became more active 

processors of information than they would have been before the development of these 

increasingly complex systems, e.g. in aviation that placed greater demands on human 

perception and cognition. This led to breakthroughs in experimental psychology, 

perception, performance, advances in our understanding of how human memory works, 

human learning processes and problem solving. It became apparent during this era that 

the main practical difficulties with equipment such as radar systems and military aircraft 

lay with the operating of these devices and not essentially with the complex devices 

themselves.  In other words, the interaction with those devices was the major source of 

difficulty and not their complexity. This research i.e. Human Factors, influenced not only 

the design of those devices but the psychological theories that emerged during that time. 

In retrospect, this gave researchers the perfect applied problem to work with, and as 

society was being transformed due to the use of these new computational devices, 

cognitive scientists used their applied methodology to solve these problems that were 

critical to usability (Card et al. 1983). 

With the emergence of early personal computers as opposed to mainframe computers 

normally used only by specialists, changes in human-computer interaction gave rise to 

new approaches and more understanding as cognitive scientists came to realise that with 

the new styles of interactions that were required using this new technology than better 

design of human-computer interfaces must become pivotal in dealing with human 

performance. 

The first postulation was that the best approach to design should be based on task 

analysis, to obtain human interaction metrics and argued that since human activity is 

known to be goal orientated, and their limitation in terms of perceptual and information 

processing abilities was beginning to be understood, adjusting the task environment could 

increase human performance (Dorman and Gaudiano 1998; Bolton et al. 2012). Hence 

given the understanding of human cognition and motor functions and the goal to achieve, 

the task environment can provide information to psychologists to analyse how best this 

goal can be performed within this environment. Another postulation was the need to shift 

the methodology from results based on formal comparative work to results based on 

calculations i.e. approximations, which from then on became an essential tool to perform 
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their analyses (Card et al. 1980). To complete their set of requirements, cognitive 

psychologists who were becoming cognitive engineers argued one last requirement: a 

need for a supporting theory of human computer interaction relevant to the design of 

computer interfaces (Crystal and Ellington 2004; Grudin 2005). 

It is during the design process, that the designer has still enough degrees of freedom to 

change the system usability as it is easier to propose evolved designs at this stage rather 

than when a system has already launched for use, which means that proposing any 

changes are extremely difficult to implement and would probably lead to a later major re-

release. Therefore if psychologists only concentrate on evaluation of existing implemented 

systems, the impact of their research will remain negligible unless it moves in the design 

area (Carroll 1997). 

Human Computer Interaction (HCI) emerged in the 1980s and has steadily expanded 

for over thirty years to attract many professionals from diverse disciples i.e. computer 

science, psychology, mathematics, engineering, merging concepts and approaches from 

those disciplines. HCI is an example on how many distinct approaches and conceptual 

interests can be integrated to provide a human-centred theory of best practice. It has 

evolved into a major area of research that concentrates on finding best practice with 

computer interfaces focussing on human interaction. However, as we will see later, the 

field of HCI and its focus has expanded dramatically over the past three decades to 

embrace new technological developments and the further diversification and complex 

user base.  

In some ways, HCI was and still remain greatly influenced by technical advances. As 

equipment evolved, HCI had to catch up to fulfil its remit. This fundamental link between 

the two phenomena symbolizes two entities coevolving symbiotically. 

The main technologies that affected the entire industry are both hardware and 

software advances. Without debating which one had the most impact, most agree that 

direct manipulation of objects, for example by utilising mouse pointer devices, created a 

shift in usability that has been difficult to surpass contemporarily. This however would not 

possible if the concept of Graphical User Interfaces (GUI) had not been previously 

invented. These two advances led to major adjustment of productivity and led to 

applications such as spreadsheets, word processing and graphic packages, which are now 

the rudimentary requirement in all computers. This drive towards a more interactive 

environment not only created an impact then but also paved the way for today's new 
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research on gesture's recognition and control, and many of the multimedia software used 

today, in their own ways, are revolutionizing today's industry.  

In the next sections, we will discuss the main steps that evolved computer technology 

along with the many issues that the technological advances created and how the HCI 

community came about to solve the many problems the same technology brought about; 

in particular obtaining metrics or user interaction that this research is based on. 

2.1.1 The first GUI and pointing device 

The first computer graphics aided systems is often argued to have come alongside the 

first digital computers; the Whirlwind project being the first project to have used this 

technology which had over an acre of electronics with one control room containing one 

electronic screen display and a light gun providing direct input onto the screen  (Machover 

1994). 

HCI would not be what it is without the phenomenon of direct input. The light gun was 

the first real direct input device created, used mainly in a military environment and was 

brought to light by the Whirlwind project2.  

 

Figure 3: Whirlwind Project (1949) 

Created in 1944 as part of the US Navy's Airplane Stability and Control Analyser Project 

(ASCA), it attempted to provide a real-time flight simulator. The Whirlwind project was 

integrated into the Semi-Automatic Ground Environment (SAGE) that was an air defence 

system design to protect the US against enemy bomber attacks controlled by US Air 

Defence (See Figure 3). The light pen was created as part of the work on the Whirlwind 

project by Robert Everett. He designed this input device i.e. a light pen (or light gun) which 

when pointed at a light symbol displayed on a CRT radar screen (see Figure 43). These two 

                                                             

2 Project ran by the Massachusetts Institute of Technology (MIT)  

3 Courtesy of http://www.computermuseum.li/Testpage/Whirlwind-1949.htm 
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projects left a legacy by opening the door to the Computer Graphics (CG) discipline and 

showing CRT screens as viable displays and interaction interfaces, and moreover, 

introducing the light gun as an important input device for these devices (Redmond & 

Smith 1975; Lane 2007). 

 

Figure 4: Sage System with early light gun 

2.1.2 The next pointing device 

The pointing device technology advanced when Ivan Sutherland (Sutherland 1964) 

invented Sketchpad4 (See Figure 55). Its concept influenced and galvanised generations to 

come as it fundamentally contributed to the domain of HCI, being one of the first usable 

graphical interface software.  

 

Figure 5: Sketchpad (1963) 

Even though the pointing device was not a mouse, the light pen used in his experiments 

allowed for direct input to take place. Using this device, objects could be drawn, selected 

and moved by dragging them onto a screen (Figure 66). 

                                                             

4 Sutherland invented Sketchpad as part of his PhD research in 1963-1964. 

5 Sketchpad: courtesy of http://kisd.de/~rbaehren/sketchpad.htm 

6 Sketchpad: courtesy of http://kisd.de/~rbaehren/sketchpad.htm 
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In the programmatic context, Sketchpad provided a major leap in techniques too as he 

abstracted what was displayed onto the screen in order to reduce cognitive load as his 

intentions were to create a system that could be used by non-programming individuals 

such as artists and engineering draughtsmen. In short his main task was to remove the 

division between users and programmers.  

 
Figure 6: Sage System with early light gun 

 

In that respect Sutherland succeeded and was one of the first person to use the concept 

of object orientation, namely the concept of classes and objects being instance of those 

classes with an introduction to inheritance. Many attributed Sketchpad as being the first 

CAD program for which Sutherland received the prestigious ACM Turing Award in 1988. 

2.1.3 The ubiquitous direct input device: the mouse  

Douglas Engelbart was a visionary7 (Grosz 2005). His report “Augmenting Human 

Intellect: A Conceptual Framework” that described and discussed his vision and research 

agenda secured funding from ARPA, which led to the invention of an early prototype of the 

contemporary computer ubiquitous mouse8 (Zhai 2004) (See Figure 89). Originally made 

up of two geared wheels perpendicular with each other, the co-founder Bill English while 

working later at the Xerox Palo Research Park modified the original model and replaced 

the two wheels system with a metal ball pressed against some metallic rollers to translate 

the mouse movement See Figure 7.  

                                                             

7 Engelbart earned a Ph.D. in EECS from UC Berkeley in 1955. 

8 Around 1963 at the Stanford Research Institute (SRI) 

9 Courtesy of http://www.dougengelbart.org/pubs/papers/scanned/Doug_Engelbart-
AugmentingHumanIntellect.pdf 
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Figure 7: Engelbart’s mouse patent:  3,541,541 - 1967 

Some years later the mouse saw other modifications which included amongst others 

the additions of two buttons, to become the technology for direct input for their first 

personal computer containing a GUI as its interface. This computer was the Xerox Star as 

shown in Figure 11 10. 

 

Figure 8: Douglas Endelbart’s first wooden mouse 

2.1.4 Importance of Object Orientated Programming (OOP) in HCI 

None of the advances made in pointing devices, which have become the main human 

interaction with computer user interfaces would have been possible without creating a 

layer of abstraction between the objects displayed onto a screen and their relevant virtual 

entities inside the programming code. 

Nygaard and Dahl (1981) with their work on simulation models - SIMULA some years 

later would take the concept used by Sutherland much further and formalize what is 

known today as OOP (Nygaard & Dahl 1981). In short, most programming languages were 

based on functional decomposition techniques, i.e. based on sub-routines (or major 

actions) that were necessary to complete a specific task. With object-orientation, this 

                                                             

10 Courtesy of http://images.yourdictionary.com/xerox 
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decomposition is based on objects. Thus changes in representation of an object are 

localized rather than global. Furthermore, the object-representation implements models 

of reality that are self-contained objects interacting and collaborating with each other 

hence introducing the idea of real-world objects for developing applications and systems 

(Booch 1986; Dahl 2004; Kindler 2007). 

2.1.5 The importance of event handling i.e. Reaction Handlers in HCI 

It is difficult today to conceive a programming environment without event handling 

which provides the main code response to human interaction on user interface widgets. 

However, in the early 1960s this concept was not formalized. There were influences such 

as the work done on the SAGE project, but this was a military project and consequently not 

in the public domain. 

Another influence in this domain was the work of William Newman11. This researcher 

from Harvard University worked on the development of problem-orientated programming 

languages for graphical applications and Reaction Handler12.  

This fundamental concept lies on the fact that for every action taken by a user, a 

specific reaction would follow by the computer depending on the current state of the 

running program. This is undoubtedly the precursor of events handlers that is seen in 

most of today's programming software (Newman 1968). This paved the way for 

fundamental changes in ways software not only computes and retrieves data for specific 

tasks but also reacts to human interaction (Kay 1996).  

2.1.6 Icons 

In the field of HCI there have been many important scientific findings. Some were 

theoretical and pushed the science forward but some were practical and resulted in a 

major usability shift. David Canfield Smith’s contribution refers to both. Heavily influenced 

by the invention of Sketchpad, and the new possibilities it presented, Smith went on to 

explicitly argue the benefits at the cognitive level of the abstraction between the user 

interaction and the programming platforms. In a sense it was clear to him that graphical 

images could represent abstract entities of some programming language objects.  

Smith coined the term "icon"13 to these graphical entities, a name still used today. These 

objects could be manipulated irrespective of what they were in terms of programming 

                                                             

11 William Newman earned his PhD from the Imperial College in London. 

12 Newman presented a conference paper in 1968 based on the work done at Harvard. 
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objects. Smith being part of the team that later developed the Xerox Star as chief designer 

influenced the development with his principles and in particular with the first adoption of 

“WYSIWYG” (Smith 1975). 

2.1.7 Xerox PARC 

From this point, many computer scientists were moving towards the idea that 

computers that should not be solely for programmers and experts but also tools that 

anyone could utilise. This could have seemed an insurmountable challenge had the 

discoveries mentioned above not been made. The next stage to meet this challenge was to 

merge all these advances into one system.  Alan Kay14 was such a person to drive this 

concept to completion. In his book, Kay (Kay 1996; Chesbrough & Rosenbloom 2002) 

wrote: 

"Ideally the personal computer will be designed in such a way that people 

of all ages and walks of life can mould and channel its power to their own 

needs." 

This typifies the vision that the Xerox team had in the mid-70s and led to the creation of 

the Dynabook in 1968 (See Figure 915); a major evolutionary step analogous to today's 

tablet computers, directed towards usage by children (Kay 1972; Kay and Goldberg 1977). 

 

Figure 9: Dynabook (1968) 

However it was later, at the beginning of the 1980s that Xerox developed their first 

“commercial” system to use direct manipulation extensively. Xerox first conceptual 

                                                                                                                                                                                   

13 Based from Smith’s  PhD research on Pygmalion in 1977, 

14 Working at Xerox PARC 

15 Courtesy of http://history-computer.com/ModernComputer/Personal/Dynabook.html 
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system, was the Xerox Alto in 197316. It was a device used only for experimental purposes 

and incorporating the new innovations that were made at the time.  

Those computers mainly used in Xerox's original Palo Alto Research Centre (PARC) 

(Irby et al. 1977) were revolutionary17 in a way that they were Ethernet-linked and 

provided unique services (for that point in time) including arguably the first Graphical 

User Interface (GUI) (See Figure 1018). Later, the Xerox Star development started in 1977 

(Smith et al. 1986). The mission behind this development was to create the "office of the 

future" and owed most of his technical success to the Xerox Alto19, which incorporated 

many developers from the Alto project (Chesbrough and Rosenbloom 2002). 

 

Figure 10: Xerox Alto (1973) 

Despite the huge technical breakthroughs this computer brought to the world, the 

Xerox Star (See Figure 11) failed commercially in 1981. However many agree that this 

engineering achievement laid the foundation for a new type of computer interfaces based 

on “WYSIWYG”, Ethernet, network file services and printing services which are still with 

us today.  

                                                             

16 Development team was headed by Chuck Thacker. 

17 Thacker was awarded the Turing Award for his pioneering work with the Alto 

18 Courtesy of http://retro-treasures.blogspot.co.uk/2010/10/xerox-alto-computer.html 

19 David Liddle was in charge of the development team. 
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Figure 11: Xerox Start personal computer with a two buttons mouse 

2.1.8 Apple Macintosh 

The Xerox Alto did not just spawn interests within the Xerox team.  In the late 70s, the 

Apple management became aware of the revolutionary new architecture of the Alto and 

decided to use its new mouse driven GUI concept for a new system they were designing to 

upgrade their existing commercially successful Apple II.  The Apple Lisa20 (Figure 12) 

presented a GUI not unlike the current Apple "Look and Feel" was introduced in 1983.  

 

Figure 12: Apple Lisa 

Three years later, in 1986, the Macintosh Plus was introduced including some 

fascinating improvements to earlier models on both the hardware and applications fronts. 

One of the major enhancements this product contained was the inclusion of a SCSI port, 

which allowed many types of devices to be attached to the system externally including 

                                                             

20 At the time Xerox was a shareholder in Apple the Apple Lisa. 
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extra display units. This “WYSIWYG” system included many programs such as MacPaint 

(Figure 13 21) and MacWrite (Figure 14 22) bundled into it. In addition, third party 

software like Word and Excel 23 and PowerPoint24 could optionally be installed. 

 

Figure 13: Apple MacPaint 

 
Figure 14: Apple MacWrite 

All of these technological breakthroughs have had a major impact on the way people 

interacted with computer systems.  Allowing human interaction with computer interfaces 

created a breeding ground for research in usability as these user interfaces became more 

complex and failures in this field had major impact at many levels both in terms of 

productivity and cost. What was true yesterday is still true today and as computer 

interfaces become ever more complex and human limitations on system performance is 

being ascertained, usability evaluation is now beginning to be taken seriously. With the 

increasing cost of user evaluation due to the increasing popularity in approaches such as 

the UCD approach, user modelling is becoming more popular as a mean of evaluating user 

interfaces. Tools have been created to help designers with user interface evaluation, but 

                                                             

21 Courtesy of http://churchm.ag/macpaint-and-quickdraw-source-code-available-mac-download/ 

22 Courtesy of http://www.jnkmail.com/stuff/nostalgia/ 

23 Word and Excel where first produced by Microsoft for the Macintosh platforms. 

24 PowerPoint was created by Forethought before being bought by Microsoft. 
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the system presented in this thesis goes one step further and provides a mean of 

automatic optimisation of those interfaces. 

2.2 Software Evolution 

The field of text editing had the major impact on the whole software industry. The first 

prototype came from the Stanford Research Laboratory and was proposed by Engelbart25 

where he implemented the first word processor in 1965 called oN-Line System (NLS) after 

three years of research and demonstrated it in 1968.  

NLS marked an evolutionary turn in computer office software. Engelbart who also 

invented the mouse was a pioneer in human-computer interaction research and his team 

put forward a new concept of hypertext. This word-processor had similar functionality to 

the bestselling software that came out some years later: WordStar. It provided a turning 

point in the way text editing would be considered and marked the start of major funding in 

R & D that would ultimately lead to word-processing software such as WordStar leading to 

MacWrite and Microsoft Work. 

Graphical programs are a major part of software tools used today. In the early days, 

Sutherland's Sketchpad using a light pen first introduced this technology. The real 

demonstration of real time user interaction with a mouse came with Engelbart’s NLS. With 

the continuing research drive that was taking place, another significant step in the 

evolution in human computer interaction was taken in 1968. Ken Pulfer and Grant 

Bechthold26 using Engelbart’s idea of a device pointer drew all the frames of a movie 

sequence using a key-frame animation system. This led the director Peter Foldes in 1971, 

to direct the first computer-animated movie produced by the National Film Board of 

Canada (See Figure 15). This film became a success and was recognised by the awards 

bodies in and around 1971 i.e. Jury Prize at the Cannes Film Festival, a BAFTA award for 

Best Animation Film and a Silver Higo at the Chicago International Film Festival. This 

iconic film had a major impact in a somewhat traditional movie industry. 

                                                             

25 Engelbart was a researcher at the Augmentation Research Centre (ARC) at the Stanford Research Institute 
(SRI) during the 1960s. 

26 From the National Research Council of Canada 
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Figure 15: Hunger by Peter Foldes (1971) 

During the same period other influential research took place for example, Newman 

when working on the Xerox Alto project implemented the first paint program. Soon after, 

Patrick Baudelaire’s Draw became part of the Alto successor - the Xerox Star system. The 

first real Paint program is agreed to be Dick Shoup’s SuperPaint27. This pioneering 

research and development from Xerox PARC with colleague Smith increased the dynamics 

towards a technology that would revolutionize the multi-media industry in terms of 

features. Not only, would the program allow the capture of images from standard video 

output, but also virtual paintbrushes, pencils and fills. Moreover, SuperPaint became the 

first Paint program to use and depend entirely on a GUI with the new feature called anti-

aliasing using a pointing device. Television channels used this relatively easy to use system 

to create custom graphics for their programs. NASA for the Pioneer Venus project mission 

in 1978 used SuperPaint to create their technical graphics and animations. Shoup won an 

Emmy award in 1983 for his work, and an Academy Award shared with Smith and Thomas 

Porter in 1998, for his development of SuperPaint (Shoup 2001). This bespoke system was 

never intended to be for mass production but like Newman's Sketchpad and Engelbart's 

mouse and his first word-processor, it became part of a surge of new ideas and concepts 

that would revolutionize the world of HCI.  

2.3 The emergence of cognitive engineering 

With windows in a Graphical User Interface (GUI), with pointing devices and concepts 

that allowed developments of many of today’s software and hardware devices, the world 

of computing and computer users changed beyond recognition. This revolution in terms of 

user demands will put pressure on the HCI and Cognitive Science communities. 

                                                             

27 Shoup earned a PhD from Carnegie Mellon University in 1970. 
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Prior to the 1970s, technology professionals were most likely to interact with 

computing technology. However the emergence of personal computers in the 1980s 

revolutionized not only productivity in people's professional lives but also at a private 

level. People not only used computers at work, but also started to spend time at home 

utilizing them for recreation purposes, such as game playing, improving their personal 

lives using word-processors and interactive programs such as communication software. 

This led to an explosive growth of computer usage, which changed the fabric of our society 

and human behaviour. 

This surge highlighted many deficiencies of computer devices as pieces of hardware as 

well as in their interfaces with respect to usability for the individuals wanting to use 

computers as tools. It also presented a major challenge to the manufacturers, designers 

and programmers of those artefacts who after being made aware of these deficiencies who 

lacked formal theories and models that could guide design as well as methods, tools and 

techniques to build usable systems. 

Fortunately, this corresponded to the time when cognitive science, which included 

domains like artificial intelligence, psychology, and linguistics, emerged. The professionals 

from these fields became active, began to work together, published their findings and with 

the help of manufacturers made sense of increasingly complex technologies and the 

changing of user populations which led to the emergence of modern HCI (Roth et al. 

2002). 

The main core of the research started yet again when Xerox, established the Palo Alto 

Research Centre (PARC) in the 70s, which was by that time famous for its developments in 

interactive technology. In those days, Allan Newell, employed as a consultant to undertake 

some psychological research into human interaction using the newly invented 

technological concepts such as user interface and interaction devices, created with his 

former students Stuart Card and Thomas Moran a small unit called the Applied 

Information-Processing Psychology (AIP) project with the main remit of applying their 

applied psychology research to HCI (Laird and Rosenbloom 1992). In short, their work 

concentrated on the quality of human interaction when using interactive devices such as 

mouse and GUI. Their efforts amongst others placed HCI at the centre of one of the most 

influential place in terms of new technology. From this research, a very influential 

document emerged written by Stuart Card, Thomas Moran and Allan Newell: The 

Psychology of Human-Computer Interaction, which introduces the concepts of human 

performance, GOMS and KML. The latter two concepts being paradigms that allows the 
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simulation of users, will be introduced in the proceeding sections; concepts still in use 

today. 

The main remit of this new venture, was to include systematic and scientifically 

understood concepts into applications development and assessment focusing solely on 

usability based by research made by cognitive scientists. It gave rise to "Cognitive 

Engineering”. Cognitive Engineering is an interdisciplinary approach to the development 

of principles, methods, tools, and techniques to guide the design of computerized systems 

intended to support human performance (Woods and Roth 1988; Roth et al. 2002). This 

emergence came at the right time and injected new and novel concepts, integrating skills 

from different disciplines, and most of all delivered a new needed vision dedicated to 

addressing deficiencies with the use of computers and digital devices. 

Early research focused mainly on software such as text input and editing as well as data 

entry in software. Today, it has become far richer and has expanded to areas like 

information systems, visualization and many aspect of product design to name but a few.  

Thus, in the academic world, HCI is taught in departments such as psychology, design, 

product design, cognitive science, science and technology, it is also included in industrial 

and manufacturing courses. HCI is now an integrated part of every taught concept 

integrating different approaches, and this richness encompasses a broad spectrum of 

users ranging from the young to the elderly, users with many forms of disabilities from 

learning to physical disability ranging from motor to visual impairment. As software 

domains became richer in terms of functionality, HCI focused on many aspects of software 

(and hardware) applications and now includes games, e-software, military software and 

process controls. This spectrum of applications meant that the early primary focus of HCI 

which mainly dealt with graphical user interfaces and usability now includes many other 

types of interactions, for many types of devices, ranging from hardware devices of any 

sizes i.e. from computers, hand-held devices, and mobile devices of many types with all the 

intricacies that these new devices offer. 

This broad landscape is very varied and complex and develops professionals that once 

would have been known as computer scientists and psychologists, but now produces user 

experience designers, application designers, user interface designers, interaction 

designers and other relevant engineers for these professions. The application areas are 

now sub-divided into many domains. These subareas include mobile computing, in-

vehicles systems, handheld and wearable devices, distributed systems, programming tools 

and their related tools. 
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2.4 HCI focus 

The main focus of research in Cognitive Science (CS) is to study and to develop mental 

models as part of its efforts to understand and predict how humans know, perceive, make 

decisions, and construct behaviour in different environments.  

Cognitive Science is the study of how the human mind operates and has inherited many 

of its concepts from psychology, itself associated with the study of human behaviour. 

Cognitive Science focuses on the understanding of how the human mind works not only by 

studying human behaviour but by incorporating research from many other fields not 

limited to linguistics, neuroscience, artificial intelligence and psychology. Cognitive 

scientists have many tools at their disposal i.e. for example computing and mathematical 

science, to represent some of the inner-workings of the mind such as thinking or 

addressing several processes related to the working of the mind like acquiring or using 

knowledge. One of the main contributions of Cognitive Science that has much weight and 

heavy impact on the research presented in this thesis is the development of theories, 

which led to the creation of cognitive architectures that account for human cognition and 

behaviour. 

HCI adopted and adapted these concepts to further the study in its main area of 

research i.e. usability. This approach is at the centre of its success. For instance, HCI 

applies Cognitive Science concepts to deal with information visualization in areas such as 

user modelling. The counterpart is seen when HCI provided cognitive scientists the 

guidance in regard to its user research (Carroll 1988).  

The collaboration between HCI and Cognitive Science, which is far-reaching, led to 

theories like models of human information processing that were frameworks used to 

explain and describe human mental processes, including basic aspects of perception, 

attention, short-term memory operations, motor functions integrated into a single 

powerful model. Two implementations of those concepts are GOMS and KLM (an example 

of GOMS model is given in Appendix A) which will be discussed in later chapters (Card et 

al. 1983). Because of the dynamic aspect of HCI, these basic functions were developed 

further. From an atomic actor, which was what the early model described, in the late 

1980s and early 1990s, the HCI concepts have now evolved to integrate more fundamental 

concepts which led to the integration of the Activity Theory, whereby a user is not seen at 

an atomic level separated from his/her environment, but rather part of a collective 

framework. These conscious activities with objects can be broken down into goal-directed 
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actions through predefined automatic operations that have to be performed in order to 

satisfy these objects. The complexity is that these activities are not fixed but can change 

dynamically as the environment or conditions to which actions are applied, are dynamic 

and changes. 

2.5 Design deficiencies 

Given the impact that HCI has had on the industry, deficiencies in software and 

hardware devices are still commonplace. The main question is why this state of affair still 

exists today, given the massive development drive and theoretical impact HCI provides to 

the industry? To answer this question, we must first discuss what might be referred to as 

“mainstream user interface design”. The step often mentioned is the stage where one does 

try to define what the software / system does and who is going to use the system. The 

stage is referred to as tasks and user analysis. Not only should the system be able to 

achieve what it is intended for, but also integrate well with the world of users.  

Traditionally, a requirement analysis is performed on a system. This leads to a set of 

specifications that is used for the development of the system. However, this methodology 

is not user centred, but is system centred based on assumptions of usability for a 

particular system by the system designers. If one looks into the details of what tasks a user 

must perform to achieve a series of goals and evolve a design accordingly, this puts the 

user back at the centre of the development.  

One of the major obstacles if a development team decides to undertake a thorough user 

analysis is often not the process to render the system more user-centred itself but to 

recommend this need to their management team who often have financial and timing 

pressures. In addition, this often involves additional professionals and many testing users, 

pushing the cost of development. Such usability evaluation activities actions are often 

rejected on ground of extra cost even if it is common knowledge that an early and 

continued involvement leads to good design and therefore gives a more likelihood of the 

software being successful (Karat 1993). Alternatively, developers (often prescribed by 

early management requirements) might use a "template" of what the system may look like 

(Apple 2012; Microsoft 2012). Creating a new kind of interface often results in failure and 

management team being aware of this might set a basic set of specifications long before 

development is started. The beneficial points in following this road can have positive 

outcomes. First this road minimizes the uptake risks, as most users will be familiarized 

with a known interface template. Secondly, the design cost is minimal, as most of the 
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design research has already been done. This type of project often relies on backend design 

and development. A very good example of such templates is with Windows and Apple's 

interfaces. Not trying to compare them, one can see that using a formal interface template 

for designing a User Interface (UI) with those platforms will ensure user satisfaction both 

in terms of use and aesthetics. A user familiarized with a type of template interface for 

instance will almost be competent using a system that contains interfaces similar to those 

already used. 

Good practice should be at the centre of development and should cover a good task 

analysis, which should itself cover a detailed use of the system through series of real tasks. 

Once this information is collected from human user testing, it can be used to analyse the 

existing system and draw another set of specifications where the users are at the centre of 

the changes. The tasks included should attempt to capture most of the software difficulties 

in terms of usability. The new specifications are then used to optimize the software. The 

momentum is kept well into the "alpha" phase of the development, thus allowing the 

maximization of usability for a particular system. This objective can only be kept by 

investments both in terms of financial support but also in terms of dedication of the 

development team both at a managerial and development level. The cycle just described 

needs a lot of user testing resulting in expensive extra costs and additional time allocation. 

Moreover, it will often impact on the development cycle, which could stall while the 

usability testing is undergoing its course. Hence, to factorize all these aspects into a system 

development makes prediction difficult and more complex to formalize in terms of 

milestones for instance. 

Many important principles of design were proposed by Carroll and Rosson (1997) in 

the form of the Scenario Based Design (SBD) approach. SBD inherits the components of 

UCD (see Star model in Figure 2), but adds another dimension by including the concepts of 

scenarios in the development cycle. Scenarios are stories about people behaviour, their 

goals and the environment they are.  They have a plot i.e. they include actions and events 

that either happen to actors or are generated by actors (Carroll 1999). They can be 

written from many perspectives and for many situations, and for many purposes (Carroll 

2002). They are techniques that are used to shift the focus of the design process from 

mainly purely functional specifications to a description of on how people use a system to 

achieve a specific task in a specific environment. In other words they are a kind of 

lightweight user interaction visualisation of the use of a system by potential real target 

users that have become popular as they enable a realistic and rapid communications about 

potential usage of a system amongst many parties in the development cycle (Rosson and 
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Carroll 2009). Furthermore, in terms of user analysis, SBD tends to supply important 

information that is useful to include cognitive engineering into the loop. 

Perusing Figure 16, one realises that the user is a central part of the development of the 

system. From the user analysis, much information can be conveyed to form scenarios and 

scenarios can be used to help researching human information processing specifics. 

Scenarios provide important information to the user centred design process to direct the 

design process. User evaluation takes place to refine requirements, which can lead to new 

scenarios being created.  

 

Figure 16: Scenario Based Development 

This forms the basis of SBD, which is at the centre of many development projects.  The 

main issues with empirical testing are its time scale i.e. slow approach and financial 

pressure put on software companies i.e. can be prohibitively expensive if domain experts 

are involved, to apply an appropriate usability testing program  (Kieras 2006).  For 

example a Norwegian company called TNO (TNO 2012) can charge anything between 

50,000 to 100,000 Euros, with tests lasting between an estimated 8 to 18 weeks to 

perform some usability testing on a company behalf. These figures represent a typical 

example of the bottleneck for the adoption of usability studies into the development of 

software discussed above. Moreover this is compelled by the fact that user performance 

varies greatly over a set of experiments and participants (Ritter et al. 2002). There are 

approaches such as usability discount cost benefit methods that help with those issues 

(Rajanen and Jokela 2007; Rajanen 2011). However another alternative came with the 

cognitive engineering community response by creating cognitive models specially 

engineered for usability, providing quantitative predictions such as task completion 

latency describing how well humans perform a task or a series of tasks using a specific 
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design; models that can be used as surrogate users to get empirical data (Kieras 1999). 

Such an approach provides an opportunity to iterate through many design revisions under 

a variety of condition much faster than real time (Byrne 2003). The research this thesis 

presents relies on surrogate users that have been modelled and engineered to run using a 

cognitive architecture, which will be described in later chapters. 

The synergy between Cognitive Science and HCI helped to provide some important 

developments that are far more reaching than the main usability focus. We have 

mentioned above the dynamic aspect of HCI evolution as systems complexity increased 

and ways it moved on to encompass this complexity in its research. Cognitive Science 

followed the same evolutionary path in its own domain by developing more advanced 

human models and architectures capturing not only based on basic human reactions and 

motor functions but also fully functional models born from research in psychology and 

neuroscience. Thus a new era in Cognitive Science grew alongside HCI, which had a major 

impact in our understanding of human interactions with the external world. This synergy 

brought about theoretically speaking a huge amount of research that helped all 

professionals involved in developing hardware and software devices to understand 

usability for ever changing and involving user needs at a more meaningful way in the 

development of systems. The advances in human modelling gave HCI the tools needed to 

perform usability tests without human user involvement. 

These tools are discussed in more detail in the following chapter, starting with the 

Model Human Processor (MHP). MHP was the first real attempt to formalize human 

behaviour and interaction. The extensive research gave birth to human interaction 

modelling that led to the creation of models such as Goals Operators Methods Selections 

(GOMS) and later Key Stroke-Level Model (KLM) (a subset of GOMS focusing on computer 

interface interaction) both of which are explored in the following section. There were 

followed by the advent of cognitive architectures. In the next chapter, an overview is given, 

concentrated on aspects that have an impact on the research presented in this thesis. 
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Chapter 3.  Cognitive Modelling 

3.1 Model Human Processor (MHP) 

The book The Psychology of Human-Computer Interactions from Card, Moran and 

Newell28 (Card et al. 1983) is often credited with bringing to the forefront the concepts of 

Human Computer Interaction and human cognition and is thought of as one of the most 

central early influences in human computer interaction and cognitive engineering-

oriented usability fields. It introduced MHP as an engineering model of human 

performance and GOMS as a methodology to perform task analysis (Byrne 2001).  

This section provides an overview of MHP and is heavily based on the early publication 

of the book mentioned above. 

The importance of MHP will be illustrated using this publication as a reference, why it 

is considered as a turning point in the impact HCI has had in relation to new developments 

in computing science in general, in which applied psychology comes to the rescue of 

developers and engineers to describe and explain how humans interact with computers 

devices.  

A simple model of human performance was created which gives an integrated 

description of psychological knowledge about human performance relevant to human-

computer interaction. It is called MHP. This model sees the human mind as an 

information-processing system that can be used to predict and approximate user-

computer interaction (see Figure 17). 

The MHP is an elementary model of human performance, intended to equip cognitive 

engineers with rough estimates of system behaviour focusing on the information 

processing capabilities of an average individual, described in terms of sets of memories 

and processors, in addition to sets of principles connecting human operations to these 

sets. 

 In terms of memories, the MHP includes sensory memories which are small buffers 

that hold information sensed from the environment before it is eventually encoded, short-

term memory (or working memory) and long-term memory which are buffers that hold 

symbolically encoded information.  

                                                             

28 Published in 1986 
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Figure 17: The Model Human Processor 

The processors in this model refer to systems that can act on the sensed data. There are 

three types of processors referring to the perceptual system that includes all the human 

sensors and their associated memory buffers, the cognitive system that receives 

symbolically encoded data from the sensory stores and its Working Memory (WM) and 

responds using previously stored long-term memories and finally the motor system whose 

main task is to respond to the cognitive system. 

The Perceptual System (PS) transfers sensory data of the physical world that is 

detected by the human body sensory systems into symbolic representations. The data 

received by the human sensors is coded physically supporting physical properties such as 

width, height, curvature, and intensity for visual stimuli or pitch and intensity for auditory 

stimuli. In this model, processor memories are associated with working memory. Another 

aspect of this memory model is that this information decays over time.  This is called the 

Decay Time (DT). MPH measures this value in terms of half-life values.  The perceptual 

processor, which acts on perceptual memories, is the time taken for the processor to 

respond to a given stimulus.  

The Motor System (MS) can be thought of a system that translates thoughts into 

movements and plans patterns of muscle activations. HCI is mainly concerned with 

effectors such as arm-hand-finger system and the head-eye system. Like most of these 

motor activities, the movements are not continuous but consist of series of small micro-

movements or motor saccades. Like many of those values, this value is an approximation 

based on research results. When dealing with the motor system, it is difficult to exclude 

the feedback system that exists between perception and motor functions. For example, if 

one wants to complete a motor movement with some precision, one needs to make some 

small corrective adjustments in order to complete the task. Therefore one intended motor 
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movement latency is often a summation of all the timings obtained for different sub-action 

that led the full action to be completed.  

The cognitive system is involved in passing stimuli from the perceptual system 

responses to the right motor output system. Two types of memories are associated with 

the cognitive system: the working memory or short-term memory, which holds the 

current symbolic information, and the long-term memory whose main purpose, is to store 

this information for future use. All the information that is generated by the perceptual 

system is stored in the forms of symbols in short-term memory. Hence all mental 

operations will refer to this memory to gain access to the current registers used by the 

different perceptual systems.  

The abstract symbols that are stored in this memory are called chunks and are usually 

nested. This means that a chunk can refer to or include another, the latter referring to 

another one etc. These relations are therefore useful for memory retrieval purposes as 

these relations mean that when the information stored in a chunk is activated in the long-

term memory, this activation will spread amongst related chunks and thus makes those 

chunks themselves more retrievable by virtue of increase activation. It will also affect the 

retrieval speed as more activation a chunk has faster retrieval time. However due to 

human limitations, if those chunks get more activation, some others will see their 

activation decreased in time if not reactivated due to decaying itself proportional to the 

number to chunks. Like any other kind of memory, working memory decays too. This 

decaying time was researched quite extensively to show the relevance of the number of 

chunks to the decaying time and demonstrated the human limitation when recalling 

information. For instance, when a person is asked to recall some information that they just 

heard a few seconds before, both working and long-term memory are used in this process. 

Results showed that the storage capacity of the working memory is between 2 to 4 chunks. 

However if given a little more time is given (>5 sec), the long-term memory is also used in 

addition to the working memory and the number of chunks that one can recall increases to 

5 to 9 chunks. This number of chunks is well known and familiar and demonstrates the 

limitations of the human cognitive system as well as re-enforcing the proverbial sentence: 

“take your time to think about it”. 

The knowledge stored in the long-term memory can only be accessed through the 

working memory i.e. it is transferred from long-term memory to working-term memory. It 

is common knowledge that this memory acts as a massive storage space knowledge that is 

gained over one’s life. It is understood that long-term memory does not decay over time. 
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The major point to of discussion regarding the links between chunks in long-term memory 

is that most of the retrieval process depends on those links or semantic coding that exists 

between them. The situation in which the encoding context happens is important for 

retrieval purposes and leads to the difference between accessible and available memories. 

Whilst the latter encompasses all of the memories that have been encoded, the former 

deals with memories whose symbolic encoding has been achieved in the same context as 

the cues given for their retrieval. This is called “Encoding Specificity”. This principle states 

that the likelihood of successful retrieval increases as the similarity between retrieval 

context and the encoding context increases. In other words, to maximize the retrieval rate, 

the same context should be referred to when memories were encoded during the retrieval 

process. It also follows from the above, that given a particular chunk (or set of chunks), the 

more associations it (or they) may have then the greater it will be/their chance(s) of 

retrieval. This is a very important factor in terms of retrieval performance. In terms of 

cognition, the optimum strategy to ensure easy retrieval is to attempt to associate a 

symbol with others already encoded in long-term memory in some ways and furthermore, 

to attempt to do this in a novel way, to avoid interference with other piece of information 

that may lead to retrieval failure. Finally, following Card’s MHP model, the information get 

stored in long-term memory once the decay time threshold of the working memory i.e. 

around 7 sec, is passed, which compared to the time of retrieval i.e. around 70 

milliseconds is far higher. This implies that if the task’s latencies are very small then, 

storage in long-term memory cannot occur. 

The cognitive processor that Card describes is similar to the computer CPU’s fetch and 

execute processes i.e. the information is fetched from some registers (using different 

registers depending on the task to achieve) and then processed which may lead to some 

registers having different data presented or stored within them; the CPU clock controlling 

the flow of executions. The same applies in cognitive processing.  First the content of 

working memory is pattern matched with the long-term memory content. Second, the 

procedural content will be executed which might lead to the working memory content to 

be updated with new chunks of information, and the cycle repeating itself. An important 

point is that this nominal time will decreases with practice or the demands for it. 

One interesting detail about the cognitive processor in this model is that the 

recognising processes i.e. pattern matching it spawns run in parallel but the processor 

schedules all the necessary procedures in a serial manner. This bottleneck has serious 

consequences: the human cognitive system can be aware of many things at the same time 

through its perceptual and motor systems but it will only be able to spawn one action at a 
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time to deal with this new acquired awareness. In addition, as this awareness depends on 

the perceptual and motor systems, which run in parallel to the cognitive system, one can 

be aware of many factors that may happen around one-self but one will ever be able to 

deal with one phenomenon at a time.  Card’s & al MHP had major consequences for the 

future of usability and HCI overall and led to the definition of GOMS discussed in the 

following section, a framework for task analysis and later its simpler version called KLM; 

both of which allowing for empirical predictions to be generated for those models. It 

paved the road for production-system representation of human procedural knowledge 

used by much cognitive architecture today. 

MHP was a major achievement in the 80’s, which embedded psychological human 

behaviour findings known at the time. However, today, it is out-dated, lacking most of the 

recent finding in research in fields such as neuroscience. Major issues with MHP was its 

manual processing and its reporting of only expert behaviour.  A more useful model stems 

from this research i.e. GOMS, which became a focus in HCI and is discussed in detail in the 

next section. 

3.2 Goals Operators Methods Selections (GOMS) 

The Concept of the MHP representation helped to define a general model of human 

interaction. Research by Kieras and many other researchers demonstrated how GOMS 

analysis (based on MHP) could be used to obtain usefully accurate predictions of learning 

and execution time dealing with computer interaction.  

GOMS stands for Goals Operators Methods and Selection (GOMS). The Goals represents 

what the user has to accomplish using the software. It can refer to one particular task or 

be broken down into series of sub-tasks; all of which are to be completed for the overall 

goal to be achieved. Operators are the elementary or complex motor or cognitive actions 

that must be performed to complete a task. They can change the user internal mental state 

as an action is taken place but they also can change the physical environment around that 

user. 

Since MHP, GOMS high-level predictive modelling has been accepted as one of the most 

widely known and used theoretical concepts in HCI which evolved to several variants, 

some of which are executable (John and Kieras 1996). In terms of modelling, GOMS is 

perceived as a high-level language in which user interaction is expressed in a hierarchical 

manner that represent a decomposition of complex tasks into more elementary ones  (St-

Amant et al. 2006). 
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Figure 18: Outline of the GOMS model for a line editor (Card, Moran, & Newell, 1983) 

GOMS models (See Figure 18) are descriptions of the knowledge that a user must 

possess in order to perform some specific required tasks on some device. It is the 

procedural knowledge that is required in order to accomplish a task (Kieras 1999). 

There is an important factor about Operators, which is the execution time often 

approximated by a constant discovered empirically. In simple terms, Operators are the 

actions that the software allows the user to achieve. Methods are the sequence of 

Operators or sub-goals that are needed to complete some goal that depends on the nature 

of the specific task to accomplish. In short, they are learned sequences of operators and 

sub-goals that can lead to the completion of a goal and can be perceived as strategies to 

accomplish a task. One can have many strategies to complete similar tasks but only one of 

which is selected. Selections rules are the learned decisions procedures that must be used 

in a specific context to select the required method. It is the case that a user may have 

learned different methods to complete the same task for instance. A method of selection is 

necessary depending on the context to decide which strategy is better suited than another. 

In a GOMS model, a Selection Rule would exist to select the best strategy i.e. method to 

carry on a series of tasks to complete a goal (John & Kieras 1994).  

There are many flavours of GOMS ranging from simple to more complex forms. One of 

the simplest is KLM (Teo and John 2006) that was first presented as a concept by Card and 

his colleagues. This version focuses on human physical actions adapted to computer user 

interfaces. The model includes a sequence of simple motor or mental operators such as 

click-mouse, type a letter or thinks to perform a required task.  KLM provides focused time 

latencies predictions that are required to perform a task. 
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Others more complex variants are Cognitive Perceptual Motor GOMS (CPM-GOMS), 

Natural GOMS Language (NGOMSL) (Gray et al. 1993; John and Kieras 1996; Kieras 1996; 

Kieras 2006). 

GOMS, KLM and other versions mentioned in this section suffer the same issues 

discussed for MPH.  However the more complex versions bring extra functionality that has 

been found very useful in HCI (Gray and Altmann 1999).  For instance, CPM-GOMS 

provides means to chart dependencies between the user’s perceptual, cognitive and motor 

processes but is still an approach that models skilled behaviour of users (Biswas and 

Robinson 2008). However in terms of human performance, despite the fact that CPM-

GOMS allowed parallel execution of user processes, resulting in better predictions for 

skilled human behaviour, its predictions are only based on estimates of latencies for 

primitive human cognitive, perceptual and motor processes (Vera et al. 2005). 

3.3 Overview of Cognitive architectures 

A cognitive architecture, whose concept was first proposed by Newell (Newell 1990) in 

an attempt to challenge the research community to develop a Unified Theory of Cognition 

(UTC) that simultaneously address all aspects of human cognition and is a framework that 

simulates the fixed mechanisms of human cognition (Kljajevic 2008). In so doing, a well-

defined cognitive model can be developed specifically and executed by this architecture. 

Newell first proposed a production system, which became the basis for much of the 

cognitive architectures that exist today, and went on to develop with Laird and 

Rosenbloom the SOAR architecture. Later ACT-R was developed by Anderson (Anderson 

and Lebiere 1998) and EPIC by Meyer and Kieras (Kieras and Meyer 1994); the latter 

being the first to include perceptual and motor mechanisms, each representing a synthesis 

of recent empirical evidence gathered at the time, thus addressing the full spectrum of 

behaviour; from perception, cognition, to motor functions (Chong and Wray 2006). ACT-R 

was extended to incorporate perceptual and motor processes, resulting in ACT-R/PM 

(Byrne and Anderson 2000). 

Cognitive models based on cognitive architectures have been used in human-computer 

interaction in three ways: from prediction of task performance times and errors (Van 

Rooy et al. 2002) to assist users in tasks performance (Ritter 2003) or to be used 

efficiently as substitute users during testing (John and Prevas 2003). 

The work presented in this thesis makes extensive use of cognitive models that are run 

to gain metric of human performance. We will present a summary of three most used 
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cognitive architectures i.e. SOAR, EPIC and ACT-R/PM that are used in the domain of HCI 

with a strong emphasis on ACT-R/PM which has been used for this research. 

The architectures that are discussed in the following sections have much in common. 

They are all based on a production system and they all provide a goal-orientated approach 

when running a cognitive model. They are also based on cyclic execution with an 

execution time fixed per default to 50 milliseconds. Finally these cognitive architectures 

provide means to interact with an environment to some extent with some having more 

limitations than others. This discussion explains and provides the mean to determine by 

comparison which framework was the more appropriate to use for this project. 

3.3.1 SOAR 

The SOAR cognitive architecture developed by Laird, Rosenbloom, and Newell (Laird 

2012) on the back of the research carried out on the General Problem Solver (GPS) (G. M. 

Olson & J. S. Olson 2003) around 1960. In short, the main research focus of GPS was on 

problem solving and the ability of humans to search through a problem space to solve 

problems using means-ends analysis; a common-sense approach where the available 

means are the operators that are selected to reduce the difference between the current 

situation i.e. the current mental state, and the goal to achieve i.e. the ends of the problem. 

The operators are the means by which the system can move through the problem, and the 

problem space consists of the operators and the set of possible states that can be visited to 

solve the problem (Laird & Rosenbloom 1992). GPS led to the research that brought the 

Model Human Processor (MHP) and the publication of The Psychology of Human-

Computer Interactions by Card, Moran and Newell which led to the concept of GOMS, as 

the P9 Problem Space principles (Card et al. 1983). 

SOAR inherited this concept. Based on a production system, it has two types of 

memory: a production memory and a working memory. The productions contain 

association between conditions and actions and represent both declarative and procedural 

knowledge. They are similar to productions rules that are presents in other production 

systems; namely they have conditions and actions. These rules are stored in the long-term 

memory. 

Soar working memory includes the current problem solving state and operator 

(including sub-states that may arose during impasse process) and has also a short-term 

memory. 
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It contains elements called Working Memory Elements (WME). Several of these WME 

can be associated with the same factual knowledge and collectively fully describe this 

piece of knowledge. For instance we may have the fact about an object that is a button: 

“BTN1 is a button”, “BTN1 is a square”, “BTN1 is named OkButton”, “BTN1 is disabled”. All 

these WME’s are contributing to the knowledge SOAR has on BTN1 that will be internally 

refer to as BTN1, which is known as the identifier for BTN1. The group made of WME’s 

that share the same identifier i.e. BTN1 in this example is called an object with each WME 

describing a different attribute of this object. Therefore all WME with the same identifier 

are part of the same object. Objects in working memory are linked to other objects by 

setting a WME attribute set to an object identifier. In addition, all objects must be linked to 

a state through other objects, either directly (when doing problem solving) or indirectly 

(when accessing external sensors for example). 

Similar to ACT-R and EPIC, Soar is based on a production cycle but it called the decision 

cycle. During this cycle Soar attempts to determine what changes in the system state can 

be made to progress in the problem solving operation. It comprises two phases: the 

elaboration and the decision phase. During the former one, all instantiated productions i.e. 

productions that matches the elements in working memory, fires in parallel and all the 

productions that are not firing are retracted. During the execution process, these rules can 

change the working memory or create preferences. This is the preference phase that 

suggests which operator to apply. Following this comes the working memory phase where 

all non-operator (tagged i-supported) preferences are considered and then evaluated 

leading to elements either added or deleted from working memory. The elaboration phase 

repeats until no more productions are eligible to fire or to be retracted hence making sure 

that all relevant available knowledge is taken into account during the decision. During this 

phase, some productions have fired, and a decision is taken as to which operators to select 

but no actions take place. This is during the following phase that operators are selected. 

All operator preferences (tagged o-supported) are considered and then evaluated. 

Concluding this phase the selection of a new operator or a new state takes place. 

There are times that after a decision phase, no appropriate operator is selected. In Soar 

it is called an impasse, which is dealt with by creating a new state added to the working 

memory in which the goal of the problem solving becomes solving this impasse. During 

solving impasses, Soar is given the opportunity to learn. This automatic process is called 

chunking, in which a new production rules i.e. a chunk is created where the conditions of 

the chunk are the elements of the state that (arising from a chain of production firings) 

allowed the impasse to be resolved whilst the action of the production is the WME or 
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preference that resolved the impasse. During the chunking process, Soar creates variables 

based on the conditions and the related action so that when a new similar situation arises, 

this production may match and fire thus avoiding future impasses from arising (Laird and 

Rosenbloom 1992; Laird and Congdon 1998; Gray and Altmann 1999; Schultheis et al. 

2006; Byrne 2008). 

In terms of HCI, the inclusion (or re-inclusion when Soar was ported in C) of a graphical 

interface using Tcl/Tk called Tcl/Tk Soar Interface (TSI) allows model designers to 

develop explicit GUIs as external environments that can deal with human interaction 

(Ritter et al. 1998). 

3.3.2 Executive – Process Interactive Control (EPIC) 

The EPIC cognitive architecture developed by Kieras & Meyer  (Kieras and Meyer 1997; 

Kieras et al. 1997) in an effort to reduce the design time for computer interface, and to 

evaluate analytically these interfaces without often having to spend time and financial 

resources for empirical user testing, and provides a platform to use engineering models 

for human computer interaction. It is a cognitive architecture for constructing models of 

human performance, which represents in detail the perceptual, motor and cognitive 

constraints on the human ability to perform tasks using computer interfaces. In short, 

EPIC goes beyond providing the type of engineering predictions of human performance as 

seen in a real world task domain. 

EPIC in addition to facilitating the modelling of human cognition, perceptual and motor 

functions, provides a framework to simulate the interaction of humans with external 

systems and provides a task environment that can assign physical locations and properties 

to interface objects and generate events in response to simulated human behaviour. 
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Figure 19: EPIC architecture (Kieras 2009)29 

EPIC’s memory system is subdivided into several working memories. There are 

memories for the perceptual processors i.e. visual, auditory and tactile memories that 

contain the current information generated by these respective processors. There is also a 

partition dedicated to the motor processor called the motor working memory, which holds 

information about current statuses and state of the processor i.e. whether a hand 

movement is being undertaken or has completed. All this information held in memory is 

refreshed on every cyclic turn. EPIC has also two other types of memories that do not 

contain information pertaining to sensory or motor processors. One is the control store 

that contains information representing the current goals and sub-goals to accomplish the 

designated goals. As EPIC used the Parsimonious Production System (PPS), this is an 

important addition as PPS stipulates that the control information should be simply be 

another kind of memory item which can be changed by production rule actions (similar to 

ACT-R), hence is a critical functionality for modelling multi-tasking performance as the 

production rules can control sub-processing simply by manipulating the control store 

content. The second amodal memory is used by EPIC to store miscellaneous task 

information. Unlike cognitive architectures such as ACT-R, there are no assumptions 

regarding memory decaying in the EPIC framework. 

                                                             

29 Taken from “Why EPIC was Wrong about Motor Feature Programming” (Kieras 2009) 
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As already mentioned, EPIC largely inherits from PPS concepts and thus is based on 

PPS production rules which have the format (<rule 

name>IF<conditions>THEN<action>). The rules are not limited to initiating motor 

actions only but can add or remove items from the working memory. Those production 

rules contain clauses i.e. conditions that must be met. EPIC operates in terms of cycles. 

This implies that at the beginning of each of these cycles, the production rules are updated, 

and then their conditions are matched against the whole set of the current rule clauses. If 

these conditions contained in a rule matches the conditions the rule fire and its action part 

is executed which typically involves changing the content of the procedural rule memory, 

this influencing the flow of the rule firing process during the next cycle. Since EPIC follows 

closely PPS, every rules that matches fire during the next cycle in a parallel manner; thus 

simulating a parallel cognitive architecture; unlike known traditional production systems 

i.e. SOAR or ACT-R that require that only one production rule is fired at a time i.e. 

sequentially; controlled by some kind of conflict-resolution mechanism that compute 

which rule is best to fire; a process often constituting a bottleneck in terms of action 

executions. 

The research presented by this thesis focuses only on the visual and motor with their 

associated cognitive functions, thus the discussion of the processors will concentrate only 

on these areas. 

EPIC was one of the first frameworks to include relatively complex visual processing 

which takes into account the fact that human vision is not homogeneous and its acuity is 

highest towards the centre of the Fovea and decreases towards the periphery of the retina. 

The visual processor simulates the retina of an eye. It determines the kind of sensory 

stimuli information that is available about the objects contained in the task environment 

based on angular distances on the retina between an object and the centre of the fovea. 

This computation in EPIC is called the eccentricity. The eye model contains three 

approximated zones i.e. Fovea – 1 degree, Para fovea – 7.5 degrees and the retina 

periphery set to 60 degrees that are simulated by specific processors for each of those 

areas.  

In the EPIC vision system the visual perceptual processor maintains a representation of 

object visibility and metrics in the visual working memory that are slaved to the output of 

the eye. This implies that it is kept automatically updated by changes in the scene as 

objects appear, disappear, and change their colour or when an eye movement or object 

movement occurs in that scene. In response to changes, events are issued and lead to 
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outputs with different timing tags by the visual processor depending, which zones the 

detection happens to be in with regard to the eye. 

The EPIC framework contains many motor processors producing a variety of simulated 

movements for different effector organs; each having appropriate timing characteristics 

for their movement completion. Different processors exist for the hand, vocal and eye 

organs all of which can be activated simultaneously. The motor processors get inputs from 

the cognitive processor as a result of a procedural rule firing. The motor action is executed 

and the cognitive processor is kept updated about their state as motor clauses in the 

production rule memory. All motor processors have the same structural arrangement and 

share most of their functionality, i.e. in terms of coding they all inherits from a base 

processor class that contains most of the functionality. The movements for those 

processors are described by a set of features; the style feature being the most important 

that represents the kind of movement it relates to i.e. its name. The features for a style are 

represented in a hierarchical fashion that controls which specific effector of the motor 

action that must be generated. Thus when a feature changes from a previous one, the 

implications are that all the sub-features for that movement style change too i.e. a change 

in feature of the Punch action filters down changing the feature of the effectors such as the 

Hand and Finger also features. 

The motor processors are based on a three phases cycle. The first phase known as the 

preparation phase generates a list of features needed by the movement and a time stamp 

of 50ms is applied for each feature that is generated. Then the movement initiation phase 

follows and sets the movement up which EPIC also assumes a time stamp of 50ms. Finally 

the execution phase is launched which consists of making the actual mechanical motion 

for the movement but the time stamp for this process depends on the movement itself. The 

manual processor, which controls the hands and fingers, is able to simulate four main 

styles of movement. The Punch style simulates high-speed response where a button is 

located directly underneath the finger. The Ply or Point styles simulate the moving of an 

object using a hand i.e. a cursor moving towards a target object, by manipulating a control 

such as a mouse or a joystick; the Point style being more specific to mouse and computer 

interface usage. Both these styles shared very similar functionality whereby the Point style 

inherits most of the Ply functionality. Both types of movements have similar preparation 

phase to prepare features such as Direction and Extent. The Direction feature is only 

computed if the difference between the new and old direction is larger than PI/4. Similarly 

the Extent feature is re-calculated if the difference between the new and old extent is over 

two degrees of visual angle. Once the preparation phase is completed, the initiation phase 
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proceeds with the calculation of target distance and size to compute the movement time 

using the modified version of Welford’s modification of Fitts’ Law, amongst other 

processes. Finally, the movement is scheduled for execution during the execution phase. 

The other style that EPIC provides is the Keystroke movement based on GOMS-KLM which 

simulates hitting a key on a keyboard. During the feature preparation phase, no time is 

stamped if the previous movement was a keystroke to the same key. This is adjusted to 1.5 

features to prepare if a new key is hit and 3 features to prepare if the previous movement 

was not this style. The Keystroke style does not require a preparation phase before the 

action is scheduled for execution. The Welford formulation of the Fitts’ law is: 

     max (  ,      [
 

 
 0.5]) (3.1) 

where    is the minimal aimed movement time (default set to 100 milliseconds), k is a 

constant specific for a style of movement i.e. for example for a peck action it is 75 

milliseconds and for ply action it is 100 milliseconds. d is the distance to travel to the 

target and w is the width of that target. This implies that no movement can be performed 

in less than    i.e. 100 milliseconds. The other alternative being that the duration of the 

movement is a function of the ratio of the distance to travel to the width of the target. The 

width is not simply the width of the actual target but is computed by taking the width of 

the cord through the target region taken on the line drawn from the starting point of the 

movement through the centre of the actual target. See Figure 20. 

 

Figure 20: Welford formulation of Fitts's Law 

The EPIC ocular system can produce both voluntary and involuntary eye movements 

that are initiated by the cognitive processor. These movements are composed of a number 

of saccades (or small movements) moving towards a target object. During the preparation 
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phase, similarly to the Ply style movement, both the direction and extent features are 

prepared using the current position of the eye to the target object. The time stamp applied 

to each saccade is four milliseconds per degree of visual angle. The oculomotor system can 

also initiate involuntary eye movements either through saccades or small smooth 

adjustments in response to changes in the scene. Therefore if an object appears in the 

scene, the processor will trigger an involuntary saccade helping the eye to adjust to the 

location of the object. By using a combination of both voluntary and involuntary eye 

movements EPIC can track a moving object. 

Finally, in the EPIC architecture, the motor phases can be overlapped to bring efficiency 

to the motor system compared to phases executed purely sequentially by overlapping the 

initiation and execution phase of the movement with the preparation phase for the next 

scheduled movement (Kieras and Meyer 1994; Kieras and Meyer 1997; Kieras et al. 1997; 

Bryson 2001; Meyer et al. 2001; Kieras and Meyer 2004; Schultheis et al. 2006; Byrne 

2008; Kieras 2005; Kieras 2011).  

3.3.3 Adaptive Control of Thought—Rational (ACT-R) 

The research presented in this thesis is based on using ACT-R/PM, which combines the 

cognitive module and both the perceptual and motor modules into one framework; the 

engine behind the visual module is based on Salvucci’s research called Eye Movements and 

Movements of Attention (EMMA) (Salvucci 2001).  Anderson stated in his book “Rules of 

the Mind” four basic concepts, which underline ACT-R. Some of these principles express 

the architecture as a production system that should be based on neural-like processes to 

fit in with the human brain function and finally to be able to deliver optimal behaviour 

given the statistical nature of the environment i.e. based on probabilistic principles 

through the use of Bayesian techniques as seen in ACT-R (Anderson 1993). Like other 

architectures, ACT-R is a goal orientated production system based on PPS but unlike these 

frameworks it combines both a symbolic and a sub-symbolic component with the latter 

tuning itself to the structure of the environment. Both components are using Bayesian 

learning mechanisms for the declarative and procedural memory. ACT-R goes beyond 

other architectures as it has embedded a sub-symbolic level composed of a set of variable 

quantities that are updated continually by ACT-R learning mechanisms to bring the 

qualitative side of human cognition thus tuning the performance of the human cognition in 

a neural-like activation manner in terms of activations levels. The activation levels 

determine the speed and ultimately the success of memory access for both declarative and 

during conflict resolution for procedural knowledge. The availability of a memory chunk 

for retrieval is established by these activation levels that are learned by ACT-R cognitive 
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framework according to statistics returned by the Bayesian networks derived from the 

history of use of the information contained in memory chunks. The chunks with higher 

activation are selected by ACT-R for retrieval (Lebiere et al. 2002).  Like other architecture 

ACT-R has a cycle timing of 50ms (Byrne and Kirlik 2005). 

ACT-R version 6.0 is the latest version of the ACT architecture, the latter first 

introduced in 1976 based on a production system as described by Newell. The evolution of 

this framework shifted when the rational analysis was added in ACT-R 2.0. Some of the 

major changes between the two versions brought partial matching. When one looks at a 

person’s face for instance; which changes over time, one still recognises this person many 

years later even though those changes can be profound. This concentrates on calculating a 

degree of mismatch amount, which is then taken off the activation level, thus restricting 

chunks that can be partially matched to the ones that have the same type which 

themselves compete for a match to a production rule condition, thus impacting on the 

retrieval probability of chunks. Another change is the way the production rules are 

selected. In ACT-R 2.0, all productions were contenders for selection whereas in version 

4.0 only the ones whose top goal matches are selected for the conflict set; thus reducing 

excessive pattern matching. Attempts to retrieve chunks are made to match the rest of 

production conditions when the conflict set is created. In version 2.0, this process did 

happen during the construction of the conflict set. Another major change was the change 

of the learning mechanism from analogy where past examples are used to provide likeness 

between past and current problem solving goals. This mechanism produced many 

difficulties such as an over-creation of production rules. This complication was resolved in 

ACT-R 4.0 by introducing the creation of declarative knowledge called dependency goals 

in a process called production compilation. During this process new production rules are 

derived from declarative chunks immediately created upon the popping the dependency 

goal when the goal is achieved and added to the production system. In addition, this 

generalisation process created variable objects of any memory chunks that occur in two or 

more slots anywhere in the condition or in the action part of the created procedure rule. 

The next iterations of ACT-R saw an extension that incorporated perceptual and motor 

processes resulting in the version named ACT-R/PM (Anderson 1993). ACT-R/PM 

combines ACT-R, a visual interface specially adapted for ACT-R created by Mike Matessa 

(Anderson et al. 1997) and the motor section of the EPIC architecture (Kieras 2011). 

Both ACT-R 5.0 and 6.0 brought to the architecture a better integration of cognition, 

perception and finally motor processes. In addition, the goal stack that existed with ACT-R 

4.0 was removed leaving the task of goal setting to the action part of production rules. The 
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research presented and discussed in this thesis is HCI orientated and based on ACT-R/PM 

6.0 architecture. The conclusion of this section will therefore focus on the functionality 

that pertains to the functionality needed in the TOISE system.  

Before describing the visual and motor modules in some details, some attention is 

given to buffers in ACT-R that are somehow windows to each of those modules. 

3.3.3.1 Buffers in ACT-R 

In terms of HCI, the interest of modelling often comes to areas dealing with memory 

handlings, visual, auditory or motor functions. ACT-R contains a set of buffers for each of 

those modules, which as already mentioned, enables asynchronous operations to take 

place. Any changes to a module buffer will immediately been followed by a module 

response resulting in the generation of event(s) to perform some type of actions and if 

appropriate the module might place a chunk in its buffer to signal the outcome of these 

actions (Bothell 2008). Buffers have two main functions in ACT-R, which are making 

requests to a module from a production rule and holding a chunk. One of the main tasks 

that are often carried out in ACT-R modelling is memory retrieval. Like motor commands, 

memory retrieval is initiated on the right hand-side of a production rule. The pattern 

matching that attempts to match the conditions specified on the left-hand side of a 

production rules to the current content of the specified buffer as we have discussed 

previously is carried out through those buffers and this point is illustrated with the 

production rule listed below: 

(P ATTEND-OBJECT-A-LOCATION 
 =GOAL> 
     ISA                     GOAL 
       STATE                   ATTEND-LOCATION-A-ACTION             
   =VISUAL-LOCATION> 
     ISA                     OBJECT-A-LOCATION              
   ?visual> 
     STATE                   FREE 
==> 
   =GOAL> 
     STATE                   LOOKFOR-VISUALOBJECT-ACTION                   
   +VISUAL> 
     ISA                     MOVE-ATTENTION 
     SCREEN-POS              =VISUAL-LOCATION               
   +VISUAL-LOCATION> 
     ISA                     OBJECT-A-LOCATION 
) 
 

There are two sides to a production rule. The left-hand side i.e. LHS which is the 

content that is above the “  >” and the right hand-side i.e. RHS is below that line.  A rule 

contains a name, which in Lisp is a symbol.  In the example above, the name is “ATTEND-

OBJECT-A-LOCATION”. This name must be unique. The left-hand side of this production 

rule is therefore: 
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   =GOAL> 
     ISA                     GOAL 
       STATE                   ATTEND-LOCATION-A-ACTION             
   =VISUAL-LOCATION> 
     ISA                     OBJECT-A-LOCATION              
   ?visual> 
     STATE                   FREE 

This part can be interpreted in plain English as follow. If the goal buffer contains a 

memory element of type “GOAL” and its state slot is “ATTEND-LOCATION-A-ACTION” i.e. if 

the goal is to attend location “A” and the visual buffer contains a memory element of type 

“OBJECT-A-LOCATION” i.e. if the object to attend is the object present in location “A” and 

the state of the visual module is free then this production rule can participate in the 

conflict resolution process. In ACT-R, all production rules whose LHS that are in the 

procedural memory that match against these conditions will be put into the conflict set 

with the one with the highest utility set to fire. 

In a production rule the RHS initiates modifications of the buffers. These changes can 

lead to a request of changing the information contained in the current buffer or a request 

to execute a command that is associated with it. In the right-hand side such a request is 

marked by a “ ” sign in front of the buffer name this change pertains to. This is shown in 

the production rule below: 

 
   =GOAL> 
     STATE                   LOOKFOR-VISUALOBJECT-ACTION                   
   +VISUAL> 
     ISA                     MOVE-ATTENTION 
     SCREEN-POS              =VISUAL-LOCATION               
   +VISUAL-LOCATION> 
     ISA                     OBJECT-A-LOCATION 
 

In plain English this RHS can be interpreted as follow. In short, set the goal to look for 

an object and change the visual buffer to issue the command for the visual module to move 

its attention to the visual location where object “A” is located. This is achieved by setting 

the state of the goal to “LOOKFOR-VISUALOBJECT-ACTION”, setting the visual buffer type 

slot to “MOVE-ATTENTION” and its screen position to the visual location “OBJECT-A-

LOCATION”. 

3.3.3.2 Vision functions in ACT-R 

The vision module provides the functionality pertaining to vision on the device. It sees 

the features that can be attended to by a model, which have been added and then provided 

by the device. In ACT-R/PM the set of features that are presented by the device is named 

the visicon. These features provide information such as the type, location, colour, kind and 

so on. The Vision system is composed of two major parts named by Dan Bothell as the 
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where and what systems. The where system (or feature search) is the side of the vision 

module that takes requests passed through the visual-location buffer. A typical request is 

similar to the one shown below which instructs the system to find a feature whose type is 

named as “OBJECT-A-LOCATION” making sure it is attended. Responding to this request, 

the system updates its visual-location buffer by creating and placing a declarative memory 

chunk into that buffer that contains the location of the object in the device if it found. The 

attended slot is important in modelling vision as they are markers that have limitations in 

both their duration and numbers i.e. there are so many items that can be attended at any 

one time and their duration is limited either by a voluntary shift of attention to another 

object or naturally i.e. one can only attend an object for some time only.  

+VISUAL-LOCATION> 
         ISA           OBJECT-A-LOCATION 
         :attended     t 

The what system’s (or movement of visual attention) main interface to a model is the 

visual buffer.  Its main function is to attend to locations in the device that have been 

previously found with the where system.  To attend a target, the model needs to provide a 

chunk that describes the visual location of where that target is located. If an object exists 

in this location, the system will respond by placing a chunk in its =visual> buffer 

representing the object. The system has an inbuilt tolerance set by default to 0.5 degrees 

of a visual angle, which ensures that if an object has moved a little since the time it was 

first located, it would still be attended to.  For instance, a statement shown in the code 

listing below tells the vision module to shift its attention to the object that is located at 

“ VISUAL-LOCATION”. 

+VISUAL> 
      ISA                     MOVE-ATTENTION 
      SCREEN-POS              =VISUAL-LOCATION 

In the LHS of a production rule, the chunk that is placed in the visual buffer can be 

tested using the matching clause as shown below. For instance in this example, we are 

testing for a visual object that is of type “OBJECT-A” and named “object1”. 

=VISUAL> 
   ISA                     OBJECT-A 
   VALUE                   "object1" 

The visual-location buffer can be tested for errors or attention states.  This is done 

using slots such as Attended or State error. The former can be t if attended, nil if it is not or 

new if it’s just been added to the model visicon and not yet attended. For errors, the state 

can be true i.e. t if a request has failed or nil otherwise. In the same manner the visual 

buffer can be tested for errors and states. For instance the state of the visual module can 

be busy if a visual request was initiated but not yet completed and nil in other situations. A 
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state can be free if a visual request has been initiated and just completed for instance, nil 

otherwise. Similar to the visual-location buffer, an error state exists. Finally a change in the 

device i.e. an object just appears in the scene, the Scene-change state reflects this change 

by setting the slot value to true i.e. t or nil otherwise. 

3.3.3.3 Motor functions in ACT-R 

The motor module is based on EPIC Manual Motor Processor from Kieras and Meyer 

(Kieras and Meyer 1997) and can be perceived as the model’s hands. It provides the 

functionality to interact with a keyboard and a mouse in the same manner as a real user 

and can be extended to interact with other devices through the creation of proprietary 

modules. Like other modules it has its own buffer from which it determines which action 

to perform. Unlike the visual buffer, the buffer associated with the motor module does not 

update this buffer in response to some required action. The keyboard that is associated 

with the motor module is a standard QWERTY keyboard that is often seen as part of 

standard computer station equipment. The mouse is controlled using the right hand is a 

fairly old model with one button only. However, this is sufficient for most modelling work 

dealing with HCI. In order to make a movement using the keyboard or the mouse, the RHS 

of a production must make a request of a specific type of movement called a style. The 

motor module inherited the movement styles provided by EPIC Motor Processor.  The 

primitive movements provided by the motor module are listed in the table below. 

Action Definition 
Punch This action is similar to the action when one presses a 

keyboard key when the finger is directly above the key. 
It is a simple down-stroke movement followed by an up-
stroke one. 

Peck This action is in actual fact two movements combined 
together. The first movement is a specific movement 
towards a location that is followed by a keystroke.  

Peck-recoil This action a combined action containing a Peck action 
that is followed by a movement that returns the finger 
to its starting position. 

Ply This action is similar to the action one does when 
moving a device such a mouse to a specific location. 

Point-hand This action moves the hand to a specific location. 

The motor module provides more complex movements in addition to those primitives. 

For instance, there is the mouse-cursor action, which is a combination of the “ply”, and a 

press-key action for the right hand; the latter being either a “punch” or “peck-recoil” 

action. 

Similar to EPIC, there are three phases or states when performing motor movements 

i.e. preparation, initiation and execution.  
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The preparation phase builds a list of features that are used to guide the movement. 

The maximum number of features is five. The timing associated with this preparation 

phase depends on the amount of features that needs to be prepared and increases with the 

complexity of this preparation. Each feature takes 50 milliseconds to prepare. The feature 

set of calculations takes into account the complexity of the movement on one hand and 

refers to the previous movement on the other. More complexity means more needed 

features to be computed and more similarity with the previous movement results in less 

features to take into account during the calculations. The motor module keeps a record of 

the last set of features that was prepared for the previous movement in its buffer.  

 

Figure 21: Feature calculation during preparation of motor movement 

There is a hierarchical structure about features as shown in Figure 21. All movements 

for instance have a style and all have a hand feature. If the style of a movement changes, all 

the features for this movement are therefore re-calculated i.e. a different movement 

altogether. If the style of two sequential movements is similar but the hand changes, the 

features for the style do not need to be recalculated but the feature for the hand and the 

ones below do require recalculation. Thus, four features needs to be computed. The 

remaining 3 features are often specific to the type of movement requested. For instance 

when using the keyboard and punching a key, only the hand and finger are needed to 

perform this movement. During this phase the preparation state becomes busy. It is worth 

noting that like in EPIC, the direction feature is only computed if the difference between 

the new and old direction is larger than PI/4. Similarly the extent feature is only re-

calculated if the difference between the new and old extent is over 2 degrees of visual 

angle (Byrne 2001). 
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Action Features needed 

Punch This style of action is a simple action that needs only 2 features i.e. a hand 
and a finger. However, in terms of execution time, punching a key of a 
keyboard also must take into consideration the mechanical side i.e. it takes 
time for the switch of a button / key to make contact. This is termed as the 
closure time, which is estimated at 10 milliseconds, which is added to the 
final time. 

Peck This style of action is a directed movement of a finger to a target location that 
is followed by a keystroke that needs 4 features i.e. a hand, a finger, a 
direction and a distance. In terms of execution time, this action involves the 
Welford version of the Fitts’ Law using a k constant of 75 milliseconds. See 
section on EPIC and Figure 20 for more details on Fitts’ Law 

Peck-recoil This style of action is identical to the Peck style with the difference that the 
finger returns to its original location. Thus 4 features are needed and in 
terms of execution time, like the Peck style, this action uses the Fitts’ Law 
with added consideration that the returns back to its original starting point. 

Ply This style of action refers to a hand movement that holds the mouse to a new 
location that needs 3 features i.e. a hand, a direction and a distance. In terms 
of execution time, this action involves the Welford version of the Fitts’ Law 
but using a k constant of 100 milliseconds. 

Once the proposed movement has been prepared, the motor module makes the 

specified movement.  When it performs the movement, it undergoes an initiation phase 

that sets the movement up with an assumed 50 milliseconds time stamp. During this phase 

both the processor and execution states becoming busy and when it finishes, the processor 

state is set to free again but the execution state remains until the movement is fully 

completed. Following this phase the actual execution starts. The overall amount of time 

that a movement takes to execute this action is mainly based on the style of the movement 

and the distance to travel to achieve the movement. Complex movements such as moving a 

mouse takes longer to achieve as their execution time is based on Fitts’ Law (See section 

on EPIC and Figure 20 for more details on Fitts’ Law) compared to punching a key on a 

keyboard or the mouse button for instance. As already mentioned, the motor module is 

based on EPIC’s Manual Motor Processor. This implies that it can execute an action whilst 

preparing the next one but it can only prepare them sequentially. Hence, if an extra 

movement is scheduled at the same time and therefore needs to be prepared, the motor 

module is said to be “jammed”. If it is already busy preparing a movement and an error is 

generated this results in a notification in the ACT-R/PM console. To avoid this jamming 

situation, the model production rule that initiated the movement should have a constraint 

in its LHS testing for the state of the motor module as shown in the code below. In simple 

terms, the constraints stipulate that if any procedural rules have a goal to press a mouse 

and if the motor module is not busy, then add this rule to the conflict set. 

… 
=GOAL> 
    ISA          GOAL 
    STATE        PRESS-MOUSE            
    ?manual> 
       STATE    FREE                        
  ==> 
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… 

3.3.3.4 Memory retrieval in ACT-R 

Another important aspect of the cognitive architecture ACT-R is the way declarative 

memory elements are retrieved. Not only ACT-R has a symbolic system of production rules 

but it also implements a sub-symbolic activation based memory system, which influences 

the retrieval of memory chunks.   

 

 

Unlike SOAR, ACT-R does not have a separate working but instead it has a short-term 

memory (declarative memory) and a pointer called Focus of attention that points to goal 

chunks stored in that memory to keep track of the current context (See Figure 22).  

New declarative memory chunks are added to the declarative memory either when 

goals are created through the action of production rules (creation of declarative goal 

chunks that are stored in the goal buffer, effectively replacing the old existing goal with a 

new one) or being possibly encoded as a result of changes in the external world. Each 

chunk has an activation value which reflects its previous use and association with the 

other chunks contained in memory. This activation value reflects the probability that the 

chunk will be needed in the current context. Thus if it is the case, each time a chunk is 

retrieved from memory, its activation value is increased. Chunk activation is also subject 

to decaying so the longer ago a memory chunk is activated, the lower its contribution to 

the activation will be. In addition there is an activation threshold beyond which chunks 

cannot be retrieved. 

Figure 22: ACT-R Memory organisation 
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The most appropriate method to explain this activation concept is by means of an 

example. Suppose that the task at hand is to solve an addition problem such as “7 + 3 = ?” 

as shown below. 

=goal> 
      ISA         addition 
      arg1        7 
      arg2        3 
      sum         nil 

All chunks that have an association with 7 and 3 will have a better probability of being 

suitable to solve this problem. Let us suppose that previously a subtraction problem was 

completed such as 10-3=7 as shown below: 

=goal> 
      ISA         subtraction 
      arg1        10 
      arg2        3 
      sum         7 

This chunk would have been pushed into declarative memory and in the current 

context this chunk in memory will get an increase of its activation through 3 and 7. 

 

Figure 23: Activation process in ACT-R 

Looking at this example and Figure 23 one can determine the relevance of the two 

chunks towards each other. It is however the sub-symbolic activation and spreading 

system that creates this relevance in ACT-R (Taatgen 1996). 

The formulation for the chunk activation is given by this formula: 

        ∑        

 

 (3.2) 

   is the activation value of chunk   . The computed activation value has two main 

parts; a fixed base-level activation   , which is specific to chunk   that reflects it general 

usefulness in the past and can relatively vary given some random noise   to reflect 

stochasticity in the nervous system. The second part is the variable part is determined by 
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the current context reflecting its relevance to it.  What the summation does is adding up 

the influences for each chunk in the current context.    determines if a chunk has 

influence over chunks in current context. ACT-R assumes that there is a fixed capacity for 

source activation and that each chunk in the context has an equal amount with the overall 

amount set to the value of 1 as default. Thus, if there are   chunks in the current context, 

each influential chunk gets 1  ⁄  source activation. If a chunk however does not influence 

chunks present in the current context, then    is set to zero.     represents the strength of 

association between chunks. It is an estimation of the odds of   being a source present if 

the chunk   is retrieved (Anderson and Lebiere 1998). 

Chunk activation levels have substantial consequences with regards to memory 

retrieval. First in situations when more than one chunk matches a procedural rule 

constraints (or partially match) the one with the highest activation is retrieved. In case of 

partial matching, situations can arise when high-activated chunks are partially matching 

procedural rule constraints – in this case an activation penalty is imposed, but this can still 

lead to a partially matching chunk to be selected in favour of a fully matching one. The 

final point to highlight is that chunk activations are tied to memory retrieval. The time it 

takes to retrieve a chunk from memory by a procedural rule relates mainly to two factors 

i.e. the match score of the chunk and the production rule strength. The match score is the 

activation value minus the degree of mismatch. Consequently, if there is not partial 

matching then the match score is the activation itself. In this case the formula based on an 

exponential function is: 

            (     ) (3.3) 

This represents the latency needed to retrieve chunk   by the production rule   and 

Both F and   are scaling constants.     is the strength of the production rule that is 

attempting to retrieve the chunk and    is the activation for chunk  . As the sum of the rule 

strength and activation decrease, and thus their relevance decreases, the time to retrieve a 

memory element increases exponentially (Byrne 2008). 

3.3.3.5 Conflict Set in ACT-R 

In early chapters we discussed procedural rules that construct a model. Bearing in 

mind that ACT-R is goal directed the decision to select which of the rules to execute is 

referred to as the conflict resolution and all the procedural rules that are matching on the 

basis on goal matching are entered into the conflict set. This conflict set may contain one 
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or more productions with only one of which that will ultimately be selected for execution. 

When a production rule is selected from the conflict set, and then the rest of memory 

retrieval is completed (if required). ACT-R maintains a number of parameters and value 

attributes for each production rules to calculate the likelihood that a production is 

selected. 

Productions in the conflict set are ordered in terms of their expected computed gain. 

The equation for this computation is: 

          (3.4) 

Where   is the expected gain or utility of the production rule,   is the probability of 

success that the goal will be achieved if the production is selected,   is the value of the 

goal and   is the expected cost of achieving the goal if the production rule is selected.   is 

some stochastic noise to fit the decision in line with human behaviour. Both   and   are 

measured in terms of time. Thus   is an estimation of the time it will take to achieve the 

goal and   symbolises the worth of the goal or how much time ACT-R thinks it can spend 

on that goal.    becomes the expected gain if the production rule is selected.   is therefore 

the expected utility of production as a trade-off between cost and worth of the goal. This 

implies (because of  ) that the procedural rule becomes more selectable as the rule 

becomes more successful over time. This is, for instance, why the utility of production 

rules can be used to find the best strategy to adopt in experiments, for example, as Peebles 

and Bothell’s response task that deals with sustaining attention (Peebles and Bothell 

2004) 

It is worth mentioning these computations only apply to selecting the best rule to fire in 

terms of goal matching. However if for some reasons the rest of the constraints for that 

rule fail to match once it is selected, the next ranked procedure in the conflict set is 

selected. This behaviour is repeated until a procedure is successful in terms of constraint 

matching. Another interesting point exists in which the firing of the procedural rules is 

completed serially whereas the conflict resolution process is mostly done in parallel. 

Finally in the formula above, we used   as a probability   and   as estimates. However 

  is an aggregate probability of two probabilities namely   and  ;   being the probability 

of the production to function successfully and   is the probability of achieving the goal if 

the production rules function successfully.   
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     (3.5) 

The resulting probability   is the probability of success that the goal will be achieved if 

the production is selected. The higher this value then more likely the production rule will 

fire. Similarly,   is an aggregate of two values namely   and  .  The higher this value is and 

the less likely the production rule will fire. The value a represents the amount of current 

effort (as a latency) that the production rule will need to complete and b represents the 

amount of time from the time the procedural rule complete until the goal is achieved. 

      (3.6) 

The value   takes into consideration the presence of sub-goals because their 

completion time is taken into account as well as any actions that must be completed 

(Anderson 1993; Taatgen 1996; Anderson and Lebiere 1998; Anderson and Schunn 2000; 

Johnson et al. 2002; Anderson et al. 2004; Stewart and West 2006; Bothell 2008; Byrne 

2008). 

  and   are important values in learning and problem solving in which cognitive 

modellers can forcibly alter those values during specific problem solving. Fu for instance 

uses this technique in a navigation task on computer-simulated map by removing success 

from the equation only focussing on cost (Fu 2001) as cost is the main factor as all paths in 

the map lead to the destination eventually (Fu 2003). 

3.3.4 Summary 

In this section we have discussed Soar, EPIC and ACT-R.  Comparing those architectures 

and bearing in mind what TOISE has to fulfil, the factors provided by ACT-R led to this 

architecture to be used in this research. The perceptual motor functionality is well 

developed and includes better integration of eye movement using EMMA and interaction 

with environment i.e. it can interact with external environments and not just simulate 

them like EPIC (SOAR does not have this functionality integrated per default). It has both a 

symbolic and sub-symbolic components whereas the others architectures have only a 

symbolic one. In addition ACT-R has an integrated noise generation at the sub-symbolic 

level that reflects stochasticity found in human behaviour. Finally, there is a lot of support 

material for ACT-R such as documentation, tutorials and much published research work 

with source code available and visual environment that is very helpful to develop models. 

In summary, ACT-R was found better suited as a cognitive platform to use with TOISE. 
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3.4 Cognitive modelling used in HCI 

This section discusses some past and present research and work that apply to the 

domain of HCI, in particular the instances that have common ground with the research this 

thesis presents in which cognitive models are used to simulate human users. In this 

section we will present and discuss research that was carried using ACT-R to simulate 

human cognitive, perceptual and motor functions in the domain of HCI often as substitutes 

for real users (Ritter and Young 2001). There is a trend towards applying cognitive 

modelling to real world problems, which include domains like HCI, often focussing on 

human interaction in real-time. In a research environment, different tools can be used to 

provide different required results, which can be combined together to produce final 

results.  Attempts are now made to integrate all the necessary functionality into one 

development environment to extend the capability of the main system and integrating 

other tools that are well suited and validated for a specific domain (Lebiere et al. 2005). 

This effort often presents many challenges i.e. communication between the different 

modules for instance. The research presented in this section often has had to meet those 

challenges in the same magnitude as the research presented in this thesis. 

3.4.1 ACT-Simple 

Cognitive modelling is evolving and is used to predict user behaviour. Powerful 

techniques have emerged for exploring user interaction with complex systems. GOMS and 

its variant platforms such as KLM-GOMS or CPM-GOMS have been used to predict user 

behaviour and often sped up testing and evaluation of user interfaces but often lacks the 

precision to model detailed behaviour. The issue often encountered using these platforms 

is that they require expertise and are also time consuming. 

ACT-Simple combines the simplicity of high-level frameworks with the power found in 

lower-level architectures by compiling basic cognitive and perceptual motor commands 

into ACT-R production rules. The available command set is limited but in terms of HCI is 

sufficient to provide a useful tool for predictions of human behaviour. 

The process involves a sequence of KLM-GOMS like actions that are compiled into 

corresponding ACT-R procedure rules. An initial production rule is generated to initialise 

the current goal and from this point the rest of the generated rules are executed in the 

correct order until the end of the sequence of actions. ACT-Simple has a command set that 

includes: move-hand, mouse-mouse, click-mouse, press-mouse, release-mouse, press-key, 

speak, look-at, listen and think  
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ACT-Simple has been validated many times over a period of time and has been found to 

match empirical data with a percentile of errors around 10-12% but more importantly 

with an excellent correlation of 0.99. Thus the fluctuations of the data are possible in 

terms of human behaviour but the variability shows that data generated with ACT-Simple 

is very close to empirical data in terms of variations (Salvucci and Lee 2003). This 

compilation ensures that models that are developed in ACT-Simple inherits the features of 

ACT-R and in addition when run, they also inherit the parallelisation of perceptual and 

motor processes presented by this architecture, which thus becomes psychologically more 

plausible. It is worth mentioning that ACT-Simple has been used in many research and 

tools that will be discussed in the next sections. 

3.4.2 CogTool 

Engineering models of user behaviour have had a surge in popularity in HCI, but they 

are complex to build and this impacts on how widespread they are used. John & al 2004 in 

their research developed a system called CogTool (John et al. 2004) in which designers 

can generate predictive cognitive models simply by demonstrating the required tasks on a 

mock-up of intended interfaces. 

The prediction of skilled performance in the HCI domain has been researched and 

validated by many research projects and yet its widespread use as a tool to help designers 

is somewhat discouraging. As John stipulated, even using KLM is cause for concern as it is 

often perceived as too difficult to model. 

The first version of CogTool is somewhat the precursor of the now popular CogTool 

toolkit and uses Macromedia HTML IDE30 as a base for constructing and instrumenting 

designs. The second version presents its own interface for design not relying on HTLM, 

Netscape and the other tools that were needed in the earlier version. CogTool is a 

combination of tools to predict latencies on user behaviour whilst demonstrating tasks on 

a mock-op design, which does not require programming cognitive modelling skills. There 

were two versions made over the years.  The current version of CogTool is 2.0. 

CogTool is based on Keystroke-Level Model (KLM) based on Human Information 

Processing (HIP) theory of human behaviour first proposed by Card & al (Card et al. 1980; 

Card et al. 1983) that is specific to user behaviour interacting with computer interfaces. 

                                                             

30 Dreamweaver from Macromedia purchased by Adobe Systems in 2005.  
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It uses ACT-Simple to translate the instrumented actions into KLM rules which are 

themselves translated into more fine-grained production rules in ACT-R using Salvucci & 

al compiler (Salvucci and Lee 2003).  Thus, movements that are analysed obey the Fitts’ 

Law (see section 3.3.2) but in addition integrate in the timings the theories of preparation 

of actions before every task to be achieved as described in section 3.3.3.3. It incorporated 

significantly more detailed theoretical accounts of human cognition, perception and 

performance than the simpler KLM. It is a tool that produces quantitative predictions on 

how users will behave when the mock-up is finally implemented and gives an insight 

regarding cognitive load when users employ it (John and Salvucci 2005). 

The earlier version included a Behaviour Recorder that observed a UI designer 

demonstrating tasks on a mock-up design run in Netscape using LiveConnect. LiveConnect 

is now discontinued since version 7.0 of Netscape but the concept at the time was 

noteworthy. The system presented widgets in a special palette that could be used to create 

a wide range of designs. Once the design was finished and demonstrated, the Behaviour 

Recorder (John and Prevas 2003) would translate the user actions into KML operators, 

which were then compiled into production rules.  

Validation was performed and compared to latencies observed in previous publications 

so models generated by this system have been shown to be more accurate or at least 

accurate in mapping findings by other researchers. As john mentioned in her paper, the 

main drawback with this system is that four different systems must run in concert i.e. 

Dreamweaver, Netscape, the Behaviour Recorder and ACT-R in its Lisp console, which is 

also a problematic and somewhat cumbersome issue when it comes to developing user 

interfaces (John and Prevas 2003).  

The next and current version of CogTool is inspired by projects such as SYLK and 

DENIM that both focus on sketching, storyboarding and designing applied to web content 

design for example (Landay 1996; Lin et al. 1999; Newman et al. 2003; Almasri 2005). 

Unlike its first version, the contemporary version has integrated a storyboard system, 

transitions between frames and contains widgets containing common components for 

interaction. The advantages being that the screenshots of existing products can be inserted 

as background images and those widgets can be located and overlaid on top of existing 

versions from the screenshots and thus CogTool can benchmark any existing product such 

as electronic devices, web sites etc. Additionally one can sketch ideas and use these ideas 

to profile cognitive load. As the early version, the interaction is done by demonstration to 

produce a computational cognitive load of a skilled user’s performance. 
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Validation was performed and compared to latencies observed in previous publications 

and models generated by this system have shown to be more accurate or at least mapping 

exactly findings by other researchers (John 2008; John 2010). 

An interesting development that used CogTool is the CogTool Explorer that predicts 

user exploration choices given a user interface and task, which attempts to predict what 

users might do when presented with a user interface to give prediction of user choice. The 

idea is to extend the existing CogTool, which predicts skilled performance on routine tasks 

and add predictions of user choices in exploratory tasks. It is based on SNIF-ACT (Teo et 

al. 2007). SNIF-ACT attempts to simulate users as they perform unfamiliar tasks such as 

searching while browsing Internet pages. It is based on information scent, which is based 

on spreading activation of chunks in declarative memory and ultimately affects the 

matching of production rules. The activation of content-dependant memory chunks that 

are matched by production rules can become the base for determining the utility of 

selecting these productions rules dynamically. The assumption behind this development is 

that activation spreads from the user’s goal, behind the focus of attention, through 

memory associations to words and images that are visible on web pages (Pirolli and Fu 

2003; Fu and Pirolli 2007; Teo et al. 2007; Teo and John 2011). 

In terms of relevance to the work presented in this thesis, this early platform has 

common concepts. Firstly, tasks are demonstrated on a mock-up designed for which an 

automated cognitive model is generated and executed to gather user behaviour latencies. 

Secondly, the user interaction is in due course compiled as ACT-R production rules. 

However, the behaviour is compiled down from a high level using very few types of 

primitive motor or mental actions, to a lower one, which may restrict its use for more 

complex tasks. 

3.4.3   Prediction of Driver behaviour and in-Vehicle interfaces 

3.4.3.1 Predicting the effects of In-Car Interface on Driver Behaviour 

It is now common knowledge that attempting to manipulate an interface whilst driving 

has essential consequences which impact on driver performance whilst driving. Salvucci‘s 

research (Salvucci 2001) attempts to predict those effects. This research attempts to 

integrate into one system both a driver cognitive model that accounts for basic driving 

skills which has been well validated, and a user cognitive model that mimics user 

behaviour when using a device. It concentrates on dialling phone numbers whilst 

performing a driving exercise but could easily apply to devices, such as car radios and 
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other controllers that are often integrated as car instruments. The purpose of this research 

is to attempt to generate predictions focussing on interface interaction on driver 

performance and vice versa in terms of dialling numbers on a dialling pad. 

Using the ability of ACT-R to interact with virtual interfaces, Salvucci constructed a 

simulated user that dials a number into four dialling interfaces hands-free cell phone that 

is mounted on the dashboard of the car with each one of them having benefits and 

drawbacks in his cognitive models that are integrated into the driver model already 

validated. The four phones are based on fully manual where the user keys in all the 

number of contact, speed manual where the user only keys in one key for that contact, full 

voice controlled where the user speaks the number to dial and speed voice control where 

the user only speaks the name of the contact to dial. The same contact is used for all 

experiments with the speed-dialling interface less demanding in terms of cognition as the 

full-speed dialling ones. 

The main task is a usability experiment of four different interfaces while driving. A task 

analysis was achieved and a set of interactions with the cell phone was created with 

commands such as Recall number, Press digit, Say digit and many more. These commands 

provided the basic elements used to create the user model. 

Because the two models are integrated into one, the main concern was to decide what 

to do in multi-tasking situations i.e. one can drive and still be able to press a power button 

on the cell phone. In this case, a lot of the available commands pass control over to the 

driver model after completion of the task.  

The validated driver model controls movements in a sequential manner i.e. assess 

information and applies control. However, this model presents other aspect of driving 

including looking for blind spots etc. that affects the accuracy of the control.  The research 

presented by Salvucci focuses on exploring the behaviour degradation in terms of control 

when an extra user interface is being operated in parallel. 

The predictions being focussed on are dialling times and a measure of control accuracy 

i.e. with regards to the road lane and individuals were asked to perform 32 dialling 

experiments at the same time to compare them with results obtain from the cognitive 

model. Findings of the user testing, in comparison to model predictions, revealed that 

experiments validated known facts. Dialling times while driving are slightly longer mainly 

due to the control of the car and full dialling compared to speed dialling is slightly longer 

with a good correlation between model and user latencies. In terms of control of the car, 
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the findings found that human driver data presented greater deviation than the model, yet 

both correlated well but the model under-predicted the speed that dialling has on car 

control where it failed to capture its impact. In addition the results showed that manual 

interfaces are more taxing in terms of control of the car than voice controlled devices 

(Salvucci 2001). 

This research and similar findings in this domain has shown the importance and 

contribution that cognitive modelling can make in research fields where high cognitive 

demand is required of users. One can also conclude that systems such as the one described 

can help designers to develop more usable interfaces. 

3.4.3.2 Distract-R: Rapid Prototyping and Evaluation of In-Vehicle Interfaces  

Vehicle distraction is becoming a major issue in a society focussed on personal 

electronic devices and specifically car devices dominating our lives while travelling. Hence, 

researchers respond by engineering tools to build less distracting devices as publicity 

concerning the dangers associated with driver distraction, such as mobile phone use, are 

becoming more publicised. Distract-R is one of those tools to help evaluate new in-vehicle 

interfaces in terms of human interaction to steer away from the time-consuming and 

expensive modelling that is required to achieve this task. Driver simulators are often used 

to monitor user behaviour but studies using those tools are time-consuming and costly. 

To identify the aspects of distractions, researchers have begun to use cognitive models 

in an effort to predict elements such as latencies of distraction (Salvucci et al. 2001; 

Salvucci 2002; Salvucci and Macuga 2002). As already mentioned, Usability Engineering is 

difficult as it demands highly trained professionals in the loop and thus becomes 

expensive. In an effort to address these issues, work has been carried out to use fast 

prototyping and modelling by demonstration (John et al. 2004).  

Distract-R follows on this work and provides a prototyping and modelling tools that are 

less limited and focussing only on In-Vehicle interfaces. 

Similar to the research presented by John & al work, Distract-R used a version ACT-

Simple with a simplified driver model that has been validated in research such that 

presented in section 3.4.1. 

As shown by John, Distract-R attempts to abstract cognitive modelling and is intended 

to aid designers and engineers and contains five distinct parts. The first tool is the rapid 

prototype component in which simple In-Car device interfaces can be sketched that 
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contains buttons, displays, a microphone and a speaker. The next component relates to 

tasks and provides modelling by demonstration that occurs on the created designs. This 

automatic modelling relies on ACT-Simple, which in the same way as CogTool translates 

mental and motor cognitive functions to ACT-R production rules. However Salvucci was 

concerned with the speed of execution and natively re-implemented a subset of ACT-R and 

ACT-Simple using C++, which in addition to making the code much simpler to integrate 

into their system, runs 100 times faster than using the Lisp code. The following component 

pertains to driving the vehicle where different types of driver age can be selected (as age 

influences performance). In addition, the steering style can be adjusted and used to 

represent the aggressiveness of steering control. Another component is the scenarios 

component that provides a selection of driving environment. Finally, the Results 

component provides the driver simulation, visualisation and analysis tools. One can 

inspect the model driver navigating around the chosen environment in real-time where 

eye movements are positioned on the screen and thus provide feedback on how the 

interface impacts on the driver’s performance. The means to view results are provided in 

tables or graphical charts. 

This research was validated in two experiments. The first experiment is based on 

phone dialling while driving and attempts to validate Distract-R using results from 

previous research. The second experiment tests the effect of age on driving performance. 

For the former experiment, the same tests were used as in section 3.4.3.1.  In terms of 

results Distract-R provides similar results as Salvucci (2001) with the same implications 

i.e. the latencies related to complete a task for each dialling method are both fairly 

accurate but are slightly lower than human data. Comparing methods, Full-voice requires 

more time to complete and Speed-manual gives the shorter latency in line with earlier 

experiments  (Salvucci 2001). The second experiment relates to the age of the driver when 

performing multi-tasking while driving i.e. dialling a number when controlling the steering 

wheel of a car. The premise is that when drivers are driving, age is not significant but 

when multi-tasking, age does make a difference. The experiments exhibited no major 

differences when no interactions with other interface features were expected but showed 

significant changes when drivers were asked to manipulate and dial a cell phone in 

addition to driving (Salvucci et al. 2005). 

Salvucci’s work in addition to demonstrating the obvious impact that driving and 

performing other tasks has on driving performance is also a good platform to test 

important issues such as multitasking and in particular switching tasks. Since ACT-R does 

not include a goal stack anymore nor does it have a goal module, Salvucci developed a 
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general executive or goal module, which allows for the addition and removal of goals to 

and from a set of active goals, leaving this goal module in charge of managing goals and 

their execution rather than being purely procedural, allowing the switching of goal to be 

stated in the action of production rules. Since only one goal buffer is present, only one goal 

can be active and executed at one time. The goal module operates a goal queue based on 

the principle of first come, first served and each goal is allocated some period of cognitive 

processing before switching to another goal after a period of time thus incorporating 

temporal dependence in the goal firing process. The implication is that the general 

executive can execute the most urgent goal i.e. either “due” or “overdue”. Salvucci, for 

instance uses this extended concept with the experiment mentioned above (Salvucci 2005; 

Salvucci et al. 2006). 

His work provides an insight into different module integration to provide a tool that 

permits the prototyping of interfaces, with an automatic generation of ACT-R production 

rules via the ACT-Simple compiler. As running ACT-R in Lisp is much slower than native 

code, the needed functionality was re-coded natively to allow for real-time 

experimentation. It also shows how cognitive modelling is becoming a serious contender 

in predicting human behaviour data that matches human data for a fraction of the cost of 

both in terms of finance and time. 

3.4.3.3 Prediction of energy consumption used by devices relating to interaction 

Whilst KLM is used to get timing predictions for user interaction with interfaces, an 

unexpected use of KLM came from the engineering field in a research called Keystroke-

Level Energy Model (KLEM) (Luo and Siewiorek 2007). 

As more ubiquitous devices emerge in the market their efficiency in terms of energy 

consumption is often put into question. Software that is deployed for those highly 

interactive devices is often not optimised in terms of energy efficiency and run time 

performance. The main energy efficiency approach is often a global and broad run-time 

management technique such as aggressive use of idle time etc. The concept behind KLEM 

was researched to address energy efficiency and its concept is based on prototyping 

interfaces before the application is implemented and deployed in those devices. 

The basic idea behind the research is that more interaction and a broader variety of 

modalities used to perform a task will lead to more energy being consumed; actions such 

as tapping buttons etc. Thus less interaction to achieve a task leads to savings in energy. 

After benchmarking their target device and compiling energy profile for the different 
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modalities, KLEM uses a user interaction trace (using KLM) to determine the cost in terms 

of power needed to perform the task, which involves the nature of the interaction and the 

period it will last. The resulting energy consumption predictions are therefore the sum of 

all the KLM operator energy and the system activity energy to perform each task i.e. 

   ∑         where s is a task primitive,    is the power needed to perform this task 

(from profiles) and    is the time needed to perform this operation. CogTool is used to get 

the needed user interaction through the ACT-R trace provided by CogTool from which all 

the MOTOR functions are retrieved. 

Luo and Siewiorek (2007) validated their work successfully using 10 participants 

whilst monitoring energy consumption of the two used devices. The error between task 

energy prediction and model energy prediction for one of the devices on average is a 

significant 4.4% and the other 8.4% (95% confidence interval) which overall provides 

good accuracy. That project has implications for the research presented in this thesis as it 

is evidence of a real-time application that uses simulated user models as surrogate users 

to provide sets of metrics with the difference that these metrics do not focus on usability 

of the device but instead on the device in operation i.e. optimisation of the energy (Luo 

and Siewiorek 2007). 

3.4.3.4 Predicting user performance:  people with physical disabilities 

A lot of the research concerned with predicting user performance of computer 

interfaces is based on skilled user interaction. For users with physical disabilities the 

range of abilities is more diverse than able-bodied people. As user trials are difficult and 

expensive (Biswas 2007) is attempting to develop a simulator to help with the evaluation 

of assistive interfaces. In this research, a task definition and locations of different objects 

in an interface is used as input, which is then used to predict a cursor trace, likely eye 

movements and task completion time for the different configuration of the device used. 

The Biswas modular system has three main components.  A perceptual model inspired 

by EPIC uses keyboard and mouse events and produces a sequence of eye movements and 

cursor paths, which are used to predict task completion times. By varying the quality of 

the image the system predicted visual search for people with or without visual 

impairment. A cognitive model that simulates users utilises a version of GOMS called 

Cognitive Perceptual Motor – GOMS (CMP-GOMS) created by (Gray et al. 1993) to simulate 

the expert users and another model for novices or people with disability inspired by the 

work of Rieman (Rieman et al. 1996) which involves exploratory learning based on two 

search spaces; an external space which deals with interface states and an internal space 
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that deals with knowledge; both of which are mapped to one another. The mapping (i.e. 

anaphoric reference) in Biswas’ project however, is done manually and so is the creation 

of the user space, which is created by analysis of prior real user interactions. These models 

use the output of the perceptual model to determine which action to accomplish for the 

current task. The final component is the motor-behaviour model, which does not use 

Fitts‘law as this is not appropriate for disabled users but instead uses a validated 

proprietary algorithm based on statistical analysis of cursor traces obtained through 

observations of user’s interaction as well as some amount of trial and error (Biswas & 

Robinson 2008). At the time of writing this thesis their findings were only confirmed with 

experimentation using novice able-bodied users and proper testing with their intended 

target users which is now is due (Biswas et al. 2005; Biswas and Robinson 2007; Biswas 

and Robinson 2008; Biswas and Robinson 2010). 

Their project is relevant to the research presented in this thesis due to the fact it 

attempts to simulate an interface which is a personalised interface for specific users i.e. in 

this case for people with physical disabilities or visual impairments. 

3.4.3.5 Vision for ACT-R 

Much interest has focussed on user interfaces and there has been emphasis on different 

elements that constitute GUIs to understand and correlate both human behaviour with 

ACT-R predictions when operating components such as menus, buttons, and text entry 

controls etc. both in terms of eye and motor movements. The second focus of this 

experimentation is the validation of the cognitive architecture. 

With an earlier version of ACT-R/PM (i.e. which at the time did not include Salvucci’s 

EMMA), Byrne and his colleagues (Byrne et al. 1999) researched this area by simulating 

these perceptual and motor functions with an ACT-R/PM model, in particular the role of 

icon searching and saccade movements during menu selection. Overall the experimental 

data reproduced known behaviours but some discrepancies showed in the raw data 

collected over a series of experiments. With respect to response times, which predict that 

it is a function of the target location, their results produced a good fit. With the eye 

fixations the theory predicts a graded increase of the number of eye fixations within the 

target location with some visual search strategy based on a top-down approach with some 

amount of randomness. However, their simulated findings demonstrated different 

behaviour to where these fixations happened and the one first attended to. With regards 

to mouse movements, ACT-R/PM model predicts that the mouse movements should follow 

the eye movements. Their results however show that fewer mouse fixations with the ACT-
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R/PM model where needed compared to eye fixations, thus also showing divergence at 

this level compared to real user behaviour (Byrne et al. 1999; St Amant et al. 2004). 

Another experiment of interest is icon search using ACT-R/PM. Fleetwood and Byrne 

(Fleetwood and Byrne 2001) studied this area and their first set of experiments did not 

use Movements and Movements of Attention (EMMA), which were used subsequently. The 

main topic of research was to understand how icons could convey more information 

without impacting on search time. After gathering real user data to that effect, they 

constructed two models to illustrate two strategies: a double-shift (DS) method whereby 

the model shift its attention to icons that have common characteristics such as colour with 

the requested target icon and then shift its attention to the filename below. If the filename 

coincides with the requested filename, the model shifts its attention to this icon so a 

procedural action can take place. The other strategy called text-look (TL) attempts to 

focus only on the filename below the icon, and then refocus on the icon in the same 

manner as DL. The former model does not re-focus on previously seen icons whereas the 

latter does. These experiments also took into account the icons’ complexity. Complex icons 

or poor icons are items that have multiple features that are maybe shared with other icons 

whereas the good quality versions have only one single feature associated between them. 

The results of their experiments matched the ones obtained with real subjects, that 

decrease of icon quality affected response time with longer latencies as the quality 

decreased, and finally the correlation between the DL and TL experiments demonstrated a 

good fit. The suggestion by the authors was that the number of extra attention shifts 

generated by the DL approach was cancelled out by the re-visitation of the TL strategy. 

However, the data also provided some unexplained over-estimation of timings that led to 

another set of experiments to be conducted with real user to use the eye-tracking 

techniques to further the understanding of choice of strategies. The new collected data 

suggested that users were able to identify clusters of icons pre-attentively, by recognising 

features that were common amongst the group of icons, then moving one from one group 

of icons to another group while with the poorer quality of icon this behaviour did not 

occur suggesting the use of better strategy. Moreover, the new data also indicated that for 

real users TL was more frequently used; as users seemed not to look at the icon itself but 

directly at the filename in addition to possibly take the length of this filename into account. 

As a conclusion, they suggested that some underlying assumptions of both the vision 

module and the conceptual design of their study maybe needed to be improved 

(Fleetwood and Byrne 2001). 
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This research was revisited with the ACT-R/PM models using the integrated EMMA 

system (Salvucci 2000).  The experiments remained similar to the ones proposed in the 

first paper and results vindicated earlier assumptions with regards to grouping of icons 

and the move from one icon group to another following a nearest strategy as a visual 

search strategy. The results also found that designing effective icons i.e. their 

distinctiveness, for a system reduces search times leading to the conclusion that variation 

of the quality of icons and their number in the display has more influence on search 

latencies than the strategies used by users, which in itself is an important finding as it 

provides evidence and re-enforce the case that the design of the icons (always present in 

today’s interface) is an important factor in terms of usability (Fleetwood and Byrne 2003; 

Fleetwood and Byrne 2006). 

The main issue with ACTR is the lack of possible connectivity with applications that 

were not designed to interact with those architectures. For instance the environment 

developed for ACT-R runs on the concept of client/server sockets architecture. Both these 

systems have this functionality implemented into their code. This is not possible with the 

majority of off the shelve applications that are distributed as precompiled products 

without any code being distributed; there are exceptions though but the compilation 

process for a specific platform can be very challenging and time consuming. 

As the cognitive community started to focus on HCI issues related to off the shelve 

products, calls were made to resolve this issue. Segman (St Amant et al. 2005) was created 

to fill that gap and provides cognitive models with the ability to see the Microsoft 

Windows graphical interface screen as any real user would and allows ACT-R to interact 

with Microsoft Windows as if a user was sitting at his desk looking at the computer 

display, thus providing more direct interaction with the system. 

Segman written in Lisp relies on code gluing allowing Segman to connect to native code 

written in C & C++ exposed in a Dynamic-Link Library (DLL) which among other things 

provides Segman with means to use low level functionality provided by the Windows 

Application Programming Interface (API). When loaded, wrapper methods are available to 

interact with the methods provided and exposed by the DLL. In addition, Segman provides 

computer vision and lower level image processing to cognitive modellers by processing an 

image through a process called segmentation. In short, segmentation pre-processes the 

image using a series of procedures such as reduction of colours, cropping, and translating 

to name but a few. The next step is the data reduction that uses algorithms to reduce the 

image data by feature analysis algorithms that can extract pixel groups as regions. This 
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stage deals mainly with a combination of region growing and shrinking, clustering, 

boundary detection depending on the outcome that is sought. The final step is the feature 

extraction phase which extracts, classifies the image features and assigns labels to them 

(Shah et al. 2003). Therefore, Segman is capable of capturing the desktop screen as a 

bitmap and through pixel manipulation can create a list of pixel groups and non-

overlapping regions of the screen that share the same colour. These pixel groups have 

features such as number of pixels in the group, its area, height, width, its red, green and 

blue (RGB) component, its colour in terms of numerical RGB values and its proportion i.e. 

height divided by its width. These features allow the creation of declarative chunks or 

patternation. Segman also provides the functionality to combine groups together. For 

example, a standard embossed button can combine an overall grey colour with highlight in 

lighter and darker colouring for the embossing effect. Segman can combine these three 

groups of colour to one overall group. In addition to the feature detection, Segman 

provides the functionality to initiate commands via the API messaging system to interact 

with components present in the interface. 

Segman is a significant step forward in terms of adding visual capability to ACT-R. It has 

been tested with applications such as Notepad, or Paint or dialling cell phones (St Amant 

et al. 2004) and also tested with more serious dynamic applications in terms of complexity 

such as a simple game of control for which results were very promising as it provides a 

means for a cognitive model (acting a surrogate user) to see an interface and to interact 

with it in the same manner as a real user. Another more substantial experiment was 

performed using a driving game programmed using Java. A system was constructed to 

conduct this experiment i.e. a Driver User Model in ACT-R and Segman (Van Rooy et al. 

2002), its performance that showed lack of robustness in some situations such as strong 

curvature of the road bend or the inclusion of extra useless procedural knowledge that 

were set to fire randomly as the model was driving to simulate anxiety as dual task, for 

instance. The perceptual functionality was based on empirical studies i.e. a dual strategy, 

where one strategy is used for the detection of the curvature of the road - the region is 

four degrees below the horizon, the other strategy deals with closer region – the region is 

seven degrees below the horizon.  To provide a balance, between these two strategies, a 

visual field of 5.5 degrees below the horizon was chosen. When it came to test its 

effectiveness with more serious games such as a roulette user interface, results were 

encouraging as it acted a proof of concept but also demonstrated limitations (Shah et al. 

2003). Segman has also been tested with SOAR to control some desktop dialling 

applications. Finally St Amant and his colleagues (St Amant et al. 2005) built a cognitive 
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model to remote control a simple off the shelve robot ER1 Personal Robot System (Ride 

2012). By controlling the robot control centre software interface, Segman was able to 

control the robot remotely extending to controlling the movement of the robot gripper.  

Whilst Segman opens the door to modelling with image processing inclusion, it is 

restricted in its capacity and the visual process needs to be amended both in terms of 

cognition accuracy i.e. taking into account human attention allocation and the foveal 

increase acuity and in terms of its basic object recognition as it stands, objects which are 

groups of pixel, have to be combined manually (Van Rooy et al. 2002; St Amant et al. 2005; 

Ritter et al. 2006; Ritter et al. 2007). 

Other research that is relevant to this thesis is ACT-CV from Marc Halbr gge 

(Halbr gge et al. 2007). This research is similar to Segman in some respect as it provides 

ACT-R with powerful image processing based on the highly developed library called 

OpenCV. Like Segman, ACT-CV connects to native code written in C & C++ delivered as a 

linked library, which provides the means to use functionality in the form of native code i.e. 

C and C++, provided by the library to achieve its visual perception. OpenCV, an open 

source project backed by Intel and designed for real-time applications, is an optimised 

multi-platform library containing over 500 hundreds programming functions for real time 

computer vision (Intel 2010). It is available in the form of libraries depending on the 

operating system platform and is coded in C and C++. Similar to the algorithm of Segman, 

OpenCV (OpenCV 2012) is based on the professionally developed concept of object 

features i.e. group of pixels with some unique attributes. It has all the basic functionality 

associated with computer vision such as object detection and motion detection (optical 

flow), it finds groups of pixel that are in motion, find group of pixels that are organised in 

straight lines and provides face detection using face templates in addition to many low 

level image processing routines (Gary & Adrian 2008; Gregori 2012). ACT-CV, instead of 

providing the functionality uses optimised methods provided by OpenCV. This library 

needs to be loaded by the model. In the past for instance Segman used Allegro Lisp 

proprietary functionality to load and use the functionality exposed by the DLL. ACT-CV on 

the other hand does not and uses a combination of Common Foreign Function Interface 

(CFFI) (Bielman 2006) and Simplified Wrapper and Interface Generator (SWIG) (SWIG 

2012) instead thus allowing much more flexibility in terms of running platform. SWIG is 

an open source library that has a long history since scientists in the Theoretical Physics 

Division at Los Alamos National Laboratory for building user interfaces to simulation 

codes first used it. In short, SWIG is a compiler that takes C/C++ declarations exposed in a 

dynamic library and creates the specific wrappers for a scripting programming platform 
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needed to access those declarations from other languages that include for example many 

of the scripting languages such as Lisp and languages such as java. The actual loading of 

the native code in C++ library from the Lisp platform is done using CFFI for cross 

platform functionality, which unlike Segman does not rely on the more proprietary 

functionality of Allegro Lisp. 

The experiments carried with ACT-CV are similar to the experiments that were carried 

with Segman i.e. to demonstrate the publicised impact that driving and performing other 

tasks at the same time has on driving performance. In this experiment, multitasking tasks 

is scrutinised in the same manner as Salvucci did with his research mentioned previously. 

An empirical study was first conducted using a driving simulator where the participants 

while driving where given an announcement to follow a certain route, then a road sign was 

displayed after two seconds and the driver has to press specific keys depending on 

whether the route that was announced was displayed on the road sign either as going 

straight on, of following a change of course or not displayed at all. The assumption was 

that the duration of the visual search in those type of tasks is not only influenced by the 

time to perceive the road sign on the road side but also by the words used for the locations 

refer to i.e. known or unknown place. Thus to reduce this influence, fictitious places were 

used in the experiments. Also care was used in terms of not having two places starting 

with the same letters and the design of the sign was also carefully chosen. An eye tracker 

was used to track the eye movements during the visual search. In total 19 participants 

were used, each performing 108 tasks during experimentation. The average time from the 

presentation of the sign to the participants’ reaction was on average 1.9s with only 2% of 

incorrect response. The results also showed a strong significant correlation between the 

size and type of the sign and response times. Moreover, the difference of response times 

only showed when comparing signs of different size but do not with similar type of signs. 

Furthermore, participants needed 2.7 fixations to attend the sign with 24% of the cases 

searching the road for the destination mentioned on the sign. An ACT-R model similar to 

Salvucci’s  (2002) was created to simulate participants. Analysis of the findings showed 

that in general ACT-R latencies were shorter with the exceptions where the destination 

was not displayed on the sign. In addition ACT-R needed more fixations on the sign as was 

needed by real participants i.e. from 2.7 to 4.1 for the model. The results presented fit well 

with the current literature i.e. the processing time increases in a linear fashion with the 

number of target presented in the sign. In term of functionality of the simulation, ACT-CV 

proved to be a useful tool for processing vision processes. In terms of ACT-R modelling, 

this experiment showed that it is well possible to design a cognitive model that is capable 
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of simulating human behaviour despite the shorter latencies that have been reported. 

Furthermore, this experiment showed that it is well possible to combine this cognitive 

model with model of driving such as Salvucci. Finally, Halbr gge (2007) reported that the 

cost in time to create the ACT-R was in the region of days whereas the empirical study 

took several weeks to complete.   

This research further provides evidence that cognitive modelling is useful at many 

levels, one of which is cost both in terms of time and also in terms of financial costs (Gray 

et al. 1993). Halbr gge’s research is in itself a step forward in terms of adapting vision 

processes to a cognitive architecture and thus contributing toward a more integrated 

cognitive architecture (Halbr gge 2007; Halbr gge et al. 2008). 

ACT-CV was mentioned in this section for two main reasons. It takes on the 

experiments done with Segman but uses a well-accepted platform in the industry to 

simulate the vision processes. Second, ACT-CV combines a series of tools to provide a 

multi-platform package i.e. through the use of CFFI, SWIG and OpenCV, which is not 

available with Segman i.e. dedicated to Windows platform only. Thus bearing in mind the 

use of Open-CV, it presents a more scalable solution both in terms of functionality but also 

in terms of integration. 

In this section, we have looked at some of the prominent research that has been carried 

out. Most of these examples focus on human behaviour predictive work or providing 

practical and theoretical enhancements with regard to the cognitive architecture of ACT-

R/PM. However, in terms of automatic optimisation of user interface, the literature is non-

existent.  It is believed that the reason behind the lack of projects is due to the integration 

of ACT-R models within an optimisation engine, which remains unfortunately a major 

issue. However user interface optimisation has been attempted using some evolution 

algorithm and some heurists, which unfortunately rely not on human cognition but by 

other means, which will be discussed in latter sections.  
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Chapter 4.  Optimisation using evolutionary algorithms 

The research presented in this thesis uses an optimisation engine that uses virtual or 

simulated human cognition and motor functions as part of the assessment of solutions 

found. The presented research deals with placing components in a user interface in an 

optimal manner that minimises these functions latencies. It is therefore a placement 

problem, which is a difficult problem to solve given the fact that many GUI components 

have different functions that often require different means of interaction. With regards to 

placing those components on an interface there are many issues that have to be resolved 

in order to achieve a proper layout. For instance, none of the component can overlap or 

some components must stay static and not move from their original place to list just a few 

of the problems to resolve. Given a complicated interface, this search for good layouts can 

become exhaustive due to the extremely large search space as, not only the components 

must be properly placed related to one another, but also they must respect constraints too 

such as spatial and usability constraints. Had this project also included constraints such 

aesthetics, these would also have to be met with too. In addition, the placement of one 

component may affect not only the human interaction pertaining to this GUI component 

and the ones that it directly linked to but also down the line to others as this will often 

affect the motor functions that resulted from this placement. These constraints can be 

perceived as costs in a placement problem (Examples of these constraints are discussed in 

Section 5.9.7). 

In its basic form i.e. given a set of components placed in an user interface    (1,… ,  ), 

and given a set of locations those components can be located at    (1,… ,  ), where      

since you must have at least a number of possible locations that is equal or greater to the 

number of components to place all the components on that interface, the problem is to 

determine the assignment of components to locations that will result in the minimum 

cognitive load for interaction between one component and another. Thus the basic form 

can be expressed as a problem of mapping the one-to-one mapping of the set C into the set 

L, which results in the minimisation of human cognitive and motor functions.  

Thus the feasible region of the problem’s solution space contains    points. For 

example, with a small interface containing 15 components, the total number of 

alternatives would be in the region of 1,307,674,368,000; in other words over a trillion 

possibilities. If one also takes into account costs i.e. component overlapping for instance, 

which will decreases the number of solutions, that are attached to placements, the 

possible number of solutions remains extremely large even discounting solutions that are 
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evidently not feasible and therefore finding a optimal solution to this problem is still a NP-

Hard problem and the problem often becomes to find a solution that is of good quality 

rather than the definite optimal solution. 

Given the large number of possible solutions, and bearing in mind the amount of time 

to create and test every ones of them and the computing power necessary to compute 

them, dealing with this type of problems often comes down to creating an algorithm that 

can move through the solution space to find the best alternatives without attempting to 

produce them all but to find a solution that produce a good result i.e. an interface that is as 

optimal as possible at minimising the cognitive and motor functions. The test to decide if a 

solution is good relies on some sort of metrics which is often returned by a cost function, 

that becomes larger or smaller depending how good a solution is or vice versa. For 

instance, in the case of TOISE, the cost function could return a metric that symbolise the 

amount of time that an interaction scenario takes to achieve in addition to penalties for 

placing components on the interface either protruding outside the interface surface or 

overlapping on other components. In this case, a minimisation process would be 

necessary, as the algorithm should attempt to decrease this latency as well as to decrease 

penalties. 

There two main important branches of search algorithms: i.e. deterministic or not 

deterministic. The former refers to systematic and less random search processes such as 

hill-climbing algorithms described in the literature as local search algorithms. A hill-

climber often begins with one solution to the problem, which is usually chosen at random. 

This solution is then mutated and the resulting solution’s fitness is then tested to the 

previous one and if the new fitness is higher than the former one, the old solution is 

discarded and the new one is then kept as the base solution for the next iteration. The 

algorithm is then repeated until the mutation process does not produce a sufficient 

increase in the current fitness otherwise the algorithm returns the current solution. Hill-

climbing algorithms are often referred to as greedy algorithms because during each of 

their iteration their aim is to make the best optimal available choice with the aim to find 

the overall best result. As a consequence, the main issues with greedy algorithms are that 

they have a tendency to get trapped within local minima or can be affected by poor initial 

solution choice. Furthermore, in terms of computer processes for the placement problem 

that we propose, this type of algorithms is computer intensive as they often undergo an 

exhaustive search of solution space, which can be time consuming. 
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For the complex minimisation placement problem at hand we need an algorithm that 

can explore the search space and find a good quality solution quickly without becoming 

deceived by possible solutions that appear to be good solutions but are in fact short in 

terms of quality compared to the global minimum that may exist in the search space. 

Deterministic algorithms such as hill-climbers can be useful in instances where the search 

space in well understood and relatively structured hence allowing special algorithms to 

take advantage of it, these types of algorithms are advantageous (Forrest and Mitchell 

1993; Verhaegh et al. 2006). The other branch of algorithms deals non-deterministic 

methods, which includes algorithms such as, simulated annealing and genetic algorithms. 

A short explanation for these methods can be explained as follow.  Let’s say that a solution 

space exists which includes a good quality or optimal solution. Thus, an algorithm can 

eventually discover this solution purely by inspecting this space randomly. Anyhow, this 

type of random search can often become an exhaustive search in a large solution space, 

which in terms of processing and operating time is not an option i.e. similar to hill-

climbers. However if the search is conducted in a more directed manner i.e. the algorithm 

jump around from one location of the solution space to another until a relatively 

potentially good solution is found, then the algorithm can search the vicinity of the 

surrounding region of that map in the hope of finding a good quality solution nearby. 

However if the outcome of this local search does not point to a good quality solution, 

another hop into the other area of the solution space can be performed and the process 

repeats. These types of algorithms can often significantly outperform classical methods of 

solution space searches when applied to read-world applications (Fogel 1994; Nolle et al. 

2002). In terms of concept, this type of algorithm often gets initialised with a set of 

solutions that are randomly chosen. A pool of these solutions is then selected that includes 

some good and poor solutions; the poor solutions are kept in order to allow the algorithm 

to avoid the chance to be trapped by local minima. The selected solutions are then 

modified with the hope of producing better quality ones; the amplitude of these 

modifications decreasing with time or as the overall quality of solutions increase. As the 

algorithm iterates better solutions emerge to finally converge to a generally good solution 

though no guaranty is given that the found solution is the absolute best solution. 

There two commonly used types of non-deterministic search algorithms - simulated 

annealing algorithms and genetic algorithms. The former is based on the idea developed 

by Metropolis (Metropolis et al. 1953; Holland 1975) and later by Kirkpatrick (Kirkpatrick 

et al. 1983; Mitchell and Forrest 1994) which took the concept of the physical annealing 

process of solid i.e. known as the thermal process for obtaining low energy states 
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(equilibrium state) of solid in a heat bath, and applied it to the problem of solving 

combinatorial optimization problems. In this process the temperature of the heat bath is 

raised to a maximum melting temperature of the solid so that it is in a liquid state – during 

which the molecules evolve in a random fashion, which is then followed by a phase where 

the temperature of the heat bath is carefully lowered until the molecules arrange 

themselves in a highly structured and stable lattice – the molecule are in the equilibrium 

state and thus the energy is minimal. If either those stages are not carefully performed, the 

solid solidifies in a semi-stable state and the energy is not lowered to its true optimum 

minimum energy state (R. L. Haupt and S. E. Haupt 2004; Verhaegh et al. 2006). The 

annealing algorithm is an analogy to this process. Moreover it is somewhat similar to the 

hill-climbing algorithm and thus starts with an initial solution, which is obtained at 

random from the solution space. During each step of the algorithm, the current solution is 

perturbed i.e. modified and its fitness is assessed.  However unlike the hill-climbing 

algorithm, if the current solution fitness is lower than the previous one it is not 

automatically rejected but instead its probability to be retained is calculated depending on 

the difference of fitness with the previous solution and the current temperature following 

the equation  ( )     
  

  where   ( ) is the probability of the solution being retained,    

is the difference of fitness between the previous and current solution and   is the current 

temperature. In order for the annealing algorithm to settle into a thermal equilibrium i.e. 

to rich a balanced state, each step must be kept to the same temperature for a length of 

time. Therefore the temperature is decreased in steps following the equation           

where      is the next temperature,    is the current temperature and   is the cooling 

coefficient. If this cooling time is too short i.e. the cooling coefficient is too low the 

algorithm is more than likely to be trapped in a local minimum. Too long and the algorithm 

might not converge to an optimal solution (Kahne 1997; Nolle et al. 2002; Konak et al. 

2006) 

4.1 Genetic Algorithm 

One of the most prominent other type of non-deterministic algorithms refers to Genetic 

Algorithms (GA) (Goldberg & Holland 1988).  It is based on the Darwinian theory of 

evolution.  The analogy of this theory and algorithm was first described by Holland in the 

1960s (Holland 1975; Huang et al. 2012). Later with his colleagues, he further developed 

the idea and presented genetic algorithms as an abstraction of this evolution theory which 

included processes such as mutation, selection and crossover in addition to introduce the 

notion of schemata (Bäck 1989; Mitchell and Forrest 1994; R. L. Haupt and S. E. Haupt 
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2004; Jadaan et al. 2008). In short the concept deals with the idea that evolution adapts 

living organisms to deal with complex environments in which the fittest individuals 

survive, similarly GA adapts solutions to best solve a problem based upon a fitness factor. 

The algorithm is based on the fact that strong individuals who have high fitness have the 

opportunity to pass some of their genetic material i.e. genes to the next generation via 

reproduction.  The individuals who demonstrate poor fitness get discarded over some 

generations. Over time, during the slow process of evolution, some small mutations can 

affect individual’s genes. If these changes provide additional advantages, the selection 

process i.e. natural selection will ensure that new individuals bearing those changes 

evolve from the old ones to eventually replace them to become the dominant species in the 

population (Koehn 1994; Kahne 1997; Konak et al. 2006). Thus mutation, crossover and 

selection are the basic processes in a genetic algorithm.    

The GA terminology in the literature follows the biological representation is inherits 

from. A solution is called an individual or a chromosome. These chromosomes are 

composed of discrete units called genes, which influences some features of the 

chromosome. Genes can have many representations such as binary units, integers, float, 

doubles, strings etc. In genetic algorithms a chromosome often corresponds to a solution 

in the solution space, which implies that a mapping between the solution space and the 

chromosomes referred to, as encoding, must be implemented. Therefore the GA 

mechanism operates on this mapping rather than the problem itself. Unlike many 

algorithms, GA does not operate on a unique solution, but instead operates on a set or 

population of solutions, which is first initialised with random solution. As the search 

process progresses, the population is checked for its fitness, and from this, a pool of good 

parents are selected which is used to create the offspring’s for the population for the next 

generation. Finally some individuals from the new population are mutated. A check on the 

convergence of the population towards the best solution is made and if it is felt that it has 

converged the GA run exit otherwise it re-iterate, alternatively, the GA can be instructed to 

run for a specific number of generations. The general process is shown in Figure 24. A 

chromosome is defined for a particular problem. This is the encoding phase. This 

population individual has a size i.e. number of elements or dimensions of    , thus given 

  ,   , … ,     a chromosome can be represented as an array of these elements i.e. 

            [  ,   , … ,     
]. Each chromosome is associated with a cost function to 

calculate its fitness so for each element of the chromosome the cost is 

      (          )   (  ,   , … ,     
). This is the fitness for this chromosome that 

will define its selection ranking for matting. Hence for a placement problem such as TOISE, 
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for a number of components   
2⁄ , the number of locations for these components is 

   
2⁄ , 

a possible fitness of a solution can be represented as           (  ,   , … ,     
) where 

  ,    is the location of component    in the interface   ,    is the location of component   , 

      
,     

 is the location of component       
 with   referring to some summation of 

constraints on overlapping, placement and cognitive and motor function. 

Selection is a process in a GA that determines the manner by which it is converges. As 

shown in Figure 24, genetic algorithms use the selection process to select the individuals 

from an existing population to insert into a mating pool which are then used by a 

recombination operator i.e. crossover to generate new offspring that will form the next 

generation population. It is therefore important that the selected individuals in this pool to 

have an overall good fitness and the selection process should focus on the selection of 

those types of individuals in a current population for this mating pool.  

 

Figure 24: GA Run 

The selection pressure is the degree by which the individuals compete with each other 

so that the fittest individuals are chosen for the matting pool. The higher the selection 

pressure and the more fit individuals are chosen for the next generation. Consequently, 

over a number of generations this pressure forces a GA to refine the population in terms of 

fitness, which ultimately will eventually push the GA to converge to a set of optimal or 

near-optimal solutions. There are too main issues related to selection pressure. If it is too 

low, this will lead to an increase of the variability of the diversity of the population and the 
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GA convergence will be slow and will take unnecessary longer to find an optimal solution, 

adding extra computer processing time, often stalling the GA from settling down. 

Conversely, if it is too high, it will decrease the population diversity and the GA might be 

driven to converge quickly and to a local sub-optimal solution, which could be far of the 

optimal solution. In other words, the GA settles down too fast (Mitchell 1996; Huang et al. 

2012). Selection schemes come in two major flavours i.e. proportionate and ordinal based 

selection. The former bases its selection on the fitness of the individuals relative to the 

fitness of the entire population. The latter base its selection on the rank of individuals 

compared to the other individuals ranked according to the fitness in the population. 

Therefore the main difference is that the selection pressure is directly proportional to the 

fitness of individuals for the former whereas it is not for the latter i.e. it is only based on 

the ordering of individuals of a population. Examples of commonly used proportionate 

selections are proportionate selection, stochastic remainder selection and stochastic 

universal selection and examples of ordinal-based selections are tournament selection, 

truncation selection and linear ranking selection. It follows that the selection operator is a 

critical component in delivering optimal solution when using GA (Bäck 1989; Reeves 

2003).  It is not the place in this work to describe in details all the selection algorithms 

that are used today, as the list is exhaustive. Much research has been undertaken in this 

field. We will simply briefly introduce some to provide information regarding their 

features however.  The classical Fitness Proportional Selection (FPS) also known as the 

Roulette Wheel Selection (RWS) is based on the simple algorithm where the expected 

number of copies for a particular individual is based on its fitness compared to the 

population fitness (which normalises it) usually using a roulette wheel to make the 

selection. In this process each individual is assigned a slice of the roulette wheel with the 

size of the slice being proportional to the individual’s fitness related to the population 

fitness. A random number is generated from    (0,1). Starting at the beginning of the 

wheel, the cumulative probability is summed until it is equal or greater to the   value. The 

entire circumference of the wheel equals the sum of all individual fitness’s of the 

population individuals (Hancock 1994; Jadaan et al. 2008). The individual under the wheel 

selector is then selected for the mating pool. The process is repeated for the number of 

individuals that are required for the mating pool. This algorithm however has reported 

issues associated with it (Goldberg and Deb 1991; Koehn 1994; Miller and Goldberg 

1996). This process leads to early convergence, as at the start of the GA run, there are 

many individuals with poor fitness and just some much fitter. Since the selection is purely 

based on stochastic selection i.e. random, poor individuals can be selected multiple times 

with only a small proportion of fitter ones entering the matting pool. Consequently toward 
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the end of the run the fitness of the individuals and the population overall has little 

variation. In addition, as poorer individuals multiply rapidly, this stops the GA explorative 

search leading often to early convergence to local optimal solution with the few fitter ones 

driving the GA to this early convergence (Mitchell 1996; Luke and Spector 2010). An 

attempt to avoid this rapid degradation of the population fitness is to omit replacing 

individuals into the selection pool once they are selected. Whist helping, this does not 

provide a robust solution. A proposed solution to this problem is to use Stochastic 

Universal Selection (SUS). This type of selection is similar to the roulette wheel but rather 

than using the cumulative fitness probability as the mean of selecting individuals, 

selections points are distributed on regular interval around the roulette wheel once an 

initial pointer is placed at random. The selected individuals are the ones that fall under 

those pointers. This provides a chance to fit individuals to have many copies entering the 

matting pool. This partially addresses the problems mentioned previously but this 

selection type is still susceptible to early convergence. In addition, this does not solve the 

issue of scaling when for instance using real values strings as part of the encoding 

(Hancock 1994; Miller and Goldberg 1995; Wall 1998; Reeves 2003; Sivaraj and 

Ravichandran 2011).  Another type of selection is ordinal selection based on ranking. One 

of the major attributes of ranking selection is that it is not directly proportional to fitness 

and is normally the preferred alternative to proportional selection mainly because of the 

scaling problems and early convergence (Goldberg and Deb 1991; Miller and Goldberg 

1996; Harik et al. 1999).  A selection often referred to is the Tournament Selection (TS). 

This type of selection is based on ranking the parents in terms of fitness and running a 

tournament contest using a small group of these individuals randomly selected with the 

individual with the fittest selected for mating. This type of selection provides a robust 

mechanism in which the selective pressure varies proportionally with the number of 

individuals that are present during the tournament i.e. more participants increases this 

pressure but in the literature this value is often set to two (Thierens 2002; Luke and 

Spector 2010). Because of its nature, it is often used with noisy fitness function (Spears 

1993; Miller and Goldberg 1995).  

To put it in perspective with the research presented in this thesis, when dealing with 

human visual perception, which has a tolerance set by default to 0.5 degree of visual angle, 

the fitness function would report similar values for many layout solutions that are slightly 

different. Because of its elitist behaviour and competitive nature, the tournament selection 

often selects the solutions in a manner that favours the fittest and typically chooses more 

valued individuals than would proportional selection otherwise. It must be noted that this 
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selection uses RWS to select the participants at random (Tate and Smith 1998; Wall 1998; 

Sivaraj and Ravichandran 2011). 

Other important genetic operators are the crossover and mutation operators. The 

crossover deals with mating of two selected parents to create one or more offspring and is 

often associated with the exploitation of the solution space for a given problem. The most 

common reproduction form involves two parents producing two offspring. In this instance 

some points   1…  i.e. kinetochores are randomly selected between the first and last 

gene of the parent chromosome. The gene information from both parents is then copied 

onto both the offspring chromosome with respect to those points. Thus the two offspring 

inherit both parents genetic material.  There are many forms of crossovers that have been 

studied but all have the same idea behind which is to recombine building blocks on 

different chromosomes. There are known issues with implementing crossovers. One well 

known issue is hitchhiking and comes with the one-point crossover whereby given only 

the one point, poor genetic material can tag alone good genes over many generations. The 

other problem with this style of crossover is that the genes at the beginning and end of the 

chromosome will often been replicated. Therefore many projects use the multi-point style 

of crossover to overcome these issues. One crossover that is worth mentioning despite its 

potential disruptive effect is the uniform crossover, which has the potential to disturb any 

genes present in a chromosome. The choice of the crossover method used in a GA is often 

related to the type of other operators used i.e. fitness function, the encoding used and 

mutation amongst other aspects.  However it all depends on the type of problem to solve 

and therefore the encoding used. In layout or placement problems it is often the case that 

special crossover operator are created to deal with the special type of encoding. These 

issues will be discussed in the next section when examples of placement projects will be 

discussed in more details. 

Another important operator is the mutation operator, which is used, in genetic 

algorithm to maintain genetic diversity in a population from one generation to the next.  

This operator alters one or more genes in a chromosome in an arbitrary manner thus 

introducing the extra variability in a population that is often needed in genetic algorithms. 

Mutation is often perceived as the second tool in a GA to explore the solution space in 

addition to its exploration role. However, whilst crossover guaranties preservation of 

genetic material, mutation does not. There is however proprietary GAs that does not use 

the mutation operator.  Compact Genetic Algorithm (cGA) is one of these GA that has been 

successful in standard tests that only uses a uniform crossover with a selection pressure 

provided by a tournament selection with replacement (Harik et al. 1999; Hooda 2012).  
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Both the crossover and mutation operators are assumed to have rate associated with 

them that provides the probability that changes will occur. Finding the right rates for these 

operators can become a tedious job. For instance Thierens in (Thierens 2002; Perrins 

2008) discusses several adaptive mutation controls that can be used to eliminate the need 

for a static mutation parameter. These attempts are based on declining the mutation rate 

over a GA run with binary encoding however. Nonetheless, in the literature, there seem to 

have a standard for those rates (which off course are dependent of the problem to solve). 

The crossover rate is often thought to be 0.6       0.7 where as the rate for mutation is 

in the region of 0.001. Moreover, the literature often attempts to question the relevance of 

these operators (Spears 1993; Maveryx 2011), which are at times is misleading. In many 

cases the consensus is that the driving force behind GA is its selection of parents for 

breeding, new generation based on their fitness and the discarding of the poor individuals 

as the main factors for contributing to the general increase of the population fitness. 

Whereas as crossover or mutation has had a major contribution is somewhat secondary as 

above all the selection pressure acts on the population individuals regardless if they are 

born through breeding or brought about by mutation. These operators however as 

important they are help to raise the individuals’ fitness but without a strong and 

appropriate selection mechanism, these efforts will not translate to a fitter population 

(Tate and Smith 1998).  

4.2 Application of Genetic Algorithm in the domain of component placement 

In the realm of applications dealing with component placement on 2D or 3D 

environments, the research done in this field has increased over the years. There are 

however leading fields which lead or steer the research towards helping professional in 

area such as electronics i.e. System-on-Chip (SoC) (Manikas and Cain 1996; Lohn 2002; 

FriedMan 2009) , Field-Programmable Gate Array (FPGA) (Ando and Iba 2000), 

construction site (Jang et al. 2003), building (Yang et al. 2002; Narahara and Terzidis 

2007; Klanac et al. 2008) or plant layout (Gero 1999; Balakrishnan and Cheng 2000; 

Osman et al. 2003; Jagielski and Gero 2009), ship building (Thapatsuwan et al. 2007), 

factory layout (Ajenblit and Wainwright 1998; Pérez et al. 2005; Ho and Perng 2009), 

document assembly (Purvis 2009) and some dealing with User interfaces (Oliver et al. 

2002; Brewbaker 2008) to name but a few. The research and work is this field is far too 

sizable to provide a comprehensive overview therefore this thesis will attempt to describe 

some work that concentrates or relates best to the work this thesis presents in this thesis 

such as discussed by Brewbaker and Oliver. 
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The Brewbaker’s research is related to the research within this thesis as it attempts to 

optimise some user interaction virtual keyboards, using a form Shannon Fitt’s law (which 

is used in ACT-R).  

Its main focus is to use a genetic algorithm approach to optimise virtual keyboards 

layouts, namely QUERTY and FITALY, the former being a keyboard optimised for stylus 

use whereas the former is a ubiquitous keyboard found in many keyboards. The 

optimisation process focuses on two target users referring to two types of typists: English 

language typists and C programmers using Shakespeare literature for the former and the 

Linux kernel code for the latest which are used to test the system. 

The fitness function for the GA is based on Shannon version of Fitt’s law, which has 

been modified to take in the Euclidian distance between the keyboard keys when typing 

from one key to another. The GA encoding encodes each key for a character using unique 

real numbers in a matrix representing all the key of the keyboard i.e. (1…number of keys). 

The roulette selection is used to provide better population diversity for the selection and 

is using a two points crossover. 

Brewbaker succeeded at evolving QUERTY keyboards that displays certain particular 

traits such as placing OTAIE in the home row of the keyboard for the evolved Shakespeare 

test which fits well with the English language as most of those letters i.e. AIEO are 

frequently used. For the programming tests, sequences of letters or words such as FOR, N, 

I were located in the home row which fits well for this type of programming language as 

they are often used. Tests for the FITALY keyboards were also successful are putting close 

to each other letters commonly used in the Shakespeare test i.e. A, I, O and U but placed 

them diagonally around the middle of the keyboard. Tests for the same keyboard focusing 

on C programming placed letters N, I and A in the middle, with the word PRINT nearly 

contiguous. This again fits well with the Linux kernel code which includes many debug 

code lines using this word. 

Brewbaker compared also this method with a random approach. His results showed 

that the random method came last in terms of timing performance returned by the Fitt’s 

law based fitness function, with the GA evolved keyboards being the best high 

performance solutions, the standard QUERTY being in the middle in terms of performance. 

The main issue with the work presented in this paper is that it does not take into 

account any movement preparation, execution latencies but only focuses on expert user 

fast movements. However, it shows potential of using GAs for optimising user interfaces 



84 

 

specific applications using a fitness function that takes into account a basic human 

performance when operating an interface. 

Oliver’s research that is presented in his paper deals with automatic optimisation of 

web pages layout, which is its relevance to the research presented in this thesis. What is 

novel in this project is that it is based on an IGA which uses actual user feedback as fitness 

assessment for the system proposed layouts. Its main purpose is to suggest to users 

different visually optimised layouts based on some user specification (font, size, colours 

etc.) and therefore eliminate technical knowledge that is often required for such task. 

This work focuses on two parts: one that deals with individual styles of the components 

and the other of the overall layout of the web page, where users can optimise either one. 

To help with the usability and ease of use, only 12 layouts are proposed to the users at one 

time. 

Mutation rate controls the type of layout that is suggested by controlling their diversity 

in terms of component placement. The run starts with a high mutation rate, which 

decreases over time, thus suggesting a diversity of layouts that gradually focuses down to 

the user preferences. Some controls were implemented to ensure readability of the text 

and their luminance. Any failure results in the run re-starting. The crossover is based on a 

uniform crossover (with probability rate = 0.5). 

The layout is based on a HTML table where all the objects are contained in the table’s 

cells, which can be merged together hence allowing for an increase variety of layout 

representations. The fitness of the representation takes into account two constraints: 

overlapping and the inclusion of individual object in one cell. The mutation operator 

assigns one object to a cell at random. 

The study reported by Oliver is in operation and represents a real world problem 

where scalability is paramount that has shown itself successful in a real life business 

situation based on a GA to provide optimised layouts with direct real user input as part of 

its fitness assessment. 
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Chapter 5. Software Design - TOISE 

5.1 Introduction 

The main part of the concept discussed in this thesis relies extensively on ACTR 

modelling. In the first sub-section of this chapter I will discuss an overview of the road 

taken to develop the concept and in the later chapters I will discuss the ways the system 

was implemented. Finishing this section, I will discuss the points that led to the 

development of an updated version, namely the version of TOISE compiled from C++ 

code. 

Looking at ways users interact with software, it is possible to define primitive actions 

that are taken to interact with a system. 

 Typing  

 Clicking 

 Dragging 

 Moving limb 

Those basic actions are often mixed together as a scenario to perform a goal. For 

instance, if one has to click on a specific series of buttons to achieve a task, one has to 

move the hand in position, click the component, then move the hand to another location, 

maybe click on that particular component, then perform some typing, then move the hand 

to another location and maybe drag an object to some location. Regardless of the 

complexity of the task, the task can often be divided into a series of smaller sub-tasks, 

which themselves can be split over a series of sub-actions to perform if necessary. In this 

thesis, we name those subtasks primitive actions. We named them primitives because they 

cannot be sub-divided into smaller actions. 

In order to obtain this type of data, an action recorder must record user actions when 

instrumenting a software prototype; this recorder must be able to return these interaction 

primitives. The following section will describe the software that allows this type of 

recording. It is called in this project: Robot. 

Once a model of user interaction has been created, this interaction must be simulated 

using the ACT-R cognitive architecture. Hence, models must be created to simulate these 

action primitives with its supporting software. In the following section, this side of the 

project will be discussed. Finally, an optimisation system using these models is used as 
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part of a genetic algorithm. The final part of this chapter discusses the software that 

optimises layouts and presents an optimal setup for the layout. 

TOISE uses both perceptual and the motor modules to interact with a virtual world 

named the device represented in ACT-R/PM by the device module. The device simulates a 

computer (but can simulate other environments if needed) that is useful for HCI research 

and TOISE. Visual elements such as objects and object locations can be added to the device.  

The code fragment shown below for instance creates two chunks; one for an object and 

one for its visual location and add them to the device interface, which is then selected as 

the default visual interface for the current model. 

… 
(push (car (define-chunks-fct `(( 
     VISUAL-A-LOCATION 
     isa OBJECT-A-LOCATION 
     color       black 
     value       OBJECT-A 
     kind        OBJECT-A 
     screen-x    ,obj1X 
     screen-y    ,obj1Y 
     width       ,obj1W 
     height      ,obj1H)))) visual-location-chunks ) 
                               
 (push (define-chunks-fct `(( 
     A-OBJECT 
     isa         OBJECT-A 
     CONTENT     "object1" 
     value       "object1" 
     width       ,obj1W 
     height      ,obj1H))) visual-object-chunks )  
                                        
(let((the-device (pairlis visual-location-chunks visual-object-chunks))) 
                
(install-device the-devic 

Once the device is selected, the vision module provides the functionality to interact 

with this interface as well as to provide information about what can be seen in it. It is 

worth mentioning that ACT-R/PM does not model eyes movements. This functionality is 

external to the core system and is provided with Eye Movements and Movements of 

Attention (EMMA) created by Salvucci. ACT-R can be set to force EMMA to replace its 

standard vision module. 

As will be discuss further down, TOISE decomposes a scenario of actions to its basic 

primitives; the buffers that it needs to interact with are therefore limited and are 

displayed below. First it is goal directed which means that there is a need to change 

memory content to perform different tasks. Thus memory needs to be retrieved from 

declarative memory, location of objects needs to be found and attended to, the visual 

module needs to be issued commands to direct the eyes and finally the motor module 

needs to perform primitive actions. 
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Buffer Module Commands 

Goal Framework i.e. cognition Changes or replace the content of 
memory element 

Retrieval Framework i.e. cognition The main action is the retrieval from the 
declarative memory of chunks with the 
highest activation that fulfil all the 
constraints mentioned in the LHS 

Visual-location Vision This command moves the system visual 
attention to a specified location. 

Manual Motor Execute actions such moving mouse, 
clicking a mouse etc. 

5.2 Recording Interaction 

The software that was constructing to record the user interaction is called Robot. The 

main specification for Robot was four folds. Firstly, Robot should record all the user 

interactions and secondly create a model for that interaction scenario. This model can 

then be imported as a scenario of interaction that can be simulated with a series of ACT-R 

models. Thirdly, the recorder should generate a model of the interface that was used 

during the interaction, which can be used by the optimisation engine as a virtual interface 

that provides all the metrics necessary during the process. Finally, an extra specification 

was for the software to be able to re-run the interaction on the specific software.  See 

Figure 25. 

5.2.1 Alternatives 

Testing and test automation is a vast domain which is often perceived as the most cost 

effective method for testing software products. There are two main general approaches to 

test automation. Code driven testing that is often based on frameworks that interface 

classes and backend code, which are validated by input arguments. The other kind which 

is part of our domain of interest are graphical user interface testing frameworks that 

generate system events such as mouse and keyboard input which exercise the underlying 

code and validate user interface behaviour. These tools are often expensive and often 

require knowledge of the application under test often relying of professionals to perform 

the necessary steps (Hooda 2012). 
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Figure 25: Interaction Recording31 

One of the earliest effort in producing some user input automation was made by Sun 

Microsystems when integrating the java Robot class as part of the 1.3 Java JDK in 2000 

(Ginbayashi 2004). It is however difficult to use this class as exact interface object metrics 

must be precisely known to generate events properly. This class is often used as a base 

class in many frameworks such as Abbot, which will be discussed further on this section. 

For this reasons, a few attempts were made using Java Robot but difficulties obtaining 

consistent data to model the interaction and software interface were experienced, and 

which led to a change of direction.  

The idea behind this change was to use a free Java testing framework, apply some code 

changes to it to transform the testing platform into a user interaction recorder. 

Comprehensive testing suites are often frameworks that are integrated into programming 

environment to instrument the code and offer an automated functional testing tool as well 

as a regression-testing tool. Others are not but rely on bootstrap code to load some test 

scripts alongside the application code to be tested, which often allows the framework to 

load other needed testing modules. Two of these free public domain sophisticated 

frameworks are the well-known Dojo32 (Perrins 2008) (See Figure 26), endorsed by IBM33 

and Maveryx (Maveryx 2011) (See Figure 27).  

                                                             

31 Courtesy of: http://bfmexotic.com/wp-content/uploads/2011/08/computer-based-test.jpg 

 

32 http://dojotoolkit.org/ 

33 http://www.ibm.com/developerworks/web/library/wa-aj-doh/index.html 
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Figure 26: Dojo testing suite34 

 

Figure 27: Maveryx Testing Suite35 

However, the idea of bootstrapping / integrating some bespoke code onto an existing 

application source code renders the goal of user interaction recording much more difficult 

and less intuitive, not to say attractive as in most cases the original source code is not 

accessible. In addition, those innovative frameworks are based on identifying UI elements 

that are present in interfaces and needed by testing scripts, rather than having the code 

being instrumented by demonstration to discover the elements that are needed for a 

specific task. 

There is one of these frameworks that differ from the others mainly because it is by 

definition a framework that focuses on testing Java GUI’s rather than testing the 

underlined operational code. Rather than relying on additional testing scripting code, it 

dynamically loads an application, creates a model of the application interface and records 

                                                             

34 http://blog.siliconforks.com/wp-content/uploads/2010/05/jscoverage-dojo.png 

35 http://marketplace.eclipse.org/nominations/product/maveryx 
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the interaction using a set of semantic recorders that are hooked into all the elements of a 

Java software interface. This framework is called Abbot (Wall 2011)36. It is built upon the 

java.awt.Robot class to provide an automated event generation and validation framework 

for Swing GUI components that are present in java applications as well as and functional 

testing. The suite contains also The Costello script editor that can record user actions and 

facilitate script construction and maintenance (See Figure 28 and Table 1). This GUI 

regression testing toolkit is reliable and despite the fact that it has some glitches (Ames 

and Jie 2004). 

Table 1: Benefits of Abbot Library 

Benefit Explanation 

Reliable reproduction of user input The reason that often graphical user interface do not get the required amount of testing is often 
because it is usually not a simple task to simulate user input.  Abbot solves this issue by making 
this process seamless. 

Scripted control of actions and inspection Rather than having to write extra code for testing, the test scripts are dynamically interpreted by 
Abbot 

Loose component bindings User interface tend to change over time. Thus a raw event recorder and playback is more likely 
to break during the development of a product, as the component absolute coordinates tend to 
change with it. Abbot does not rely on component location as long as it can find them 
dynamically 

Specify high-level semantic actions whist 
using low-level Operating System events 
to implement those action 

As already discuss, the java.awt.Robot is capable of simulating user events but is too low level to 
be used easily. Abbot has a built-in level of abstraction on top of the java Robot in the same way 
Swing components present a layer of abstraction to related Awt components thus making testing 
easier to construct. 

Support recording and editing of high-
level semantic events 

In many circumstances, test scripts are written as XML scripts (often by hand), Abbot comes 
with its own test script management editor that let user record, edit and manage test scripts i.e. 
Costello 

 

 

Figure 28: Abbot Testing Suite37 

5.2.2 Robot based on Abbot 

The Abbot Framework meets many of the requirements that were sought, but being a 

testing platform, its main focus is on processing user actions on an interface and functional 

testing rather than modelling it as user interaction. Thus, a few code adjustments were 

                                                             

36 Reference: http://abbot.sourceforge.net/doc/overview.shtml 

37 http://abbot.sourceforge.net/doc/images/costello.png 
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necessary to transform this platform to meet those requirements. Moreover, in order to 

create a model of the interface, parental inheritance has to be properly resolved. This was 

necessary as Java applications often rely on parental metrics to set the components in the 

right locations on the GUI; functionality unneeded in testing. Other necessary addition 

dealt with timing. In testing mode domain, these types of metrics are not needed and thus 

are not included, but they are essential if proper user interaction needs to be recorded. 

Underlying code was therefore included to expand the Abbot functionality to record 

timings in milliseconds. Further additions in the recorders were also necessary to record 

location metrics in the model (again not necessary when testing in the domain for which 

Abbot was created). Those changes had to filter out to the Costello Editor, which is the 

main manager for the scripting and parsing functionality. The main issue with Abbot was 

discovered when dragging operations took place. Java (unlike other platforms) generates 

an Abstract Window Toolkit (AWT) Event when this type of action is performed. Unlike 

the Windows API which generates an API event when the drag action is first performed 

when selecting an object to drag which refers to the object that is being dragged and then 

another message when the selected object is dropped relating to the object that becomes 

the container for that object, Java does not and the drop message still refer to the object 

being dragged, not referring to the new container that receives that object. To create a 

user interaction model, one needs to know the object that is being selected in addition to 

the object that will contain that object in the future. In a testing environment, this is not an 

issue but it becomes one when trying to analyse user interaction and model a user 

interface.  

In order to deal with this issue, the need to investigate the messages coming directly 

from the API was necessary rather than relying on the Awt event message pump for the 

drag and drop events received from Java. The only way to achieve this was to build a 

Dynamic Linked Library (DLL) with the necessary code to retrieve events directly from 

the API, and dynamically loading this library into the Abbot Suite backend java code, 

replacing the code dealing with this type of recording. To achieve this SWIG38  (SWIG 

2012) was used to wrap the code contained into the library into the Java code. 

SWIG is a compiler that wraps an interface around a native platform of choice, whose 

code can be compiled in a native form. Unlike some other alternatives i.e. Java Remote 

Method Invocation (RMI) based on a server / client architecture where the former 

                                                             

38 More Information at: http://www.swig.org/index.php 
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instantiate remote objects and make them available to client applications which can obtain 

remote reference of those objects and invoke methods exported by the server, using object 

serialization to marshal and un-marshal parameters, SWIG does not produce stubs i.e. 

proxy interface to remote objects, but produces code that can be compiled into the java 

code and ran, thus avoiding the difficulties of writing server/client code to run some 

functionality. SWIG is mature system that was first released in July 1995 by Dave Beazley 

(Theoretical Physics Division at Los Alamos National Laboratory). The main advantage is 

that the wrapping is automatic, can be easily implemented and is scalable (Langtangen 

2010). SWIG has been used in projects like SubVersion, Web-based Analysis and 

Visualization Environment (Weave)39 (Dufilie et al. 2012), Python Open-Oriented Graphics 

Rendering Engine,(PyOgre)40 (Dawson 2010) (a Python version of Ogre), Shogun41  

(Sonnenburg et al. 2010) and OpenCV (Thompson & Stevenson 2011) for which SWIG is 

used to interface platforms such as Python. It is support at the time of writing eighteen 

platforms including Java, Allegro Lisp and CFFI. 

The change of focus from a testing application to a user interaction-recording suite can 

be seen in Figure 29. Figure 30 displays the models generated by the software with its two 

parts: one that deals with the interface whilst the other focuses on the user interaction.  In 

the figure the model lines (in red) correspond to the modelling that pertains to the 

interface, which includes all the components that took part in the interactions recording. It 

is a sub-model that TOISE will parse to create his own virtual interface description. The 

green section represents the second sub-models that correspond to the type of actions 

that were performed during the interaction i.e. clicking, dragging or typing etc. TOISE 

parse this model (in green) and will link these actions to the objects (in red) that were 

included during these specific tasks. 

Figure 31 and Figure 32 display specific details of the type of information that model 

the interface and the user interaction. The details provided are sufficient to model many 

aspects of the application and the user interaction provided that care is taken to 

reconstruct the GUI given parental inheritance when parsing these models to reconstruct 

virtually both the application interface and the interaction that took place on that interface 

during the test. 

                                                             

39More information at http://www.oicweave.org/ & https://github.com/IVPR/Weave 

40 More Information at http://www.ogre3d.org/tikiwiki/PyOgre 

41 More Information at http://www.shogun-toolbox.org/doc/en/2.0.1/index.html 

http://www.oicweave.org/
http://www.ogre3d.org/tikiwiki/PyOgre
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Figure 29: Robot after recording a Drag and Drop action 

 

Figure 30: Robot Interface and Interaction model 

 

Figure 31: Portion of a GUI models generated by Robot 

The sequence of action can be seen Figure 33. In this screenshot, one can see that each 

sub-task can be edited or tweaked as needed either using Costello or by hand.  
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Figure 32: Portion of the user interaction generated by Robot 

The information that is shown is retrieved from the application as it is dynamically 

loaded and then completed when a user interaction has taken place. In addition more 

sequences of interaction can be added to existing or new sequence. Therefore many 

complex sets of tasks can be recorded, run and edited with Robot based on the Abbot 

framework.  

 

Figure 33: Recording of a sequence of action 

Moreover, Abbot had the base code to record motion. This functionality was extended 

in the same manner as the action recording and is available to further investigate user 

interaction on the motion level as seen in Figure 34. Furthermore, another issue that was 

dealt with was to retrieve the real containers of the interface objects rather than 

containing abstract class objects. 
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Figure 34: Robot extended motion captured 

5.3 Modelling Primitives 

In the project that the thesis presents, modelling ACT-R primitives actions were done 

starting from a plausible GOMS model as shown in Figure 35, which is the primitive that 

will be used in this section to demonstrate how the actual ACT-R models were obtained. 

 

Figure 35: Drag & Drop GOMS model 

G2A42 is a runnable system created by St Amant et al. that automatically abstracts ACT-

R productions from more abstract and high level GOMSL models (St-Amant et al. 2005).  

Using a GOMS model as a base, G2A parses this model and generates the ACT-R 

productions rules by mapping the GOMS operators (actions to be performed) to ACT-R 

productions rules which are integrated into an ACT-R model with predicted timings within 

5% of GOMS models latencies (St-Amant and Ritter 2004; Byrne 2005; Karray et al. 2008). 

The only issue with this solution is its reliance on ACT-R version 5. However, as we are 

dealing with simple primitives in the research proposed in this thesis, this does not pose a 

problem to the conversion to an ACT-R model suitable with version 6.0. The resulting ACT-

                                                             

42G2A is available at  http://www4.ncsu.edu/~stamant/G2A/ 
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R model just needs to be modified and tweaked to reflect the changes necessary for ACT-R 

6 to take care for instance of Visual State and Manual State which are no longer used in 

ACT-R 6. The available G2A generated ACT-R model can be perused in Appendix A with a 

sample run displayed in Appendix B. This model gives us the main mainframe from which 

a final model can be derived and modified as a macro to allow for the encapsulation of the 

ACT-R model, which can then repeatedly invoked. 

5.4 Decomposition a series of task 

 

Figure 36: Test Application small text editor in Java 

Any task involving a series of action on an interface can be decomposed into a series of 

independent tasks. 

 

Figure 37: Demo Test Application exercised using Robot 

Looking at Figure 36, and Figure 37, the test consists simply of entering the text pane, 

adding three lines separated by two empty lines, formatting the first line in Bold, 

formatting the second line in Italic, formatting the last line using the Underline, saving this 

as a RTF file and finally exiting the application using the Exit menu item.  
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Figure 38: Small test 

The Robot model shown in Figure 38 can be described as a scenario: 

 Click(JTextPane Instance,0%@%113-34) 
 KeyString(JTextPane Instance,This is test line 1) 
 ActionMap(JTextPane Instance,insert-break) 
 ActionMap(JTextPane Instance,insert-break) 
 KeyString(JTextPane Instance,This is test line 2) 
 ActionMap(JTextPane Instance,insert-break) 
 ActionMap(JTextPane Instance,insert-break) 
 KeyString(JTextPane Instance,This is test line 3) 
 ActionMap(JTextPane Instance,insert-break) 
 SelectText(JTextPane Instance,19,0%@%91-10:-12-5) 
 Click(Bold) 
 SelectText(JTextPane Instance,40,21%@%108-43:-4-44) 
 Click(Italic) 
 SelectText(JTextPane Instance,61,42%@%89-61:-1-64) 
 Click(UnderLine) 
 Click(Save RTF) 
 SelectMenuItem(File) 

SelectMenuItem(Exit) 

This scenario can be refined as: 

 Select a point in the text pane by clicking in it 
 Type: This is test line 1, where the selection was first made 
 Type: The Enter key 
 Type: The Enter key 
 Type: This is test line 2 
 Type: The Enter key 
 Type: The Enter key 
 Type: This is test line 3 
 Type: The Enter key 
 Select the first line of text 
 Click on the Bold button 
 Select the second line of text 
 Click on the Italic button 
 Select the third line of text 
 Click on the UnderLine button 
 Click on the Save RTF button 
 Click the File menu in the menu bar 
Click the Exit menu item 

Further enhancements to the scenario: 

 Start with hand where the first selection was made 
 Select a point in the text pane by clicking in it 
 Type: This is test line 1, where the selection was first made 
 Type: The Enter key 
 Type: The Enter key 
 Type: This is test line 2 
 Type: The Enter key 
 Type: The Enter key 
 Type: This is test line 3 
 Type: The Enter key 
 Move hand at the end of the first line of text 
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 Drag mouse to beginning of first line to select the entire line 1 text 
 Move hand over the Bold button 
 Click on the Bold button 
 Move hand at the end of the second line of text 
 Drag mouse to beginning of second line to select the entire line 2 text 
 Move hand over the Italic button 
 Click on the Italic button 
 Move hand at the end of the third line of text 
 Drag mouse to beginning of third line to select the entire line 3 text 
 Move hand over the UnderLine button 
 Click on the UnderLine button 
 Move hand over the Save RTF button 
 Click on the Save RTF button 
 Move hand towards the File Menu Item 
 Click the File menu in the menu bar 
 Move hand over the Exit menu item 

Click the Exit menu item 
 

This can be put into a sequence of independent set of actions 

 Move hand from last location to new location, type: This is test line 1 
 Move hand from last location to new location, type: The Enter key 
 Move hand from last location to new location, type: The Enter key 
 Move hand from last location to new location, type: This is test line 2 
 Move hand from last location to new location, type: The Enter key 
 Move hand from last location to new location, type: The Enter key 
 Move hand from last location to new location, type: This is test line 3 
 Move hand from last location to new location, type: The Enter key 
 Move hand from last location to new location i.e. line nb1, perform dragging selection from source to destination 
 Move hand from last location to new location, click on the Bold button 
 Move hand from last location to new location i.e. line nb2, perform dragging action to select text from source to destination 
 Move hand from last location to new location, click on the Italic button 
 Move hand from last location to new location i.e. line nb3, perform dragging selection from source to destination 
 Move hand from last location to new location, click on the Underline button 
 Move hand from last location to new location i.e. over the Save RTF button, perform click action 
 Move hand from last location to new location i.e. over the File menu, perform click action 
Move hand from last location to new location i.e. over the Exit menu item, perform click action 

TOISE uses this system to create the ACT-R models that are used to obtain interaction 

timings. It has specific primitive macros that can be launched which will create models on 

the fly to reflect the primitive functionality.  

Table 2: TOISE 1 Interaction primitives 

Primitive type Explanations 

(drag-drop-action-with-moveto-
macro obj0X obj0Y obj0W obj0H 
obj1X obj1Y obj1W obj1H obj2X 
obj2Y obj2W obj2H thinking) 

This is an action whereby the model will move from an earlier location 
to a new one where the first action of the drag action takes place. 

(drag-drop-Action-macro obj1X 
obj1Y obj1W obj1H obj2X obj2Y 
obj2W obj2H thinking) 

This is an action whereby the model will perform the action of the first 
drag action takes place. 

(click-Action-with-moveto-macro 
obj1X obj1Y obj1W obj1H obj2X 
obj2Y obj2W obj2H thinking) 

This is an action whereby the model will move from an earlier location 
to a new one where the first action of the click action that takes place. 

(click-Action-macro obj1X obj1Y 
obj1W obj1H thinking) 

This is an action whereby the model will perform the action of the first 
click action that takes place. 

(move-Mouse-From-To-macro 
obj1X obj1Y obj1W obj1H obj2X 
obj2Y obj2W obj2H thinking) 

This is an action whereby the model will perform the action of moving 
the mouse from one place to another. 

(type-Action-macro obj1X obj1Y 
obj1W obj1H repeat-times do-a-
click thinking) 

This model simulates the action of typing a number of characters at a 
certain location on the interface 
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This is required and run those models to obtain the latencies that are necessary for the 

optimisation system. See Table 2. 

 

Figure 39: TOISE (Lisp/C++ version).Running model to obtain ACTR latencies 

Hence a sequence of tasks can be simulated by running a sequence of these macros and 

thus provide the underlying functionality to allow their integration within the Genetic 

Algorithm fitness function which is the base of the optimisation system. 

Each sub-task is sent to ACT-R for processing which results in the creation of a new 

model that will simulate all the necessary actions to complete this sub-task. See Figure 39. 

5.5 System overview 

TOISE development was achieved in two phases. The first prototype based on Lisp and 

C++ was developed to assess the underlying concepts behind ACT-R. A latter version was 

thereafter developed with speed in mind that contained some of ACT-R compiled into 

native C++ code. 
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Figure 40: TOISE system 

The first iteration of TOISE is displayed in Figure 40. It was based on multi-

environment software that uses Lisp to access ACT-R functionality and has a C++ 

environment that comprised the genetic algorithm that was used as a layout optimiser. 

The system design is displayed in Figure 41 and its design is discussed in section 5.10. 

Many issues arose with this development and those are discussed in section 5.11. 

 

Figure 41: Lisp version of TOISE system design 

5.6 Execution system 

TOISE is more than just a Genetic Algorithm that uses ACT-R as part of its fitness 

function. Its first iteration was specifically created to test and evaluate the modelled 

interaction primitives that the system uses. The full command may include multiple sub-

tasks that are separated with a “@” character. This is seen in Figure 42, which displays the 

running of an interaction primitive. 
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Figure 42: Running primitives 

In this example, the action is to drag an object whose X & Y coordinates are 55 and 7 

respectively with a width and height of 10 and 267 pixels respectively, onto an object that 

is located at 267 & 237 in terms of X & Y coordinates with a width and height of 50 and 40 

pixels respectively. The final number i.e. 0 is a flag to allow ACT-R to add extra thinking 

time for this operation. The “i” tells that the data past is a number. “s” is for strings or 

characters. “:” is seen by the system as a delimiter. 

 

Figure 43: ACT-R receiving a command from the GA 

These commands are sent to the IDTR module and specifically to a function that will 

invoke the parsing code as seen in Figure 43. 

 

Figure 44: ACT-R parsing a series of tasks 

Once the command or series of commands is received, it is parsed so it is suitable to 

send to an executer method that will invoke the proper macro to execute an interaction 

primitive. This is seen in Figure 44. 

 

Figure 45: Command executer for IDTR (“newop” to execute the command) 
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When the passed commands are formatted and properly set as a list of sequential tasks, 

each of the sub-tasks can be therefore executed. The method pertaining to this is shown in 

Figure 45. 

 

Figure 46: Drag Drop primitive method to call specific method that invokes a macro 

When the individual command are sent, the method shown in Figure 46 takes the 

arguments and pass them on to a specific method that invoke a macro. This design was 

necessary as otherwise returning the timing generated spurious errors when attempting 

to retrieve the operation latency. 

 

Figure 47: Method invoking the specific macro 

The method seen in Figure 47 invoke the macro that will create an ACT-R model, set the 

environment properly and dynamically create all the necessary chunks and goals 

necessary to complete the task. The Macro for this specific action is displayed in Appendix 

C due to its size. This macro is very similar to any ACT-R model. 

 It first reset the ACT-R environment 

 Command ACT-R to start with the mouse at hand 

 Invoke chunk declarations 

 Declares procedural rules 

 List the procedural rules necessary for this primitive 

 Set the ACT-R environment variables 

 Dynamically create a rule if thinking is required 

 Dynamically create all the visual objects that are required 

 Set the ACT-R device 

 Run the model 

 Delete the model 

Once the model is run (See Appendix D for an example), the latency is retrieved and is 

sent back to the calling method i.e. GA which will be used as part of the fitness assessment. 
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5.7  Debugging system 

In order to ensure that the process was in line with expectations, some wrappers and 

hooks were implemented in ACT-R to send information back to the main GUI in the DLL 

loaded by Lisp for inspection as seen in Figure 48. 

 

Figure 48: ACT-R Feedback windows as an ACT-R trace 

Therefore when loading a sample ACT-R model representing a primitive action such as 

shown above, extra functionality added to the above such as described below were 

available: 

 Stepping through the run of a model. See Figure 49 and Figure 50. 

 Displaying run information whilst stepping through a model run. See Figure 51. 

 Conflict resolution inner working including the WhyNot ACT-R functionality. See 

Figure 52. 

 Displaying current chunks that are available in the model. See Figure 53. 

 Displaying all the buffers. See Figure 54. 

 



104 

 

 

Figure 49: Stepping through a model 

 

Figure 50: ACT-R trace whist stepping through a model run 

 

Figure 51: running information content whist stepping through a model run 
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Figure 52: Procedural window contain the WhyNot functionality 

 

Figure 53: Chunks windows 

 

Figure 54: All Buffers windows 

This extra functionality was useful to ensure the proper working of each model that is 

running when the optimiser i.e. the GA needed information to assess the fitness of a 

possible layout solution. Special methods (based on ACT-R code) have been created to 
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retrieve the necessary information from ACT-R and use to execute models. This code can 

be perused in Appendix E. In short there are seven categories as listed in Table 3. 

Table 3: Categories of ACT-R coding 

Category Explanations 

Loading ACT-R models The methods contained in this section deals with loading, 
reloading and running ACT-R models or any other suitable Lisp 
scripts. 

Stepper Code The code in this section allows the initialisation of a stepper 
system that allows stepper the running of a model. At each step, 
information stored in ACT-R is retrieved and displayed in 
specific windows of the DLL’s GUI 

IDTR Hook helper code for 
information retrieval 

A special module is loaded alongside ACT-R core code to allow 
events and information to be retrieved from ACT-R. This is the 
safest and often the only way to retrieve the needed 
information. This functionality is used by most of the 
information retrieval code. 

Executer helper code This is the section of the code that manage the formatting for 
the information coming from the native code that deals with 
running models, passing the required arguments to the macros 
that dynamically construct and run an ACT-R model. 

Procedural rule information 
retrieval 

The related code allows the native to retrieve required 
information pertaining to procedural from ACT-R.  

Chunks information 
retrieval 

The related code allows the native to retrieve required 
information pertaining to chunks held in ACT-R.  

Buffers information 
retrieval 

The related code allows the native to retrieve required 
information pertaining to ACT-R buffers.  

5.8 Genetic Algorithm integration 

Whist the first iteration of TOISE was designed to interact with ACT-R models in 

debugging mode or to retrieve ACT-R latencies, the main object of the native DLL was to 

contain the genetic algorithm that deliver the optimisation engine based on Galib (Wall 

1998). 

Matthew Wall from the Massachusetts Institute of Technology (MIT) created Galib 43 in 

the mid 90’s as part of his PhD research. It is a versatile template library that includes 

many of the functions that are sought in a GA library. Moreover, it has a strong community 

and forum groups (Wall 1996; Rajanen and Jokela 2007). After some research on available 

genetic algorithm libraries, Galib was chosen because of its widespread use both in the 

industry and education institutions and its ease to manage its internal structures, which is 

advantageous for the type of project that we were concerned with. In addition, this library 

contains a strong statistical backend which is another advantage given the time constrain 

                                                             

43 http://lancet.mit.edu/ga/Copyright.html 
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imposed on the project (Macleod 1994; Petrovic 2001; Blouin and Fadel 2002; 

Fahimuddin 2003; Adusumilli et al. 2007; Holzhamper and Seppelt 2007). 

The inclusion of Galib into the early LISP version of TOISE native code provided the 

optimisation algorithm that was sought. This version was originally created to 

experiments with different type of crossover, mutation, selection types etc. However due 

to its template design, all the generic functionality was replaced by bespoke code to 

implement both crossover, mutation and selection operators which will be discuss in 

following sections when discussing the next version of TOISE i.e. named TOISE2 for short. 

See Figure 55. 

 

Figure 55: TOISE main GA interface prototype 

5.9 Genetic Algorithm design 

The test application that will be used to provide the necessary data for this section is 

shown in Figure 56.  This is a simple calculator with 41 actions that were performed using 

simple mathematics. 
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Figure 56: Test Application for testing the GA setup 

In terms of interaction, the number of tasks was kept low to provide difficulties to the 

GA as having a small amount of interactions does not provide the pull that could render 

the optimisation easier to evolve. In addition, constraints were applied to the optimisation 

by forcing the key pad number from zero to nine, the dot and ‘e’ sign to remain in the 

centre of the area shown in green in Figure 56.  

5.9.1  Chromosome representation 

One of the main issues with using genetic algorithm is the representation of the 

chromosomes i.e. encoding information in a meaningful way so the GA can evolve these 

individuals over a number of generations. 

In this project, there are two components that must be taken care of. Firstly the 

interface layout and secondly, the actions that are taking place on those components. The 

implementation this thesis focuses on is optimisation of layouts and not on optimising the 

user interaction as such which themselves remain constant regardless where the interface 

components are located, the same actions are needed. Thus the encoding should reflect the 

placement of the GUI components in the layout and not the user interaction itself. 

The other assumption was that the metrics i.e. width and height of the components 

should remain constant and the only variation in terms of the layout would be their 

location within the layout itself. 
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Therefore the encoding should reflect locations of all the components; except for those 

that are perceived static. In TOISE, static components are layout items such as menus or 

invisible components such as JLayeredPane, which are important in terms of retrieving the 

layout metrics but are not interactive components that the user can interact with. 

However, it is possible to demote any component to a static one. The same applies to 

controls such as layout manager that constrain component location and sizes within an 

area but do not participate in the user interaction. Furthermore there are components that 

the user can interact with but are static and will not move; these include components such 

as menu or button toolbars such as JMenuBar components.  The encoding of the 

chromosome is as follow: 

     ,     , … ,       (7) 

Where      are the   and   coordinates of each layout’s element of the interface. 

 

Figure 57: GA Chromosome Encoding 

The encoding is explained in Figure 57. As mention above, only the layout components 

that can be re-located to another location are part of the chromosomes that will form the 

population individuals. 

5.9.2 Genetic Algorithm generalities 

In most cases, the GA parameters need to be tweaked in order to fully optimise the 

evolution process. With a typical GA, one may tweak the mutation rate and then tweak the 

crossover rate to search the search space more effectively.   
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Figure 58 displays how the GA evolve solutions for the given test application for 

different mutation and crossover rates over 250 runs of the genetic algorithm. Genetic 

Algorithm parameters are often solution specific but some of these parameters can also be 

greatly influenced by their underlying behaviour. For instance, the mutation operators are 

relatively speaking destructive and therefore a small mutation is expected for the GA 

settings. These tests shows that a mutation rate of 0.004 provides the best settings to 

produce solutions that have the lowest ACT-R latencies with a preference for a crossover 

rate of 0.7 as the distribution tends to reach the lowest value of ACT-R latencies. 

 

Figure 58: Tweaking the GA parameters 

It is worth noting that crossover rate changes effect seems to be more pronounced at 

higher mutation rates than it is at lower ones. Furthermore Figure 58 seems to suggest 

that as the GA tuning is becoming optimal with respect to the mutation rate (and therefore 

the diversity of the population being kept optimised) the effectiveness of tuning the 

crossover rate becomes secondary in the tuning exercise.  

5.9.3 Mending mechanism 

 

Figure 59: Relevance test of the Mending algorithm 
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A layout mending mechanism originally included with previous version of TOISE 

(Golovine et al. 2010) attempted to minimise overlapping by shifting layout components 

in an a manner that respected as close as possible their original location. It inherited some 

the mutation placement functionality discussed further in the mutation operators section 

(See Figure 65). However later version of TOISE inherited a stronger mutation mechanism 

and layout protection and with a more selective process, this algorithm did not prove itself 

necessary any longer thus freeing a considerable number of computation processes during 

experimentation. The original exhaustive process both in terms of experimental time and 

computations provided at the time to TOISE the necessary mending capability to 

counteract the destructive effect of the mutation and crossover operators in terms of 

layout feasibility. This implied though GA runs completed after days of intense 

computations rather than the current system that complete similar experiments in a 

manner of hours. 

Tests were conducted (generations = 10000, mutation rate = 0.004 with base 

crossover rate = 0.7) to assess the benefit of the mending mechanism in TOISE.  Table 4 

results and t-test re-enforces the visualisation provided by the distributions displayed in 

Figure 59 that the mending algorithm does not lead the GA to evolve better solutions 

providing evidence that the inclusion of the mending system is not necessary (t(498) = 

.338, p = .735). It was subsequently compiled out in later versions. In conclusion, the 

major arguable advantage of not having this mechanism remaining in TOISE can also be 

expressed in terms of experimental time. The 250 experiments reported in Table 4, took 5 

hours and 66 hours for the experiments not using or using layout mending respectively. 

 

Table 4: Comparing the inclusion of the mending algorithm into the mutation process 

Individuals Mending Mechanism N Mean Std. Deviation Std. Error Mean 

50 
With Mending 250 54.282268 .1763215 .0111515 

Without Mending 250 54.276830 .1828835 .0115666 

T-Test 

 
t df Sig. (2-tailed) Mean Difference Std. Error Difference 

50 .338 498 .735 .0054376 .0160668 

 

5.9.4 Selection operator and dynamic operator rates 

As mentioned in previous chapters, the selection system in a genetic algorithm is an 

important aspect of any evolutionary algorithm as it puts pressure i.e. selective pressure, 

on the system to single out good individuals for mating to create next generations.  
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Given the noisy nature of the fitness function produced by ACT-R, a Tournament 

selection was chosen for the genetic algorithm to increase this selective pressure. 

However there is a trade-off between using high selection pressures and maintaining a 

respectable level of population diversity, as high selection pressure tends to reduce the 

diversity of a population over time by making the population more homogenous. 

Conversely, lower pressure allows the diversity of a population to be maintained more 

easily but lowers the chances of convergence to good solutions within a reasonable 

amount of generations. This is compelled by the fact that genetic algorithms have a natural 

inherent tendency to converge rapidly, often due to low diversity as it reduces GA’s ability 

to identify more attractive areas of the search space over a number of generations (Burke 

et al. 1998). 

Another point to mention is that population size is also important. Higher population 

sizes will help to maintain the population diversity much easier than lower ones at the 

cost of computations. Therefore the control of population diversity which is needed is one 

of the most important indicator of the population state and a major factor in performance 

of the genetic algorithm (Lacevic et al. 2007) is associated with the amount of selective 

pressure that is applied to the system, the operators’ rate that are used, the latter (i.e. 

mutation rate) often used to counteract high selective pressure by introducing new 

information into the individuals of an aging population and finally the population size. 

Figure 60 provides a visualisation of the impact of population size fluctuation with respect 

to GA performance.  It is worth noting in these series of experiments, that increasing 

population size does not automatically results in significant changes in ACT-R latencies. 

For example, rising the GA population size from 75 to 150 individuals does not lead to any 

significant gains in terms of finding better quality layouts, but moving from 25 individuals 

to anything upwards or from 50 to 150 individuals does as shown in Table 5. 
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Figure 60: Impact of population size of GA Performance 

To pre-empt any issues arising with regards to population diversity decreasing below a 

threshold that could lead the genetic algorithm to stall or to converge prematurely and 

therefore causing the search process to be trapped in local optima, an automatic control of 

the population diversity was implemented.   

Table 5: ANOVA test on Population size change 

Anova Test (Turkey output) 

Gens Gens Mean Difference Std. Error Sig. 

25 

50 .1104120* .0143326 .000 

75 .1399273* .0143326 .000 

100 .1484088* .0143326 .000 

125 .1478832* .0146421 .000 

150 .1854667* .0143326 .000 

50 25 -.1104120* .0143326 .000 

75 .0295153 .0143326 .309 

100 .0379968 .0143326 .086 

125 .0374711 .0146421 .108 

150 .0750546* .0143326 .000 

75 25 -.1399273* .0143326 .000 

50 -.0295153 .0143326 .309 

100 .0084815 .0143326 .992 

125 .0079559 .0146421 .994 

150 .0455394* .0143326 .019 

100 25 -.1484088* .0143326 .000 

50 -.0379968 .0143326 .086 

75 -.0084815 .0143326 .992 

125 -.0005257 .0146421 1.000 

150 .0370578 .0143326 .101 

125 25 -.1478832* .0146421 .000 

50 -.0374711 .0146421 .108 

75 -.0079559 .0146421 .994 

100 .0005257 .0146421 1.000 

150 .0375835 .0146421 .106 

150 25 -.1854667* .0143326 .000 

50 -.0750546* .0143326 .000 

75 -.0455394* .0143326 .019 

100 -.0370578 .0143326 .101 

125 -.0375835 .0146421 .106 

Another compelling factor is that the system once developed, will be used by 

individuals more than likely not to be professionals into the matters of evolutionary 
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systems, and therefore it was felt important to remove much of the difficulties that can be 

encountered setting up those genetic parameters. 

To pre-empt any issues arising with regards to population diversity decreasing below a 

threshold that could lead the genetic algorithm to stall or to converge prematurely and 

therefore causing the search process to be trapped in local optima, an automatic control of 

the population diversity was implemented.  Another compelling factor is that the system 

once developed, will be used by individuals more than likely not to be professionals into 

the matters of evolutionary systems, and therefore it was felt important to remove much 

of the difficulties that can be encountered setting up those genetic parameters.  

The algorithm is based on Zhu research (Zhu 2003) in which a dynamic genetic 

operators control is achieved. In this research the dynamic control is described as: 

   max (    ,min (    ,  (1  
 (    )

 
))) (5.1) 

Where   is the current rate of an operator,    is the new rate to apply to the operator at 

the next generation,   is the diversity of the current population,    is the target diversity,   

is the control for the sensitivity for the ramping process, and     ,     are the lower and 

upper bound of the operator’s rate.   is an important parameter as it controls the rate of 

change in the operator rate; where a small value of   means a slow and gradual change in 

the rate. In TOISE, the lower and upper bounds are set to 0 and 1.0 respectively. 

The adoption of the dynamic concept of diversity control in TOISE was not proposed to 

gain major improvements in the search capabilities of the GA compared to more 

traditional empirical methods of finding optimal operator rates, but its purpose was to 

maximise the system usability by pruning out demanding and challenging tasks both in 

terms of experimentation and time to set operators’ rates to their optimal values.  

Provided very low rates exists to begin, the dynamic control mechanism, regulates those 

rates to ensure the population diversity remains relatively constant over a GA run thus 

reaching an equilibrium whist not decreasing below a specified population diversity. 

To achieve this, and unlike Zhu research, TOISE goes through a first partial test run that 

sets those rates automatically for the following experiment runs. During this test run, the 

diversity drives TOISE to control all the operator rates automatically through the dynamic 

control, which comes into action as soon as this diversity hits a value below a specified 

target value. These rates are monitored and used thereafter for the main GA runs as base 
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rates, thus ensuring that the population diversity never goes below a level that may affect 

the genetic algorithm to stall and therefore decreasing its chances to converge to good 

solutions.  The crossover rate is also allowed to adjust dynamically but it is reset every run 

to its default standard rate i.e. 0.7. As an example, the optimum mutation rate i.e. 0.00356 

(0.004) displayed in the distribution in Figure 58  were obtained using the dynamic 

system, and subsequently used to set the mutation parameter for the mutation rate in a 

standard genetic algorithm running the same experiments.  

As a conclusion, it is possible to find the optimal rates for operators using traditional 

approaches but the necessary systematic tests are time-consuming i.e. many tests are 

required with different operator rates, compared to only running the GA a quarter of the 

specified number of generation once with our proposed solution. Moreover, given that this 

prototype presents a possible tool for GUI designers that are more than likely to be remote 

from these types of concepts, an automated system is paramount for this concept to 

succeed his primary goal. 

 

Figure 61: Dynamic operators’ rates control 

Experiments were carried out to assess this mechanism compared to a classic GA. 

These experiments consisted of running an experiment with a mutation rate that is 

relatively low i.e. 0.0001 for the dynamic GA and a known pre-optimised mutation 

operator rate i.e. 0.004 for the classical GA; the hypothesis being that no significant mean 

difference exists between the two systems. The crossover was set to 0.7 for both systems. 

Results are shown in Figure 61 and Table 6. Looking at Figure 61 the run distribution 

seems to suggest that the results re-enforce the assumption that using a dynamic system 

does not impair the genetic algorithm in its capacity to find good layouts but it does 

increases its chances by virtue of setting the operator rates optimally. 
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Table 6: Dynamic versus static mutation control 

Individuals Algorithm N Mean Std. Deviation Std. Error Mean 

50 
Dynamic Mutation 249 54.256041 .1754756 .0111203 

Static Mutation 249 54.272237 .1749176 .0110850 

T-Test 

 
t df Sig. (2-tailed) Mean Difference Std. Error Difference 

50 -1.031 496 .303 -.0161960 .0157015 

Tests were also conducted to assess if the presence of a test pre-run affects the ability 

of the genetic algorithm negatively, as this is a departure from a standard GA, with the 

assumption that it did not (generations = 10000, mutation rate = 0.00001 with base 

crossover rate = 0.7).  In addition, there were many strategies that were available.   

 

Figure 62 : No pre-run versus pre-run strategies 

In Figure 62, the distribution curves provides evidence that using a pre-run with both 

mutation and crossover rates controlled by the dynamic system provides the best solution 

if the fluctuated crossover rate is not used for subsequent runs as a base rate but is 

restored to its default value at each start of the runs. All but one strategy seems to suggest 

no significant changes in terms of ACT-R latencies. Table 7 results re-enforce this 

hypothesis (t (475) = -4.760, p = .000). 

Table 7: Pre-run strategies (with or without carrying crossover rate to other runs) 

Algorithm (pre-run) N Mean Std. Deviation Std. Error Mean 

Mut & Cross-not forwarded 242 54.179851 .1631685 .0104889 

Mut & Cross forwarded 235 54.248797 .1528197 .0099689 

T-Test 

t df Sig. (2-tailed) Mean Difference Std. Error Difference 

-4.760 475 .000 -.0689466 .0144844 
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There is however another aspect to take into account with controlling the crossover 

rate dynamically.  As the automatic mechanism adjusts the operators’ pressure depending 

on the diversity of the population, these fluctuations either increase or decrease the 

number of computations that the system has to achieve.  Experiments were conducted to 

verify the assumption (generations=10000, base mutation rate = 0.004, base crossover 

rate = 0.7) that when dynamically controlled, the number of crossover evaluations is 

decreased substantially thus releasing computer resources as well as benefiting from 

shorter run times.  

 

Figure 63: Dynamic control - Crossover evaluations 

Figure 63 confirms that indeed the number of crossover evaluations are significantly 

lower when the crossover rate is dynamically controlled; in this example by around 11%. 

Those results were confirmed by a t-test shown in Table 8 (t (234.942) = 289.200, p = 

.000).  This adds to the point already mentioned, that the addition of controlled crossover 

rate adds advantages to the system. 

Table 8: Dynamic control for testing crossover evaluations 

Algorithm N Mean Std. Deviation Std. Error Mean 

Dynamic Crossover Evals 249 315099.493976 1714.8906156 108.6767770 

Static Crossover evals 250 350053.040000 450.9339955 28.5195700 

  T-Test   

t df Sig. (2-tailed) Mean Difference Std. Error Difference 

-311.095 282.002 .000 -3.4953546E+04 112.3566097 

The final aspect of dynamic operator control is the hypothesis that larger values of 

sensitivity favour the hopping from one local optimum to another by the search process 

hence increasing the chances to find better solutions as mentioned in Zhu’s body of work. 
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In simple terms, on one hand the system reacts smoothly to changing population diversity 

but and on the other pronounced shifts of operators’ rate are applied. 

This hypothesis was tested by a series of 250 experiments ranging from the suggested 

values of 0.1 down to 0.01 i.e. 0.01, 0.003, 0.006 and 0.1, for the diversity control 

sensitivity in Zhu paper (generations=10000, base mutation rate = 0.0001, base 

crossover rate = 0.7).  Figure 64 suggests that changing the rate of change of the 

sensitivity has an impact on the overall GA capability to search for good layout with both 

0.06 and 0.03 being the best and worth respectively for this series of experiments whilst 

the high and low bounds suggested by Zhu are not in this case the optimum values but 

provide a middle of the road values that are problem specific.  However , Table 9 and Table 

10 confirm that setting the optimum value for this setting  does provide a difference of 

means from 54.261146 seconds down to 54.179147 seconds; a difference of around 82ms 

which in terms of human cognition is a big number; (t (271) = .4.078, p = .000). However 

to find this optimum rate with the proposed dynamic system, is much easier and quicker 

to achieve for a novice user. 

  

Figure 64: Sensitivity for operators’ control set from 0.1 down to 0.01 
 

Table 9:  Sensitivity for operator control [0.1,0.01] 

Anova Test (Turkey output) 

Sensitivity Sensitivity Mean Difference Std. Error Sig. 

0.01 0.03 -.7088443* .0190285 .000 

0.06 .0819987* .0212012 .001 

0.1 -.0023102 .0219033 1.000 

0.03 0.01 .7088443* .0190285 .000 

0.06 .7908430* .0187232 .000 

0.1 .7065340* .0195147 .000 

0.06 0.01 -.0819987* .0212012 .001 

0.03 -.7908430* .0187232 .000 

0.1 -.0843090* .0216386 .001 

0.1 0.01 .0023102 .0219033 1.000 

0.03 -.7065340* .0195147 .000 

0.06 .0843090* .0216386 .001 
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Table 10: Comparing sensitivity = 0.01 and 0.06. 

Algorithm N Mean Std. Deviation Std. Error Mean 

Sensitivity=0.01 133 54.261146 .1655980 .0143592 

Sensitivity=0.06 140 54.179147 .1664706 .0140693 

T-Test 

t df Sig. (2-tailed) Mean Difference Std. Error Difference 

4.078 271 .000 .0819987 .0201057 

 

5.9.5 Mutation operators 

The use of Galib allows for the development of bespoke operators. In many GA 

solutions, these operators operate on individual genes. However in TOISE, these operators 

operate on sequential pairs of genes. The reasons behind this choice was that operators 

can disturb the chromosome in harmful way i.e. be too disruptive. Thus the choice was 

made to mutate genes as XY pairs thus respecting their pairing as they refer to their X and 

Y coordinates whilst minimising disturbances. 

The mutation system is entirely based on random choices. First, a selection of pairs of 

genes is randomly made which represents components that can be nudged on the layout. 

Second, a mutation operator is selected at random; an operator that will mutate the 

selected genes in a manner specified by the type of mutation the operator pertains to. 

 

Figure 65: TOISE Mutation system 
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Table 11: The 12 Mutation Operators 

RandomBlockComponentsShift Operator shifts all selected genes in the same direction by the same 
random amount that is randomly chosen to be within the interface 
area. See Figure 66(a). 

ConstantBlockComponentsShift Operator shifts selected genes in the same direction by the same 
constant amount, which equals to double the size of the biggest 
sized component. See Figure 66(b). 

OnePixelBlockComponentsShift Operator shift selected genes in the same direction by the same 
constant amount set to 1 pixel. See Figure 66(c). 

FlipUpDownComponents Operator select a pair of X and Y genes and flip it from top to 
bottom, left to right etc. See Figure 66(d). 

ConstantComponentsShift Operator shift selected pairs of genes in the different direction by a 
constant amount, which equals the size of the biggest sized 
component. See Figure 66(e). 

RandomComponentsShift Operator shifts all selected genes in the any random direction by 
an individually computed random amount that is randomly chosen 
to be within the interface area. See Figure 66(f). 

OnePixelComponentsShift Operator shift selected genes in any random direction by an 
individually computed amount set to 1 pixel. See Figure 66(g). 

StickComponentsToRandomComponents Operator selects a pair of X and Y genes at random, then selects 
another pair in the same manner, and sticks the former component 
close to the former in a random direction taking into account their 
metrics.  See Figure 66(h). 

SwapTwoComponentsCoordinates Operator selects at random two pairs of gene and swaps their X 
and Y coordinates values. See Figure 66(i). 

SwapComponentsOwnXYCoordinates Operator selects a pair of sequential genes referring to X and Y 
coordinates of a component and swaps those coordinates. See 
Figure 66(j). 

StickComponentsToRelatedActionComponents Operator selects a pair of genes at random which relates to a layout 
component, then follows the trail of actions performed on this 
component to find the component that is related with an action 
and will attempt to stick closer to its location X and Y coordinated 
in a random direction. See Figure 66(k). 

FlipComponentsFromFormOwnHinges Operator selects a hinge from a component and flips it using width 
or height depending of the direction which is determined in a 
random manner. See Figure 66(l). 

TOISE provides two overall types of mutation operators. Some operators operate on 

individual pairs of genes that can be shifted in any direction i.e. left, right, top, bottom, or 

diagonally by some random distance, thus moving some components on the layout in an 

individual manner whilst the block operators still operate on a selection of pairs of genes 

but shift some selected components on that layout in the same direction by the same 

amount. 

Their functionality is explained in Table 11 and a diagram of the mutation system is 

presented in Figure 65.  An explanation of the way the mutation operators operation is 

explained in Figure 66. 
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( a ) RandomBlockComponentsShift  

 
( b ) ConstantBlockComponentsShift 

 
( c ) OnePixelBlockComponentsShift  

( d ) FlipUpDownComponents 

 
( e ) ConstantComponentsShift 

 
( f ) RandomComponentsShift 

 
( g ) OnePixelComponentsShift 

 
( h ) StickComponentsToRandomComponents 

 
( i ) SwapTwoComponentsCoordinates 

 
( j ) SwapComponentsOwnXYCoordinates 

 
( k ) StickComponentsToRelatedActionComponents 

 
( l ) FlipComponentsFromFormOwnHinges 

Figure 66 Mutation operator operations 
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TOISE like any GA system relies on its mutation algorithm(s) to provide the exploration 

of the search space and finding new layout configurations over a number of generations. 

These small and subtle changes in the genes’ configuration provide the mechanism that 

brings into an existing population necessary changes to gradually evolve the layout in the 

manner that minimise the cognitive and motor loads when a set of actions is apply to these 

components. 

To evolve this layout, the layout components must be able to find a location within an 

amount of constraints that makes the layout workable. Therefore these components must 

remain within the general area of the layout, not overlap with other components and if 

constrained to be within an area, they must be located and optimised within the specified 

area. It must be also noted that some components should remain static i.e. not movable. 

Components such as menu bars and their menu items are located to the top of the 

application; a template that is followed across operating system platforms. Hence the 

mutation system must also take into account these constraints too. 

The mutation operators from which one is selected at random, delivers the tool that 

allows a component on the layout to be nudged to another location. The mutation system 

only ensures that if a component is shifted, it must remain with the general layout area. If 

not it is nudged to the closest location that ensure it is within this area in a fashion that 

takes into account the random direction a component was supposed to be nudged. During 

this process, there are no attempts to check if overlapping or braking area rules occurs as 

this is one of the assessments that is taking care off during fitness assessments where 

penalties are imposed if instances such as this occur ultimately impacting on the selection 

of that individual during the selection rounds.  

Perusing at Table 11 from figures (a) to (l), one can see that the operators were 

conceived to help a component to shift to any place in the layout or to find a place that is 

relevant. For instance the random, swap and flip operators are the more exploratory 

operators, whereas the nudging and the stick operators are more the consolidator 

operators that make sure those components that are related by an action or areas move 

closer to each other. 
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The mutation system is described in details in Appendix F. Overall there are a few 

steps: 

 Retrieve the genes from the main GA. 

 Select a random pool of genes that will undergo mutation 

 Select a mutation operator at random 

 Invoke the mutation operator to operate on selected pair of genes 

 Retrieve and pass to Galib the total number of mutations that took place 

The entire process is based on random selections but an exception is made regarding 

the selection of the genes, which are selected by pairs to reflect the X, and Y coordinates of 

components. The main coding in terms of methodology is based on Galib but the code was 

amended to reflect the operators’ functionality in the real world i.e. component of a layout. 

Thus instead of mutating individual genes individually, a pair of sequential genes are taken 

and mutated together by the same process. This minimises also the disturbance effects of 

the mutation process yet moving component on the layout in a sensible way i.e. when one 

does move or place a component on a layout, one affects both the X and Y coordinates 

during this action. Since we are simulating human cognitive and motor functions during 

the assessment of a layout, it makes sense to place the widgets in a similar manner. See 

Figure 67. 

 

Figure 67: Mutation system and control 
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Some care was taken to ensure that a component could move in any direction. A set of 

directions is randomly chosen i.e. whether the component should be moved up or down, 

left or right or combining both to move diagonally. All mutation operators use this system 

to nudge components in their new locations. An example of such operator is displayed in 

Appendix G.  

The mutation operator selection changes strategy, which is based on the concept that 

mutation operators are chosen at random over the range of available operators and 

therefore all the operators have the same probability of selection. However, as a feasible 

layout is evolved, i.e. no components are located outside the main interface area, all 

components are sitting in their own area if required, and little overlapping is showing, a 

change of strategy occurs to drive the evolution process to consolidate a layout 

configuration when low interaction pressure is applied to the evolution system.  In this 

work, this is called mutation operator selection biasing. 

The mentioned strategy is to provide, once a feasible layout is found, the sticking 

operators a little more probability to be selected in the mutation operator selection 

process so some consolidation of the layout can occur (Given that ACT-R does not 

calculate the Fitt’s law if a change in visual angle is smaller than five degrees). This allows 

some related objects in a layout to come closer to each other thus minimising in a 

meaningful way human motor processes (refer to the Fitt’s Law section) and as a 

consequence the ACT-R latencies. (The mutation process code is displayed in Appendix F, 

and the code highlighted in green refers to the strategy discussed in this section.). Figure 

68 describes the process. 

 

Figure 68: Mutation biasing algorithm 
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5.9.6 Crossover operators 

The crossover operators are based on Galib and were developed in the same manner as 

the mutation operators. Because of the need of consistency with the mutation system the 

crossover operators transfer information from pairs of genes from one generation to 

another thus respecting the pairing of X and Y coordinates for the components of layout. 

An example of the code for a 2-points crossover is shown in Appendix H. The main types of 

crossovers such as EvenOdd, Uniform, 1-point and 2-points are available but the standard 

chosen is the 2 points crossover type. 

5.9.7 Fitness Assessment 

The fitness function is invokes each time an individual of a genetic algorithm is entering 

the selection competition. Thus it is a crucial part of a GA. Because there are many aspects 

that TOISE needs to assess before returning an individual’s fitness, the overall strategy for 

the fitness function is based on multi-objective fitness, which has been described in the 

literature. Genetic algorithms are well suited for multi-objective optimisation both 

because of their parallel search mechanism; where multiple individuals can search the 

solution space for multiple solutions in parallel, taking advantage of any similarity 

amongst possible solutions, and their effectiveness at handling complex problems with 

noisy evaluations and discontinuous search space (Fonseca & Fleming 1995). 

TOISE uses a known used technique, which is the weighted aggregating approach; an 

approach that is straightforward to implement and is computationally effective (Konak et 

al. 2006), where summing up the weighted objective values that are part of the overall 

fitness assesses the fitness of an individual. With this technique, maintaining diversity 

within the population is crucial as the genetic algorithm deals with more isolated optima 

given the many objectives that are part of the final assessment and the possibility of 

dominance of some of the objectives over others over some part of the run time which 

often lead to local optima (Zitzler et al. 2000). In a general form this type of optimisation 

problem can formulated as: 

   ( )  (  ( ),   ( ),   ( ), …   ( )) 

(5.2) 
given   (  ,   , …   )       &      (  ,   , …   )     

Where   is a vector function that maps a set of   parameters (decision variables) to a 

set of   objectives.   is a set of the decision vectors and   is the parameter space,   is the 

objective vector, and   is the objective space. Therefore, the set of solutions of a 
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multiobjective optimisation problem consists of finding all the decision parameters for 

which corresponding objective vectors cannot be refined in any dimensions without 

degradation in another. These types of optimisation produce a set of unique equally good 

solutions known as pareto-optimal solutions (Zitzler et al. 2000). 

In the context of TOISE, the parameters are a set of component locations in a layout to 

optimise i.e.    (  ,   ,   ,   , … ,   ,   ) such that: 

 ( )     ( )      ( )      ( )      ( ) (5.3) 

Where  ( ) is the task latency provided by ACT-R,  ( ) is a penalty given for 

overlapping components that is proportional to the area of overlap,  ( ) is a fixed penalty 

proportional to the amount of components that are located outside the layout boundaries, 

and  ( ) is a fixed penalty proportional to the amount of area that is outside dedicated 

areas (if requested). Each objective has a weight coefficient   that is controlled through 

the interface. In TOISE,    is set to 1.0 per default and    is set to 5000 as default value. 

As with many real-life problems, individual objectives conflict with each other and 

TOISE is no exception. For instance, optimising   with respect to a single objective such as 

 ( ) will often results in unsatisfactory results with respect to other objectives such as 

 ( ),  ( ), ( ) i.e. constraining components within an area of the layout often lead to 

inflated ACT-R motor and cognitive latencies and therefore reduces the search space. Thus 

satisfying all the objectives may lead to compromises in terms of layout solution quality. 

5.9.7.1 Overlapping penalty mechanism 

The overlapping mechanism is based on the component overlapping area that is 

accumulated and returned as a fraction compared to the total area that is occupied by all 

the components. This is a simple algorithm but very effective at picking up component 

overlap. The code can be perused in Appendix I. The overall method is as below: 

 For each component in the layout that can be moved 

 Increase total area by the area of the component 

 Calculate the overlap with other components 

 Increase the total overlap area if overlapping 

 Finally returns the fraction of overlap compared to total overlap 
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5.9.7.2 Outside the layout area penalty mechanism 

The algorithm for this penalty is very similar to the overlapping penalty system with 

the difference that instead of accumulating the area that is only outside the area, the 

aggregation adds the entire area of the component. This difference means that more 

pressure will incur when a component is outside or partially outside the layout as it would 

if only the out of bound area was only added. The code can be perused in Appendix I. 

 For each component in the layout that can be moved 

 Increase total area by the area of the component 

 Increase the total out of bounds area by component are if outside the layout 

 Finally returns the fraction of out of bounds area compared to total overlap 

5.9.7.3 Outside the layout designated area penalty mechanism 

In TOISE, any area can be created on the layout and component can be assigned one of 

those areas for which it will bond to. If one of these components is located outside the 

designated area, a penalty occurs. Unlike the other two penalty mechanisms, this 

algorithm does not deal with proportional values. It returns accumulated fixed penalties 

for breaching area rules.  A fix penalty of 6 points is given for breaching area boundaries. 

However points are taken off given some criteria that are discussed in Table 12, whilst 

Figure 69 displays those concepts.  

In addition to its own area, penalties are applied if a component is placed in an area 

that it is not bound to with a penalties of six points. This helps the GA to shift the 

components in their right areas much quicker and avoid situations where a component is 

trapped into an area which should be occupied by another component. This is needed as 

otherwise, there is no gain for the GA in terms of fitness  to move this component because 

it is not breaching out of areas rules and the cost of overalapping if moved somewhere else 

is much cheaper than remaining in this un-authorised location. 
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Table 12: Out of area penalty system 

Penalties (+ or -) Explanation 

Full penalty = 6 A component that partially or completely lies outside its designated area is 
given 6 point penalties. See Figure 69(a) 

Penalty =- 1 A component whose center lies within the designated area i.e. half of the 
component is within its area will see the penalty decreased by 1. See Figure 
69(b). 

Penalty =- 1 A component that has its bottom right corner within its area sees the 
amount of penalty points decreased by 1. See Figure 69(c) 

Penalty =- 1 A component that has its bottom left corner within its area sees the amount 
of penalty points decreased by 1. See Figure 69(d) 

Penalty =- 1 A component that has its top right corner within its area sees the amount of 
penalty points decreased by 1. See Figure 69(e) 

Penalty =- 1 A component that has its top left corner within its area sees the amount of 
penalty points decreased by 1. See Figure 69(f) 

 

5.9.8 Conclusion 

The fitness function behaviour will return high values as long as the layout components 

lay outside the main area of the interface, or when components lie outside their 

designated area.  These two components of the fitness function are the drivers, compared 

to overlapping, due to their high cost at the beginning of the evolutionary process which 

very quickly through selection lead the genetic algorithm to evolve solutions i.e. layouts, 

that exclude component arrangements that include components outside the interface or 

specified areas. 

As the GA run goes along, the overlapping penalties which were of minor importance to 

begin with compared to other penalties, begin to influence the evolutionary system and 

become more substantial and in par with ACT-R Latencies, therefore leading the genetic 

algorithm selection algorithm to select layouts that do not contain component overlapping 

with others but also layouts that compete in terms of cognitive and motor load. 
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(a) Out of area bonds examples 

 

(b) Component centre in area 

 

(c) Component bottom right corner in area 

 

(d) Component bottom left corner in area 

 

(e) Component top right corner in area 

 

(f) Component top left corner in area 

Figure 69: Out of area scenarios 

Toward the end of the GA run, the main selective pressure mostly takes into account 

the human factors during its selection rounds leading the GA to produce layouts that are 

more usable in terms of usability. 

5.10 Lisp Version design 

The Lisp version of TOISE (Its design can be seen in Figure 41) relied on CFFI (Lisp 

side) & SWIG (SWIG 2012) (Native code side) code wrappers to communicate bi-

directionally with the native code held in the library DLL that also contain the GUI and 

most of the functionality.  Most of the methods that are used in the code are callbacks as 

the communication originates from the GUI held in the DLL to pass commands to ACT-R or 

Lisp which most of the time expects some kind of return values. Thus the order of loading 

the individual elements in the system is important. First ACT-R is loaded, then its 
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environment, followed by the CFFI backend, which will provide the interface to the 

methods help in the library once it is loaded. This is followed by both the methods and 

callbacks. Finally, a method held in the library is invoked to start the GUI. The loading 

process is described in Figure 70. 

 

Figure 70: Loading the project from Lisp 

Unlike the code in the Lisp environment, which is not compiled, the C++ native code 

side is double-compiled. The first compilation gets SWIG to generate all the wrapper code 

necessary for the library methods that are exported and contained in the DLL. It also 

generates the Lisp code based on CFFI to integrate and load in the Lisp environment. The 

second compilation compiles the code wrappers with the library code so that the methods 

shared between CFFI and the DLL can be assessed by ways of “bindings” without regard to 

provenance.  

In the DLL code, a special header is thus needed to let SWIG know which methods must 

be included in the wrapping exercise. This is often contained in a header file with the “i” 

extension. An example of such as file is presented in Figure 71. 

 

Figure 71: Typical SWIG header file for native code 

In the header Swig file shown in Figure 71, we simply tell SWIG to refer to the 

“LispDLL.h” DLL library header file and export everything that is declared.  



131 

 

 

Figure 72: Typical DLL header file 

A typical header file is shown in Figure 72. An example of the SWIG wrappers is shown 

in Figure 73. 

  

Figure 73: SWIG Native code wrappers 

The names of the methods that are wrapped are similar to the methods SWIG generates 

for the CFFI wrapping code that is used on the Lisp side as seen in Figure 74. 

 

Figure 74: Lisp CFFI wrapper code generated by SWIG 

Once the final compile is processed, the DLL is loaded from Lisp and both environments 

can invoke each other methods as being part of the same system. 
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5.11 Issues with the TOISE development. 

There were many issues regarding the Lisp version of TOISE system in terms of 

communication between the two main parts. Firstly the dual communication between 

modules had to be extra fast so Lisp would not crash due to the pressure the GA contained 

in the DLL puts on the Lisp backend. This entailed independent and fast threading 

algorithms to deal with both ways communication. Secondly, the DLL library had to be 

loaded by the Lisp environment and had its exposed functionality usable from Lisp and 

vice versa. This functionality was provided by the use of CFFI. With this design, the former 

provided an interface to ACT-R to the GA installed in a DLL, which was somewhat limited. 

The latter provided an interface to foreign function code to native code, allowed the 

allocation and dereferencing for foreign memory, invoking of foreign methods, including 

callbacks that is shared in libraries from a Lisp environment. It also provided support to 

load these libraries into the Lisp environment.  

This was compounded by the fact that the GA is highly iterative thus putting pressure 

on both systems without giving them time to, for instance, clean the memory up. This 

matter was not a problem with the code in the library but was at the level of Lisp, which 

uses a Garbage Collector, which seemed to respond too slowly at deleting resources thus 

making the system consuming more memory than needed. 

As already mentioned, the Lisp version had two main parts. The main part in terms of 

the design was the Lisp Environment in which ACT-R was loaded and ran. Swig and CFFI 

were used to provide wrappers and functionality to load Native code libraries i.e. DLL’s for 

Windows and to make code from both environment available to each other using wrapper 

code. 

Each communication channels that allowed data to flow from ACT-R and the GA relied 

entirely on independent threads, as it was found that locking code i.e. using threading 

locks, between channels often resulted in the Lisp console freezing. Thus special care was 

used to develop optimised code that recycles the data as fast as possible so to minimize 

possibilities of crashes. Moreover it allowed the free manipulation of all controls in the GUI 

contained in the DLL, which would not have been possible once the GA underwent a run 

for instance. 

It was furthermore found that due to the way Swig worked at the time of development 

i.e. Swig making copies of data structures to similar structures that are suitable with the 

intended receiving environment, small memory leaks could happen. The main issues in 
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that respect were that even if special care was used to delete and manage resources in the 

DLL native code, due to the combination of the use of the garbage collector which only 

delete resources over a number of lives and internal leaks in the SWIG wrappers, loss of 

memory would occur over a long period of time. As a genetic algorithm is highly iterative, 

a small leak over one GA run generation might be multiplied a million of times, the overall 

memory that is not recycle can affect the running of the system. Moreover this was 

compelled further by the fact that the pressure the GA module puts on the Lisp 

environment, the Lisp garbage collector was often interrupted and too slow at deleting 

unneeded resources. Special care was therefore taken to develop an external thread in 

Lisp that instigated and pushed the garbage collector to be more assertive in deleting 

unwanted resources, which kept resources loss at its minimum. 

5.12 TOISE ACT-R code recompiled in C++ 

The Lisp version suffered many issues that were difficult to resolve; the major issue 

being the speed of execution due to the speed of execution of ACT-R Lisp environment. For 

this reason part of the code contained in ACT-R was ported and optimised in the C++ 

library to increase the speed of execution. In the same way Salvucci did with some 

experimentation (Myers 1993; Salvucci 2001). There is an increasing trend to use 

accurate simulation code in the design of many systems to improve their reliability. These 

simulations in terms of computations and process timing are often overwhelmingly time 

consuming. This is often a compelling side in optimisation algorithms using these types of 

high quality, reliable simulations for fitness assessment purposes.  Alongside this trend, 

system designers are now designing low cost fitness surrogate functions to replace high 

computationally expensive simulation codes (Lim et al. 2007; Zhou et al. 2007; Couckuyt 

et al. 2011). 

This was the case with the Lisp version of TOISE. The high cost of individual 

evaluations shaded doubts to its usability. This led to a new approach, which included at 

its hart the compilation of the relevant ACT-R code into the GA (C++) base native code. 

Some to the source code is listed in Appendix J, which include some of the functionality 

pertaining to dragging an object. A lot of the methods listed are inline meaning that they 

are speed optimised, using also pointers as much as possible to reduce object creations 

etc.  Some of the functionality was a straight port from ACT-R whilst others were achieved 

by inspecting carefully some debug logs that positioned throughout the source code on 

both C++ and Lisp platforms leading to corrective tweaks in the C++ native to realign 

results to push them in line with ACT-R findings. This was a long and tedious process 
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involving a lot of statistical tests which was only possible due the small granularity nature 

of the actions modelled. 

To validate the solution, a comparison was made between ACT-R latencies and the 

simulated ones for a full run where ACT-R and the simulator returned latencies for the 

same tasks. Over 100000 comparisons were made in this run. This technique is often used 

in optimisation using GA where often computer intensive modelling code is replaced by 

simulation for fitness assessment of the individuals of the GA population. Perusing both 

Table 13 and Table 14, the simulator does not induce major calculations errors given the 

fact of the precision of the number used.  

Table 13: ACT-R versus Simulator 

 

Mean Std. Deviation N 

ACT-R 77.1487609 0.57902102 101648 

Simulator 77.1488846 0.57897879 101648 

Moreover, these slight differences in terms of value should not affect the GA ability to 

evolve any of those solutions accordingly as we will see in later sections, ACT-R latency is 

only one part of the whole fitness value; the others being the different layout penalties and 

constraints that are equally important for most of a GA run. 

Table 14: ACTR versus Simulator correlation 

  ACT-R Simulator 

ACT-R 

Pearson Correlation 1 1.000** 

Sig. (2-tailed)  .000 

Sum of Squares and Cross-products 34078.717 34074.521 

Covariance .335 .335 

N 101648 101648 

Simulator 

Pearson Correlation 1.000** 1 

Sig. (2-tailed) .000  

Sum of Squares and Cross-products 34074.521 34073.746 

Covariance .335 .335 

N 101648 101648 

**. Correlation is significant at the 0.01 level (2-tailed). 

The porting of the ACT-R code into the GA environment makes possible long runs with 

runs times in the range of hours compared to days using ACT-R in the Lisp environment. 
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Chapter 6. Experimentation 

There are two classes of search algorithms: Global and local search algorithms. The 

former algorithms, which include genetic algorithms, are characterized by finding the right 

equilibrium between exploration of the search space and exploitation of accumulated 

information to help the search process to find the best global solution. Probabilistically, 

these algorithms are guaranteed to find a global solution at the expense of long 

computations.  However given their robust nature, global algorithm can explore the search 

space and locate reasonably good global solutions relatively fast. The latter type of 

algorithms on the other hand does not rely on exploration in the same manner as global 

algorithms do to locate good solutions but move from a current solution to a nearby-

improved solution present in the neighbourhood often terminating when there is no 

longer any improvement that can be discovered. The weakness with these types of 

algorithms is two folds: depending on the complexity of the search space and the initial 

solution that started the search process, they can focus on local optima solutions, and 

finally they are often associated with much longer run times than global search algorithms 

(Balaprakash 2012). 

It is therefore of interest to determine if the global genetic search algorithm contained 

in TOISE competes with a local search algorithm that inherits the same shift functionality 

and to determine if the finding retrieved during these experiments discussed in the 

following sections ascertain if the case for using a genetic algorithm is founded. 

A lot of evaluations have already been discussed in the sections above. However there 

is a need for more systematic experimentation when dealing with both human factors and 

genetic algorithms. Whilst for the former one can rely on already published literature as 

the system has stayed closely similar in terms of methodology to many published research 

in this domain i.e. GOMS to ACT-R5 using G2A, and then translation from ACT-R5 to ACT-

R6 with minor platform adjustments, the latter is somewhat more challenging to assess its 

performance and therefore the overall ability of the system (that is using ACT-R as part of 

its fitness assessment) to find competitive optimised layout in a reasonable amount of 

time. 

The first set of experiments re-examine findings published in WCCI IEEE publication 

(Golovine et al. 2010), based on real world problem (Deininger 1960). The main purpose 

of this series of experiment was to re-discover some of the findings that Bell Laboratories 

achieved at much expense and time. Bell laboratories evaluated 16 different designs using 
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more than 200 participants and the research lasted two years and came up with the now 

ubiquitous digital phone keypad layout that is part of most of the communication devices 

today. The approach presented in this thesis reliably produced similar competitive layouts 

to Bell’s, all of them better in terms of human factors than the one proposed by Bell’s. As 

with all human interaction, small differences are expected but are significant in terms of 

cognitive load when the apparatus is user over a long period of time. This set of 

experiments will attempt to determine if a local search based on the genetic algorithm can 

perform as well as the genetic algorithm and if these results compared to already 

published ones. 

The second set of experiment re-examine the calculator software that was used to 

demonstrate the software in the previous chapter. In these experiments more constraints 

and human interaction are used to provide additional pressure and demonstrate the 

concept behind TOISE. 

6.1.1 Experiment 1 

6.1.1.1 Aims and objectives 

The aim of this experiment is to define if both algorithms can find competitive layout 

solutions given two different population diversities and relatively low number of 

individuals for the genetic algorithm i.e. 25, using the real world problem first defined by 

Bell Laboratories (1960) (Golovine et al. 2010). In this experiment 10 phones numbers 

were used.  

6.1.1.2 Experiment setup. 

The GA is setup with a population comprising 25 individuals, running for 10000 

generations, with a base crossover set at 0.7. As it is an automatic process both the 

mutation and crossover rate will fluctuate once the GA is running. The pre-run found 

mutation rate is passed over to the LS algorithm so both are in par, with the LS running for 

25*10000 iterations. (No crossover exists for this algorithm). This rate was found to be 

0.009 for a population diversity = 0.001 and 0.03 for a diversity of 0.01. Two series of 

experiments were setup to run for both population diversities. The interface is shown in 

Figure 75. 
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Figure 75: 10 Phone numbers interaction 

 

Figure 76: GA versus LS (Different population diversity – 25 individuals) 

6.1.1.3 Experiment results 

Perusing Table 15, both GA and LS approach are capable to find layouts as good or 

better as the original layout. i.e. <= 151.737. Looking closer at Figure 76, one can see that 

all layouts found by both methods are better in terms of ACT-R latencies than the one 

obtained using the original layout and therefore both algorithms are capable to find 

competitive layouts regardless of the population diversity (hence mutation rate). 

Referring to Table 15 and Figure 76, the obtained means show that within their own 

category i.e. diversity = 0.01 or 0.001, the distribution curves are very similar and none of 

the approach seems better than the other with no significant difference in the findings i.e.  

(t (493.930) =-1.490, p = .137) for population diversity set to 0.001 and (t (498) = -.459, 

p .646) when set to 0.01.  It is worse noting that the LS type of algorithm found the best 

layout i.e. ACT-R latency = 147.9740, for a population diversity set to optimised 0.1 % 

compared to the LS ACT-R latency = 147.9600. It is however a very small difference but 

still is significant in terms of cognitive load. 
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6.1.1.4 Discussion 

The final point to note is that the GA runs lasted only hours whereas the LS algorithm 

ran for many days i.e. around 3 days to complete the 250 runs. This is due to the parallel 

architecture that is embedded into a genetic algorithm, thus making them much more 

efficient that the purely sequential approach that forms the basis for a local search type of 

search algorithm. The findings demonstrate that given the mutation algorithms (that shifts 

the components of the layout around) that were shared by both the LS and GA are 

producing layouts that can provide any approaches to produce competitive layouts. 

Finally, the small differences found for the best ACT-R latencies between the two 

approaches are not significant in terms of cognitive load i.e. 4ms. It is also worth 

mentioning that the optimal gene mutation rate for the LS approach was discovered by the 

GA approach. 

Table 15: GA versus LS (Diversity=0.001-25 individuals) 

Algorithm N Minimum Maximum Mean Std. Deviation 
Std. Error 

Mean 

[1]: GA (diversity=0.001) 250 148.0750 149.4670 148.615380 .2572204 .0162680 

[2]: LS (Mutation rate = 0.009) 251 148.0000 149.4200 148.651590 .2858941 .0180455 

[3]: GA (diversity=0.01) 250 147.9600 148.9660 148.297560 .2232707 .0141209 

[4]: LS (Mutation rate = 0.03) 251 147.9740 149.2900 148.306096 .2247648 .0141870 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] -1.490 493.930 .137 -.0362096 .0242959 

[3] & [4] -.459 498 .646 -.0092000 .0200460 

[1] & [3] -14.754 498 .000 -.3178200 .0215418 

[2] & [4] -15.006 473.662 .000 -.3448296 .0229800 

 

6.1.2 Experiment 2 

6.1.2.1 Aims and objectives 

The aim of this experiment is to define if both algorithms can find competitive layout 

solutions given two different population diversities, scaling up the number of individuals 

for the genetic algorithm i.e. 50, using the same real world problem as discussed in 

previous experiment with the same number of phone numbers i.e. 10. 

6.1.2.2 Experiment setup. 

The GA is setup with a population comprising 50 individuals, running for 10000 

generations, with a base crossover set at 0.7. As it is an automatic process both the 

mutation and crossover rate will fluctuate once the GA is running. The pre-run found 

mutation rate was passed over to the LS algorithm so both are in par, with the LS running 

for 50*10000 iterations. (No crossover exists for this algorithm). This rate was found to be 
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0.006 for a population diversity = 0.001 and 0.02 for a diversity of 0.01. Two series of 

experiments were setup to run for both population diversities. 

 

Figure 77: GA versus LS (Different population diversity – 50 individuals) 

6.1.2.3 Experiment results 

Perusing Table 16, both GA and LS approach are capable to find layouts as good or 

better as the original layout. i.e. <= 151.737. Looking closer at Figure 77, one can see that 

all layouts found by both methods are better in terms of ACT-R latencies than the one 

obtained using the original layout and therefore both algorithms are capable to find 

competitive layouts regardless of the population diversity (hence mutation rate). 

Referring to Table 16 and Figure 77, the obtained result means show a slight advantage 

towards the GA when the mutation rate is not optimised (t (499) = 2.945, p = .003). 

However this difference between those means disappears and becomes not significant as 

the mutation rate becomes more optimised for the solution (t (499) = .99, p = .323). It is 

worse noting that the GA type of algorithm found the best layout i.e. ACT-R latency = 

147.832, for a population diversity set to optimised 0.1 % compared to the LS ACT-R 

latency = 147.834. 

6.1.2.4 Discussion 

The final point to note is that the GA runs lasted only hours whereas the LS algorithm 

ran for many days i.e. 5 days to complete the 250 runs. As already mentioned, the 

parallelism of GA makes this approach much more efficient than a local search approach.  

Another point to note is that unlike the experiment with 25 individuals, when the Local 

search approach was better than the GA when the mutation rate was not optimised, 

doubling the number of individuals has for effect that the GA becomes more efficient when 

running with non-optimal population diversity which seems to indicate that the extra 

diversity provided by the increase number of individuals benefits the GA more than it does 

for a LS approach. 
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Table 16: GA versus LS (50 inds-10 numbers) 

Algorithm N Minimum Maximum Mean Std. Deviation 
Std. Error 

Mean 

[1]: GA (diversity=0.001) 250 147.9600 149.8780 148.580640 .2823018 .0178543 

[2]: LS (Mutation rate = 0.006) 251 148.0500 152.1690 148.667016 .3684172 .0232543 

[3]: GA (diversity=0.01) 250 147.8320 148.9900 148.323772 .2401823 .0151905 

[4]: LS (Mutation rate = 0.02) 251 147.8340 149.1010 148.345446 .2498718 .0157718 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] 2.945 499 .003 .0863759 .0293332 

[3] & [4] .990 499 .323 .0216742 .0218992 

[1] & [3] -10.958 485.541 .000 -.2568680 .0234420 

[2] & [4] -11.444 439.831 .000 -.3215697 .0280982 

6.1.2.5 Summary 

Looking at data distribution curves displayed in Figure 78, one realises that once the 

population diversity is set appropriately, changing the number of individuals from 25 to 

50 does not make any changes in the behaviour of both approaches as both methods are 

able to find layouts better than the original ones providing evidence that maintaining the 

population diversity in a search algorithm of this type is paramount. 

 

Figure 78:  10 phones - (25/50 Individuals) - Difference diversities 

6.1.3 Experiment 3 

6.1.3.1 Aims and objectives 

The aim of this experiment is to determine if scaling up the number of phone numbers 

to 100 phone numbers makes a difference in the behaviour of both approaches using the 

Bell layout problem. The assumption is that the increase of activity on the layout should 

help both approaches to find better high quality by increasing the interaction pressure of 

the algorithms. 



141 

 

6.1.3.2 Experiment setup. 

The experiment setup is the exactly the same as the previous experiment with only the 

number of interaction with the keypad changed to 100 phone numbers. The pre-run found 

mutation rate was passed over to the LS algorithm so both are in par, with the LS running 

for 25*10000 iterations. (No crossover exists for this algorithm). This rate was found to be 

0.01 for a population diversity = 0.001 and 0.03 for a diversity of 0.01. Two series of 

experiments were setup to run for both population diversities. 

 

Figure 79: GA versus LS - 100 phones-25 individuals 

6.1.3.3 Experiment results 

Perusing Table 17, both GA and LS approach are capable to find layouts as good or 

better as the original layout i.e. < 1487.481. Looking closer at Figure 79, one can see that 

all layouts found by both methods are better in terms of ACT-R latencies as demonstrated 

by the previous experiments.  

Table 17: GA versus LS (25 inds-100 numbers) 

Algorithm N Minimum Maximum Mean Std. Deviation Std. Error Mean 

[1]: GA (diversity=0.001) 250 1461.7100 1469.3400 1464.445200 1.3678982 .0865135 

[2]: LS (Mutation rate = 0.01) 251 1461.6100 1468.6700 1464.322231 1.1742493 .0741180 

[3]: GA (diversity=0.01) 250 1461.4700 1465.0400 1463.122960 .7025708 .0444345 

[4]: LS (Mutation rate = 0.03) 251 1461.3700 1466.1400 1463.172590 .8164876 .0515362 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] 1.079 487.230 .281 .1229689 .1139213 

[3] & [4] -.729 499 .466 -.0496296 .0680674 

[1] & [3] -13.595 371.824 .000 -1.3222400 .0972574 

[2] & [4] -12.735 445.939 .000 -1.1496414 .0902743 

Referring to Table 17 and Figure 79, the obtained result means dismiss any significant 

advantage between any approaches when the mutation rate is not optimised (t (487.230) 

= 1.079, p = .281). The same findings are obtained when the mutation rate becomes more 

optimised for the solution (t (499) = -.729, p .466). It is worse noting that the LS type of 
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algorithm found the best layout i.e. ACT-R latency = 1461.3700, for a population diversity 

set to optimised 0.01 compared to the GS ACT-R latency = 1461.4700. 

6.1.3.4 Discussion 

The findings obtained in this experiment are consistent with the previous experiments 

results.  When the GA population size is set to 25 individuals, scaling up the user 

interaction on the interface from 10 to 100 phone numbers does not make significant 

changes in terms of differentiating both methods.  The only major issues experienced with 

the LS method is again the time taken to generate any solution which increases 

substantially for the LS approach, a difference that is in a range of hours for the GA to days 

for the LS method. It is worth mentioning that both presented systems in this thesis (i.e. 

GA and LS) performed far better than the ones that were the subject of investigation in 

(Golovine et al. 2010). Similarly to those published results, both LS and GA have found 

better keypad layouts in terms of human interaction latencies than the original keypad 

presented in Deininger (1960) report (Deininger 1960). 

6.1.4 Experiment 4 

6.1.4.1 Aims and objectives 

The aim of this experiment is to determine if scaling up the population size makes a 

difference if the behaviour of both approaches using the Bell layout problem. The 

assumption is that the increase of the number of individuals should help both approaches 

to find high quality by increasing the interaction pressure of the algorithms. The difference 

with the previous experiment is that the number of individuals of the population is 

increased from 25 to 50 individuals. 

6.1.4.2 Experiment setup. 

The experiment setup is the exactly the same as the previous experiment with the 

number of interactions with the key pad remaining 100 phone numbers but the 

population size is increased from 25 to 50 individuals. The pre-run found mutation rate 

was passed over to the LS algorithm so both are in par, with the LS running for 25* 10000 

or 50*10000 iterations. (No crossover exists for this algorithm). This rate was found to be 

0.02 for a diversity of 0.01. Two series of experiments were setup to run for both 

population diversities. 
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Figure 80: GA versus LS - 100 phones-25 and 50 individuals’ population 

6.1.4.3  Experiment results 

Perusing at Table 18 both GA and LS approach are capable to find layouts as good or 

better as the original layout in the same manner regardless if the population size is set to 

25 or 50 individuals. Looking closer at Figure 80, one can see also that all layouts found by 

both methods are better in terms of ACT-R latencies as demonstrated by the previous 

experiments. Referring to Table 18 and Figure 80, the obtained result means show a 

significant advantage for both methods when the population is raised from 25 to 50 

individuals (t (475.364) = 12.093, p = 0.000) and (t (481.013) = 14.075, p = 0.000) for 

the GA and LS respectively. However comparing GA and LS using 50 individuals i.e. longer 

search times, the difference is not significant (t (499) = 0.515, p = 0.607) with similar 

findings for shorter run times i.e. using 25 individuals (t (499) = -1.047, p = 0.295). 

6.1.4.4 Discussion 

Increasing the population size from 25 to 50 individuals does make a significant 

difference in terms of performance for both approaches in terms of ACT-R latencies. 

However comparing the two approaches for the two setting of population size does not 

provides any evidence that one approach performs better than the other. Similar to all 

other experiments, the run time for the LS algorithm was much more time consuming that 

it was for the GA method. 
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Table 18: versus LS (50 inds-100 numbers) 

Algorithm N Minimum Maximum Mean Std. Deviation 
Std. Error 

Mean 

[1]: Genetic Algorithm - 25 
individuals 

250 1461.49 1468.62 1464.49812 1.232195 0.0779309 

[2]: Local Search - 25 individuals 251 1461.81 1468.56 1464.611474 1.1902927 0.0751306 

[3]: Genetic Algorithm - 50 
individuals 

250 1461.34 1467.26 1463.2906 0.9870979 0.0624296 

[4]: Local Search - 50 individuals 251 1461.04 1466.33 1463.245498 0.9732079 0.0614283 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] -1.047 499 0.295 -0.1133541 0.1082414 

[3] & [4] 0.515 499 0.607 0.045102 0.0875811 

[1] & [3] 12.093 475.364 0.000 1.20752 0.0998532 

[2] & [4] 14.075 481.013 0.000 1.3659761 0.0970466 

6.1.4.5 Discussion 

Increasing the population size from 25 to 50 individuals does make a significant 

difference in terms of performance for both approaches in terms of ACT-R latencies. 

However comparing the two approaches for the two setting of population size does not 

provides any evidence that one approach performs better than the other. Similar to all 

other experiments, the run time for the LS algorithm was much more time consuming that 

it was for the GA method. 

6.1.5 Experiment 5: Optimising a calculator Interface 

The purpose of this experiment is to take the calculator that was already used to 

discuss the development of TOISE and demonstrate some of the powerful search of the 

TOISE system. The interaction recording was achieved using the ROBOT recorder where 

146 actions were performed on the calculator as shown in Figure 81. 

 

Figure 81: Calculator Experiment conducted using the ROBOT recorder 
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The first experiment considers the original design where three areas are added and the 

components that were part of this area in the original design are bound to designed areas.  

Some components at the top of the application are the display component and control 

components but were not used when exercising the software using the ROBOT. They are 

shown using the yellow colour, which indicates that the TOISE will not attempt to shift 

them during its runs. It was also decided for this run to have the keyboard keys remaining 

static as well.  This is an example where an already designed interface exists, and an 

attempt to optimise some related components is made around the static components that 

cannot be shifted. This interface is shown in Figure 82.  User interaction is shown in Figure 

83. 

 

Figure 82: Experiment with three areas designed 

 

Figure 83: Experiment with three areas designed (with user interaction) 

The other experiment seen in Figure 84 conducted adds another dimension of difficulty 

by adding another extra area. Unlike the previous tests where components were left loose 

in any areas, this constrains the OFF, MODE and SHIFT function keys to remain in small 

area just below the Visual Display area.  The other major difficulties are the constraining of 

the STO, RCL, M+, DEL and AC function key to another area. The difficulties stem from the 
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fact that the memory storage key STO, the recall key RCL and the key to add the answer to 

the memory storage M+ are particularly tied with the + and = keys (see Figure 85) which 

has the effect to draw those keys very close to each other to minimise the interaction 

latency. Therefore the penalty associated with out of area and overlapping was raised 

from the standard 5000, to the more appropriate 50000 to put more pressure regarding 

the integrity of the layout.  Hence, once the GA find a proper layout for the interface that 

does not breach these rules, the focus is drawn on the user interaction within those areas. 

 

Figure 84: Experiment using four areas to constrain components 

 

Figure 85: Experiment using four areas to constrain components (with Actions) 

A standard setting is used otherwise i.e. 50 individuals for this experiment. Some tests 

were previously conducted to assess the population diversity using the simple user 

interaction recording (41 interactions used only for run speed).  250 runs were conducted 

for the diversity tests included a range of diversity values. The distribution curves for the 

series of experiments are shown in Figure 86 . One can infer from these findings that any 

diversity values ranging from 0.04 to 0.1 do produce similar results. Thus 0.1 was used to 

conduct the experiments as this might push the GA to discover layouts that maybe come 

below the two standard deviations threshold i.e. only diversity = 0.1 and 0.05 tests 
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contains more than one values below the two standard deviations. Looking at Table 19, 

both perform similarly (t (50) = -.369, p = .713) but the skewness and kurtosis for the 

diversity = 0.1 is smaller. In addition, this higher population diversity can be beneficial in 

a complex problem as this.  

The crossover for the main experiment was left to its standard value of 0.7 and each 

run ran for 5000/10000/20000 generations. Around 35.250 billion user actions will be 

assessed during these tests i.e. 50*10000*141*250. 

 

Figure 86: Performance for difference diversities 
 

Table 19: Diversities comparison 

 
N Minimum Maximum Mean Std. Deviation Variance 

Type Statistic Statistic Statistic Statistic Std. Error Statistic Statistic 

Diversity=0.1 50 54.06480 54.65870 54.39645 0.01850 0.13082 0.01711 

Diversity=0.05 50 54.08000 54.68310 54.40582 0.01743 0.12324 0.01519 

Skewness and Kurtosis 

 
Skewness Kurtosis 

Statistic Std. Error Z Value Statistic Std. Error Z Value 

Diversity=0.1 50 -0.17367 0.33660 0.51595 -0.00444 0.66191 0.00671 

Diversity=0.05 50 -0.26856 0.33660 0.79787 0.30227 0.66191 0.45666 

t-test for Equality of Means 

 
t df Sig. (2-tailed) Mean Difference Std. Error Difference 

 
-.369 98 .713 -.0093760 .0254178 

 

6.1.5.1 Experiment results 

The first noticeable fact that can be seen looking at the distribution curves for the 

obtained data is that adding extra areas does impact on the quality of the solutions found 

in terms of human cognitive and motor load that has to be achieved to complete this 

sequence of actions using this interface.  
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Figure 87: Distribution curves for Calculator experiments (10000 generations) 

This is re-enforced by the conducted T-Test shown in Table 20 (t (438.327) = -13.184, 

p = .000), which shows that using only three areas produces better ACT-R latencies. 

Table 20:  Comparing Calculator experiments (10000 generations) 

Algorithm N Minimum Maximum Mean 
Std. 

Deviation 
Std. Error 

Mean 

[1]: 4 Areas Experiments 250 204.5010 205.4830 204.952256 .2000618 .0126530 

[2]: 3 Areas Experiments 250 204.4370 205.2450 204.750628 .1358289 .0085906 

T-Test 

Test type t df 
Sig. (2-
tailed) 

Mean Difference 
Std. Error 
Difference 

[1] & [2] -13.184 438.327 .000 -.2016280 .0152937 

To assess the results the top 5% solutions as well as the solutions with an ACT-R 

latency below two standard deviations were taken into account. Both approaches found 

two solutions that were below the two standard deviations threshold. 
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Figure 88: Top two optimised (< 2* STDEV) layouts  
using (4 areas) 10000 generations 

Perusing Figure 88, the optimised layouts using the four areas approach design 

suggests similar arrangements in many areas.  The area on the left of the keypad is 

arranged differently though despite containing many similarities. Both top areas that 

contain the function keys have been laid out differently from the original to optimise the 

user interaction in a similar fashion. The right area is also constant from for both layouts 

but does contains some slight differences i.e. ^ and TAN. The optimised layouts provide a 

gain of over 3 seconds in terms of ACT-R timings, which is a significant gain. For instance 

the SHIFT, MODE and OFF function keys arrangement is seen in 92% of the top best 

layouts. The same statistic is obtained for the DEL, STO, M+, RCL and AC function keys i.e. 

92% of all evolved solutions, indicated a possible natural arrangement for those 

components. The ANS key is found bottom right of the right area in 60% of the cases 

indicating yet again a possibility of an appropriate location for this component. 

 

  

Figure 89: optimised user interaction (4 areas) 10000 generations 
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The user interaction on both original and optimised interface for the four areas design 

approach can be seen in Figure 89. The flow of the actions between the keys on the 

optimised layout is more systematic, minimising the distance between the key that are 

sequentially used in addition to minimise the cognitive load whilst exercising the user 

interface. Appendix K includes all the top 5% layouts in terms of ACT-R timing and 

provides more evidence that layouts optimised by TOISE based from the original layout 

shown is Figure 88 are very similar and provide enough information to designer to place 

the components in better locations on the interface. 

The optimisation process when dealing with the three designated areas i.e. three areas 

design method provides better cognitive latencies overall mostly due to the increased 

freedom the genetic algorithm has in placing the components on the interface when 

evolving the layout solutions.  The best top 5% is shown in Figure 90. 

 

Figure 90: Top three optimised (< 2* STDEV) layouts  
using (3 areas) 10000 generations 

However, the layouts are not as well laid as they were with the layouts designed with 

four areas approach due to the lack of constraints. However, they provide useful 

information regarding ways to optimise the calculator interface despite this fact.  For 

instance the DEL, ANS and AC function keys arrangement is found in 60% of the top 

layouts. See Appendix L to peruse the other top layouts.  The – and % keys arrangement is 

present in 50% of the best layouts. The arrangement for the STO, RCL and M+ contains 

only two possible layouts both of which are displayed in Figure 90, each one 50% of the 

top best layouts. Any other layouts for those keys were not evolved by TOISE. Moreover, 

the SIN and COS function keys are located in the same locations in all but one solutions, 

which may indicate to the interface designer a natural position for those two keys. 
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Other results were obtained by fluctuating the number of generations of the genetic 

algorithms and experiments were carried out with 5000 and 20000 generations to 

investigate the quality of the solutions found by TOISE in terms of gain / loss related to 

ACT-R timing. Figure 91 displays the ACT-R latencies distribution curves for those 

experiments.  

 

Figure 91: Comparison of 3/4 areas experiments  
using different generation number 

Perusing at Table 21, one realises that there is significant gains in increasing the 

generation size from 5000 to 20000 as better average ACT-R latencies are found with both 

the three areas and four areas methods.  The latencies decrease from 204.836, 204.745 

down to 204.699 for 5000, 10000 and 20000 generations respectively using the three 

areas method, and from 204.998, 204.872 down to 204.809 for the same generations 

using the four areas approach. The overall better performance for the three areas method 

over the four areas approach is expected as the gain of freedom of placement of the 

components helps the GA to explore the search space more thoroughly hence the increase 

in performance for this method.  
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It is worth mentioning that the four areas running with 10000 and 20000 generations 

is not significantly better in terms of the ACT-R timings as the three areas methods which 

means that the latter running at 5000 generations i.e. very fast, seems to outperform most 

of the four areas methods, yet again demonstrating that constraining an interface design 

with areas, can impede on the quality of usability performance, as a trade-offs with design 

cohesion, style and heuristic principles. 

Table 22 provides statistical evidence that the three areas approach significantly 

benefit of longer runs with means decreasing from 204.836 down to 204.699 as the length 

of the runs increases, a trend that is similar for the four areas approach tabulated in table 

23 for which the ACT-R latencies decrease from 204.998 down to 204.809. 

 

 

Table 21: Comparing different approaches using different generation size for GA 

Multiple Comparisons of 3 and 4 areas with different GA generation size 

 
KIND Compared to Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Tukey HSD 3 areas - 
10000 gens 

3 areas - 20000 gens .0456200* .0147799 .025 .003447 .087793 

3 areas - 5000 gens -.0915680* .0147799 .000 -.133741 -.049395 

4 areas - 10000 gens -.1272000* .0147799 .000 -.169373 -.085027 

4 areas - 20000 gens -.0646360* .0147799 .000 -.106809 -.022463 

4 areas - 5000 gens -.2534600* .0147799 .000 -.295633 -.211287 

3 areas - 
20000 gens 

3 areas - 10000 gens -.0456200* .0147799 .025 -.087793 -.003447 

3 areas - 5000 gens -.1371880* .0147799 .000 -.179361 -.095015 

4 areas - 10000 gens -.1728200* .0147799 .000 -.214993 -.130647 

4 areas - 20000 gens -.1102560* .0147799 .000 -.152429 -.068083 

4 areas - 5000 gens -.2990800* .0147799 .000 -.341253 -.256907 

3 areas - 5000 
gens 

3 areas - 10000 gens .0915680* .0147799 .000 .049395 .133741 

3 areas - 20000 gens .1371880* .0147799 .000 .095015 .179361 

4 areas - 10000 gens -.0356320 .0147799 .153 -.077805 .006541 

4 areas - 20000 gens .0269320 .0147799 .452 -.015241 .069105 

4 areas - 5000 gens -.1618920* .0147799 .000 -.204065 -.119719 

4 areas - 
10000 gens 

3 areas - 10000 gens .1272000* .0147799 .000 .085027 .169373 

3 areas - 20000 gens .1728200* .0147799 .000 .130647 .214993 

3 areas - 5000 gens .0356320 .0147799 .153 -.006541 .077805 

4 areas - 20000 gens .0625640* .0147799 .000 .020391 .104737 

4 areas - 5000 gens -.1262600* .0147799 .000 -.168433 -.084087 

4 areas - 
20000 gens 

3 areas - 10000 gens .0646360* .0147799 .000 .022463 .106809 

3 areas - 20000 gens .1102560* .0147799 .000 .068083 .152429 

3 areas - 5000 gens -.0269320 .0147799 .452 -.069105 .015241 

4 areas - 10000 gens -.0625640* .0147799 .000 -.104737 -.020391 

4 areas - 5000 gens -.1888240* .0147799 .000 -.230997 -.146651 

4 areas - 5000 
gens 

3 areas - 10000 gens .2534600* .0147799 .000 .211287 .295633 

3 areas - 20000 gens .2990800* .0147799 .000 .256907 .341253 

3 areas - 5000 gens .1618920* .0147799 .000 .119719 .204065 

4 areas - 10000 gens .1262600* .0147799 .000 .084087 .168433 

4 areas - 20000 gens .1888240* .0147799 .000 .146651 .230997 

Descriptive Statistics 

  N Minimum Maximum Mean Std. Deviation Variance 

  Statistic Statistic Statistic Statistic Std. Error Statistic Statistic 

3 areas - 5000 gens 250 204.4970 205.4400 204.836448 .0088412 .1397920 .020 
4 areas - 5000 gens 250 204.5620 205.5520 204.998340 .0127419 .2014672 .041 

3 areas - 10000 gens 250 204.4050 205.1860 204.744880 .0089147 .1409532 .020 

4 areas - 10000 gens 250 204.4810 205.2900 204.872080 .0116010 .1834286 .034 
3 areas - 20000 gens 250 204.4080 205.0910 204.699260 .0080072 .1266048 .016 

4 areas - 20000 gens 250 204.4410 205.2910 204.809516 .0116893 .1848233 .034 
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Table 22: Comparing different generation size for 3 areas approach 

Algorithm: 3 areas N Minimum Maximum Mean 
Std. 

Deviation 
Std. Error 

Mean 

[1]: 5000 generations 250 204.4970 205.4400 204.836448 .1397920 .0088412 

[2]: 10000 generations 250 204.4050 205.1860 204.744880 .1409532 .0089147 

[3]: 20000 generations 250 204.4080 205.0910 204.699260 .1266048 .0080072 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] 7.293 498 .000 .0915680 .0125554 

[1] & [3] 11.501 498 .000 .1371880 .0119282 

[2] & [3] 3.807 498 .000 .0456200 .0119827 

Comparing the two approaches together in terms of cognitive and motor function load, 

it is obvious that the gains are very small with a percentage decrease of 0.067% for the 

three areas and 0.092% for the four areas method. 

Table 23: Comparing different generation size for 4 areas approach 

Algorithm: 4 areas N Minimum Maximum Mean 
Std. 

Deviation 
Std. Error 

Mean 

[1]: 5000 generations 250 204.5620 205.5520 204.998340 .2014672 .0127419 

[2]: 10000 generations 250 204.4810 205.2900 204.872080 .1834286 .0116010 

[3]: 20000 generations 250 204.4410 205.2910 204.809516 .1848233 .0116893 

T-Test 

Test type t df Sig. (2-tailed) Mean Difference Std. Error Difference 

[1] & [2] 7.327 498 .000 .1262600 .0172320 

[1] & [3] 10.920 498 .000 .1888240 .0172915 

[2] & [3] 3.799 498 .000 .0625640 .0164688 

In terms of layout quality, Appendix11 and Appendix L display the top best 5% of 

evolved designs. Table 24 and Table 25 tabulate the most prominent similar key 

arrangements for both experiments, providing a similarity index for each approach. The 

overall similarity index formula is shown below: 

   
∑   

 
   

 
 

(6.1) 

Where S is the similarity index (percentage) for a series of layouts, n is the number of 

layouts under scrutiny and   is the number of re-occurrence as a percentage of a certain 

amount of key or key arrangements that appears in all the layouts. 

The index for the three areas approach is 65.71% and 80.86% for the four areas 

method. This tells that using the latter design method provides more consistent layout 

arrangements over a number of runs as it would by using the former design approach. 

Hence even though the scoring in terms of usability is lower when using this method, the 
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compensation is the provision of better, cohesive and similar designs over a number of 

TOISE runs. 

The same experiment was carried out (250 runs) with only 5000 generations using 

both approaches. Figure 92 displays the top best layout found in those runs for the three 

areas design. What is noticeable is the user interaction compared to the original design. 

Perusing the top 5% design layout in Appendix P a certain amount of similarity between 

the solutions is perceived. For instance the [STO, RCL, M+] function key location are 

similar in 83% of these top scorers. Table 24 provides a listing with the most visible 

component placement similarities amongst the optimised designs. This method scored 

66.20% and is the lowest of all the methods. 

 

Figure 92: Top optimised (< 2* STDEV) layout  
using (3 areas) 5000 generations 

Many key arrangements can be seen with 5000 generations used alongside the three 

areas design and some consistency in the design exists. 

Using a four areas approach with only 5000 generations exhibits the same type of 

behaviour as the three areas design method See Figure 93. For instance the [DEL, STO, 

M+] and [RCL, AC] arrangement occurs in all the optimised layouts. The [SIN] function is 

similar.  The top 5% best optimised designs are displayed in Appendix N. 
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Figure 93: Top optimised (< 2* STDEV) layout  
using (4 areas) 5000 generations 

A look at Table 25 shows that the score for this design approach with 5000 generations 

is 78.25% which is much higher than the three areas design approach indicating a higher 

level of cohesion and consistency in terms of solutions throughout the design solutions.  

The amount of generations for the genetic algorithm was increased to 20000 

generations for both design methods.  Figure 94 shows the best layout found over 250 

runs for the three areas approach. 

 

Figure 94 Top optimised (< 2* STDEV) using three areas  
with 20000 GA generation size 

Perusing at Appendix M and Figure 94 top 5% layout arrangements, one can see that 

many layouts are consistent in terms of layout placement. For instance the [MODE, OFF, 

X2] component arrangement is seen over 61%, the [COS] and [%] functions keys are 
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placed similarly in 69% of the cases.  In Table 24 which provides more examples has a 

similarity index for the main similar key arrangements of 60.56% for this experiment. 

 

Figure 95: Top optimised (< 2* STDEV) layout  
using (4 areas) 20000 generations 

 
 

Table 24: Similarity of component placement (3 areas) 

Type Function key Percentage similarity between designs Similarity 

3 areas 5000 gens MODE,RCL,X2 67% 

66.20% 

 STO,RCL,M+ 83% 

 (X-1) 75% 

 nCr 42% 

 COS 75% 

 SIN 95% 

 n 50% 

 % 75% 

 DEL,ANS,AC 50% 

 - 50% 

3 areas 10000 gens X2 60% 

65.71% 

 Mode 70% 

 (x-1) 90% 

 SIN 100% 

 COS 80% 

 LOG 50% 

 Ln 70% 

 STO,M+,RCL 50% 

 STO,RCL,M+ 50% 

 DEL,ANS,AC 50% 

 % 60% 

 = 70% 

 - 60% 

Type Function key Percentage similarity between designs Similarity 

 OFF 60%  

3 areas 20000 gens MODE,OFF,X2 61% 

60.56% 

 STO,M+,RCL 54% 

 STO,RCL,M+ 46% 

 COS 69% 

 SIN 77% 

 LOG 62% 

 % 69% 

 DEL,ANS,AC 69% 

 X 38% 
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The same experiment using the four areas approach was carried over 250 runs and the 

top solution is displayed in Figure 95. The best top 5% are displayed in Appendix O. 

Perusing these layouts, one can recognise a lot of cohesion and similarity amongst the 

range of optimised designs. Table 25 has a similarity score of 81.73%, showing that key 

arrangements such as [SHIFT, MODE, OFF], [DEL, STO, M], [RCL, AC] and many others 

occur over 100% of the cases. This is the top scorer over the entire set of experiments with 

regards to similarity of layout evolution over 250 runs. 

 

Table 25: Similarity of component placement (4 areas) 

Type Function key Percentage similarity between designs Similarity 

4 areas 5000 gens SHIFT,MODE,OFF 80% 

78.25% 

 SQRT 58% 

 (X-1) 92% 

 n 67% 

 SIN 100% 

 COS 58% 

 DEL,STO,M+ 100% 

 RCL,AC 100% 

 ANS 67% 

 = 58% 

 - 67% 

 X 92% 

4 areas 10000 gens (X-1) 100% 

80.86% 

 SQRT 83% 

 X2 67% 

 I 83% 

 COS 92% 

 LOG 83% 

 LN 75% 

 NCr 83% 

 SIN 92% 

 N 58% 

 DEL,STO,M+,RCL,AC 100% 

 X 100% 

 ANS 58% 

 % 58% 

4 areas 20000 gens SHIT,MODE,OFF 100% 

81.73% 

 DEL,STO,M+ 100% 

 RCL,AC 100% 

 SQRT 75% 

 (X-1) 100% 

 N 83% 

 SIN 100% 

 COS 92% 

 X 92% 

 TAN 67% 

 LOG 50% 

 = 67% 

 % 67% 

 X 83% 

 - 50% 

 

6.1.5.2 Discussion 

The results discussed above are very encouraging. TOISE managed to find layout 

arrangements that minimise the cognitive and motor functions load for all of its solutions 

that were found during all the experiments conducted i.e. all the ACT-R timing were much 

below the original latency of 207.718 seconds. 
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The experiments conducted and discussed in this chapter are complex as the genetic 

algorithm had to deal with a very restricted space where to position the components, with 

static components that provide barriers to the free movements. Thus a learning process 

took place which helped to find good locations that do not resulted in penalties taking into 

account the ACT-R pressure into account first, which was then followed by another 

learning phase that focused mainly on the ACT-R pressure to fine-tune the layout and 

optimise the interface layout evolving an interface that was better fitted for human 

interaction.  

In these experiments, some issues arose. First, varying some of the genetic algorithm 

parameters can lead to improvements and drive the GA to evolve better solutions. 

However the cost for these small gains in performance comes with a great increase of 

extra computations and run time taken to evolve those new optimised layouts.  For 

instance a gain of 0.062% (from 204.99834 down to 204.87208) when doubling the 

number of generations of the system from 5000 to 1000 generations, may not be 

considered as valuable (even though 120.626 milliseconds is significant), compared to a 

gain 1.327% (from 207.718 down to 204.99834 i.e. 2.71966 seconds) when optimising the 

original layout using only 5000 generations, which is in terms of human cognition a very 

significant value. However this lack of noticeable gain is compensated as when the number 

of constraints such as areas is integrated into the interface design, and this is combined 

with an increase of generations i.e. runs lasting longer, the design layouts are more 

consistent, cohesive and despite the fact that may not be the best solution with regards to 

ACT-R latencies and human interaction, they provide still a major gain in usability 

compared to the original design. 

TOISE dealt with this increase of complexity and generated consistent and cohesive 

layouts, and highlighted many areas that can be beneficial in terms of design i.e. providing 

ideas about the most likely locations for interface components etc. It is believed that TOISE 

can provide assistance to any interface designers with regards to usability performance. 

In terms of comparison with a local search algorithm, the main advantage is the speed 

at which the GA finds the best solutions as the LS approach does seem to be able to find 

good solutions provided very long run times. As suggested in all experiments, the 

difference in computation times between the GA and LS approaches is in the order of 

hours for the GA and days for the LS method. 
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Chapter 7. Conclusion 

7.1 Development and issues 

The ACT-R cognitive architecture is a mature computer-based simulation framework 

that embodies theories of human cognition, human perception and motor functions. It 

provides a formidable base for modelling simulated users and has been used to develop 

simulated users in many projects. However, developing models for ACT-R is non-trivial 

task, which demands expertise not only about the ACT-R framework itself but also about 

the embedded theories of human cognition, human vision and motor functions, in addition 

to a knowledge of the LISP programming language to extend and embed those models 

with functionality. It is needless to mention that developing cognitive models is time 

consuming, demanding expertise that often remains in the realm of specialists and is often 

an expensive process and to be honest most probably far too complicated for most 

software designers, UI designers or cognitive scientists. 

The main usability assessment as an interactive process in software development is 

often undermined because of cost both in terms of expenditure and time. Its reliance of 

potential users and the organisational logistics makes this process difficult to undertake as 

an iterative process.  The response to this state of affair by the HCI community was the 

development of specialised tools.  We have discussed in this thesis a system called 

CogTool, which has the potential to render usability testing more approachable to user 

interface designers that are not usability specialists, and has had an impact in many 

software developments by simulating users using ACT-R models. However this type of 

software is only assessing already developed user interfaces and does not present ideas of 

optimised interface layout. 

The concept behind the system presented in this thesis called TOISE attempts to bridge 

this gap by using simulated users, based on ACT-R models within an evolutionary 

framework to proposed optimised user interfaces based on the original design idea. 

In this respect, TOISE succeeded in its primary proposal as TOISE not only provides a 

way to exercise user interaction on a user interface using a fully functional software using 

its ROBOT module but it proposes evolved optimised interface layouts. 

However, this research has stretched the limits of feasibility when interfacing the ACT-

R framework with external processes both in terms of functionality and speed of execution 

and trade-offs were necessary to complete the software prototype to include the genetic 
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algorithm with its visual interface to run at a sensible speed that allow it to be used as a 

toolkit. 

There is much in the literature about the use of surrogate fitness evaluations when 

dealing with evolutionary algorithms. It becomes often an option when the fitness 

assessment of the individuals in a population is highly time-consuming, computationally 

resource intensive or complex. In those instances surrogate fitness approximation is often 

the only practical direction available. This domain is the domain of surrogate-assisted 

evolutionary computation. (Zhou et al. 2007; Jin 2011) 

Bearing this in mind, it is worth noting that the first version of TOISE was created to 

interact directly with the underlying ACT-R framework, where a set of small composite 

primitive actions for a user interaction were modelled and ran to provide the overall ACT-

R latency. As explained in earlier sections, the nature of the Lisp environment does not 

lend itself to easy interfacing. Furthermore, the fitness assessments necessary for each of 

the population individuals of the optimising algorithm were time-consuming, 

computationally intensive and complex, leading to extremely long run times. Moreover 

due to the intensity of resource demands and some spurious memory leaks (as discussed 

in Section 5.11), the addition of further functionality became questionable with this 

version, a state that was not factorised at the beginning of the project. This provided the 

pretext and the drive for the creation of the next version of TOISE with the removal of the 

ACT-R architecture which led to the porting and re-coding of the relevant ACT-R 

functionality into C++ native code.  As mentioned in section 5.12 which refers also to the 

source code listings in Appendix J, the porting of ACT-R functionality into native code was 

only made possible because of the atomic nature of the actions that are modelled; a 

granularity that made this task possible and allowed for the development of extra 

functionality such as more powerful mutation operators all of which leading to a 

noticeable performance boost of the TOISE system. 

Another factor that hampered the completion of the project and introduced some 

limitations of functionality was the modelling of interaction and user interaction recording 

into virtual models within the main software. Porting an entire Java API dealing with java 

interface to a few C++ classes within the project proved challenging and not as 

straightforward as originally thought, and led to some limitations in terms of interfaces 

that can be properly optimised. For instance some of the Layout Managers (i.e. Grid Bag 

Layout) are not consistent with TOISE as their intricate ways of placing the components in 

the interface was too intricate to interpret given the time frame of the TOISE development. 
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In terms of usability, one of the main focuses that were perceived from the start of the 

TOISE design was the removal of all technical settings with regards to the genetic 

algorithm so to address one of the major concerns of adoption of the toolkit by software 

designers. In this respect, many attempts have been made to alleviate the amount of 

required actions (i.e. automatic mutation and crossover rates etc.) and thus TOISE 

succeeded in this respect, but there is still a small amount of general parameters, most of 

them often left at their default values, that affect the TOISE system performance when 

dealing with intricate interfaces or complex interaction i.e. penalties pressure, population 

size and residual diversity. However as seen in the previous chapter, some of those 

settings are fine-tuning parameters that can be left at their default values for non-technical 

minded users. 

A point that has to be noted was the difficulties of creating mutation operators that 

suited this type of project this thesis presents i.e. unsystematic heuristics.  Finding ways to 

move components on an interface that helps the GA evolving solutions and not impeding it 

was in itself a challenging task. 

Finally, there is another aspect that should be mentioned in this discussion. The scope 

of this research was mainly focussing on creating and using surrogate users to assess the 

quality and usability of user interfaces given some human recorded interaction. However 

in terms of design there are other heuristic algorithms that when applied to user 

interfaces can help improve usability, namely the concerns of aesthetic and graphical 

design, which is often omitted by HCI researchers. Lack of aesthetic can lead to as much 

user frustration as does poorly designed interfaces in terms of cognitive load for instance. 

Ling for instance (Ling et al. 2000), proposes a set of measures that deals with user 

perception and appreciation of UI focusing on balance (weighting of the interface 

components on either sides of the horizontal and vertical axis), equilibrium (configuration 

of the interface objects to implement a centre of forces which should coincide with the 

centre of the interface, often used for many art work visual composition ), symmetry 

(balanced distribution of equivalent interface objects about a common vertical and 

horizontal line, as symmetry creates balanced states), sequence (arrangements of 

interface components that facilitate human eye movements by minimizing visual scanning 

in configuring the interface layout so that users can move thought the layout from top-left 

to bottom-right of the layout by attending the least number of visual targets, leading 

therefore to faster performance) and complexity (measure of layout order and complexity 

based on Birkhoff 1923) (Ling et al. 2000; Balinsky 2006). These measures could 

therefore in theory be used by TOISE as extra objectives during the assessment of layout 
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fitness by the optimiser to increase TOISE capability not only to deliver designs that are 

usable in terms of human cognition and motor functions but also usable in terms of 

proportions and aesthetic, the latter so important in today’s new technologies. 

A study carried out by Abubakar (Abubakar 2010), focussed on providing a CogTool 

and user evaluation on the findings published by Golovine & et al. 2010 regarding 

optimisation of the ubiquitous Bell’s keypad phone layout. This research provided 

qualitative and quantitative measures of evaluation comparing completion tasks using the 

original Bell’s keypad alongside two optimised layout obtained by TOISE, using both 

CogTool and a limited amount of real users (ten participants) which used a specialised 

solution tester that recorded completion tasks to assess completion times across the three 

different layouts. In addition a questionnaire was created to provide more insight with 

regards to some of the reasons that led to some of the finding obtained during the course 

of this study. On one hand, the findings showed that the TOISE layouts performed better 

than the Bell’s layout when tasks were modelled in CogTool. On the other hand, the user 

evaluation came to a different conclusion whereby a significant amount of users preferred 

the ubiquitous Bell’s layout rather than the TOISE optimised interfaces. Despite the fact 

that the user performance results showed a significant variance between participants; a 

point referred to in the literature on many occasions (Ritter et al. 2002), these findings 

were expected, a fact reinforced by the qualitative survey where 37% of the participants 

mentioned their familiarity with this keypad and the years of practice as the main factor 

for their high performance with the original layout. On a positive note, these findings also 

suggested that with practice, the completion timing for all three layouts decreased which 

yet again agrees with the opinion that CogTool (and therefore TOISE’s predictions) 

simulates expert users rather than novices. 

Given the results provided by this study, a major improvement would be TOISE to 

simulate novice users. One possible way to provide this functionality would be to have the 

models actively searching the interface for the numbers used rather than suggesting the 

right location for the objects as it is currently done. This points us to the work carried by 

Halbr gge (Halbr gge et al. 2007) on ACT-CV. However given the complexity of the ACT-R 

models that would be needed in TOISE, this would imply porting much of the ACT-R 

framework to native code, which in itself would be a major task in itself. 
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7.2 Contributions and achievements 

TOISE offers possibilities in the field of user interface design not only to assess user 

interface but to optimise their layout to enhance their usability using a Darwinian 

approach to evolution in conjunction to simulated users; a approach named in this thesis 

as EvoCog. 

1. TOISE provides a user interaction recorder that can record user interaction on 

fully functional Java Software. 

2. TOISE provides user interaction and user interface models as XML models that can 

be easily re-scripted to suit various flavours of development. 

3. TOISE optimises a user interface both in terms of human cognitive and motor 

functions load using an evolutionally approach that is fast and reliable, providing 

coherent and consistent optimised user interface designs over a number of runs. 

7.3 Future work 

The discussion in this thesis demonstrates that the concept embedded in TOISE is 

potentially a valuable contribution to the HCI community. However TOISE needs to be re-

designed from ground up and to be modularised to provide a useful tool. 

Moreover, as stated in the last section, there are many settings that should be removed 

and automated. The concept of pre-run should therefore be extended to more areas to 

increase its usability. As it stands, a certain amount of knowledge is required in the field of 

evolutionary algorithms to understand the effect and causes that affect its functionality. 

Usability heuristics have long been used in design and aesthetics plays a significant role 

in the overall value of an interface design. Ling and colleagues have proposed a set of 

metrics to measure the balance, equilibrium, symmetry and sequence of screen and 

interface design (Ling et al. 2000).  

The TOISE approach is capable of taking into account those criteria when assessing 

interface designs which would be a valuable addition to the system. 
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Appendices 

APPENDIX A: A TYPICAL G2A TRANSLATION USING A GOMSL MODEL  

 

Content of the drag-drop-action-2.goms model file 

This model need to be processed using after ensuring that the current package is indeed G2A running: 
(in-package G2A) 

Then running: 
(input-model (pathname "G2A:data;jcg-drag-model.goms")) 

Once the model is created in the running ACT-R, it must be saved to file: 
(output-model *current-model* (pathname "G2A:data; GOMS-ACTR-model.lisp")) 

;;;************************************************************ 
;;; Preamble 
(CLEAR-ALL) (PM-RESET) (PM-START-HAND-AT-MOUSE)  
;;;************************************************************ 
;;; Chunk types 
(CHUNK-TYPE VISUAL-ITEM %ID %SCREEN-XY %SCREEN-X %SCREEN-Y CONTENT)  
(CHUNK-TYPE AUDITORY-ENCODING %ID)  
(CHUNK-TYPE LTM-ITEM %ID)  
(CHUNK-TYPE TASK-ITEM %ID)  
;;;************************************************************ 
;;; Chunks 
(ADD-DM 
 (VISUAL-SW1-OBJECT ISA VISUAL-LOCATION KIND "object1" SCREEN-X 809 SCREEN-Y 144) 
 (SW1-OBJECT ISA VISUAL-ITEM %ID VISUAL-ITEM1 %SCREEN-XY EMPTY   %SCREEN-X EMPTY %SCREEN-Y EMPTY CONTENT "object1") 
 (VISUAL-SW2-OBJECT ISA VISUAL-LOCATION KIND "object2" SCREEN-X 354   SCREEN-Y 163) 
 (SW2-OBJECT ISA VISUAL-ITEM %ID VISUAL-ITEM2 %SCREEN-XY EMPTY   %SCREEN-X EMPTY %SCREEN-Y EMPTY CONTENT "object2"))  
;;;************************************************************ 
;;; Goal type 
(CHUNK-TYPE GOAL %STATE %LAST-LOCATION %NEXT-LOCATION %RETURN  %PREVIOUS-RETURN %R0 %R1 %R2 %R3 %R4 [TARGET]) 
(CHUNK-TYPE RECORD %RETURN %PREVIOUS-RETURN [TARGET]) 
;;;************************************************************ 
;;; Top-level goal 
(ADD-DM 
 (GOAL ISA GOAL %STATE DRAGDROP1-ACTION-0 [TARGET] EMPTY %LAST-LOCATION 
  EMPTY %NEXT-LOCATION EMPTY %RETURN EMPTY %PREVIOUS-RETURN EMPTY %R0 
  EMPTY %R1 EMPTY %R2 EMPTY %R3 EMPTY %R4 EMPTY)) 
;;;************************************************************ 
;;; DRAGDROP1-ACTION 
(P FIXED-Think-of-How-to-do-it-best-32 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-0 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-1 
   !OUTPUT! (FIXED-THINK-OF-HOW-TO-DO-IT-BEST-32) 
   !OUTPUT! (IN 'DRAGDROP1-ACTION) 
   !EVAL! (START-TIMING 'DRAGDROP1-ACTION 
                        (- (PM-TIME) 
                           (PRODUCTION-DURATION '|FIXED-Think-of-How-to-do-it-best-32|))) 
) 
(P T38 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-3 
   =VISUAL> 
      ISA                     TEXT 
    - VALUE                   "object1" 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-1 
   !OUTPUT! ("Escape: object1 not found") 
) 
(P FIND-34 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-1 
   =VISUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-2 
   +VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
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) 
(P ATTEND-35 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-2 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-3 
   +VISUAL> 
      ISA                     VISUAL-OBJECT 
      SCREEN-POS              =VISUAL-LOCATION 
) 
(P ENCODE-36 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-3 
   =VISUAL> 
      ISA                     TEXT 
      VALUE                   =TEXT 
      VALUE                   "object1" 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
      [TARGET]                =VISUAL-LOCATION 
      %STATE                  DRAGDROP1-ACTION-4 
   !OUTPUT! ("Look-for-object-whose ((IS CONTENT Object1))") 
) 
(P POINT-TO-39 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-4 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-5 
   +MANUAL> 
      ISA                     HAND-TO-MOUSE 
   !OUTPUT! ("Home-to") 
) 
(P T40 
   =GOAL> 
      ISA                     GOAL 
      [TARGET]                =TARGET41 
      %STATE                  DRAGDROP1-ACTION-5 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %LAST-LOCATION          =TARGET41 
      %STATE                  DRAGDROP1-ACTION-6 
   +MANUAL> 
      ISA                     MOVE-CURSOR 
      LOC                     =TARGET41 
   !OUTPUT! ("Point-to ~A" =TARGET41) 
) 
(P HOLD-DOWN-42 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-6 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-7 
   +MANUAL> 
      ISA                     HAND-TO-MOUSE 
   !OUTPUT! ("Home-to") 
) 
(P T43 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-7 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-8 
   +MANUAL> 
      ISA                     PRESS-MOUSE 
) 
(P T49 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-10 
   =VISUAL> 
      ISA                     TEXT 
    - VALUE                   "object2" 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
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      %STATE                  DRAGDROP1-ACTION-8 
   !OUTPUT! ("Escape: object2 not found") 
) 
(P FIND-45 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-8 
   =VISUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-9 
   +VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
) 
(P ATTEND-46 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-9 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-10 
   +VISUAL> 
      ISA                     VISUAL-OBJECT 
      SCREEN-POS              =VISUAL-LOCATION 
) 
(P ENCODE-47 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-10 
   =VISUAL> 
      ISA                     TEXT 
      VALUE                   =TEXT 
      VALUE                   "object2" 
   =VISUAL-LOCATION> 
      ISA                     VISUAL-LOCATION 
==> 
   =GOAL> 
      [TARGET]                =VISUAL-LOCATION 
      %STATE                  DRAGDROP1-ACTION-11 
   !OUTPUT! ("Look-for-object-whose ((IS CONTENT Object2))") 
) 
(P POINT-TO-50 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-11 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-12 
   +MANUAL> 
      ISA                     HAND-TO-MOUSE 
   !OUTPUT! ("Home-to") 
) 
(P T51 
   =GOAL> 
      ISA                     GOAL 
      [TARGET]                =TARGET52 
      %STATE                  DRAGDROP1-ACTION-12 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %LAST-LOCATION          =TARGET52 
      %STATE                  DRAGDROP1-ACTION-13 
   +MANUAL> 
      ISA                     MOVE-CURSOR 
      LOC                     =TARGET52 
   !OUTPUT! ("Point-to ~A" =TARGET52) 
) 
(P RELEASE-53 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-13 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-14 
   +MANUAL> 
      ISA                     HAND-TO-MOUSE 
   !OUTPUT! ("Home-to") 
) 
(P T54 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-14 
   =MANUAL-STATE> 
      ISA                     MODULE-STATE 
      MODALITY                FREE 
==> 
   =GOAL> 
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      %STATE                  DRAGDROP1-ACTION-15 
   +MANUAL> 
      ISA                     RELEASE-MOUSE 
) 
(P RGA-56 
   =GOAL> 
      ISA                     GOAL 
      %RETURN                 =RETURN 
      %STATE                  DRAGDROP1-ACTION-15 
==> 
   =GOAL> 
      %STATE                  DRAGDROP1-ACTION-16 
   +RETRIEVAL> 
      ISA                     RECORD 
      %RETURN                 =RETURN 
   !OUTPUT! ("RGA retrieval") 
) 
(P RGA-57 
   =GOAL> 
      ISA                     GOAL 
      %STATE                  DRAGDROP1-ACTION-16 
   =RETRIEVAL> 
      ISA                     RECORD 
      %RETURN                 =RETURN 
      %PREVIOUS-RETURN        =PREVIOUS-RETURN 
==> 
   =GOAL> 
      %STATE                  =RETURN 
      %RETURN                 =PREVIOUS-RETURN 
   =RETRIEVAL> 
      %RETURN                 #:G13373 
   !OUTPUT! ("RGA") 
   !EVAL! (END-TIMING 'DRAGDROP1-ACTION (PM-TIME)) 
) 
;;;************************************************************ 
;;; Parameter settings 
(SPP T43 :EFFORT 0.1) (SPP FIXED-THINK-OF-HOW-TO-DO-IT-BEST-32 :EFFORT 1.2)  
;;;************************************************************ 
;;; Goal focus 
(GOAL-FOCUS GOAL)  
;;;And finally run: 
(run-model (pathname "G2A:data; GOMS-ACTR-model.lisp ") 200) 
Time  0.000: Vision found LOC63 
 Time  0.000: Fixed-Think-Of-How-To-Do-It-Best-5 Selected 
 FIXED-THINK-OF-HOW-TO-DO-IT-BEST-5  
 IN DRAGDROP1-ACTION  
 Time  1.200: Fixed-Think-Of-How-To-Do-It-Best-5 Fired 
 Time  1.200: Find-7 Selected 
 Time  1.250: Find-7 Fired 
 Time  1.250: Module :VISION running command FIND-LOCATION 
 Time  1.250: Vision found LOC63 
 Time  1.250: Attend-8 Selected 
 Time  1.300: Attend-8 Fired 
 Time  1.300: Module :VISION running command MOVE-ATTENTION 
 Time  1.385: Module :VISION running command ENCODING-COMPLETE 
 Time  1.385: Vision sees TEXT62 
 Time  1.385: T11 Selected 
 Escape: object1 not found 
 Time  1.435: T11 Fired 
 Time  1.435: Find-7 Selected 
 Time  1.485: Find-7 Fired 
 Time  1.485: Module :VISION running command FIND-LOCATION 
 Time  1.485: Vision found LOC63 
 Time  1.485: Attend-8 Selected 
 Time  1.535: Attend-8 Fired 
 Time  1.535: Module :VISION running command MOVE-ATTENTION 
 Time  1.620: Module :VISION running command ENCODING-COMPLETE 
 Time  1.620: Vision sees TEXT62 
 Time  1.620: T11 Selected 
 Escape: object1 not found 
 Time  1.670: T11 Fired 
 Time  1.670: Find-7 Selected 
 Time  1.720: Find-7 Fired 
 Time  1.720: Module :VISION running command FIND-LOCATION 
 Time  1.720: Vision found LOC66 
 Time  1.720: Attend-8 Selected 
 Time  1.770: Attend-8 Fired 
 Time  1.770: Module :VISION running command MOVE-ATTENTION 
 Time  1.855: Module :VISION running command ENCODING-COMPLETE 
 Time  1.855: Vision sees TEXT61 
 Time  1.855: Encode-9 Selected 
 Look-for-object-whose ((IS CONTENT Object1)) 
 Time  1.905: Encode-9 Fired 
 Time  1.905: Point-To-12 Selected 
 Home-to 
 Time  1.955: Point-To-12 Fired 
 Time  1.955: Module :MOTOR running command HAND-TO-MOUSE 
 Time  1.955: T13 Selected 
 Point-to Loc66 
 Time  2.005: T13 Fired 
 Time  2.005: Module :MOTOR running command MOVE-CURSOR 
 Time  2.205: Module :MOTOR running command PREPARATION-COMPLETE 
 Time  2.255: Module :MOTOR running command INITIATION-COMPLETE 
 Time  2.645: Device running command MOVE-CURSOR-ABSOLUTE 
 Time  2.695: Module :MOTOR running command FINISH-MOVEMENT 
 Time  2.695: Hold-Down-15 Selected 
 Home-to 
 Time  2.745: Hold-Down-15 Fired 
 Time  2.745: Module :MOTOR running command HAND-TO-MOUSE 
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 Time  2.745: T16 Selected 
 Time  2.845: T16 Fired 
 Time  2.845: Module :MOTOR running command PRESS-MOUSE 
 Time  2.845: Find-18 Selected 
 Time  2.895: Find-18 Fired 
 Time  2.895: Module :VISION running command FIND-LOCATION 
 Time  2.895: Vision found LOC63 
 Time  2.895: Attend-19 Selected 
 Time  2.945: Attend-19 Fired 
 Time  2.945: Module :VISION running command MOVE-ATTENTION 
 Time  2.995: Module :MOTOR running command PREPARATION-COMPLETE 
 Time  3.030: Module :VISION running command ENCODING-COMPLETE 
 Time  3.030: Vision sees TEXT62 
 Time  3.030: Encode-20 Selected 
 Time  3.045: Module :MOTOR running command INITIATION-COMPLETE 
 Time  3.055: Device running command OUTPUT-MOUSE-PRESS 
 
<< Window "GOMS Window" got MOUSE PRESS at time 3055 >> 
 Look-for-object-whose ((IS CONTENT Object2)) 
 Time  3.080: Encode-20 Fired 
 Time  3.095: Module :MOTOR running command FINISH-MOVEMENT 
 Time  3.095: Point-To-23 Selected 
 Home-to 
 Time  3.145: Point-To-23 Fired 
 Time  3.145: Module :MOTOR running command HAND-TO-MOUSE 
 Time  3.145: T24 Selected 
 Point-to Loc63 
 Time  3.195: T24 Fired 
 Time  3.195: Module :MOTOR running command MOVE-CURSOR 
 Time  3.395: Module :MOTOR running command PREPARATION-COMPLETE 
 Time  3.445: Module :MOTOR running command INITIATION-COMPLETE 
 Time  3.767: Device running command MOVE-CURSOR-ABSOLUTE 
 Time  3.817: Module :MOTOR running command FINISH-MOVEMENT 
 Time  3.817: Release-26 Selected 
 Home-to 
 Time  3.867: Release-26 Fired 
 Time  3.867: Module :MOTOR running command HAND-TO-MOUSE 
 Time  3.867: T27 Selected 
 Time  3.917: T27 Fired 
 Time  3.917: Module :MOTOR running command RELEASE-MOUSE 
 Time  3.917: Rga-29 Selected 
 RGA retrieval 
 Time  3.967: Rga-29 Fired 
 Time  3.967: Failure Retrieved 
 Time  4.067: Module :MOTOR running command PREPARATION-COMPLETE 
 Time  4.117: Module :MOTOR running command INITIATION-COMPLETE 
 Time  4.127: Device running command OUTPUT-MOUSE-RELEASE 
 
<< Window "GOMS Window" got MOUSE RELEASE at time 4127 >> 
 Time  4.167: Module :MOTOR running command FINISH-MOVEMENT 
 Time  4.167: Checking for silent events. 
 Time  4.167: * Nothing to run:  No productions, no events. 
4.167 
4.167 
[1] G2A(13): 
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APPENDIX B: SAMPLE RUN OF G2A GENERATED MODEL USING TOISE1 
…….. 
drag-drop-Action-with-moveto - 416 - 181 - 224 - 25 | 343 - 186 - 224 - 25 | 0 
     0.000   GOAL                   SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL  
     0.000   BUFFER                 Buffer GOAL copied chunk GOAL to GOAL-0  
     0.000   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0 REQUESTED NIL  
     0.000   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-0  
     0.000   PROCEDURAL             CONFLICT-RESOLUTION  
     0.000   PROCEDURAL             PRODUCTION-SELECTED START-TASK  
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             PRODUCTION-FIRED START-TASK  
     0.050   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.050   PROCEDURAL             CONFLICT-RESOLUTION  
     0.050   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-C  
     0.050   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.100   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-C  
     0.100   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.100   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.100   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.100   VISION                 Find-location  
     0.100   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0  
     0.100   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-1  
     0.100   PROCEDURAL             CONFLICT-RESOLUTION  
     0.100   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-C  
     0.100   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.100   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.100   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.150   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-C  
     0.150   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.150   VISION                 Move-attention VISUAL-SW3-OBJECT-0-1 NIL  
     0.150   VISION                 Find-location  
     0.150   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0  
     0.150   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-2  
     0.150   PROCEDURAL             CONFLICT-RESOLUTION  
     0.300   VISION                 Preparation-complete TRGT0  
     0.300   PROCEDURAL             CONFLICT-RESOLUTION  
     0.398   VISION                 Complete-eye-movement TRGT0 #(174 201)  
     0.398   PROCEDURAL             CONFLICT-RESOLUTION  
     0.498   VISION                 Preparation-complete TRGT0  
     0.498   PROCEDURAL             CONFLICT-RESOLUTION  
     0.572   VISION                 Complete-eye-movement TRGT0 #(135 212)  
     0.572   PROCEDURAL             CONFLICT-RESOLUTION  
     0.602   VISION                 Encoding-Complete VISUAL-SW3-OBJECT-0-1  
     0.602   VISION                 SET-BUFFER-CHUNK VISUAL SW3-OBJECT  
     0.602   BUFFER                 Buffer VISUAL copied chunk SW3-OBJECT to SW3-OBJECT-0  
     0.602   PROCEDURAL             CONFLICT-RESOLUTION  
     0.602   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-C  
     0.602   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.602   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     0.602   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.652   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-C  
     0.652   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.652   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.652   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.652   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.652   VISION                 Find-location  
     0.652   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.652   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0  
     0.652   PROCEDURAL             CONFLICT-RESOLUTION  
     0.652   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-C  
     0.652   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.652   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     0.672   VISION                 Preparation-complete TRGT0  
     0.702   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-C  
     0.702   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.702   PROCEDURAL             MODULE-REQUEST MANUAL  
     0.702   PROCEDURAL             CLEAR-BUFFER MANUAL  
     0.702   MOTOR                  HAND-TO-MOUSE  
     0.702   PROCEDURAL             CONFLICT-RESOLUTION  
     0.742   VISION                 Complete-eye-movement TRGT0 #(135 210)  
     0.742   PROCEDURAL             CONFLICT-RESOLUTION  
     0.742   PROCEDURAL             PRODUCTION-SELECTED PRE-FIND-OBJECT-A  
     0.742   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.742   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.792   PROCEDURAL             PRODUCTION-FIRED PRE-FIND-OBJECT-A  
     0.792   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.792   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.792   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.792   VISION                 Find-location  
     0.792   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.792   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1  
     0.792   PROCEDURAL             CONFLICT-RESOLUTION  
     0.792   PROCEDURAL             PRODUCTION-SELECTED PRE-ATTEND-OBJECT-A  
     0.792   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.792   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.842   PROCEDURAL             PRODUCTION-FIRED PRE-ATTEND-OBJECT-A  
     0.842   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.842   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.842   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.842   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.842   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.842   VISION                 Move-attention VISUAL-SW1-OBJECT-0-1 NIL  
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     0.842   VISION                 Find-location  
     0.842   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.842   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2  
     0.842   PROCEDURAL             CONFLICT-RESOLUTION  
     0.942   VISION                 Preparation-complete TRGT1  
     0.942   PROCEDURAL             CONFLICT-RESOLUTION  
     1.041   VISION                 Complete-eye-movement TRGT1 #(413 197)  
     1.041   PROCEDURAL             CONFLICT-RESOLUTION  
     1.141   VISION                 Preparation-complete TRGT1  
     1.141   PROCEDURAL             CONFLICT-RESOLUTION  
     1.162   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-1  
     1.162   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     1.162   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0  
     1.162   PROCEDURAL             CONFLICT-RESOLUTION  
     1.162   PROCEDURAL             PRODUCTION-SELECTED PRE-ENCODE-OBJECT-A  
     1.162   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.162   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.162   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.212   PROCEDURAL             PRODUCTION-FIRED PRE-ENCODE-OBJECT-A  
     1.212   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.212   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.212   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.212   PROCEDURAL             CONFLICT-RESOLUTION  
     1.212   PROCEDURAL             PRODUCTION-SELECTED PRE-HAND-TO-MOUSE-FOR-A  
     1.212   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.212   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.213   VISION                 Complete-eye-movement TRGT1 #(413 179)  
     1.262   PROCEDURAL             PRODUCTION-FIRED PRE-HAND-TO-MOUSE-FOR-A  
     1.262   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.262   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.262   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.262   MOTOR                  HAND-TO-MOUSE  
     1.262   PROCEDURAL             CONFLICT-RESOLUTION  
     1.262   PROCEDURAL             PRODUCTION-SELECTED PRE-MOVE-MOUSE-TO-A  
     1.262   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.262   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.312   PROCEDURAL             PRODUCTION-FIRED PRE-MOVE-MOUSE-TO-A  
     1.312   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.312   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.312   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.312   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-2  
     1.312   PROCEDURAL             CONFLICT-RESOLUTION  
     1.312   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-A  
     1.312   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.312   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.362   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-A  
     1.362   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.362   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.362   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.362   VISION                 Find-location  
     1.362   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.362   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3  
     1.362   PROCEDURAL             CONFLICT-RESOLUTION  
     1.362   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-A  
     1.362   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.362   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.362   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.412   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-A  
     1.412   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.412   PROCEDURAL             MODULE-REQUEST VISUAL  
     1.412   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.412   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.412   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.412   VISION                 Move-attention VISUAL-SW1-OBJECT-0-3 NIL  
     1.412   VISION                 Find-location  
     1.412   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.412   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-4  
     1.412   PROCEDURAL             CONFLICT-RESOLUTION  
     1.462   VISION                 Preparation-complete TRGT2  
     1.462   PROCEDURAL             CONFLICT-RESOLUTION  
     1.469   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-3  
     1.469   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     1.469   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-1  
     1.469   PROCEDURAL             CONFLICT-RESOLUTION  
     1.469   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-A  
     1.469   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.469   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.469   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.512   MOTOR                  PREPARATION-COMPLETE  
     1.519   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-A  
     1.519   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.519   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.519   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.519   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.519   VISION                 Find-location  
     1.519   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.519   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0  
     1.519   PROCEDURAL             CONFLICT-RESOLUTION  
     1.532   VISION                 Complete-eye-movement TRGT2 #(416 181)  
     1.532   PROCEDURAL             CONFLICT-RESOLUTION  
     1.562   MOTOR                  INITIATION-COMPLETE  
     1.562   PROCEDURAL             CONFLICT-RESOLUTION  
     1.662   MOTOR                  MOVE-CURSOR-ABSOLUTE #(416 181)  
     1.662   PROCEDURAL             CONFLICT-RESOLUTION  
     1.712   MOTOR                  FINISH-MOVEMENT  
     1.712   PROCEDURAL             CONFLICT-RESOLUTION  
     1.712   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A  
     1.712   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.712   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
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     1.762   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A  
     1.762   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.762   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.762   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.762   MOTOR                  HAND-TO-MOUSE  
     1.762   PROCEDURAL             CONFLICT-RESOLUTION  
     1.762   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-A  
     1.762   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.762   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.812   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-A  
     1.812   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.812   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.812   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.812   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-4  
     1.812   PROCEDURAL             CONFLICT-RESOLUTION  
     1.812   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-A  
     1.812   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.812   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.862   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-A  
     1.862   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.862   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.862   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.862   MOTOR                  CLICK-MOUSE  
     1.862   PROCEDURAL             CONFLICT-RESOLUTION  
     1.862   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-B  
     1.862   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.862   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.912   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-B  
     1.912   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.912   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.912   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.912   VISION                 Find-location  
     1.912   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.912   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1  
     1.912   PROCEDURAL             CONFLICT-RESOLUTION  
     1.912   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-B  
     1.912   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.912   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.962   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-B  
     1.962   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.962   PROCEDURAL             MODULE-REQUEST VISUAL  
     1.962   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.962   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.962   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.962   VISION                 Move-attention VISUAL-SW2-OBJECT-0-1 NIL  
     1.962   VISION                 Find-location  
     1.962   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.962   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2  
     1.962   PROCEDURAL             CONFLICT-RESOLUTION  
     2.012   MOTOR                  PREPARATION-COMPLETE  
     2.012   PROCEDURAL             CONFLICT-RESOLUTION  
     2.062   VISION                 Preparation-complete TRGT3  
     2.062   MOTOR                  INITIATION-COMPLETE  
     2.062   PROCEDURAL             CONFLICT-RESOLUTION  
     2.072   MOTOR                  OUTPUT-KEY #(28 2)  
     2.072   PROCEDURAL             CONFLICT-RESOLUTION  
     2.140   VISION                 Complete-eye-movement TRGT3 #(341 178)  
     2.140   PROCEDURAL             CONFLICT-RESOLUTION  
     2.162   MOTOR                  FINISH-MOVEMENT  
     2.162   PROCEDURAL             CONFLICT-RESOLUTION  
     2.214   VISION                 Encoding-Complete VISUAL-SW2-OBJECT-0-1  
     2.214   VISION                 SET-BUFFER-CHUNK VISUAL SW2-OBJECT  
     2.214   BUFFER                 Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0  
     2.214   PROCEDURAL             CONFLICT-RESOLUTION  
     2.214   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-B  
     2.214   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.214   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     2.214   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     2.240   VISION                 Preparation-complete TRGT3  
     2.264   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-B  
     2.264   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.264   PROCEDURAL             CLEAR-BUFFER VISUAL  
     2.264   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     2.264   PROCEDURAL             CONFLICT-RESOLUTION  
     2.264   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B  
     2.264   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.264   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.311   VISION                 Complete-eye-movement TRGT3 #(342 188)  
     2.314   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B  
     2.314   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.314   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.314   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.314   MOTOR                  HAND-TO-MOUSE  
     2.314   PROCEDURAL             CONFLICT-RESOLUTION  
     2.314   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-B  
     2.314   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.314   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.364   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-B  
     2.364   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.364   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.364   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.364   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-2  
     2.364   PROCEDURAL             CONFLICT-RESOLUTION  
     2.564   MOTOR                  PREPARATION-COMPLETE  
     2.564   PROCEDURAL             CONFLICT-RESOLUTION  
     2.614   MOTOR                  INITIATION-COMPLETE  
     2.614   PROCEDURAL             CONFLICT-RESOLUTION  
     2.714   MOTOR                  MOVE-CURSOR-ABSOLUTE #(343 186)  
     2.714   PROCEDURAL             CONFLICT-RESOLUTION  
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     2.764   MOTOR                  FINISH-MOVEMENT  
     2.764   PROCEDURAL             CONFLICT-RESOLUTION  
     2.764   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-B  
     2.764   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.764   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.814   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-B  
     2.814   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.814   PROCEDURAL             CLEAR-BUFFER GOAL  
     2.814   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.814   MOTOR                  CLICK-MOUSE  
     2.814   PROCEDURAL             CONFLICT-RESOLUTION  
     2.964   MOTOR                  PREPARATION-COMPLETE  
     2.964   PROCEDURAL             CONFLICT-RESOLUTION  
     3.014   MOTOR                  INITIATION-COMPLETE  
     3.014   PROCEDURAL             CONFLICT-RESOLUTION  
     3.024   MOTOR                  OUTPUT-KEY #(28 2)  
     3.024   PROCEDURAL             CONFLICT-RESOLUTION  
     3.114   MOTOR                  FINISH-MOVEMENT  
     3.114   PROCEDURAL             CONFLICT-RESOLUTION  
     3.114   ------                 Stopped because no events left to process  
Execution time for drag-drop-Action-with-moveto is 3.114 
 
 
drag-drop-Action-with-moveto - 259 - 49 - 150 - 16 | 135 - 210 - 237 - 267 | 0 
     0.000   GOAL                   SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL  
     0.000   BUFFER                 Buffer GOAL copied chunk GOAL to GOAL-0  
     0.000   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0 REQUESTED NIL  
     0.000   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0  
     0.000   PROCEDURAL             CONFLICT-RESOLUTION  
     0.000   PROCEDURAL             PRODUCTION-SELECTED START-TASK  
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             PRODUCTION-FIRED START-TASK  
     0.050   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.050   PROCEDURAL             CONFLICT-RESOLUTION  
     0.050   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-C  
     0.050   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.100   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-C  
     0.100   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.100   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.100   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.100   VISION                 Find-location  
     0.100   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0  
     0.100   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-0  
     0.100   PROCEDURAL             CONFLICT-RESOLUTION  
     0.100   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-C  
     0.100   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.100   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.100   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.150   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-C  
     0.150   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.150   VISION                 Move-attention VISUAL-SW3-OBJECT-0-0 NIL  
     0.150   VISION                 Find-location  
     0.150   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW3-OBJECT-0  
     0.150   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW3-OBJECT-0 to VISUAL-SW3-OBJECT-0-1  
     0.150   PROCEDURAL             CONFLICT-RESOLUTION  
     0.300   VISION                 Preparation-complete TRGT0  
     0.300   PROCEDURAL             CONFLICT-RESOLUTION  
     0.409   VISION                 Complete-eye-movement TRGT0 #(210 323)  
     0.409   PROCEDURAL             CONFLICT-RESOLUTION  
     0.459   VISION                 Preparation-complete TRGT0  
     0.459   PROCEDURAL             CONFLICT-RESOLUTION  
     0.535   VISION                 Complete-eye-movement TRGT0 #(206 375)  
     0.535   PROCEDURAL             CONFLICT-RESOLUTION  
     0.583   VISION                 Encoding-Complete VISUAL-SW3-OBJECT-0-0  
     0.583   VISION                 SET-BUFFER-CHUNK VISUAL SW3-OBJECT  
     0.583   BUFFER                 Buffer VISUAL copied chunk SW3-OBJECT to SW3-OBJECT-0  
     0.583   PROCEDURAL             CONFLICT-RESOLUTION  
     0.583   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-C  
     0.583   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.583   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     0.583   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.633   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-C  
     0.633   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.633   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.633   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.633   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.633   VISION                 Find-location  
     0.633   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.633   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1  
     0.633   PROCEDURAL             CONFLICT-RESOLUTION  
     0.633   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-C  
     0.633   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.633   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     0.635   VISION                 Preparation-complete TRGT0  
     0.683   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-C  
     0.683   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.683   PROCEDURAL             MODULE-REQUEST MANUAL  
     0.683   PROCEDURAL             CLEAR-BUFFER MANUAL  
     0.683   MOTOR                  HAND-TO-MOUSE  
     0.683   PROCEDURAL             CONFLICT-RESOLUTION  
     0.705   VISION                 Complete-eye-movement TRGT0 #(203 378)  
     0.705   PROCEDURAL             CONFLICT-RESOLUTION  
     0.705   PROCEDURAL             PRODUCTION-SELECTED PRE-FIND-OBJECT-A  
     0.705   PROCEDURAL             BUFFER-READ-ACTION GOAL  
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     0.705   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.755   PROCEDURAL             PRODUCTION-FIRED PRE-FIND-OBJECT-A  
     0.755   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.755   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.755   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.755   VISION                 Find-location  
     0.755   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.755   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0  
     0.755   PROCEDURAL             CONFLICT-RESOLUTION  
     0.755   PROCEDURAL             PRODUCTION-SELECTED PRE-ATTEND-OBJECT-A  
     0.755   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.755   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.805   PROCEDURAL             PRODUCTION-FIRED PRE-ATTEND-OBJECT-A  
     0.805   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.805   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.805   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.805   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.805   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.805   VISION                 Move-attention VISUAL-SW1-OBJECT-0-0 NIL  
     0.805   VISION                 Find-location  
     0.805   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.805   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1  
     0.805   PROCEDURAL             CONFLICT-RESOLUTION  
     0.905   VISION                 Preparation-complete TRGT1  
     0.905   PROCEDURAL             CONFLICT-RESOLUTION  
     0.998   VISION                 Complete-eye-movement TRGT1 #(259 163)  
     0.998   PROCEDURAL             CONFLICT-RESOLUTION  
     1.048   VISION                 Preparation-complete TRGT1  
     1.048   PROCEDURAL             CONFLICT-RESOLUTION  
     1.130   VISION                 Complete-eye-movement TRGT1 #(258 49)  
     1.130   PROCEDURAL             CONFLICT-RESOLUTION  
     1.179   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-0  
     1.179   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     1.179   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0  
     1.179   PROCEDURAL             CONFLICT-RESOLUTION  
     1.179   PROCEDURAL             PRODUCTION-SELECTED PRE-ENCODE-OBJECT-A  
     1.179   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.179   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.179   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.229   PROCEDURAL             PRODUCTION-FIRED PRE-ENCODE-OBJECT-A  
     1.229   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.229   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.229   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.229   PROCEDURAL             CONFLICT-RESOLUTION  
     1.229   PROCEDURAL             PRODUCTION-SELECTED PRE-HAND-TO-MOUSE-FOR-A  
     1.229   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.229   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.230   VISION                 Preparation-complete TRGT1  
     1.279   PROCEDURAL             PRODUCTION-FIRED PRE-HAND-TO-MOUSE-FOR-A  
     1.279   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.279   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.279   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.279   MOTOR                  HAND-TO-MOUSE  
     1.279   PROCEDURAL             CONFLICT-RESOLUTION  
     1.279   PROCEDURAL             PRODUCTION-SELECTED PRE-MOVE-MOUSE-TO-A  
     1.279   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.279   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.300   VISION                 Complete-eye-movement TRGT1 #(259 49)  
     1.329   PROCEDURAL             PRODUCTION-FIRED PRE-MOVE-MOUSE-TO-A  
     1.329   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.329   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.329   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.329   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-1  
     1.329   PROCEDURAL             CONFLICT-RESOLUTION  
     1.329   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-A  
     1.329   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.329   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.379   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-A  
     1.379   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.379   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.379   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.379   VISION                 Find-location  
     1.379   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.379   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2  
     1.379   PROCEDURAL             CONFLICT-RESOLUTION  
     1.379   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-A  
     1.379   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.379   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.379   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.429   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-A  
     1.429   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.429   PROCEDURAL             MODULE-REQUEST VISUAL  
     1.429   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.429   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.429   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.429   VISION                 Move-attention VISUAL-SW1-OBJECT-0-2 NIL  
     1.429   VISION                 Find-location  
     1.429   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.429   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3  
     1.429   VISION                 Preparation-complete TRGT2  
     1.429   PROCEDURAL             CONFLICT-RESOLUTION  
     1.475   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-2  
     1.475   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     1.475   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-1  
     1.475   PROCEDURAL             CONFLICT-RESOLUTION  
     1.475   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-A  
     1.475   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.475   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.475   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
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     1.499   VISION                 Complete-eye-movement TRGT2 #(259 49)  
     1.525   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-A  
     1.525   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.525   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.525   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.525   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.525   VISION                 Find-location  
     1.525   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.525   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2  
     1.525   PROCEDURAL             CONFLICT-RESOLUTION  
     1.529   MOTOR                  PREPARATION-COMPLETE  
     1.529   PROCEDURAL             CONFLICT-RESOLUTION  
     1.579   MOTOR                  INITIATION-COMPLETE  
     1.579   PROCEDURAL             CONFLICT-RESOLUTION  
     2.015   MOTOR                  MOVE-CURSOR-ABSOLUTE #(259 49)  
     2.015   PROCEDURAL             CONFLICT-RESOLUTION  
     2.065   MOTOR                  FINISH-MOVEMENT  
     2.065   PROCEDURAL             CONFLICT-RESOLUTION  
     2.065   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A  
     2.065   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.065   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.115   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A  
     2.115   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.115   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.115   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.115   MOTOR                  HAND-TO-MOUSE  
     2.115   PROCEDURAL             CONFLICT-RESOLUTION  
     2.115   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-A  
     2.115   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.115   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.165   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-A  
     2.165   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.165   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.165   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.165   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-3  
     2.165   PROCEDURAL             CONFLICT-RESOLUTION  
     2.165   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-A  
     2.165   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.165   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.215   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-A  
     2.215   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.215   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.215   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.215   MOTOR                  CLICK-MOUSE  
     2.215   PROCEDURAL             CONFLICT-RESOLUTION  
     2.215   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-B  
     2.215   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.215   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     2.265   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-B  
     2.265   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.265   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     2.265   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     2.265   VISION                 Find-location  
     2.265   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     2.265   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-3  
     2.265   PROCEDURAL             CONFLICT-RESOLUTION  
     2.265   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-B  
     2.265   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.265   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     2.315   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-B  
     2.315   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.315   PROCEDURAL             MODULE-REQUEST VISUAL  
     2.315   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     2.315   PROCEDURAL             CLEAR-BUFFER VISUAL  
     2.315   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     2.315   VISION                 Move-attention VISUAL-SW2-OBJECT-0-3 NIL  
     2.315   VISION                 Find-location  
     2.315   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     2.315   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-4  
     2.315   PROCEDURAL             CONFLICT-RESOLUTION  
     2.365   MOTOR                  PREPARATION-COMPLETE  
     2.365   PROCEDURAL             CONFLICT-RESOLUTION  
     2.415   VISION                 Preparation-complete TRGT3  
     2.415   MOTOR                  INITIATION-COMPLETE  
     2.415   PROCEDURAL             CONFLICT-RESOLUTION  
     2.425   MOTOR                  OUTPUT-KEY #(28 2)  
     2.425   PROCEDURAL             CONFLICT-RESOLUTION  
     2.506   VISION                 Complete-eye-movement TRGT3 #(126 204)  
     2.506   PROCEDURAL             CONFLICT-RESOLUTION  
     2.515   MOTOR                  FINISH-MOVEMENT  
     2.515   PROCEDURAL             CONFLICT-RESOLUTION  
     2.583   VISION                 Encoding-Complete VISUAL-SW2-OBJECT-0-3  
     2.583   VISION                 SET-BUFFER-CHUNK VISUAL SW2-OBJECT  
     2.583   BUFFER                 Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0  
     2.583   PROCEDURAL             CONFLICT-RESOLUTION  
     2.583   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-B  
     2.583   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.583   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     2.583   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     2.606   VISION                 Preparation-complete TRGT3  
     2.633   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-B  
     2.633   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.633   PROCEDURAL             CLEAR-BUFFER VISUAL  
     2.633   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     2.633   PROCEDURAL             CONFLICT-RESOLUTION  
     2.633   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B  
     2.633   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.633   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.677   VISION                 Complete-eye-movement TRGT3 #(134 210)  
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     2.683   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B  
     2.683   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.683   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.683   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.683   MOTOR                  HAND-TO-MOUSE  
     2.683   PROCEDURAL             CONFLICT-RESOLUTION  
     2.683   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-B  
     2.683   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.683   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.733   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-B  
     2.733   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.733   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.733   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.733   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-4  
     2.733   PROCEDURAL             CONFLICT-RESOLUTION  
     2.933   MOTOR                  PREPARATION-COMPLETE  
     2.933   PROCEDURAL             CONFLICT-RESOLUTION  
     2.983   MOTOR                  INITIATION-COMPLETE  
     2.983   PROCEDURAL             CONFLICT-RESOLUTION  
     3.083   MOTOR                  MOVE-CURSOR-ABSOLUTE #(135 210)  
     3.083   PROCEDURAL             CONFLICT-RESOLUTION  
     3.133   MOTOR                  FINISH-MOVEMENT  
     3.133   PROCEDURAL             CONFLICT-RESOLUTION  
     3.133   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-B  
     3.133   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     3.133   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     3.183   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-B  
     3.183   PROCEDURAL             MODULE-REQUEST MANUAL  
     3.183   PROCEDURAL             CLEAR-BUFFER GOAL  
     3.183   PROCEDURAL             CLEAR-BUFFER MANUAL  
     3.183   MOTOR                  CLICK-MOUSE  
     3.183   PROCEDURAL             CONFLICT-RESOLUTION  
     3.333   MOTOR                  PREPARATION-COMPLETE  
     3.333   PROCEDURAL             CONFLICT-RESOLUTION  
     3.383   MOTOR                  INITIATION-COMPLETE  
     3.383   PROCEDURAL             CONFLICT-RESOLUTION  
     3.393   MOTOR                  OUTPUT-KEY #(28 2)  
     3.393   PROCEDURAL             CONFLICT-RESOLUTION  
     3.483   MOTOR                  FINISH-MOVEMENT  
     3.483   PROCEDURAL             CONFLICT-RESOLUTION  
     3.483   ------                 Stopped because no events left to process  
Execution time for drag-drop-Action-with-moveto is 3.483 
 
 
click-action-with-moveto - 343 - 186 - 224 - 25 - 202 - 379 - 131 - 23 | 0  
     0.000   GOAL                   SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL  
     0.000   BUFFER                 Buffer GOAL copied chunk GOAL to GOAL-0  
     0.000   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0 REQUESTED NIL  
     0.000   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0  
     0.000   PROCEDURAL             CONFLICT-RESOLUTION  
     0.000   PROCEDURAL             PRODUCTION-SELECTED START-TASK  
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             PRODUCTION-FIRED START-TASK  
     0.050   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.050   PROCEDURAL             CONFLICT-RESOLUTION  
     0.050   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-A  
     0.050   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.100   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-A  
     0.100   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.100   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.100   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.100   VISION                 Find-location  
     0.100   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.100   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0  
     0.100   PROCEDURAL             CONFLICT-RESOLUTION  
     0.100   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-A  
     0.100   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.100   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.100   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.150   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-A  
     0.150   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.150   VISION                 Move-attention VISUAL-SW1-OBJECT-0-0 NIL  
     0.150   VISION                 Find-location  
     0.150   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.150   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1  
     0.150   PROCEDURAL             CONFLICT-RESOLUTION  
     0.300   VISION                 Preparation-complete TRGT0  
     0.300   PROCEDURAL             CONFLICT-RESOLUTION  
     0.409   VISION                 Complete-eye-movement TRGT0 #(335 178)  
     0.409   PROCEDURAL             CONFLICT-RESOLUTION  
     0.459   VISION                 Preparation-complete TRGT0  
     0.459   PROCEDURAL             CONFLICT-RESOLUTION  
     0.498   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-0  
     0.498   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     0.498   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0  
     0.498   PROCEDURAL             CONFLICT-RESOLUTION  
     0.498   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-A  
     0.498   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.498   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     0.498   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.530   VISION                 Complete-eye-movement TRGT0 #(344 185)  
     0.548   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-A  
     0.548   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.548   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
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     0.548   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.548   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.548   VISION                 Find-location  
     0.548   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.548   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1  
     0.548   PROCEDURAL             CONFLICT-RESOLUTION  
     0.548   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A  
     0.548   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.548   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     0.598   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A  
     0.598   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.598   PROCEDURAL             MODULE-REQUEST MANUAL  
     0.598   PROCEDURAL             CLEAR-BUFFER MANUAL  
     0.598   MOTOR                  HAND-TO-MOUSE  
     0.598   PROCEDURAL             CONFLICT-RESOLUTION  
     0.598   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-B  
     0.598   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.598   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.648   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-B  
     0.648   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.648   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.648   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.648   VISION                 Find-location  
     0.648   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.648   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2  
     0.648   PROCEDURAL             CONFLICT-RESOLUTION  
     0.648   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-B  
     0.648   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.648   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.698   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-B  
     0.698   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.698   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.698   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.698   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.698   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.698   VISION                 Move-attention VISUAL-SW2-OBJECT-0-2 NIL  
     0.698   VISION                 Find-location  
     0.698   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.698   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-3  
     0.698   PROCEDURAL             CONFLICT-RESOLUTION  
     0.798   VISION                 Preparation-complete TRGT1  
     0.798   PROCEDURAL             CONFLICT-RESOLUTION  
     0.892   VISION                 Complete-eye-movement TRGT1 #(190 352)  
     0.892   PROCEDURAL             CONFLICT-RESOLUTION  
     0.992   VISION                 Preparation-complete TRGT1  
     0.992   PROCEDURAL             CONFLICT-RESOLUTION  
     1.065   VISION                 Complete-eye-movement TRGT1 #(202 375)  
     1.065   VISION                 Preparation-complete TRGT1  
     1.065   PROCEDURAL             CONFLICT-RESOLUTION  
     1.068   VISION                 Encoding-Complete VISUAL-SW2-OBJECT-0-2  
     1.068   VISION                 SET-BUFFER-CHUNK VISUAL SW2-OBJECT  
     1.068   BUFFER                 Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0  
     1.068   PROCEDURAL             CONFLICT-RESOLUTION  
     1.068   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-B  
     1.068   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.068   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.068   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.118   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-B  
     1.118   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.118   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.118   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.118   PROCEDURAL             CONFLICT-RESOLUTION  
     1.118   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B  
     1.118   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.118   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.135   VISION                 Complete-eye-movement TRGT1 #(202 379)  
     1.168   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B  
     1.168   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.168   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.168   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.168   MOTOR                  HAND-TO-MOUSE  
     1.168   PROCEDURAL             CONFLICT-RESOLUTION  
     1.168   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-B  
     1.168   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.168   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.218   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-B  
     1.218   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.218   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.218   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.218   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-3  
     1.218   PROCEDURAL             CONFLICT-RESOLUTION  
     1.418   MOTOR                  PREPARATION-COMPLETE  
     1.418   PROCEDURAL             CONFLICT-RESOLUTION  
     1.468   MOTOR                  INITIATION-COMPLETE  
     1.468   PROCEDURAL             CONFLICT-RESOLUTION  
     1.781   MOTOR                  MOVE-CURSOR-ABSOLUTE #(202 379)  
     1.781   PROCEDURAL             CONFLICT-RESOLUTION  
     1.831   MOTOR                  FINISH-MOVEMENT  
     1.831   PROCEDURAL             CONFLICT-RESOLUTION  
     1.831   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-B  
     1.831   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.831   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.881   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-B  
     1.881   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.881   PROCEDURAL             CLEAR-BUFFER GOAL  
     1.881   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.881   MOTOR                  CLICK-MOUSE  
     1.881   PROCEDURAL             CONFLICT-RESOLUTION  
     2.031   MOTOR                  PREPARATION-COMPLETE  
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     2.031   PROCEDURAL             CONFLICT-RESOLUTION  
     2.081   MOTOR                  INITIATION-COMPLETE  
     2.081   PROCEDURAL             CONFLICT-RESOLUTION  
     2.091   MOTOR                  OUTPUT-KEY #(28 2)  
     2.091   PROCEDURAL             CONFLICT-RESOLUTION  
     2.181   MOTOR                  FINISH-MOVEMENT  
     2.181   PROCEDURAL             CONFLICT-RESOLUTION  
     2.181   ------                 Stopped because no events left to process  
Execution time for click-action-with-moveto is 2.181  
 
 
click-action-with-moveto - 202 - 379 - 131 - 23 - 571 - 293 - 51 - 23 | 0  
     0.000   GOAL                   SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL  
     0.000   BUFFER                 Buffer GOAL copied chunk GOAL to GOAL-0  
     0.000   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0 REQUESTED NIL  
     0.000   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0  
     0.000   PROCEDURAL             CONFLICT-RESOLUTION  
     0.000   PROCEDURAL             PRODUCTION-SELECTED START-TASK  
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             PRODUCTION-FIRED START-TASK  
     0.050   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.050   PROCEDURAL             CONFLICT-RESOLUTION  
     0.050   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-A  
     0.050   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.100   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-A  
     0.100   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.100   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.100   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.100   VISION                 Find-location  
     0.100   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.100   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1  
     0.100   PROCEDURAL             CONFLICT-RESOLUTION  
     0.100   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-A  
     0.100   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.100   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.100   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.150   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-A  
     0.150   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.150   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.150   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.150   VISION                 Move-attention VISUAL-SW1-OBJECT-0-1 NIL  
     0.150   VISION                 Find-location  
     0.150   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     0.150   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2  
     0.150   PROCEDURAL             CONFLICT-RESOLUTION  
     0.300   VISION                 Preparation-complete TRGT0  
     0.300   PROCEDURAL             CONFLICT-RESOLUTION  
     0.406   VISION                 Complete-eye-movement TRGT0 #(130 323)  
     0.406   PROCEDURAL             CONFLICT-RESOLUTION  
     0.456   VISION                 Preparation-complete TRGT0  
     0.456   PROCEDURAL             CONFLICT-RESOLUTION  
     0.536   VISION                 Complete-eye-movement TRGT0 #(207 382)  
     0.536   PROCEDURAL             CONFLICT-RESOLUTION  
     0.599   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-1  
     0.599   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     0.599   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0  
     0.599   PROCEDURAL             CONFLICT-RESOLUTION  
     0.599   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-A  
     0.599   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.599   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     0.599   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     0.636   VISION                 Preparation-complete TRGT0  
     0.649   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-A  
     0.649   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.649   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.649   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.649   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.649   VISION                 Find-location  
     0.649   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.649   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0  
     0.649   PROCEDURAL             CONFLICT-RESOLUTION  
     0.649   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A  
     0.649   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.649   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     0.699   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A  
     0.699   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.699   PROCEDURAL             MODULE-REQUEST MANUAL  
     0.699   PROCEDURAL             CLEAR-BUFFER MANUAL  
     0.699   MOTOR                  HAND-TO-MOUSE  
     0.699   PROCEDURAL             CONFLICT-RESOLUTION  
     0.707   VISION                 Complete-eye-movement TRGT0 #(202 379)  
     0.707   PROCEDURAL             CONFLICT-RESOLUTION  
     0.707   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-B  
     0.707   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.707   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     0.757   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-B  
     0.757   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.757   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.757   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.757   VISION                 Find-location  
     0.757   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.757   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1  
     0.757   PROCEDURAL             CONFLICT-RESOLUTION  
     0.757   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-B  
     0.757   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.757   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
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     0.807   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-B  
     0.807   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.807   PROCEDURAL             MODULE-REQUEST VISUAL  
     0.807   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     0.807   PROCEDURAL             CLEAR-BUFFER VISUAL  
     0.807   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     0.807   VISION                 Move-attention VISUAL-SW2-OBJECT-0-1 NIL  
     0.807   VISION                 Find-location  
     0.807   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     0.807   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-2  
     0.807   PROCEDURAL             CONFLICT-RESOLUTION  
     0.907   VISION                 Preparation-complete TRGT1  
     0.907   PROCEDURAL             CONFLICT-RESOLUTION  
     1.021   VISION                 Complete-eye-movement TRGT1 #(628 285)  
     1.021   PROCEDURAL             CONFLICT-RESOLUTION  
     1.121   VISION                 Preparation-complete TRGT1  
     1.121   PROCEDURAL             CONFLICT-RESOLUTION  
     1.197   VISION                 Complete-eye-movement TRGT1 #(574 293)  
     1.197   PROCEDURAL             CONFLICT-RESOLUTION  
     1.241   VISION                 Encoding-Complete VISUAL-SW2-OBJECT-0-1  
     1.241   VISION                 SET-BUFFER-CHUNK VISUAL SW2-OBJECT  
     1.241   BUFFER                 Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0  
     1.241   PROCEDURAL             CONFLICT-RESOLUTION  
     1.241   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-B  
     1.241   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.241   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.241   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.247   VISION                 Preparation-complete TRGT1  
     1.291   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-B  
     1.291   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.291   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.291   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.291   PROCEDURAL             CONFLICT-RESOLUTION  
     1.291   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B  
     1.291   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.291   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.317   VISION                 Complete-eye-movement TRGT1 #(571 293)  
     1.341   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B  
     1.341   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.341   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.341   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.341   MOTOR                  HAND-TO-MOUSE  
     1.341   PROCEDURAL             CONFLICT-RESOLUTION  
     1.341   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-B  
     1.341   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.341   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.391   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-B  
     1.391   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.391   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.391   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.391   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-2  
     1.391   PROCEDURAL             CONFLICT-RESOLUTION  
     1.591   MOTOR                  PREPARATION-COMPLETE  
     1.591   PROCEDURAL             CONFLICT-RESOLUTION  
     1.641   MOTOR                  INITIATION-COMPLETE  
     1.641   PROCEDURAL             CONFLICT-RESOLUTION  
     1.931   MOTOR                  MOVE-CURSOR-ABSOLUTE #(571 293)  
     1.931   PROCEDURAL             CONFLICT-RESOLUTION  
     1.981   MOTOR                  FINISH-MOVEMENT  
     1.981   PROCEDURAL             CONFLICT-RESOLUTION  
     1.981   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-B  
     1.981   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.981   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.031   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-B  
     2.031   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.031   PROCEDURAL             CLEAR-BUFFER GOAL  
     2.031   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.031   MOTOR                  CLICK-MOUSE  
     2.031   PROCEDURAL             CONFLICT-RESOLUTION  
     2.181   MOTOR                  PREPARATION-COMPLETE  
     2.181   PROCEDURAL             CONFLICT-RESOLUTION  
     2.231   MOTOR                  INITIATION-COMPLETE  
     2.231   PROCEDURAL             CONFLICT-RESOLUTION  
     2.241   MOTOR                  OUTPUT-KEY #(28 2)  
     2.241   PROCEDURAL             CONFLICT-RESOLUTION  
     2.331   MOTOR                  FINISH-MOVEMENT  
     2.331   PROCEDURAL             CONFLICT-RESOLUTION  
     2.331   ------                 Stopped because no events left to process  
Execution time for click-action-with-moveto is 2.331  
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APPENDIX C: AN EXAMPLE OF MACROS TO RUN ACT-R INTERACTION PRIMITIVE 

DRAG&DRAP 
(defmacro drag-drop-Action-macro(obj1X obj1Y obj1W obj1H obj2X obj2Y obj2W obj2H thinking) 
   `(progn 
 (reset) 
 (define-model TESTMODEL 
 (set-cursor-position-fct *last-cursor-position*) 
 (start-hand-at-mouse) 
 (set-cursor-position-fct *last-cursor-position*) 
 (chunk-type (VISUAL-ITEM  (:include visual-object) )CONTENT) 
 (chunk-type IDTR-ACTION %ID) 
 (chunk-type (a-object-location (:include visual-location))) 
 (chunk-type (b-object-location (:include visual-location))) 
 (chunk-type (a-object (:include visual-object)) CONTENT) 
 (chunk-type (b-object (:include visual-object)) CONTENT) 
 (chunk-type GOAL STATE %LAST-LOCATION [SRC-TARGET] [DEST-TARGET]) 
 (define-chunks (a-object isa chunk)) 
 (define-chunks (b-object isa chunk)) 
 (add-dm 
 
            (FIND-OBJECT-A-ACTION  ISA IDTR-ACTION )  (ATTEND-OBJECT-A-ACTION  ISA IDTR-ACTION ) 
            (ENCODE-OBJECT-A-ACTION  ISA IDTR-ACTION )   (HAND-TO-MOUSE-FOR-A-ACTION  ISA IDTR-ACTION ) 
            (MOUSE-MOVES-A-ACTIONS  ISA IDTR-ACTION ) (ATTEND-OBJECT-A-ACTION4 ISA IDTR-ACTION ) 
            (CLICK-MOUSE-OVER-A-ACTION  ISA IDTR-ACTION )   (FIND-OBJECT-B-ACTION  ISA IDTR-ACTION ) 
            (ATTEND-OBJECT-B-ACTION  ISA IDTR-ACTION )   (ENCODE-OBJECT-B-ACTION  ISA IDTR-ACTION ) 
            (HAND-TO-MOUSE-FOR-B-ACTION ISA IDTR-ACTION )   (MOVE-MOUSE-TO-B-ACTION ISA IDTR-ACTION ) 
            (ATTEND-OBJECT-A-ACTION2 ISA IDTR-ACTION )   (MOUSE-MOVES-B-ACTIONS ISA IDTR-ACTION ) 
            (START-ACTION ISA IDTR-ACTION %ID START-ACTION) 
            (THINKING ISA IDTR-ACTION %ID THINKING) 
            (GOAL ISA GOAL STATE START-ACTION [SRC-TARGET] EMPTY [DEST-TARGET] EMPTY %LAST-LOCATION EMPTY) 
         ) 
            (P OBJECT-A-NOT-FOUND 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ENCODE-OBJECT-A-ACTION 
               =VISUAL> 
                  ISA                     TEXT 
                - VALUE                  "object1" 
               =VISUAL-LOCATION> 
                  ISA                     VISUAL-LOCATION 
            ==> 
               =GOAL> 
                  STATE                   FIND-OBJECT-A-ACTION 
            ) 
            (P THINKING-TASK 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   THINKING 
            ==> 
               =GOAL> 
                  STATE                   FIND-OBJECT-A-ACTION 
            ) 
            (P FIND-OBJECT-A 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   FIND-OBJECT-A-ACTION 
               ?visual> 
                  STATE                            FREE 
            ==> 
               =GOAL> 
                  STATE                   ATTEND-OBJECT-A-ACTION 
 
               +VISUAL-LOCATION> 
                  ISA                     a-object-location 
                  :attended                        NIL 
            ) 
            (P ATTEND-OBJECT-A 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ATTEND-OBJECT-A-ACTION 
 
               =VISUAL-LOCATION> 
                  ISA                     a-object-location 
                  SCREEN-X                =X 
               ?visual> 
                  STATE                   FREE 
            ==> 
               =GOAL> 
                  STATE                   ENCODE-OBJECT-A-ACTION 
               +VISUAL> 
                  ISA                     MOVE-ATTENTION 
                  SCREEN-POS              =VISUAL-LOCATION 
               +VISUAL-LOCATION> 
                  ISA                     a-object-location 
            ) 
            (P ENCODE-OBJECT-A 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ENCODE-OBJECT-A-ACTION 
               =VISUAL> 
                  ISA                     a-object 
                  VALUE                   =TEXT 
                  VALUE                   "object1" 
               =VISUAL-LOCATION> 
                  ISA                     a-object-location 
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            ==> 
               =GOAL> 
                  [SRC-TARGET]            =VISUAL-LOCATION 
                  STATE                   HAND-TO-MOUSE-FOR-A-ACTION 
              +VISUAL-LOCATION> 
                  ISA                     VISUAL-LOCATION 
            ) 
            (P HAND-TO-MOUSE-FOR-A 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   HAND-TO-MOUSE-FOR-A-ACTION 
               ?manual> 
                  STATE                   FREE 
            ==> 
               =GOAL> 
                  STATE                   MOUSE-MOVES-A-ACTIONS 
               +MANUAL> 
                  ISA                     HAND-TO-MOUSE 
            ) 
            (P MOVE-MOUSE-TO-A 
               =GOAL> 
                  ISA                     GOAL 
                  [SRC-TARGET]            =THETARGET-A 
                  STATE                   MOUSE-MOVES-A-ACTIONS 
               ?manual> 
                  STATE                   FREE 
            ==> 
               =GOAL> 
                  %LAST-LOCATION          =THETARGET-A 
                  [SRC-TARGET]            EMPTY 
                  STATE                   CLICK-MOUSE-OVER-A-ACTION 
               +MANUAL> 
                  ISA                     MOVE-CURSOR 
                  LOC                     =THETARGET-A 
            ) 
            (P CLICK-MOUSE-OVER-A 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   CLICK-MOUSE-OVER-A-ACTION 
               ?manual> 
                  STATE                   FREE 
            ==>                                                 
               =GOAL> 
                  STATE                   FIND-OBJECT-B-ACTION 
               +MANUAL> 
                  ISA                     CLICK-MOUSE 
            ) 
            (P OBJECT-B-NOT-FOUND 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ENCODE-OBJECT-B-ACTION 
               =VISUAL> 
                  ISA                     TEXT 
                - VALUE                  "object2" 
               =VISUAL-LOCATION> 
                  ISA                     VISUAL-LOCATION 
            ==> 
               =GOAL> 
                  STATE                   FIND-OBJECT-B-ACTION 
            ) 
            (P FIND-OBJECT-B 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   FIND-OBJECT-B-ACTION 
               ?visual> 
                  STATE                            FREE 
            ==> 
               =GOAL> 
                  STATE                   ATTEND-OBJECT-B-ACTION 
 
               +VISUAL-LOCATION> 
                  ISA                     b-object-location  
                  :ATTENDED                        NIL 
            ) 
            (P ATTEND-OBJECT-B 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ATTEND-OBJECT-B-ACTION 
               =VISUAL-LOCATION> 
                  ISA                     b-object-location  
            ==>                                       
               =GOAL> 
                  STATE                   ENCODE-OBJECT-B-ACTION 
               +VISUAL> 
                    ISA                   MOVE-ATTENTION 
                  SCREEN-POS              =VISUAL-LOCATION 
               +VISUAL-LOCATION> 
                  ISA                     b-object-location  
            ) 
            (P ENCODE-OBJECT-B 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   ENCODE-OBJECT-B-ACTION 
               =VISUAL> 
                  ISA                     b-object 
                  VALUE                   =TEXT 
                  VALUE                   "object2" 
               =VISUAL-LOCATION> 
                  ISA                     VISUAL-LOCATION 
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            ==> 
               =GOAL> 
                  [DEST-TARGET]           =VISUAL-LOCATION 
                  STATE                   HAND-TO-MOUSE-FOR-B-ACTION 
            ) 
            (P HAND-TO-MOUSE-FOR-B 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   HAND-TO-MOUSE-FOR-B-ACTION 
               ?manual> 
                  STATE                   FREE 
            ==> 
               =GOAL> 
                  STATE                   MOVE-MOUSE-TO-B-ACTION 
               +MANUAL> 
                  ISA                     HAND-TO-MOUSE 
            ) 
            (P MOVE-MOUSE-TO-B 
               =GOAL> 
                  ISA                     GOAL 
                  [DEST-TARGET]           =THETARGET-B 
                  STATE                   MOVE-MOUSE-TO-B-ACTION 
               ?manual> 
                  STATE                   FREE 
            ==> 
               =GOAL> 
                  %LAST-LOCATION          =THETARGET-B 
                  [DEST-TARGET]           EMPTY 
                  STATE                   MOUSE-MOVES-B-ACTIONS 
 
               +MANUAL> 
                  ISA                     MOVE-CURSOR 
                  LOC                     =THETARGET-B 
            ) 
            (P CLICK-MOUSE-OVER-B 
               =GOAL> 
                  ISA                     GOAL 
                  STATE                   MOUSE-MOVES-B-ACTIONS 
               ?manual> 
                  STATE                   FREE 
            ==>                              
               +MANUAL> 
               ISA                     CLICK-MOUSE 
               -GOAL> 
            ) 
            (SPP THINKING-TASK :at 1.2) 
            (GOAL-FOCUS GOAL) 
            (sgp :v T :needs-mouse T :show-focus t :trace-detail high) 
      ) 
      (cond 
               ( 
                    (> ,thinking 0) 
                    (p-fct 
                          (list 
                             'START-TASK 
                                '=GOAL> 
                                   'ISA                'GOAL 
                                   'STATE              'START-ACTION 
                             '==> 
                                                                  
                                 '=GOAL> 
                                      'STATE            'THINKING 
                          ) 
                    ) 
                    (SPP THINKING-TASK :at 1.2) 
               ) 
               ( 
                    (= ,thinking 0) 
                    (p-fct 
                             (list 
                             'START-TASK 
                                '=GOAL> 
                                   'ISA                'GOAL 
                                   'STATE              'START-ACTION 
                             '==>                             
                                 '=GOAL> 
                                      'STATE            'FIND-OBJECT-A-ACTION 
                             ) 
                       ) 
               ) 
      ) 
      (let ( 
               (visual-location-chunks nil) 
               (visual-object-chunks  nil) 
            ) 
         (push (car (define-chunks-fct `(( 
               VISUAL-SW1-OBJECT 
               isa a-object-location 
               color       black 
               value       a-object 
               kind        a-object 
               screen-x    ,obj1X 
               screen-y    ,obj1Y 
               width       ,obj1W 
               height      ,obj1H)))) visual-location-chunks ) 
         (push (car (define-chunks-fct `(( 
               VISUAL-SW2-OBJECT 
               isa b-object-location 
               color       black 
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               value       b-object 
               kind        b-object 
               screen-x    ,obj2X 
               screen-y    ,obj2Y 
               width       ,obj2W 
               height      ,obj2H)))) visual-location-chunks ) 
         (push (define-chunks-fct `(( 
               SW1-OBJECT 
               isa         a-object 
               CONTENT     "object1" 
               value       "object1" 
               width       ,obj1W 
               height      ,obj1H))) visual-object-chunks ) 
         (push (define-chunks-fct `(( 
               SW2-OBJECT 
               isa         b-object 
               CONTENT     "object2" 
               value       "object2" 
               width       ,obj2W 
               height      ,obj2H))) visual-object-chunks ) 
         (let ( 
                   (the-device (pairlis visual-location-chunks visual-object-chunks)) 
              ) 
              (install-device the-device) 
              (proc-display) 
              (run 100) 
              (delete-model) 
         ) 
      ) 
   ) 
) 
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APPENDIX D:  SAMPLE RUN USING THE DRAG AND DROP MACRO 
Run for: drag-drop-Action - 55 - 7 - 10 - 40 | 267 - 237 - 50 - 40 | 1 
 
     0.000   GOAL                   SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL  
     0.000   BUFFER                 Buffer GOAL copied chunk GOAL to GOAL-0  
     0.000   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0 REQUESTED NIL  
     0.000   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-0  
     0.000   PROCEDURAL             CONFLICT-RESOLUTION  
     0.000   PROCEDURAL             PRODUCTION-SELECTED START-TASK  
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     0.050   PROCEDURAL             PRODUCTION-FIRED START-TASK  
     0.050   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     0.050   PROCEDURAL             CONFLICT-RESOLUTION  
     0.050   PROCEDURAL             PRODUCTION-SELECTED THINKING-TASK  
     0.050   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.250   PROCEDURAL             PRODUCTION-FIRED THINKING-TASK  
     1.250   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.250   PROCEDURAL             CONFLICT-RESOLUTION  
     1.250   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-A  
     1.250   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.250   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.300   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-A  
     1.300   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.300   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.300   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.300   VISION                 Find-location  
     1.300   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.300   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-1  
     1.300   PROCEDURAL             CONFLICT-RESOLUTION  
     1.300   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-A  
     1.300   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.300   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.300   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
     1.350   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-A  
     1.350   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.350   PROCEDURAL             MODULE-REQUEST VISUAL  
     1.350   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.350   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.350   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.350   VISION                 Move-attention VISUAL-SW1-OBJECT-0-1 NIL  
     1.350   VISION                 Find-location  
     1.350   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.350   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-2  
     1.350   PROCEDURAL             CONFLICT-RESOLUTION  
     1.500   VISION                 Preparation-complete TRGT0  
     1.500   PROCEDURAL             CONFLICT-RESOLUTION  
     1.576   VISION                 Complete-eye-movement TRGT0 #(58 8)  
     1.576   PROCEDURAL             CONFLICT-RESOLUTION  
     1.617   VISION                 Encoding-Complete VISUAL-SW1-OBJECT-0-1  
     1.617   VISION                 SET-BUFFER-CHUNK VISUAL SW1-OBJECT  
     1.617   BUFFER                 Buffer VISUAL copied chunk SW1-OBJECT to SW1-OBJECT-0  
     1.617   PROCEDURAL             CONFLICT-RESOLUTION  
     1.617   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-A  
     1.617   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.617   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     1.617   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.667   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-A  
     1.667   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.667   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.667   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.667   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.667   VISION                 Find-location  
     1.667   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW1-OBJECT-0  
     1.667   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW1-OBJECT-0 to VISUAL-SW1-OBJECT-0-3  
     1.667   PROCEDURAL             CONFLICT-RESOLUTION  
     1.667   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-A  
     1.667   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.667   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.676   VISION                 Preparation-complete TRGT0  
     1.717   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-A  
     1.717   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.717   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.717   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.717   MOTOR                  HAND-TO-MOUSE  
     1.717   PROCEDURAL             CONFLICT-RESOLUTION  
     1.717   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-A  
     1.717   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.717   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.746   VISION                 Complete-eye-movement TRGT0 #(55 7)  
     1.767   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-A  
     1.767   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.767   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.767   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.767   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW1-OBJECT-0-2  
     1.767   PROCEDURAL             CONFLICT-RESOLUTION  
     1.767   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-A  
     1.767   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.767   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     1.817   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-A  
     1.817   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.817   PROCEDURAL             MODULE-REQUEST MANUAL  
     1.817   PROCEDURAL             CLEAR-BUFFER MANUAL  
     1.817   MOTOR                  CLICK-MOUSE  
     1.817   PROCEDURAL             CONFLICT-RESOLUTION  
     1.817   PROCEDURAL             PRODUCTION-SELECTED FIND-OBJECT-B  
     1.817   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.817   PROCEDURAL             QUERY-BUFFER-ACTION VISUAL  
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     1.867   PROCEDURAL             PRODUCTION-FIRED FIND-OBJECT-B  
     1.867   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.867   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.867   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.867   VISION                 Find-location  
     1.867   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.867   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-0  
     1.867   PROCEDURAL             CONFLICT-RESOLUTION  
     1.867   PROCEDURAL             PRODUCTION-SELECTED ATTEND-OBJECT-B  
     1.867   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     1.867   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     1.917   PROCEDURAL             PRODUCTION-FIRED ATTEND-OBJECT-B  
     1.917   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     1.917   PROCEDURAL             MODULE-REQUEST VISUAL  
     1.917   PROCEDURAL             MODULE-REQUEST VISUAL-LOCATION  
     1.917   PROCEDURAL             CLEAR-BUFFER VISUAL  
     1.917   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     1.917   VISION                 Move-attention VISUAL-SW2-OBJECT-0-0 NIL  
     1.917   VISION                 Find-location  
     1.917   VISION                 SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-SW2-OBJECT-0  
     1.917   BUFFER                 Buffer VISUAL-LOCATION copied chunk VISUAL-SW2-OBJECT-0 to VISUAL-SW2-OBJECT-0-1  
     1.917   PROCEDURAL             CONFLICT-RESOLUTION  
     1.967   MOTOR                  PREPARATION-COMPLETE  
     1.967   PROCEDURAL             CONFLICT-RESOLUTION  
     2.017   VISION                 Preparation-complete TRGT1  
     2.017   MOTOR                  INITIATION-COMPLETE  
     2.017   PROCEDURAL             CONFLICT-RESOLUTION  
     2.027   MOTOR                  OUTPUT-KEY #(28 2)  
     2.027   PROCEDURAL             CONFLICT-RESOLUTION  
     2.117   MOTOR                  FINISH-MOVEMENT  
     2.117   PROCEDURAL             CONFLICT-RESOLUTION  
     2.119   VISION                 Complete-eye-movement TRGT1 #(268 233)  
     2.119   PROCEDURAL             CONFLICT-RESOLUTION  
     2.177   VISION                 Encoding-Complete VISUAL-SW2-OBJECT-0-0  
     2.177   VISION                 SET-BUFFER-CHUNK VISUAL SW2-OBJECT  
     2.177   BUFFER                 Buffer VISUAL copied chunk SW2-OBJECT to SW2-OBJECT-0  
     2.177   PROCEDURAL             CONFLICT-RESOLUTION  
     2.177   PROCEDURAL             PRODUCTION-SELECTED ENCODE-OBJECT-B  
     2.177   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.177   PROCEDURAL             BUFFER-READ-ACTION VISUAL  
     2.177   PROCEDURAL             BUFFER-READ-ACTION VISUAL-LOCATION  
     2.219   VISION                 Preparation-complete TRGT1  
     2.227   PROCEDURAL             PRODUCTION-FIRED ENCODE-OBJECT-B  
     2.227   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.227   PROCEDURAL             CLEAR-BUFFER VISUAL  
     2.227   PROCEDURAL             CLEAR-BUFFER VISUAL-LOCATION  
     2.227   PROCEDURAL             CONFLICT-RESOLUTION  
     2.227   PROCEDURAL             PRODUCTION-SELECTED HAND-TO-MOUSE-FOR-B  
     2.227   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.227   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.277   PROCEDURAL             PRODUCTION-FIRED HAND-TO-MOUSE-FOR-B  
     2.277   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.277   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.277   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.277   MOTOR                  HAND-TO-MOUSE  
     2.277   PROCEDURAL             CONFLICT-RESOLUTION  
     2.277   PROCEDURAL             PRODUCTION-SELECTED MOVE-MOUSE-TO-B  
     2.277   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.277   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.289   VISION                 Complete-eye-movement TRGT1 #(267 237)  
     2.327   PROCEDURAL             PRODUCTION-FIRED MOVE-MOUSE-TO-B  
     2.327   PROCEDURAL             MOD-BUFFER-CHUNK GOAL  
     2.327   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.327   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.327   MOTOR                  MOVE-CURSOR OBJECT NIL LOC VISUAL-SW2-OBJECT-0-1  
     2.327   PROCEDURAL             CONFLICT-RESOLUTION  
     2.527   MOTOR                  PREPARATION-COMPLETE  
     2.527   PROCEDURAL             CONFLICT-RESOLUTION  
     2.577   MOTOR                  INITIATION-COMPLETE  
     2.577   PROCEDURAL             CONFLICT-RESOLUTION  
     2.838   MOTOR                  MOVE-CURSOR-ABSOLUTE #(267 237)  
     2.838   PROCEDURAL             CONFLICT-RESOLUTION  
     2.888   MOTOR                  FINISH-MOVEMENT  
     2.888   PROCEDURAL             CONFLICT-RESOLUTION  
     2.888   PROCEDURAL             PRODUCTION-SELECTED CLICK-MOUSE-OVER-B  
     2.888   PROCEDURAL             BUFFER-READ-ACTION GOAL  
     2.888   PROCEDURAL             QUERY-BUFFER-ACTION MANUAL  
     2.938   PROCEDURAL             PRODUCTION-FIRED CLICK-MOUSE-OVER-B  
     2.938   PROCEDURAL             MODULE-REQUEST MANUAL  
     2.938   PROCEDURAL             CLEAR-BUFFER GOAL  
     2.938   PROCEDURAL             CLEAR-BUFFER MANUAL  
     2.938   MOTOR                  CLICK-MOUSE  
     2.938   PROCEDURAL             CONFLICT-RESOLUTION  
     3.088   MOTOR                  PREPARATION-COMPLETE  
     3.088   PROCEDURAL             CONFLICT-RESOLUTION  
     3.138   MOTOR                  INITIATION-COMPLETE  
     3.138   PROCEDURAL             CONFLICT-RESOLUTION  
     3.148   MOTOR                  OUTPUT-KEY #(28 2)  
     3.148   PROCEDURAL             CONFLICT-RESOLUTION  
     3.238   MOTOR                  FINISH-MOVEMENT  
     3.238   PROCEDURAL             CONFLICT-RESOLUTION  
     3.238   ------                 Stopped because no events left to process  
 
Execution time for drag-drop-Action is 3.238  
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APPENDIX E:  LISP HELPER DEBUGGING FUNCTIONALITY CODE 
 
Stepper Code 
 
(defun start-threaded-process (name function) 
   (setf *threaded-process* (mp::process-run-function name #'(lambda ()(in-package :cl-user)(funcall function)))) 
) 
 
 
(defun threaded-process-kill (process) 
  (if 
    (not(equal process nil)) 
      (mp::process-kill process) 
    ) 
) 
 
(defun stop-threaded-process() 
  (if 
    (not (equal *threaded-process* nil)) 
    (progn 
      (format *error-output* "Stopping the threaded process. threadRunning:~%") 
      (threaded-process-kill *threaded-process*) 
      (setf *threaded-process* nil) 
    ) 
  ) 
) 
 
(defvar *stepper-process* nil) 
(defvar *stepper-thread-running* nil) 
 
 
(defun stepper-run-process (name function) 
   (setf *stepper-process* (mp::process-run-function name #'(lambda ()(in-package :cl-user)(funcall function)))) 
) 
 
(defun stepper-process-kill (process) 
  (if 
    (not(equal process nil)) 
      (mp::process-kill process) 
    ) 
) 
 
(defun stepper-process-loop() 
  (if 
    (not(equal *stepper-process* nil)) 
      (progn 
        (if 
          (not(equal *stepper-thread-running* t)) 
            (progn 
              (setf *stepper-thread-running* t) 
              (run-my-stepper) 
              (sleep 2) 
            ) 
        ) 
      ) 
  ) 
) 
 
(defun stop-stepper-process() 
  (if 
    (not (equal *stepper-process* nil)) 
    (progn 
      (stepper-process-kill *stepper-process*) 
      (setf *stepper-process* nil) 
    ) 
  ) 
) 
 
(defun start-stepper-process() 
  (stepper-run-process "Running Lisp stepper application" #'(lambda () (run-my-stepper))) 
) 
 
(defun updateDLLStepperInfo(info) 
  ( updateSteppingInformation info) 
) 
 
(defun run-my-stepper () 
  (stepperRunStartedToNative) 
 
  (setf *abort-stepping* nil) 
  (verify-current-mp 
   "run-step called with no current meta-process." 
   (flet ( 
            (test (mp next-time count) 
                (declare (ignore next-time count)) 
                (loop 
                     (let ( 
                          (event (car (meta-p-events mp))) 
                     ) 
 
                      (when (null (meta-p-events mp)) 
                          (format t "No more events to process") 
                          (stepperRunFinishedToNative) 
                          (return t) 
                        ) 
                      ( updateSteppingInformation 
                       (format nil "~A|~A|~A|~A|~A|~A~%" 
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                          (evt-time event) 
                          (evt-module event) 
                          (evt-details event) 
                          (evt-action event) 
                          (evt-destination event) 
                          (evt-params event) 
 
                        ) 
                      ) 
                          (while *wait-for-stepping* 
                              (uni-process-system-events) 
                              (sleep 0.1) 
                              (if 
                                (equal *abort-stepping* t) 
                                (progn 
                                   (format t "~%------STEPPER STOPPING -------~%" )  
                                   (stepperRunFinishedToNative) 
                                   (return t) 
                                ) 
                              ) 
                          ) 
                        (if 
                            (not (equal *abort-stepping* t)) 
                            (progn 
                              (setf *wait-for-stepping* T) 
                              (return nil) 
                            ) 
                            (progn 
                              (format t "~%------STEPPER STOPPED -------~%" ) 
                              (stepperRunFinishedToNative) 
                              (return t) 
                            ) 
                        ) 
                     ) 
               ) 
             ) 
           ) 
     (multiple-value-bind (time events break) 
       (run-sched-queue (current-mp) #'test :real-time nil) 
       (unless break 
         (send-run-terminated-events (current-mp)) 
         (stepperRunFinishedToNative) 
       ) 
       (values time events break) 
    ) 
   ) 
  ) 
) 
(defun stepperStep () 
(has-current-mp 
  "No Meta process present." 
  (has-current-model 
 "No model loaded" 
  (setf *wait-for-stepping* nil) 
  ) 
  ) 
) 
 
(defun initialisingStepper () 
(has-current-mp 
  "No Meta process present." 
  (has-current-model 
 "No model loaded" 
  (start-stepper-process) 
   ) 
  ) 
) 
 
(defun removingStepper () 
(has-current-mp 
  "No Meta process present." 
  (has-current-model 
 "No model loaded" 
  (setf *abort-stepping* t) 
  (stop-stepper-process) 
   ) 
  ) 
) 
 
Procedural rule information retrieval 
 
(defun return-productions () 
(has-current-mp 
"No Meta process present." 
(has-current-model 
 "No model loaded" 
 
  (let ((prod (get-module procedural))) 
    (if prod 
        (procedural-productions prod) 
        (print-warning "No procedural module found") 
    ) 
  ) 
  ) 
  ) 
) 
 
(defun return-production-name-cs(cs) 
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 (production-name  (get-production (car cs))  ) 
) 
 
(defun return-production-name(prod) 
  (production-name  prod) 
) 
 
(defun production-u-value (prod) 
   (caar (no-output (spp-fct (list prod :u))))) 
 
 
(defun return-productions-names () 
 (has-current-mp 
 "No Meta process present." 
 (has-current-model 
  "No model loaded" 
   (let ((prod (get-module procedural))) 
     (if prod 
         (let ( 
                  (names-list nil) 
                  (all-productions-names  (mapcar #'production-name (procedural-productions prod))  ) 
              ) 
           (dolist (production-name all-productions-names) 
             (let ((production (get-production production-name))) 
               (if production 
                   (progn 
    (push "|" names-list) 
                      (push production-name names-list) 
                   ) 
                  (format nil "No production named ~S is defined" production-name) 
               ) 
             ) 
           ) 
           (reverse names-list) 
         ) 
       (format nil "No procedural module found") 
     ) 
   ) 
  ) 
        ) 
) 
 
(defun send-DLL-productions-names() 
 (has-current-mp 
  "No Meta process present." 
  (has-current-model 
        "No model loaded" 
        (format nil "~a" (return-productions-names) ) 
  ) 
 ) 
) 
 
(defun send-DLL-productions-parameters(prod-name) 
  (has-current-mp 
  "No Meta process present." 
  (has-current-model 
    "No model loaded" 
      (getProductionUtilities (get-Production-Parameters-From-Name prod-name)) 
    ) 
  ) 
) 
 
(defun coerce-our-list-to-vector( mylist) 
  (let ( 
         (myinternallist  (coerce  mylist  'vector )) 
      ) 
       myinternallist 
  ) 
) 
 
(defun coerce-a-list-to-vector-pairs( mylist) 
  (let ( 
      (myinternallist  (coerce  mylist  'vector )) 
      (count 3) 
      (my-vector nil) 
    ) 
    (setq  my-vector  (make-array  '(count 2))) 
  ) 
) 
 
(defun get-Production-Information-From-Name(prodname) 
  (formatOutput-Production-Details-From-Name prodname) 
) 
 
 
Chunks information retrieval 
 
(defun return-chunks-names () 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (let ((dm (get-module declarative))) 
        (if dm 
          (let ( 
            (names-list nil) 
            ) 
            (dolist (chunk (all-dm-chunks dm)) 
              (if chunk 
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                (progn 
                  (push "|" names-list) 
                  (push chunk names-list) 
                ) 
                (format nil "Declarative chunk not defined") 
              ) 
            ) 
            (reverse names-list) 
          ) 
          (format nil "No declarative module found") 
        ) 
      ) 
    ) 
  ) 
) 
 
(defun send-DLL-chunks-names() 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
     "No model loaded" 
        (format nil "~a" (return-chunks-names ) ) 
     ) 
  ) 
) 
 
(defun display-all-chunks () 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (let ((dm (get-module declarative))) 
        (if dm 
          (dolist (chunk (all-dm-chunks dm)) 
            (format nil "~%CHUNK IS: ~a" chunk) 
          ) 
          (format nil "No declarative memory module found") 
        ) 
      ) 
    ) 
  ) 
) 
 
(defconstant *JCG-pprint-chunk-string* 
    (formatter 
     "~S  ~:[ (~s)~;~*~] ~%~@[~S~%~]    ISA ~S~%  *************| ~:{   ~s  ~s~%~}  |**********") 
     "compiled format string for printing chunks") 
 ) 
 
 
(defun JCG-pprint-a-chunk (chunk-name &optional (w-params t)) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
    (let ( 
      (chunk (get-chunk chunk-name)) 
      (resOut "") 
      ) 
      (if chunk 
        (progn 
          (setf resOut 
            (format nil 
              "~S~:[ (~s)~;~*~]~%~@[~S~%~]  ISA ~S~%~:{   ~s  ~s~%~} ~%  ~@[--Chunk Parameters--~%~:{   ~s  ~s~%~}~]~%~%" 
              chunk-name 
              (eql chunk-name (act-r-chunk-name chunk)) 
              (act-r-chunk-name chunk) 
              (act-r-chunk-documentation chunk) 
              (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)) 
              (mapcan #'(lambda (slot-name) 
                (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk)) 
                  (when (or exists 
                    (car (no-output (sgp-fct (list :show-all-slots)))) 
                    (not (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)))) 
                    ) 
                    (list (list slot-name value)) 
                    ) 
                  ) 
                ) 
                (ct-slot-names (act-r-chunk-chunk-type chunk)) 
              ) 
              (mapcar #'(lambda (param) 
                  (list (act-r-chunk-parameter-name param) 
                    (progn 
                      (funcall (act-r-chunk-parameter-accessor param) chunk-name) 
                    ) 
                  ) 
                ) 
                *chunk-parameters-list* 
              ) 
            ) 
          ) 
          resOut 
        ) 
        (format nil "~%No chunk of name:~a~% " chunk-name) 
      ) 
    ) 
  ) 
 ) 
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) 
 
 
Loading ACT-R models 
 
 (defun loadingModel(filename) 
    (declare (ignore filename)) 
   (if (or *stepper-open* *running-actr*) 
     (list 0 "ACT-R currently running or the stepper is open.") 
     (unwind-protect 
       (progn 
         (setf *running-actr* t) 
         (let ((result (safe-load filename t))) 
           (setf *running-actr* nil) 
           (format t (if (= 1 (first result)) "~%#|## Model ~a loaded. ##|#~%" "~%#|## Failed loading model ~a. ##|#~%") filename) 
         result 
         ) 
       ) 
      (setf *running-actr* nil) 
      ) 
  ) 
) 
 
 
(defun runningModel (run_time) 
  (declare (ignore run_time)) 
  (unwind-protect 
    (if *running-actr* 
      (model-warning "Run button has no effect because model still running when pressed.") 
      (progn (setf *running-actr* t) 
        (run run_time) 
      ) 
    ) 
    (setf *running-actr* nil) 
  ) 
) 
 
 
(defun reloadingModel () 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
     "No model loaded" 
      (reload-model nil) 
    ) 
  ) 
) 
 
Buffers information retrieval 
 
(defun JCG-buffer-status-fct (buffer-names-list) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
    (let ( 
        (res nil) 
        (resOut "") 
      ) 
      (dolist (buffer-name (if buffer-names-list 
          buffer-names-list 
          (buffers)) 
          res) 
        (let ((buffer (buffer-instance buffer-name))) 
          (if buffer 
            (progn 
              (setf resOut 
                (format nil 
                "Buffer Name:  ~S | 
                Buffer Empty:  ~S | 
                Buffer Full:  ~S | 
                Buffer Requested:  ~S | 
                Buffer Unrequested:  ~S | 
                State Free:  ~S | 
                State Error:  ~S | 
                " 
                buffer-name 
                (query-buffer buffer-name '((buffer . empty))) 
                (query-buffer buffer-name '((buffer . full))) 
                (query-buffer buffer-name '((buffer . requested))) 
                (query-buffer buffer-name '((buffer . unrequested))) 
                (query-buffer buffer-name '((state . free))) 
                (query-buffer buffer-name '((state . error))) 
                ) 
              ) 
            ) 
          ) 
        ) 
      ) 
      resOut 
    ) 
    ) 
  ) 
) 
 
(defun JCG-buffer-chunk-fct (buffer-names-list) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
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    "No model loaded" 
      (let ( 
        (res nil) 
        (resOut "") 
      ) 
      (dolist (buffer-name (if buffer-names-list 
          buffer-names-list 
          (buffers)) 
          res) 
        (let* ((buffer (buffer-instance buffer-name))) 
          (if buffer 
            (let ((chunk (act-r-buffer-chunk buffer))) 
              (setf resOut 
                (format nil "Buffer Name: ~S ~%Chunk Inside: ~S ~%Base Chunk: ~@[[~s]~] ~%~%--Chunk Information--~%~a~%" 
                  buffer-name 
                  chunk 
                  (when chunk 
                    (chunk-copied-from-fct chunk) 
                  ) 
                  (when buffer-names-list 
                    (progn 
                      (JCG-pprint-a-chunk chunk) 
                    ) 
                  ) 
                ) 
              ) 
              (push-last (if buffer-names-list 
                chunk 
                (cons buffer-name chunk)) 
                res) 
            ) 
            (push-last (if buffer-names-list 
            :error 
              (cons :error nil)) 
            res) 
          ) 
        ) 
      ) 
      resOut 
      ) 
    ) 
  ) 
) 
 
(defun return-buffers-names () 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
    (let ( 
      (names-list nil) 
      ) 
      (dolist (buffer (buffers)) 
        (if buffer 
          (progn 
            (push "|" names-list) 
            (push buffer names-list) 
          ) 
          (format nil "Buffer not defined") 
        ) 
      ) 
      (reverse names-list) 
    ) 
     ) 
  ) 
) 
 
 
(defun send-DLL-buffers-names() 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (format nil "~a" (return-buffers-names ) ) 
    ) 
  ) 
) 
 
(defun get-Chunk-Parameters-From-Name(chunk) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (get-Chunk-Information-From-Name chunk) 
    ) 
  ) 
) 
 
(defun get-Buffer-Parameters-From-Name(buffer) 
(has-current-mp 
  "No Meta process present." 
  (has-current-model 
 "No model loaded" 
  (get-Buffer-Information-From-Name buffer) 
    ) 
    ) 
) 
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(defun get-BufferStates-Parameters-From-Name(buffer) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (format nil "~a"  (JCG-buffer-status-fct (list (intern buffer)))) 
    ) 
  ) 
) 
 
(defun get-Buffer-Information-From-Name(buffer-name) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (format nil "~a" (JCG-buffer-chunk-fct (list (intern buffer-name)))) 
    ) 
  ) 
) 
(defun get-BufferStates-Information-From-Name(buffer-name) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
      (format nil "~a" (JCG-buffer-status-fct (list (intern buffer-name)))) 
    ) 
  ) 
) 
 
(defun get-Chunk-Information-From-Name(chunk-name) 
  (has-current-mp 
  "No Meta process present." 
    (has-current-model 
    "No model loaded" 
    (let ((dm (get-module declarative))) 
    (if dm 
    (let* ( 
        (chunk (intern chunk-name)) 
        (similarChunks (get-all-chunk-similarities dm chunk)) 
        (thechunk (get-chunk chunk)) 
        (aString (string (format nil "~%[~a] buffer Chunk Details: " chunk-name))) 
        ) 
      (if chunk 
        (progn 
          (setf aString (concatenate 'string aString 
            (format nil "~%Details for chunk ~S inside ~a buffer: ~:[ (~s) ~; ~* ~] ~% ~@[~S~%~]  ISA ~S ~% ~:{   ~s  ~s~%~}" 
              chunk-name 
              (act-r-chunk-name thechunk) 
              (eql theChunk (act-r-chunk-name thechunk)) 
              (act-r-chunk-name thechunk) 
              (act-r-chunk-documentation thechunk) 
              (act-r-chunk-type-name (act-r-chunk-chunk-type thechunk)) 
              (mapcan #'(lambda (slot-name) 
              (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists thechunk)) 
            (when (or exists 
              (car (no-output (sgp-fct (list :show-all-slots)))) 
              (not 
                (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type thechunk))   ) 
              ) 
              ) 
              (list (list slot-name value)) 
            ))) 
            (ct-slot-names (act-r-chunk-chunk-type thechunk)) 
            ))) 
          ) 
          (setf aString (concatenate 'string aString 
           
          (format nil "~@[~%parameters for chunk ~a inside buffer:~a~%~:{   ~s  ~s~%~}~]~%" 
            chunk-name 
            (act-r-chunk-name theChunk) 
            (mapcar #'(lambda (param) 
                (list (act-r-chunk-parameter-name param) 
                  (funcall (act-r-chunk-parameter-accessor param) chunk) 
                ) 
              ) 
              *chunk-parameters-list* 
          )))) 
          aString 
        ) 
        (format nil "Not a chunk- NIL") 
      ) 
    ) 
    (format nil "No declarative module found") 
    )))) 
) 
 
IDTR Hook helper code for information retrieval 
 
(defun IDTR-chunk-merge-hook (mc) 
) 
 
(defun formatOutput-chunk-spec (chunk-spec) 
  (let ( 
        (aString (string "")) 
      ) 
    (when (act-r-chunk-spec-p chunk-spec) 
      (setf aString (concatenate 'string aString  (format nil "ISA ~A" (chunk-spec-chunk-type chunk-spec)))) 
      (dolist (slot (act-r-chunk-spec-slots chunk-spec)) 
        (if (eql '= (act-r-slot-spec-modifier slot)) 
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            (setf aString (concatenate 'string aString (format nil "~%~s ~S" 
                (act-r-slot-spec-name slot) 
                (act-r-slot-spec-value slot)  )) 
            ) 
            (setf aString (concatenate 'string aString (format nil "~% ~2a ~s ~S" 
                (act-r-slot-spec-modifier slot) 
                (act-r-slot-spec-name slot) 
                (act-r-slot-spec-value slot)  )) 
            ) 
        ) 
      ) 
     ) 
    aString 
  ) 
) 
 
(defun IDTR-retrieval-request-hook (request) 
   (if (not (null request)) 
      (let* ( 
               (request-type (act-r-chunk-spec-type request)) 
               (request-type-name (act-r-chunk-type-name request-type)) 
               (request-type-slots (act-r-chunk-type-slots request-type)) 
             ) 
            (hookOutputInformation 0 "retrieval-request" "Chunk" (coerce 
            (format nil  "Request type name:       ~a 
                 ~%request slots:~%~a 
                 ~%request bindings:~%~a 
                 ~%request:~%~a~% 
                 " 
                 request-type-name 
                 request-type-slots 
                 (formatOutput-chunk-spec request) 
                  request 
             ) 
             'string ) 1) 
          ) 
  ) 
) 
 
(defun IDTR-retrieval-set-hook (ret-set) 
    (dolist (x ret-set) 
       (if x 
          (let* ( 
                  (chunk (get-chunk x)) 
                  (theChunk (act-r-buffer-chunk chunk)) 
                  (chunk-name (act-r-chunk-name chunk)) 
                  (aString (string (format nil "Buffer: ~a" chunk-name))) 
                ) 
          (if chunk 
              (progn 
                (setf aString (concatenate 'string aString 
                  (format nil "~%~%Details for chunk ~a: ~:[ (~s) ~; ~* ~] ~% ~@[~S~%~]  ISA ~S ~% ~:{   ~s  ~s~%~}" 
                              chunk-name 
                             (eql chunk-name (act-r-chunk-name chunk)) 
                             (act-r-chunk-name chunk) 
                             (act-r-chunk-documentation chunk) 
                             (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)) 
                             (mapcan #'(lambda (slot-name) 
                                  (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk)) 
                                      (when (or exists  
                                            (car (no-output (sgp-fct (list :show-all-slots)))) 
                                            (not  
                                                (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))   ) 
                                            ) 
                                         ) 
                                        (list (list slot-name value)) 
                                      ) 
                                   ) 
                                 ) 
                                (ct-slot-names (act-r-chunk-chunk-type chunk)) 
                              ) 
                    ) 
                  )) 
                (setf aString (concatenate 'string aString 
                   (format nil "~@[~%parameters for chunk ~a:~%~:{   ~s  ~s~%~}~]~%" 
                         chunk-name 
                       (mapcar #'(lambda (param) 
                              (list (act-r-chunk-parameter-name param) 
                                    (funcall (act-r-chunk-parameter-accessor param) x) 
                               ) 
                            ) 
                           *chunk-parameters-list* 
                      ) 
                    ) 
                  )) 
                   (hookOutputInformation 0 "retrieval-set" "Chunk set" aString 1) 
              ) 
            ) 
        ) 
        ) 
        ) 
) 
 
(defun formatOutput-bufferChunk-details(bufferChunk) 
  (if bufferChunk 
    (progn 
      (let*  ( 
                (aString (string (format nil "~%[~a] buffer Chunk Details: " (act-r-chunk-name bufferChunk)))) 
                (theChunk (act-r-buffer-chunk bufferChunk)) 
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                (chunk (get-chunk theChunk)) 
             ) 
        (if (not (null chunk)) 
           (progn 
              (setf aString (concatenate 'string aString 
                  (format nil "~%Details for chunk ~S inside ~a buffer: ~:[ (~s) ~; ~* ~] ~% ~@[~S~%~]  ISA ~S ~% ~:{   ~s  ~s~%~}" 
                     theChunk 
                     (act-r-chunk-name bufferChunk) 
                     (eql theChunk (act-r-chunk-name chunk)) 
                     (act-r-chunk-name chunk) 
                     (act-r-chunk-documentation chunk) 
                     (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)) 
                     (mapcan #'(lambda (slot-name) 
                          (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk)) 
                              (when (or exists  
                                    (car (no-output (sgp-fct (list :show-all-slots)))) 
                                    (not  
                                        (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))   ) 
                                    ) 
                                 ) 
                                (list (list slot-name value)) 
                              ) 
                           ) 
                         ) 
                        (ct-slot-names (act-r-chunk-chunk-type chunk)) 
                     )))) 
              (setf aString (concatenate 'string aString 
 
                (format nil "~@[~%parameters for chunk ~a inside buffer:~a~%~:{   ~s  ~s~%~}~]~%" 
                        theChunk 
                        (act-r-chunk-name bufferChunk) 
                        (mapcar #'(lambda (param) 
                                     (list (act-r-chunk-parameter-name param) 
                                           (funcall (act-r-chunk-parameter-accessor param) theChunk) 
                                      ) 
                                   ) 
                                  *chunk-parameters-list* 
                         )))) 
                aString 
             ) 
              " No internal Chunk" 
        ) 
      ) 
    ) 
    " No internal Chunk" 
  ) 
) 
 
(defun formatOutput-buffer-list(buffers-list) 
   (let ((aString (string ""))) 
    (if (listp  buffers-list) 
      (progn 
        (dolist (buffer buffers-list) 
            (if (buffer-exists buffer) 
              (progn 
                (let* ( 
                       (bufferChunk    (buffer-instance buffer)    ) 
                       ) 
                  (if bufferChunk 
                    (setf aString (concatenate 'string aString (formatOutput-bufferChunk-details bufferChunk) )) 
                  ) 
                ) 
               ) 
              (setf aString (concatenate 'string aString " [" (coerce-string buffer)": does not exists] " ) ) 
            ) 
          ) 
      ) 
      (setf aString (concatenate 'string aString  " []" ) ) 
    ) 
    aString 
  ) 
  ) 
 
(defun formatOutput-Production-Parameters(the-prod) 
  (if the-prod 
      (let ((prod-name (production-name the-prod))) 
            (format nil  "~%    utility:     ~6,3F~%     u:           ~6,3F~%     at:          ~6,3F~%     reward:      ~6,3F~%" 
                (no-output (caar (spp-fct (list prod-name :utility)))) 
                (no-output (caar (spp-fct (list prod-name :u)))) 
                (no-output (caar (spp-fct (list prod-name :at)))) 
                (no-output (caar (spp-fct (list prod-name :reward)))) 
            ) 
      ) 
  ) 
) 
 
(defun formatOutput-Production-Variables(the-prod) 
  (if the-prod 
      (let ( 
              (aString (string "")) 
              (variables-list (production-bindings the-prod)) 
            ) 
           (dolist (variable variables-list) 
              (setf aString (concatenate 'string aString   (format nil "~%~a: ~a" (car variable)  (cdr variable))   )) 
           ) 
          aString 
      ) 
  ) 
) 
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(defun formatOutput-Production-Details-From-Name(prod-name) 
  (has-current-mp 
    "No Meta process present." 
    (has-current-model 
   "No model loaded" 
   (let* 
       ( 
         (the-prod (get-production (intern prod-name) ) ) 
         (left-hand-side (production-lhs the-prod) ) 
         (right-hand-side (production-rhs the-prod) ) 
         (lhs-buffer-list (production-lhs-buffers the-prod)) 
         (rhs-buffer-list (production-rhs-buffers the-prod)) 
       ) 
 
           (format nil " Production: ~a 
               ~%Production Name: ~%~a 
               ~%Production Variables: ~%~a 
               ~%Production bindings:~a 
               ~%Production parameters:~a 
               ~%Internal chunks details for buffers [LHS] >>>>>:~% ~a 
               ~%Internal chunks details for buffers [RHS] >>>>>:~% ~a 
               ~%Production LHS: ~%~a 
               ~%Production RHS: ~%~a 
               ~%Whole Production: ~%~a 
              " 
           prod 
           (production-name the-prod) 
           (production-variables the-prod) 
           (formatOutput-Production-Variables the-prod) 
           (formatOutput-Production-Parameters the-prod) 
           (formatOutput-buffer-list lhs-buffer-list) 
           (formatOutput-buffer-list rhs-buffer-list) 
           left-hand-side 
           right-hand-side 
           the-prod 
            ) 
      ) 
     ) 
    ) 
) 
 
(defun formatOutput-Production-Details(the-prod prod &rest headers) 
  (let* 
        ( 
          (left-hand-side (production-lhs the-prod) ) 
          (right-hand-side (production-rhs the-prod) ) 
          (lhs-buffer-list (production-lhs-buffers the-prod)) 
          (rhs-buffer-list (production-rhs-buffers the-prod)) 
        ) 
        (hookOutputInformation 0 (coerce-string (first headers)) (coerce-string (second headers)) (coerce 
            (format nil " Production: ~a 
                ~%Production Name: ~%~a 
                ~%Production Variables: ~%~a 
                ~%Production bindings:~a 
                ~%Production parameters:~a 
                ~%Internal chunks details for buffers [LHS] >>>>>:~% ~a 
                ~%Internal chunks details for buffers [RHS] >>>>>:~% ~a 
                ~%Production LHS: ~%~a 
                ~%Production RHS: ~%~a 
                ~%Whole Production: ~%~a 
                      " 
          prod 
          (production-name the-prod) 
          (production-variables the-prod) 
          (formatOutput-Production-Variables the-prod) 
          (formatOutput-Production-Parameters the-prod) 
          (formatOutput-buffer-list lhs-buffer-list) 
          (formatOutput-buffer-list rhs-buffer-list) 
          left-hand-side 
          right-hand-side 
          the-prod 
        ) 
         'string ) (third headers)) 
    ) 
) 
 
(defun IDTR-cycle-hook (prod) 
(if (null prod) 
  (hookOutputInformation 0 "Cycle-hook" "Production Firing:" "Production NULL" 1) 
  (progn 
  (let ( (the-prod (get-production prod) )) 
       (formatOutput-Production-Details the-prod prod "cycle-hook" "Production Firing:" 1) 
   ) 
   ) 
  ) 
) 
 
(defun IDTR-conlict-resolution-hook (cs) 
(if (null cs) 
  (hookOutputInformation 0 "Conflict-resolution" "Winning Production:" "Production NULL" 1) 
  (progn 
  (let ( (the-prod (get-production (car cs)))) 
       (formatOutput-Production-Details the-prod (car cs) "Conflict-resolution" "Winning Production:" 1) 
   ) 
   ) 
  ) 
  nil 
) 
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(defun IDTR-retrieved-chunk-hook (rc) 
  (let ( 
          (chunk (get-chunk rc)) 
          (theChunk (act-r-buffer-chunk chunk)) 
          (aString (string (format nil "Buffer: ~a" chunk-name))) 
      ) 
      (progn 
        (setf aString (concatenate 'string aString 
          (format nil "~%~%Details for chunk ~a: ~:[ (~s) ~; ~* ~] ~% ~@[~S~%~]  ISA ~S ~% ~:{   ~s  ~s~%~}" 
              rc 
             (eql chunk-name (act-r-chunk-name chunk)) 
             (act-r-chunk-name chunk) 
             (act-r-chunk-documentation chunk) 
             (act-r-chunk-type-name (act-r-chunk-chunk-type chunk)) 
             (mapcan #'(lambda (slot-name) 
                  (multiple-value-bind (value exists) (gethash slot-name (act-r-chunk-slot-value-lists chunk)) 
                      (when (or exists  
                                (car (no-output (sgp-fct (list :show-all-slots))))  
                                (not  
                                    (extended-slot-name-p slot-name (act-r-chunk-type-name (act-r-chunk-chunk-type chunk))   ) 
                                ) 
                             ) 
                            (list (list slot-name value))  
                      ) 
                   ) 
                 ) 
                (ct-slot-names (act-r-chunk-chunk-type chunk))  
              ) 
            ) 
          )) 
        (setf aString (concatenate 'string aString 
           (format nil "~@[~%parameters for chunk ~a:~%~:{   ~s  ~s~%~}~]~%" 
                 rc 
               (mapcar #'(lambda (param) 
                    (list (act-r-chunk-parameter-name param) 
                          (funcall (act-r-chunk-parameter-accessor param) rc) 
                     ) 
                  ) 
                 *chunk-parameters-list* 
              ) 
            ) 
          )) 
       (hookOutputInformation 0 "retrieval-set" "Chunk set" aString 1) 
      ) 
  ) 
) 
 
(defstruct IDTR-module 
   esc 
   model-name 
) 
 
(defun reset-IDTR-module (IDTR-mod) 
   (when IDTR-mod 
         (sgp 
         :conflict-set-hook       IDTR-conlict-resolution-hook 
         :retrieval-request-hook  IDTR-retrieval-request-hook 
         :retrieval-set-hook      IDTR-retrieval-set-hook 
         :cycle-hook              IDTR-cycle-hook 
         :retrieved-chunk-hook    IDTR-retrieved-chunk-hook 
         :chunk-merge-hook        IDTR-chunk-merge-hook 
         :chunk-add-hook          IDTR-chunk-add-hook 
         ) 
   )) 
 
(defun create-IDTR-module (model-name) 
   (declare (ignore model-name)) 
   (make-IDTR-module :model-name model-name) 
) 
 
(defun delete-IDTR-module (IDTR-mod) 
   (declare (ignore IDTR-mod)) 
) 
 
(defun IDTR-params (IDTR-mod param) 
) 
 
(defun IDTR-module-queries (value) 
) 
 
(defun define-IDTR-module() 
   (clear-all) 
   (define-module-fct 'IDTR-MODULE nil 
 
     (list (define-parameter :esc :owner nil)) 
 
     :params         'IDTR-params 
     :creation       'create-IDTR-module 
     :reset          '(nil reset-IDTR-module) 
     :version        "2.0" 
     :documentation  "A module to handle the IDTR module" 
     :delete         'delete-IDTR-module 
   ) 
) 
 
(defun undefine-IDTR-module() 
   (clear-all) 
   (undefine-module-fct 'IDTR-MODULE) 
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) 
 
 
Executer helper code  
 
(defun cmd-executerLauncher (cmd args) 
  (ignore-errors 
    (cmd-executer cmd args) 
  ) 
) 
 
(defun coerce-string (thing) 
    "Make a thing (number, symbol, string) into a string." 
    (princ-to-string thing) 
) 
 
(defmacro gen-prod (goal name) 
  `(gentemp (concatenate 'string (coerce-string ,goal) (coerce-string ,name)  )) 
) 
 
 
(defmacro genp (goal name) 
  `(gentemp (concatenate 'string (coerce-string ,goal) "-" (coerce-string ,name) "-")) 
) 
 
 
 (defmacro gent (goal name) 
  `(gentemp (concatenate 'string (coerce-string ,goal) "-type-" (coerce-string ,name) "-"))) 
 
(defun time-string () 
  (multiple-value-bind (s m h)  (get-decoded-time) 
            ;(DECODE-UNIVERSAL-TIME (GET-UNIVERSAL-TIME)) ;(get-decoded-time);(get-universal-time); 
    (format nil "~A:~2,,,'0@A:~2,,,'0@A" (+ 1 h) m s)) 
) 
 
(defun string-split (split-string astring) 
  "Returns a list containing items in 'string' split from occurrences of 'split-string'." 
  (loop with l = (length split-string) 
    for n = 0 then (+ pos l) 
    for pos = (search split-string astring :start2 n) 
      if pos 
        collect (subseq astring n pos) 
      else 
        collect (subseq astring n) 
    while pos 
  ) 
) 
 
(defun string-to-list (s) 
  (assert (stringp s) (s) "~s should be a string but is not") 
  (coerce s 'list) 
) 
 
(defun convert-strings-integer(my-list) 
  (loop for x in my-list 
    collect (locale-parse-number x) 
  ) 
) 
 
(defun vector-to-list (vec) 
  (let* ( 
      (new-list nil) 
    ) 
    (dotimes (i (length vec)) 
      (push (aref vec i) new-list) 
    ) 
    (reverse new-list) 
  ) 
) 
 
 
(defun list-to-vector-a (list) 
  (let* ( 
    (length (length list)) 
      (vec (make-array length)) 
    ) 
    (dotimes (i length) 
      (setf (aref vec i) (pop list)) 
    ) 
    vec 
  ) 
) 
 
(defun string-arguments-to_list (args) 
  (let* ( 
    (new-list (string-split " " args)) 
    (new-list-length (length new-list)) 
    (my-vector (list-to-vector-a new-list)) 
    (my-vector-length (length my-vector)) 
    (new-object-vector (make-array new-list-length) ) 
    ) 
    (dotimes (i my-vector-length) 
      (let* ( 
          (vector-item (aref my-vector i)) 
          (item-bits (string-split ":" vector-item)) 
        ) 
        (cond 
          ((string= "s" (first item-bits)) 
            (setf (aref new-object-vector i) (second item-bits)) 
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          ) 
          ((string= "i" (first item-bits)) 
            (setf (aref new-object-vector i) (parse-integer (second item-bits))) 
          ) 
        ) 
      ) 
    ) 
    (vector-to-list  new-object-vector) 
  ) 
) 
 
(defun cmd-executer (operation &rest argument-list) 
    (let* ( 
            (timing) 
            (args (string-arguments-to_list (first argument-list))) 
            (args-length (length args)) 
            (newOp (symbol-function  (find-symbol (string-upcase operation)))) 
          ) 
          (if (equal (first args) NIL) 
            (progn 
              (setq timing (apply newOp nil ) ) 
            ) 
            (progn 
              (setq timing (apply newOp args )  ) 
            ) 
          ) 
       (format nil "~a" timing) 
    ) 
) 
 
 (defun cmds-to_list (args) 
     (let* ( 
              (timing) 
              (new-list (string-split "@" args)) 
              (new-list-length (length new-list)) 
              (my-vector (list-to-vector-a new-list)) 
              (my-vector-length (length my-vector)) 
              (new-object-vector (make-array new-list-length) ) 
           ) 
         (setq timing 0.0) 
         (dolist (item new-list) 
            (let  ( 
                     (newcmd-list (string-split "^" (coerce-string item) )) 
                  ) 
                  (declare (dynamic-extent newcmd-list )) 
                  (setq timing (+ timing (cmd-executer (car newcmd-list) (car (cdr newcmd-list)))) ) ) 
            ) 
            timing 
      ) 
) 
 
(defun thenewtestfunction (data) 
  (if (not(equal (length data) 0)) 
        (cmds-to_list data) 
  ) 
)  
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APPENDIX F:  MUTATION SYSTEM PUMP 
int GANewMutator::IDTR_Mutator(GAGenome & c, float pmut){ 
 genesPtr = &(GA1DArrayAlleleGenome<float>&)c; //retreive the genes from Galib 
 //retreive the user data were some metrics and pointers are kept 
 data = (UserData *)genesPtr->userData(); 
 genesSize = genesPtr->size();//get number of genes 
 //Create some masks to hold some status about genes and mutator selection 
//the muationsMask is passed to retrieve from the operators  
//which actual genes was affected by the mutation system 
 mutationsMask = (int*) calloc (genesSize,sizeof(int)); 
 mutationMaskFilter = (int*) calloc (genesSize,sizeof(int)); 
 //if we do have created thos masks 
 if (mutationsMask!=NULL && mutationMaskFilter != NULL){ 
  //Randomise the gene status. 1 means they will undergo mutation. 0 otherwise 
  genesAffected = 0; 
      if(GAFlipCoin(0.95)){ //a small chance that only one gene will be mutated. i.e. 5% 
   for (i = 0; i < genesSize; i+=2){ //if a selection of selection of genes is selected 
    //flip a coin to decide the status taking the mutation rate into account 
    if(GAFlipCoin(pmut )){ 
     //a pair of adjacent genes are going to be mutated i.e. X&Y coordinated 
     mutationMaskFilter[i] = 1;mutationMaskFilter[i+1] = 1; 
    }else{ 
     mutationMaskFilter[i] = 0;mutationMaskFilter[i+1] = 0; 
    } 
//increasse the amount index if selected genes for mutation 
    genesAffected += 2; 
   } 
  }else{ 
   //if one a single gene is selected, get a random  X coordinate from the pool 
   int mutatatedGeneIndex = IDTR_GAEvenRandomInt(0, genesSize); 
    for (i = 0; i < genesSize; i+=2){ //make that all are turned off 
     mutationMaskFilter[i] = 0;mutationMaskFilter[i+1] = 0; 
   } 
//and turn the selected pair on 
   mutationMaskFilter[mutatatedGeneIndex] = 1;mutationMaskFilter[mutatatedGeneIndex+1] = 1; 
  } 
  //randomise which mutator to fire using masks from our pool of 12 operators 
  int nbMutators = 12; 
  //get a mutation operator at random 
  //int mutatorIndex = mutatorIndex = GARandomInt(0,nbMutators-1); 
          int mutatorIndex = 0; 
  if(!data->configInstance->goodLayoutFound) //if a workable layout not found 
   mutatorIndex = GARandomInt(0,nbMutators-1); //then get any operator at random 
  else{ 
   if (GAFlipCoin(0.50)){ //if the toss of a coing is favorable, select any oprator 
    mutatorIndex = GARandomInt(0,nbMutators-1); 
   } else{//otherwise 
    if(GAFlipCoin(0.50)) //toss a coin to select which of the sticking operator to select 
      mutatorIndex = 10; //stick to a related component by an action 
    else 
      mutatorIndex = 9; //stick to any component in the layout 
   } 
  } 
  geneMutationProb = pmut; //ensure that the operators are getting the mutationrate 
  //randomise the genes that will be mutated 
  randomizer.setup(&geneMutationProb, &genesSize, mutationMaskFilter); 
//retreive from the randomiser a pointer to the genes to pass to the operators 
  genesLoc = randomizer.getValuesVecPtr(); 
//ensure that the oprators know how mny genes will be affected 
  genesLocSize = genesLoc->size(); 
mutationOperators[mutatorIndex](); //invoke the selected mutator  
  //retreive the total number of mutation to return to Galib for tis stats 
  mutations = 0; 
  for (int i = 0; i < genesSize; i++){ 
   if (mutationsMask[i] > 0) 
    mutations += mutationsMask[i]; 
  } 
  //clean up 
  if (mutationMaskFilter) free (mutationMaskFilter); 
  if (mutationsMask) free (mutationsMask); 
//and return the number of mutations that took place to Galib 
  return mutations; 
 } 
 return 0; 
} 
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APPENDIX G:  BLOCK RANDOM MUTATION OPERATOR 
void RandomBlockComponentsShift(){ 
 //get random horizontal, vertical direction 
 leftORright = (GALEFTRIGHT) GARandomBit(); upORdown = (GAUPDOWN)GARandomBit(); 
 direction = (GADIRECTION)GARandomInt(0,2); 
 w = data->width; h = data->height; //retreive metrics of the layout 
 //compute random nudging value 
 offsetXVal = _GARandomFloat_(&minFloatRandom,&w); offsetYVal = _GARandomFloat_(&minFloatRandom,&h); 
 while (genesLocSize > 0){ // while there are still a number of genes pairs to mutate 
  //retreive both X and Y index for coordinate of a component 
  destX = randomizer.getRandomNoReplacement(); 
  genesLocSize = randomizer.getNumberValuesInVector(); 
  destY = destX + 1; 
  if (destX < 0) break; //if errors break away to terminate process 
  //reteive the actual value of component coordinates i.e. gene values 
  valX = newValX = genesPtr->gene(destX); valY = newValY = genesPtr->gene(destY); 
  //and retrieve the metrics of the component i.e. width and height 
  XcompMetric = data->GUI_metrics[destX]; YcompMetric = data->GUI_metrics[destY]; 
  //if direction is horizontal i.e. going left or right 
  if(direction == GOING_HONRIZONTAL){ 
   //if left was selected 
   if (leftORright == GOING_LEFT){ 
    newValX = valX - offsetXVal; //shift component to left 
    //deal with situation when outside the layout 
    //by shifting by a reflective amount the other side 
    if (newValX < 0) newValX = abs(newValX) + 1; 
   }else{//if going right       
    newValX = valX + offsetXVal; //shift component to right 
    //deal with situation when outside the layout 
    if (newValX + XcompMetric > w) newValX = newValX - ((newValX + XcompMetric) - w) - 1; 
   } 
   genesPtr->gene(destX, newValX); //save new location in the chromosome 
   mutationsMask[destX]++; //and increase mutation number 
  //if the direction is to go vertically 
  }else if (direction == GOING_VERTICAL){ 
   if (upORdown == GOING_UP){ //if selected direction is to go upward 
    newValY = valY - offsetYVal; //shift component upward 
    if (newValY < 0) newValY = abs(newValY) + 1; //and deal with situation when outside the layout 
   }else{//if doing downward 
    newValY = valY + offsetYVal; //shift component downward 
    //and deal with situation when outside the layout 
    if (newValY + YcompMetric > h) newValY = newValY - ((newValY + YcompMetric) - h) - 1;  
   } 
   genesPtr->gene(destY, newValY); //save new location in the chromosome  
   mutationsMask[destY]++; //and increase mutation number 
}   else if (direction == GOING_DIAGONAL){ //if the direction is to go diagonally 
   if (leftORright == GOING_LEFT){ //if one of selected direction is to left 
    newValX = valX - offsetXVal; //shift component on the left 
    if (newValX < 0) newValX = abs(newValX) + 1; //and deal with situation when outside the layout 
   }else{{//if doing on the right 
    newValX = valX + offsetXVal; shift component to the right 
    //and deal with situation when outside the layout 
    if (newValX + XcompMetric > w) 
         newValX = newValX - ((newValX + XcompMetric) - w) - 1; //newValX - (w-newValX) - 1; 
   } 
   if (upORdown == GOING_UP){ {{//if doing on upward 
        newValY = valY - offsetYVal; shift component upward 
    //and deal with situation when outside the layout 
    if (newValY < 0) newValY = abs(newValY) + 1; 
   }else{ {{//if doing downward 
    newValY = valY + offsetYVal; //shift component downward 
    //and deal with situation when outside the layout 
     if (newValY + YcompMetric > h) 
         newValY = newValY - ((newValY + YcompMetric) - h) - 1; //newValY - (newValY - h) -1; 
   } 
   //save new location in the chromosome 
   genesPtr->gene(destX, newValX);  
   genesPtr->gene(destY, newValY);  
   //and increase mutation number 
   mutationsMask[destX]++; 
   mutationsMask[destY]++; 
   }  
 } 
} 
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APPENDIX H:  TOISE 2-POINTS CROSSOVER 
int GACrossovers::IDTRTwoPointPairCrossover(const GAGenome& p1, const GAGenome& p2, GAGenome* c1, GAGenome* c2){ 
 //retrieve the genome from Galib  
 const GA1DArrayGenome<float>& mom=DYN_CAST(const GA1DArrayGenome<float>&, p1); 
 const GA1DArrayGenome<float>& dad=DYN_CAST(const GA1DArrayGenome<float>&, p2); 
 int ofsprings = 0; float geneX = 0.0f; float geneY = 0.0f; 
 //retrieve Mum and Dad chomosome length 
 mumLength = mom.length(); 
 dadLength = dad.length(); 
 //get a random value for cutting location 
 pos1 = GAUtils::getEvenRandomINT(&zeroIntVal, &mumLength); 
 pos2 = GAUtils::getEvenRandomINT(&zeroIntVal, &mumLength); 
 //if genes properly retreived and we have two of them i.e. need 2 ofsprings 
 //NOTE: be careful that some type of GA only generate 1 ofspring 
 if(c1 && c2){ 
  //cast the genomes to buffers of genes 
  GA1DArrayGenome<float> &sis=DYN_CAST(GA1DArrayGenome<float>&, *c1); 
  GA1DArrayGenome<float> &bro=DYN_CAST(GA1DArrayGenome<float>&, *c2); 
  //if it happens that random values are not the right way, swap them 
  if (pos1 > pos2) 
   SWAP(pos1,pos2); 
  //compute length of segment 
  int len  = pos2-pos1; 
  //toss a coin to decide which way round the infomration is transfer to next generation 
  if(GARandomBit()){ 
   //copy gene information from parents to one child i.e. MUM, DAD,MUM 
   sis.copy(mom, 0, 0, pos1);  
   sis.copy(dad, pos1, pos1, len); 
   sis.copy(mom, pos2, pos2, mumLength-pos2); 
   //repeat process for other child i.e. DAD, MUM,DAD 
   bro.copy(dad, 0, 0, pos1); 
   bro.copy(mom,pos1, pos1, len); 
   bro.copy(dad, pos2, pos2, dadLength-pos2); 
  }else{ 
   //copy gene information from parents to one child i.e. DAD, MUM,DAD 
   sis.copy(dad, 0, 0, pos1);  
   sis.copy(mom, pos1, pos1, len); 
   sis.copy(dad, pos2, pos2, dadLength-pos2); 
   //repeat process for other child i.e. MUM, DAD,MUM 
   bro.copy(mom, 0, 0, pos1); 
   bro.copy(dad,pos1, pos1, len); 
   bro.copy(mom, pos2, pos2, mumLength-pos2); 
  } 
  //tell Galib 2 ofsprings were generated 
  ofsprings = 2; 
 
 } 
 //if only 1 ofspring is needed 
 else if(c1 || c2){ 
  //cast the genomes to buffers of genes 
 GA1DArrayGenome<float> &kid = (c1 ? DYN_CAST(GA1DArrayGenome<float> &, *c1) :  
     DYN_CAST(GA1DArrayGenome<float> &, *c2)); 
  //if it happens that random values are not the right way, swap them 
  if (pos1 > pos2) 
   SWAP(pos1,pos2); 
  //compute length of segment 
  int len  = pos2-pos1; 
  toss a coin to decide which way round the infomration is transfer to next generation 
  if(GARandomBit()){ 
   //copy gene information from parents to one child i.e. MUM, DAD,MUM 
   kid.copy(mom, 0, 0, pos1); 
   kid.copy(dad, pos1, pos1, len); 
   kid.copy(mom, pos2, pos2, mumLength-pos2); 
  } 
  else{ 
   copy gene information from parents to one child i.e. DAD, MUM,DAD 
   kid.copy(dad, 0, 0, pos1); 
   kid.copy(mom, pos1, pos1, len); 
   kid.copy(dad, pos2, pos2, mumLength-pos2); 
  }  
  //tell Galib 1 ofsprings were generated  
  ofsprings = 1; 
 } 
 return ofsprings; 
} 
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APPENDIX I:  GA PENALTY ALGORITHMS 
float JavaObjectsManager::getAreaOverlapPenaltiesFactor(){ 
 
  long interceptAreaCumul = 0.0f; 
  JavaComponent* compA = NULL; 
  register int i; 
  register int j; 
  long totalArea = 0; 
  std::vector<JavacompSymbols> symbolsVec; 
   
  for (compA = (JavaComponent*)firstComponent; compA; ){ 
    /* 
      We need to ensure that static components are not taken into account and  
  that they are allowed to move on the layout  
      Any other components are saved to a symbol that will calculate anything needed et 
    */ 
    if (compA && compA->allowed  
        && (isComponentAllowedToMove(&compA->baseClass, &compA->className)  
            || compA->className.compare("javax.swing.JMenuBar") == 0) 
 
    ){   
      JavacompSymbols symbol; 
      //get the component metrics into the symbol 
      compA->fillSymbol(symbol);   
      //increase ID 
      compTotal ++; 
      symbol.id = compTotal; 
      //push it into a vector 
      symbolsVec.push_back(symbol); 
      } 
      //next component 
      compA = (JavaComponent*)compA->nextComponent; 
    } 
 
    //we now detect the amount of interceptions for each components 
    for (i = 0; i < (int)symbolsVec.size(); i++){ 
      for (j = 0; j < (int)symbolsVec.size(); j++){ 
 
      //ensure that we do not into account a component overlapping with itself 
      if (symbolsVec[j].id == symbolsVec[i].id) 
        break; 
 
      //increase the total area by the area of this component 
      totalArea += symbolsVec[j].area; 
 
      //model the GUI components as a CRECT objects so we can use its functionality 
      rectA = CRect(symbolsVec[i].x, symbolsVec[i].y,  
  symbolsVec[i].x + symbolsVec[i].width, symbolsVec[i].y + symbolsVec[i].height); 
      rectB = CRect(symbolsVec[j].x, symbolsVec[j].y,  
  symbolsVec[j].x + symbolsVec[j].width, symbolsVec[j].y + symbolsVec[j].height); 
 
      //get the intersection CRECT for both object to compare for overlap 
      interRes = intersecRect.IntersectRect(rectA, rectB) == 1; 
       
      //if overlap it exists 
      if (interRes){ 
 
        //calculate the intersection area 
        interceptArea = intersecRect.Width() * intersecRect.Height(); 
         
        //and increase the total overlap area 
        interceptAreaCumul += interceptArea; 
      } 
    } 
  } 
  //and return the fraction of overlap compared to total component area 
  return  (interceptAreaCumul * 1.0f)/(totalArea * 1.0f); 
}  
 
 
 
float JavaObjectsManager::getOutofAreaPenalties(){ 
 
//do a little checks to beging with 
 configInstance->javaManagerBusy = true; 
 if(areasManager->getNumberAreas() == 0) 
  return 0.0f; 
 penalties = 0; 
 //for each component in the layout 
 for (comp = (JavaComponent*)firstComponent; comp; ){ 
  crectA.SetRect(comp->x, comp->y,comp->x+comp->width, comp->y + comp->height); 
//if the component is bound to an area 
  if(comp->bindedToArea){ 
//get the area 
   area = areasManager->getAreaFromID(&comp->areaID); 
   //if we have one 
   if (area){ 
//translate this area to a CRect component and apply the penalties 
    areaRect.SetRect(area->topLeft,area->bottomRight); 
    if (crectA.left < areaRect.left || crectA.right > areaRect.right  
                       ||crectA.top < areaRect.top ||crectA.bottom > areaRect.bottom){  
     penalties += 6; 
    if(areaRect.PtInRect(crectA.CenterPoint())) 
     penalties -= 1; 
    if(areaRect.PtInRect(area->bottomRight)) 
     penalties -= 1; 
    if(areaRect.PtInRect(CPoint(area->topLeft.x, area->bottomRight.y))) 
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     penalties -= 1; 
    if(areaRect.PtInRect(CPoint(area->bottomRight.x, area->topLeft.y))) 
     penalties -= 1; 
    } 
   } 
 
   //the component make be in an area it is not supposed to be in 
//so attempt to get it 
   Area* OtherArea = areasManager->getAreaForPoint(CPoint(crectA.CenterPoint())); 
   CRect intersecRect; 
   //if it exists 
   if(OtherArea){ 
    //and we have an area 
    if(area){ 
     //make sure we are not penalising for being in tis own area!  
     if(OtherArea->getID() != area->getID()){ 
      //if if there is any intersect 
      CRect crectB; 
      CPoint p1 = OtherArea->topLeft; 
      CPoint p2 = OtherArea->bottomRight; 
      crectB.SetRect( OtherArea->topLeft, OtherArea->bottomRight); 
      //if included increase the peanlties points 
      bool interRes = intersecRect.IntersectRect(areaRect, crectB) == 1; 
//and if there is penalise this component 
      if(interRes) 
          penalties += 6;      
     } 
    } 
   } 
  } 
//next component 
  comp = (JavaComponent*)comp->nextComponent; 
 } 
 //we are not doing anything anymore 
 configInstance->javaManagerBusy = false; 
 //return overall penalties 
 return penalties ; 
} 
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APPENDIX J:  GENETIC ALGORITHM SURROGATE METHOD EXAMPLE 
 

inline float timingDragDropActionMoveTo(ActionRecord* actionRecord){ 

 

timing = 0.0f; cartesianLength = 0.0f; angleForCartesianDistance = 0.0f; 

approachWidth = 0.0f; lengthDegrees = 0.0f; newFitts_coefficient = 0.0f; 

last_x =  actionRecord->action1_x; last_y = actionRecord->action1_y; 

lastWidth = actionRecord->action1_width;lastHeight = actionRecord->action1_height; 

from_x =  actionRecord->action2_x; from_y = actionRecord->action2_y; 

fromWidth = actionRecord->action2_width; fromHeight = actionRecord->action2_height; 

to_x =  actionRecord->action3_x; to_y = actionRecord->action3_y; 

toWidth = actionRecord->action3_width; toHeight = actionRecord->action3_height; 

fitts_time = 0.0f; prep_time = 0.05f; 

lastAngleForCartesianDistance = 0.0f; lastLengthDegrees = 0.0f; 

start_time = 0.485f; dir = false; 

dist = false; finish_time = 0.0f; //(+ (burst-time module) (exec-time mvmt)) 

exec_time = 0.0f;                 //(+ (init-time mtr-mod) fitts )  

realFittsVal = 0.0f; nfeats = 0; 

 

//the first action will be a cursor one 

//cursor-ply is based on ply itself descendant from hfrt-movement which style is:HAND_FINGER_R_THETA 

actionStyle = HAND_FINGER_R_THETA; lastActionStyle = NOSTYLE;  

styleFeatures = featureNumberForActionStyle[actionStyle]; 

 

//FOCUSING AND MOVING OVER THE FIRST ORIGN TARGET I.E. last_x,last_y,last_x-1,last_y-1 

//WE MOVE TO THE TARGET A AND WE HAVE SET UP THE CURSOR AND HAND POSITION TO TARGET A MINUS 1 FOR 

BOTH X //AND Y METRICS 

//WE DO THIS QUICK CALL TO GET THE ANGLE AND LENGTH SO IT CAN BE USED TO CALCULATE THE DIFFERENCE IN 

//FEATURES FOR THE NEXT ACTIONS 

last_x1 = last_x-1; last_y1 = last_y-1; 

move_cursor_calculations(cartesianLength,angleForCartesianDistance, 

approachWidth,lengthDegrees,&lastWidth,&lastHeight,&last_x1,&last_y1,&last_x,&last_y); 

newFitts_coefficient = fitts_coefficient_func(); 

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient); 

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle, 

&lastAngleForCartesianDistance,&angleForCartesianDistance,&lastLengthDegrees,&lengthDegrees)

; 

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees; 

//THE STYLE REMAINS THE SAME 

lastActionStyle = actionStyle; actionStyle = HAND_FINGER_R_THETA;  

//WE ARE MOVING TOWARD TARGET A. THIS SHOULD BE LIKE THIS NOT PASSING THE HEIGHT INSTEAD OF THE WIDTH 

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idt 

h,&fromHeight,&last_x,&last_y,&from_x,&from_y); 

newFitts_coefficient = fitts_coefficient_func(); 

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient); 

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle,  

 &lastAngleForCartesianDistance,&angleForCartesianDistance,&lastLengthDegrees,&lengthDegrees)

; 

prep_time = computePrepTime(nfeats); 

timing = 1.02f; 

if (cartesianLength == 0.0f){ 

 finish_time = 0.285f; 

 timing += finish_time; 

 timing += 0.185f; 

}else{ 

 finish_time =  fitts_time + 0.05f + 0.05f; 

 timing += prep_time + finish_time; 

 timing += 0.235f; 

 if (prep_time == 0.0f){ 

  timing += 0.035f; 

 } 

} 

 

timing += 0.0000001729f; timing += 0.165f; lastTiming = timing; 

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees; 

//THE STYLE REMAINS THE SAME 

lastActionStyle = HAND_FINGER_R_THETA; actionStyle = HAND_FINGER_R_THETA;  

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idt h,&fromHeight,&last_x,&last_y,&from_x,&from_y); 

newFitts_coefficient = fitts_coefficient_func(); 

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient); 

nfeats = getNumberDifferentFeatures( 

 dir,dist,&lastActionStyle,&actionStyle,&lastAngleForCartesianDistance,&angleForCartesianDist

ance 

 ,&lastLengthDegrees,&lengthDegrees); 

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees; 

//THE STYLE REMAINS THE SAME 

lastActionStyle = actionStyle; actionStyle = HAND_FINGER_R_THETA;  

move_cursor_calculations(cartesianLength,angleForCartesianDistance,approachWidth,lengthDegrees,&fromW

idth,&fromHeight,&from_x,&from_y,&from_x,&from_y); 

newFitts_coefficient = fitts_coefficient_func(); 

fitts_time = fittsFunc(realFittsVal, &lengthDegrees, &approachWidth, &newFitts_coefficient); 
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nfeats = getNumberDifferentFeatures( 

dir,dist,&lastActionStyle,&actionStyle,&lastAngleForCartesianDistance,&angleForCartesianDistance,&las

tLengthDegrees,&lengthDegrees); 

lastAngleForCartesianDistance = angleForCartesianDistance; lastLengthDegrees = lengthDegrees; 

 

//WE JUST USE THE PUNCH STYLE FOR CLICKING 

lastActionStyle = PUNCH; actionStyle = HAND_FINGER_R_THETA;  

move_cursor_calculations(cartesianLength,lastAngleForCartesianDistance,approachWidth,lastLengthDegree

s,& 

 toWidth,&toHeight,&from_x,&from_y,&to_x,&to_y); 

newFitts_coefficient = fitts_coefficient_func(); 

fitts_time = fittsFunc(realFittsVal, &lastLengthDegrees, &approachWidth, &newFitts_coefficient); 

nfeats = getNumberDifferentFeatures(dir,dist,&lastActionStyle,&actionStyle,  

 &angleForCartesianDistance,&lastAngleForCartesianDistance,&lengthDegrees,&lastLengthDegrees)

; 

prep_time = computePrepTime(nfeats); 

if (cartesianLength == 0.0f){ 

 finish_time = 0.285f; timing += finish_time; timing += 0.150f; 

}else{ 

 finish_time =  fitts_time + 0.05f + 0.05f; 

 timing += prep_time + finish_time; timing += 0.050f; timing += 0.300f; 

 if (prep_time == 0.0f){ timing += 0.035f;} 

} 

return timing; 

} 

   
inline void move_cursor_calculations(float& cartesianDistance,float& angle,float& approachWidth,  
 float& angleForDistance, float* width, float* height, float* from_x, float* from_y,  
 float* to_x, float* to_y){ 
//we first use the cartesian coodinates x1 y1 x2 y2 of our 2 points to get the distance from the  
//cartesian distance between those points and the angle from origin to this tangent 
xy_to_polar(angle, cartesianDistance, from_x, from_y, to_x, to_y); 
angleForDistance = distanceToangle(&cartesianDistance); 
//now the width in pixels in the GUI must be re-calculated with eye position and distance from screen 
approachWidth = calcApproach_width(width,height,angle); 
 
if (approachWidth <= 0.0f){ 
 approachWidth = 1.0f; 
} 
} 
 
//this is computed by the CURSOR-PLY  in the compute-exec-time function of motor.lisp 
//which seems to do that only. The cursor-ply object is created in the move-cursor function 
//as part of the "prepare-movement" process 
inline float fitts_coefficient_func(){ 
return exp(control_order) * fitts_coefficient; 
} 
 
inline float fittsFunc(float& realFittsVal, float* lengthDegrees, float* approachWidth,  
 float* fittsCoefficient){ 
realFittsVal = *fittsCoefficient *(log((*lengthDegrees/*approachWidth)+0.5)/log(2.0f)); 
result = realFittsVal; 
if (result < min_fitts_time) 
 result =min_fitts_time; 
return result; 
} 
 
inline float calcAngle(float* p1_x, float* p1_y, float* p2_x, float* p2_y){ 
a_x = *p2_x - *p1_x; a_y = *p2_y - *p1_y; b_x = 1.0; b_y = 0.0; 
return acos((a_x*b_x+a_y*b_y)/sqrt(a_x*a_x+a_y*a_y)); 
} 
 
inline void xy_to_polar (float& angle, float& distance,  float* from_x, float* from_y, float* to_x,  
 float* to_y){ 
//we first calculate the distance between those 2 points 
distance = cartesianDistance(from_x, from_y, to_x, to_y); 
//and then returns the angle of to the tangent between those 2 points 
if (distance == 0.0f) angle = 0.0f; else angle = atan2( *to_y-*from_y,*to_x-*from_x); 
} 
inline float degreesToRadian(float* degrees){ 
//return degrees * PI / 180.0f;  
return D_toR_(*degrees); 
} 
 
 
inline float radianTodegrees(float* radians){ 
//return radians * 180 / PI; 
return R_toD_(*radians); 
} 
 
inline float angleTopixels_mth(float* angle ){ 
float result = distanceFromScreen * tan(degreesToRadian(angle)) * screenDPI; 
return result; 
} 
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inline float distanceToangle(float* pixels){ 
//we have a distance in pixels and we are looking from a certain distance from the screen.  
//We first adjust it for the screen DPI 
//we can get the angle of sight using the R=atan(X/Y) where X=pixels and Y distance = //distanceFromScreen. We then return the degrees 
rather than radians. 
distanceAngle = atan( (*pixels / screenDPI) / distanceFromScreen); 
return radianTodegrees(&distanceAngle); 
} 
 
inline float cartesianDistance(float* from_x, float* from_y, float* to_x, float* to_y){ 
return sqrt((*to_x-*from_x)*(*to_x-*from_x) + (*to_y-*from_y)*(*to_y-*from_y)); 
} 
 
inline float calcApproach_width(float* width, float* height,  float& polar_angle){ 
critical_theta = atan2(*height,*width); theta = abs(polar_angle); 
if (theta > _PI_/2.0f) theta = _PI_ - theta; 
float result = 0.0f;  
if(theta == 0.0f)  result = *width; 
else if(theta == _PI_/2.0f) result =  *height; 
else if (theta == critical_theta)  result =  cartesianDistance(height,width,height,width); 
else if (theta < critical_theta)  result =  *width / cos(theta); 
else  result =  *height / cos( _PI_/2.0f - theta); 
return = distanceToangle(&result); 
} 
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APPENDIX K:  TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000 

GENERATION SIZE 
 

 

Design Layout ACT-R latency 

  

204.481 

  

204.484 

  

204.535 

  

204.536 

  

204.544 

  

204.549 

  

204.552 
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204.565 

  

204.567 

  

204.567 

  

204.569 

  

204.575 
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APPENDIX L:  TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 10000 

GENERATION SIZE  
 

 

Design Layout ACT-R latency 

  

204.405 

  

204.413 

  

204.426 

  

204.48 

  

204.494 

  

204.503 

  

204.503 



209 

 

  

204.523 

  

204.524 

  

204.531 
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APPENDIX M:  TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000 

GENERATION SIZE  
 

Design Layout ACT-R latency 

  

204.408 

  

204.457 

  

204.461 

  

204.48 

  

204.483 

  

204.484 

  

204.487 
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204.494 

  

204.501 

  

204.511 

  

204.512 

  

204.514 

  

204.514 
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APPENDIX N:  TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000 

GENERATION SIZE  
 

Design Layout ACT-R latency 

  

204.562 

  

204.607 

  

204.618 

  

204.621 

  

204.631 

  

204.633 

  

204.651 
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204.659 

  

204.660 

  

204.662 

  

204.678 

  

204.679 
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APPENDIX O:  TOP 5% 4 AREAS OPTIMISED DESIGN LAYOUTS WITH 20000 

GENERATION SIZE 
 

Design Layout ACT-R latency 

  

204.441 

  

204.451 

  

204.470 

  

204.495 

  

204.497 

  

204.500 

  

204.500 
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204.506 

  

204.509 

  

204.510 

  

204.516 

  

204.531 
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APPENDIX P:  TOP 5% 3 AREAS OPTIMISED DESIGN LAYOUTS WITH 5000 

GENERATION SIZE 
 

Design Layout ACT-R latency 

  

204.497 

  

204.515 

  

204.569 

  

204.579 

  

204.600 

  

204.605 

  

204.615 
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204.616 

  

204.621 

  

204.629 

  

204.630 

  

204.632 
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