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Abstract The Artificial Reaction Network (ARN) is a Cell Signalling Network inspired 

connectionist representation (CSN) belonging to the branch of A-Life known as Artificial 

Chemistry. Its purpose is to represent chemical circuitry and to explore computational properties 

responsible for generating emergent high-level behaviour associated with cells. In the paper, the 

computational mechanisms involved in pattern recognition and spatio-temporal pattern generation are 

examined in robotic control tasks. The results show that the ARN has application in limbed robotic 

control and computational functionality in common with Artificial Neural Networks. Like spiking 

neural models, the ARN can combine pattern recognition and complex temporal control functionality 

in a single network, however it offers increased flexibility. Furthermore, the results illustrate parallels 

between emergent neural and cell intelligence.  
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1 Introduction 
In recent years, researchers have become increasingly interested in the complex behaviours displayed 

by individual cells. Such behaviours are exemplified by simple eukaryotic organisms called protists. 

These show an astonishingly varied repertoire of seemingly intelligent behaviours. For example, some 

have simple eye-spots to help avoid high light levels; others have locomotory appendages and 

stinging arrows to actively hunt and subdue their prey (Ford 2009). All this is accomplished without 

recourse to a neural network, the foundation-stone of intelligence in higher animals. The behaviour of 

such simple organisms may be labelled as “Cell Intelligence”.   

In order to generate this emergent high-level behavior, a cell must be able to store and process 

information. Data is represented internally by a set of spatially distributed molecular concentrations. 

Cell Signalling Networks (CSNs) process this information within elaborate hierarchical network 

control structures which connect species together in productive or inhibitory unions. In this way, cells 

are able to respond to changes within their environment, communicate with other cells, and perform 

internal self-maintenance operations (Bray 1995). Several researchers have highlighted the processing 

capabilities of these networks (Bray 1995; Arkin and Ross 1994; Bhalla 2003) and similarities to 

Artificial Neural Networks (ANNs) (Bray 1995; Bhalla 2003). For example, Bray (1995) claims that 

individual network units can perform Boolean and fuzzy logic and act as a Turing machine. In other 

work, Stadtman and Chock (1997) demonstrated that such a network can act as a flexible 

computational unit. Similar results were documented by Arkin and Ross (1994), and recently a 

number of researchers have developed these ideas (Hild et al. 2010; Wang 2011).  

In this paper the properties and applications of a connectionist model inspired by CSNs termed the 

Artificial Reaction Network (ARN) are discussed. This representation was introduced previously 

(Gerrard et al. 2010) where it was used to create a simulation of the chemotaxis pathway of 

Escherichia coli. In later work biochemical network motifs were investigated as a means to perform 

computational processing in a single ARN based system (Gerrard et al. 2011a; 2011b).  

The ARN belongs to the branch of Artificial Life known as Artificial Chemistry Computing (ACC). 

This field of study utilizes principles of the Chemical Metaphor to construct novel software or 

hardware architectures in silico (Dittrich et al. 2001). In the Chemical Metaphor, data is stored in the 

form of molecular species and information processing occurs through interactions (reactions) between 

these molecules. The result of this computation appears as emergent global behaviour (Dittrich et al. 

2001). ACC has been previously used in two main applications: simulating complex systems 

(biological, social or ecological) and in developing novel solutions to engineering or computational 

problems. Its approach can be broadly categorised into microscopic or macroscopic methods (Dittrich 

2005). Microscopic methods treat each molecule explicitly, while in macroscopic methods, all the 

molecules of one type are represented by a value signifying, for example, concentration. Microscopic 

ACCs tend to model dynamics as stochastic molecular collisions, while macroscopic models tend to 

use continuous differential or discrete difference equations. The ARN is a macroscopic ACC and has 



a networked representation similar to other ACC models (Zeigler and Banzaf 2000; Eikelder et al. 

2009). For instance, in the Artificial Biochemical Neuron, concentrations of reactants form weighted 

links between reactions and their dynamics are modelled using Ordinary Differential Equations 

(ODEs) (Eikelder et al. 2009). Other related chemically inspired approaches can be found in the 

literature, for instance, the Gene Regulatory Network algorithm (Guo et al. 2009), the Digital 

Hormone System (Shen et al. 2004), the Artificial Homeostatic Hormone System (Hamann et al. 

2010) and idiotypic Farmer based Artificial Immune Systems (Krautmacher and Dilger 2004). Like 

these models, the ARN represents molecular species as continuous concentrations where dynamics are 

modelled using ODEs. Its networked representation is specifically designed to represent “biological 

circuitry” and allows temporal and spatial dynamics to unfold real-time. As discussed later, it has 

properties in common with other models from both Artificial Intelligence and Systems Biology fields, 

including: Artificial Neural Networks, Random Boolean Networks, Petri Nets, and S-Systems.  

The specific objectives of the results presented here are as follows. Firstly, to explore the mechanisms 

and computational properties that leads to emergent high-level behaviour in cells. Secondly, to further 

investigate applications of this technique- specifically the control of motion in limbed robots. In this 

paper the following novel work is presented: 1) A complete overview of the ARN including its 

development, computational properties, advantages and disadvantages; and 2) the production of a 

complete ARN based control system for a limbed robot which combines pattern recognition and 

generation of time varying waveforms in a single network. 

The paper is structured as follows: section 2 discusses the ARNs development, representation, 

advantages and disadvantages. The ARN is then used to explore several computational aspects of 

Cellular Intelligence. The first of these is its pattern recognition capability (section 3.1). In these 

experiments ARN parameters are set using a Genetic Algorithm (GA) and input patterns representing 

external environmental chemicals are mapped to output patterns. In section 3.2, further processing 

capabilities of the ARN are investigated by determining its ability to regulate complex temporal 

dynamics. Its application in robotic control is then explored by using the resulting system to create 

waveforms which control the gaits of limbed robots. This network is then extended into a complete 

control system by combining it with the previous pattern recognition network (section 3.3) in a single 

ARN. The results show that the ARN can function in both sensory input and motor output tasks which 

usually only more complex models can fulfil. Moreover the ARN allows offers increased flexibility 

over existing methods in robotic control tasks. The report concludes that the ARN is a versatile and 

powerful technique which has application in both simulation of chemical systems, and in robotic 

control, where it can offer a higher degree of flexibility and computational efficiency than benchmark 

alternatives. Furthermore, it provides a tool which may possibly throw further light on the origins and 

limitations of the primitive intelligence associated with cells and its parallels with neural intelligence.  



2 The Artificial Reaction Network 
The ARN was briefly introduced in our previous work (Gerrard et al. 2011). This section provides a 

complete overview of the ARN starting with its basic formulation, and followed by its networked 

representation and computational properties. 

2.1 Basic Formulation 

Rate equation models can be used to represent many different physical systems and so are very 

general and flexible in their applications. In the domain of chemistry, they can directly represent (or 

be slightly modified to represent) all the common reaction types. They form the basis of S-systems 

(Savageau and Voit 1987) and are well characterised in biochemical simulations. The basic rate 

equation is described by Eq. (1) and is described by two terms. The first half corresponds to the rate of 

generation of product j (Pj) and is equal to the forward reaction rate (kf), multiplied by the product of 

the concentrations of the N reactants ([Rn]), each raised to the power of its reaction order αn. 
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The second term represents the rate of decomposition of product back into its original reactants. This 

depends on the reverse reaction coefficient (kr) multiplied by the product of the concentrations of the 

M products [Pi], each raised to the power of its reaction order βi. For example, consider the simple 

reaction between two reactants labelled A and B with reaction orders of q and s respectively. These 

produce a single product P. In this case, Eq. (1) is reduced to Eq. (2). 
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When used in S-systems, a group of rate equations are normally set up - one for each reaction. The 

left hand of each equation is then set to zero and they are solved simultaneously to yield the steady-

state response. If the dynamic responses are required, then numerical solution methods like Runge-

Kutta are normally applied.  

2.2 A Networked Representation 

Clearly a large set of simultaneous ODEs (Ordinary Differential Equations), in their basic 

mathematical form, limit the conceptualisation, visualisation and communication of complex 

topologies. Furthermore, in this form, each ODE term is tightly coupled, and is difficult to isolate and 

manage. Therefore, in order to create a connectionist representation with distinct biological 

processing units, capable of constructing complex biological circuits, the method needs to be 



modified. This may be done by isolating each reaction in the network to form a discrete node which 

may then be modified independently of the other reactions. Such a node can be viewed as analogous 

to a neuron in an ANN and has been named an Artificial Reaction Node; by analogy networks of such 

nodes may be termed Artificial Reaction Networks (ARNs). Similarly to an ANN, each ARN node is 

a processing unit, transforming a number of inputs into an output. In an interconnected network of 

such units, global behaviour is determined by the connections, and unit parameters. Furthermore, by 

isolating each reaction like this, the individual pathways or units which make up the system can be 

changed, reconnected or evolved by (for instance) a genetic algorithm. This also allows an individual 

part of the network to be independently modified and its effects studied. Such a feature is useful in 

simulating disease pathways. Isolating the reactions in this way facilitates two other important 

practical advantages. Firstly, visual “drag and drop” interfaces can be developed. These allow 

researchers to quickly change network or reaction parameters in order to study their effect. This, in 

turn, allows simple visualisation of the system in a graphical form which makes its conceptualisation 

easier. Secondly, it makes the application of object-orientated programming techniques very simple, 

as each node can be coded as an instance of an object. 
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In developing the system described, Euler’s method was chosen in order to solve the rate equations. 

This offers some advantages, in that it is simple and computationally cheap, but more importantly, it 

allows the whole network to run quickly in simulated real time- so that its temporal dynamics can be 

seen to unfold during a run. This gives the option of changing parameters in real time so that a user 

can observe any dynamic resulting behaviour. Furthermore, the temporal output of the network could 

potentially be used as a control system for an “artificial cell” robot - a cytobot. 

Using the simple two input system shown in Eq. (2), multiplying through by dt and changing to a 

discrete finite time-step ∆t, the Euler approximation is described by Eq. (3). This reaction needs to be 

isolated from the others, so that it can form a discrete “unit”. This can be done most easily by 

borrowing the concept of “pools” from Petri-nets (Murata 1989). Petri-nets pass tokens between such 

pools as part of their operation. In the system discussed here, the pools may hold the number of 

available molecules, the concentration of the reacting chemicals (for example in moles per litre) or the 

mass of reactants. As the reaction proceeds, the reacting species pass from the input pools (depleting 



them) to the output pools (enriching them). So, in the previous example, to generate one molecule of 

product requires q molecules of reactant A and s molecules of reactant B. In this case, the pool 

containing A would get depleted by an amount ∆A as described by Eq. (4). Where ∆P is the amount of 

product generated (which would be added to pool P). This equation works if the units used are 

number of molecules or moles per litre (which are not conserved quantities). However if mass or a 

similarly conserved quantity is used then ∆A is given by Eq. (5). The whole system using more 

general symbols is shown diagrammatically in Fig. 1 (for a conserved quantity).  

 

 

 

         

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at unit 1. 
The rate of the reaction at unit 1 at time t is given by Eq. (3). The current concentration in pool C is updated using Eq. (5). 

 
It comprises a set of connected reaction nodes (circles), pools (squares), and inputs (triangles). Each 

pool represents the current available protein species concentration (avail) in a compartment and each 

circle corresponds to a reaction unit, representing an interaction (reaction) between a numbers of 

chemicals.  

The use of pools allows current concentration of species and their dynamics to be simply viewed. As a 

biological modelling tool, chains of pools could be used to represent gradients and translocation of 

species across membranes. Similarly, a loss component can also be added to the pools to represent the 

destruction of reactants or products by specific or general proteases or other degradation routes as 

shown in Fig. 1.  

Connections symbolize the flow of species into and out of reaction units and their weight (w) 

corresponds to reaction order. The connections can be either excitatory, or inhibitory. A reaction with 
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both excitatory and inhibitory connections will proceed if all connected inhibitory pools are empty 

and its excitatory connected pools have the required concentrations. Thus the input pools serve as pre-

conditions which must be met before the reaction can proceed. The inhibitory connections act as 

discrete on/off switches to either the forward or reverse reaction.  

The ARN has been extensively verified against standard methods of representing chemical systems 

(Gerrard, 2011), where it was shown to provide the same degree of accuracy as other ODE models.  

 

2.3 Computational Properties 

The overall structure may be compared to a perceptron, where the pools correspond to inputs, the 

reaction units to the weighted sum function, and these are joined together by weighted connections.  

It is fairly easy to see that the computational properties of the ARN are similar to those of the ANN. 

For example, consider the simple network shown in Fig. 2.  
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Fig. 2 A simple ARN network 

 
If we assume that the orders WA and WB are unity and the reverse reaction rates are zero, then the rate 

of change of the product pool P is given by Eq. (6). Which is the same expression as for the activity of 

a perceptron if A and B are the inputs and the k terms the weights. So a network of such nodes has at 

least the same computational capabilities as MLPs (Rumelhart and McClelland 1986). In fact the 

addition of non-unity orders means that effectively the node can produce non-linear separators in a 

similar way to polynomial neurons (Woo and Khor 2004) and are rather similar to so-called “sigma-

pi” units (Gurney 1992) - although with the added dimension of dynamic behaviour which will be 

discussed in section 3.2.  

2.4 Disadvantages 

There are some potential disadvantages associated with the ARN. Firstly, the Euler approximation has 

an associated cumulative error. This is because it is an iterative linear approximation to a complex 
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function. It may be thought of as the first-order term of a Taylor expansion of the function. For 

example, if we say that the rate equation is a function of at set of reactants and products R, we could 

write an abbreviated version of Eq. (1) as given by Eq. (7). The full Taylor series for Euler 

approximation to the second order would then be described by Eq. (8). 
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Because the series is truncated to the linear term the error of the approximation is the sum of the 

missing terms. In reality the error contribution from successive terms is usually negligible providing 

that the step-size is small. The error may be of consequence if the user is trying to simulate a complex 

biochemical system very accurately. However, as previously discussed, this is not the main purpose of 

the ARN. 

Other difficulties can arise using hybrid models and detailed discussions are provided in the literature 

(Kowalewski 2002). Two such issues can occur in this representation where both produce an 

unnatural result due to the problem of trying to represent a discrete system (of individual molecules) 

by a continuous mathematical expression. In a real biological system there are a finite number of 

molecules and the chemistry acts the same way on all of these until they are exhausted. This however 

is not always the case when applying the governing equation (Eq. 3). For example, consider the case 

where the order of the reactants is above 1. When the current reactant concentration is above one this 

is fine, however if it is less than one then the resultant activity decreases unnaturally. In practice this 

is easily sorted by restricting the range of the concentrations or using different units. 

A similar issue occurs where a pool, for example S, inhibits a reaction unit by an inhibitory 

connection. This reaction will always be inhibited while there remains any amount of chemical in S. 

Meanwhile S is involved in another reaction where the resultant flux is depleting S at each time step. 

As the concentration of S decreases so too does the flux. This leads to an infinite sequence of 

decreasing concentrations of S which asymptotically approaches zero. Therefore, S will always 

contain a smaller but positive value and as a result the inhibited reaction can never occur. In reality 

this would not occur since individual molecules would react in an individual manner. This problem is 

solved by simply setting a threshold- if a pool concentration is less than the threshold its concentration 

is set to 0.  



3 Experiments and Results 
In the following sections the methodology and results for the following experiments are presented: 1) 

An ARN based pattern recognition system; 2) the use of an ARN based system to regulate time 

varying waveforms and its application in control of limbed robotic gaits; and 3) an ARN which 

combines the previous networks into a complete quadrupedal robotic control system capable of 

recognising input patterns and generating the required gait response.  

3.1 Pattern Recognition 

A key mechanism of cell intelligence is the ability of a cell to recognise and respond to specific 

patterns of chemical signals within its environment. Receptors recognise and bind to particular 

environmental chemicals. These are transduced and cell response is determined by a chain of 

signalling events.  

The ARNs pattern recognition capability was tested in both the context of a general pattern 

recognition device and in an abstract biological setting. In each case, 4 separate patterns composed of 

4 input and 4 associated output mass values were applied to the ARN. Each pattern comprised values 

of either 0.1, representing low concentration, or 1 corresponding to high concentration. The ARN was 

set up as shown in Fig. 3 and consists of 7 pools, 4 inputs and 7 reaction units organised into 2 layers.  

 
Fig. 3 The structure of the ARN used for pattern recognition experiments. The network consists of 4 inputs (triangles), 7 
reaction units (circles) and 7 pools (squares). Each index of the input pattern array is fed into the corresponding input 
number. Output patterns are output at pools (squares) 3-6. 

 

In biological CSNs, network parameters are determined by genetic factors which are subject to 

evolution. To achieve a related effect within this artificial setting a genetic algorithm (GA) was 

adopted to train the network to produce the correct output. The initial value of all pools was 0.01. 

Each input value of a pattern was fed into its corresponding input unit. For example, the first, second 

and third input value of pattern 1 is 0.1 and the fourth is 1 (see Table 1) - thus input unit 0-3 (see Fig. 

3) were initialised to 0.1 and input unit 3 to 1. The output values were generated by the final layer of 

pools (3-6). The target output values for each pattern are given under the heading “Output” of Table 1, 

and the actual values associated after training are given under “Actual Output”. A population of 100 

solutions were randomly initialised. Each solution comprised a complete set of network parameters 



including the forward and reverse rates for each unit and the weights for each connection between 

pools (or inputs) and units. Due to its temporal properties the network was run for 100 cycles (a cycle 

ends when the complete set of pools in the network are updated once using Eq. (3) where ∆t = 1) in 

order to obtain steady-state output values. The solution fitness was then calculated where fitness was 

the inverse of the error on output and the target error was 0.01. The least fit half of the population was 

discarded and the remaining solutions were subject to mutation and crossover in order to create the 

new population. To minimise the number of generations, the mutation and crossover rates were 

adjusted to final settings of 0.4 single point crossover and 10% uniform mutation. The average 

number of generations required to reach the target error was 387. The parameters of one solution are 

given in Table 2. The results from this general pattern recognition experiment are shown in Table 1. 

As can be seen the ARN was able to recognize all 4 patterns correctly.  

Table 1 Patterns and results for both general and abstract biological setting experiments. 

General Pattern Setting  Abstract Biological Setting  

Pattern Input Output Actual 
Output 

Pattern Input Output Actual 
Output 

1 0.1 
0.1 
0.1 
1 

0.1 
0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 

1 1 (WR) 
1 (SR) 
0.1 (SA) 
0.1 (WA) 

1 (IS) 
0.1(F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

2 1 
0.1 
1 
0.1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

2 0.1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
1 (F) 
0.1 (O) 
0.1(DS) 

0.1 
1 
0.1 
0.1 

3 1 
1 
1 
1 

1 
0.1 
1 
0.1 

1 
0.1 
1 
0.1 

3 0.1 (WR) 
1 (SR) 
1 (SA) 
0.1 (WA) 

1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

4 1 
0.1 
1 
1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

4 1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

0.1 
0.1 
1 
0.1 

Key  
Inputs: 

WR : weak 
repel 

SR : strong repel 
 

SA : strong attract 
 

WA: weak 
attract 

Key 
Outputs: 

IS : increase 
speed 

F : reorientation 
(up chemical 
gradient) 

O : reorientation 
(down gradient) 

DS : 
decrease 
speed 



 

Table 2 Resulting network parameters for one solution after training using the genetic algorithm.  

General Pattern Setting Parameters  
Pool Initial 

Concentration 
Weight of 
Connection 

Reaction 
unit 

Forward 
Rate 

Reverse 
Rate 

0 1st Pattern value 
(e.g. if pattern is 
no.1 input is 0.1) 

2.999 0 0.723 2.816 

1 2nd pattern value -2.915 1 5.411 0.837 
2 3rd pattern value 0.424 2 0.969 0.643 
3 4th pattern value -0.278 3 0.120 4.310 
4 0.01 -1.714 4 1.003 1.455 
5 0.01 0.750 5 0.093 0.006 
6 0.01 -0.435 6 1.081 0.580 
7 0.01 1.319 Note that in this case to simplify the 

program the hidden layer pool 
concentrations were updated using 
the unweighted flux of the product. 

8 0.01 -0.104 
9 0.01 0.501 
10 0.01 1.492 

 

Multilayer Perceptron ANNs (MLPs) (Rumelhart and McClelland 1986) have similar properties. For 

instance, each neuron can be approximated as either active or inactive and is comparable to the ARN 

whose concentration is either high or low. However, MLPs lack an explicit time dimension whereas 

the ARN processes inputs over a time period. In this case the ARN was subject to a continuous flux of 

inputs over 100 cycles causing the pool concentrations to enter a transient phase and stabilise at 

steady-state. The implications are that, unlike the MLP where processing is discrete-time, stored 

patterns are recalled only if inputs are applied for a length of time greater than that required to reach 

steady-state. Thus, this experiment demonstrates that the ARN is an appropriate pattern recognition 

technique when the requirement is to establish if a set of conditions have held true over a time period. 

This functionality is not so easily generated in other neural models. Discrete-time neural models 

provide a direct mapping from input to output and in their basic form they are unsuited for temporal 

pattern recognition. Continuous time models can provide this functionality but are generally more 

computationally complex. One such model is the Artificial Biochemical Network (ABN) (Macleod 

and Capanni 2010). It is a connectionist representation which, like the ARN, can be used to recognise 

continuous data streams. It has a weighted sum activation function combined with leaky integrator 

and generates a pulse width modulated output. In a similar experiment an ABN was setup using 11 

ABN units. The network was trained using a GA to map identical sized patterns to those used here. 

Like the ARN, the ABN recognised all patterns, but the training time was longer (average of 496 

generations) (Macleod and Capanni 2010) and the ABN network used 4 additional ABN units (1 ABN 

unit is approximately as complex as a single ARN unit).  

In a further experiment, using the previously described network structure and set-up, the ARN was 

trained to recognize an additional 4 patterns, where the inputs were chosen to correspond to chemical 

signatures (for example, attractants or repellents) that trigger specific movement responses. These 

patterns are given in Table 1. Here, the ARN network represents a highly abstracted CSN that controls 

chemotactic motion of a generalised single celled organism. This artificial amoeba is assumed to have 



a default slow swim behaviour and in the presence of chemoeffectors the behaviour is updated 

accordingly. Each input signifies an environmental chemical, where input: 0 is a weak repellent (WR), 

1 a strong repellent (SR), 2 a strong attractant (SA) and 3 a weak attractant (WA). Specific 

combinations of environmental chemicals generate specific output response, where repellents have 

precedence over attractants. The presence of chemical concentration to a value approximate to 1, in an 

output pool, corresponds to a particular behavioural response, where output pool: 0 increases speed 

(IS), 1 reorientation to face up chemical gradient (F), 2 reorientation down chemical gradient (O) and 

output 3 decreases speed (DS). Therefore, as an example, on detecting both a strong repellent and 

strong attractant the cell re-orientates to face down the chemical gradient and increases speed. As can 

be seen in Table 1, the network generated the correct response for all the abstract biological patterns.  

One property of a CSN is robustness, where correct response maybe generated in the presence of 

noise or loss of connections. In order to test this property within the ARN, random noise was 

introduced to the trained general pattern recognition network. Each pattern was subjected to 10% 

increments of uniformly distributed random noise to a total level of 60% of the input range. At each 

noise level outputs were obtained for all four patterns. It can be seen in the graph in Fig. 4 that the 

performance of the network gently degrades as noise is added. Error levels within 5% are reported for 

both the ABN and MLP models (Macleod and Capanni 2010) at levels of up to 50% noise in pattern 

recognition tasks of the same complexity.  

 

 
Fig. 4 Total error (y-axis) for all four patterns after introduction of random noise (x-axis) to patterns at 10% level increments 

 

Similarly to an ANN, the ARN pattern recognition system, is a robust connectionist network and thus 

provides an intuitive bridge between biology and AI. Furthermore, this experiment illustrates that that 

such pattern recognition mechanisms are plausible in single celled organisms.  

 



3.2 Regulation of Temporal Dynamics and Control of Limbed Robots 

 
A common motif of CSNs is periodic oscillatory patterns of protein concentrations. Such patterns 

relate to particular cellular behaviours (Bray 1995; Ankers 2008; Kholodenko 2006). Many 

illustrations of these oscillatory patterns can be found within the literature (Ankers et al. 2008; Ferrel 

2004).Such temporal dynamics are explored within the ARN in order to validate its ability to 

represent such patterns, to explore potential application, and to gain deeper understanding of the 

regulatory mechanisms involved within CSNs and their role in cell intelligence.  

One method of exploring the ARNs ability to reproduce such temporal patterns, while investigating its 

potential AI applications, is by creating an ARN based controller to reproduce the patterns associated 

with robotic gaits. Terrestrial locomotion of limbed animals is achieved by multiple phase locked 

patterns of limb movements known as gaits. For example, depending on speed of locomotion and 

terrain, quadrupeds commonly walk, trot and gallop (Dagg 1973). The gait phase is a value that 

ranges from 0 to 1 as the gait cycle proceeds. Therefore, the motion of each limb can be described 

relative to the gait phase. The ideal quadrupedal gaits are described by Dagg (1973) and others 

(Hildebrand 1997) and are used as a standard for comparison here and similarly in other studies 

(Collins and Richmond 1994). In the walk gait the legs move a quarter cycle out of phase; in the trot 

gait each pair of diagonal limbs move half a cycle out of phase. 

 In these experiments, an ARN controller was implemented to generate gaits of a Lynxsmotion dual-

servo quadruped 2 (Q2) robot. Each robotic leg is controlled by two servo motors, one for each degree 

of freedom (DOF). One motor raises the leg and the other turns it. The structure of the robotic legs is 

shown in Fig. 5, further details of which are given by Toth and Parker (2003).  

 

 
Fig. 5 The structure of a Lynxsmotion quadrupedal robot leg. Each leg has two DOFs and each DOF is controlled by a 
separate motor. 

 



 
 

Fig. 6 The ARN based controller. Each module (shown separated by a dashed line) is mapped to a single leg and is 
responsible controlling the 2 motors which generate its motion. Pool A of each module controls the up/down motor, pool B 
the back/forward motor and pool C the stop period for each of these motors. 

 

Signals are sent by the ARN to each motor and control the angle of the rotor for each DOF, using a 

simple position to pulse width modulator interface circuit to control the servo. The structure of the 

ARN based controller is shown in Fig. 6 and was designed to include abstractions of regulatory 

mechanisms found in CSNs including inhibitory/excitatory reactions, cyclic loops, and feedback 

structures. The controller comprises a network of four repeating structural units or modules, where a 

module is separated by a dashed line. Each module controls the two motors of a separate leg and 

comprises 3 reaction units and 3 pools: A, B and C. Pool A controls the up/down (U/D) motor, Pool B 

the back/forward (B/F) motor and Pool C controls the off period for both motors. Pool activity is 

regulated by a series of excitatory and inhibitory connections between reaction units. The type of 

connection represents the inhibitory and excitatory properties of specialized regulatory proteins 

common to CSNs such as enzymes. The overall network structure is organized as a closed loop 

allowing protein species to be recycled to the first module and thus generate a temporal oscillatory 

pattern. The structure of the ARN controller is capable of producing all the common gaits. The type of 

gait is easily modified by a simple adjustment of the initial pool values. For example, by initializing a 

C pool a walk gait will be generated, where the C pool chosen will determine the starting leg, and the 

value determines the angle to which the leg is raised. Similarly, a trot gait is achieved by initializing 

two C pools within alternate modules. In this particular design, the value to which the C pool(s) are 

initialized determines the DOF angle and were set specifically for the physicality of the particular 

robot although it can be freely varied.  

The network architecture remains fixed throughout these experiments and the network parameters are 

manually set. This method was employed so that the outputs could be directly compared with other 

published work on similar Central Pattern Generators (CPGs) (Billard and Ijspeert 2000; Collins and 

Richmond 1994; Liu et al. 2009). However, there is no reason why connection weights cannot be set 

using an Evolutionary Algorithms or a similar pseudorandom search technique, and the current 

authors have employed this in other examples (for instance in the pattern recognition experiments). 

The use of gradient decent algorithms, however, would be difficult in this application because of the 



recurrent nature of the network topology. The ARN controller was considered to generate a specific 

gait if the relative phases of the respective oscillatory signals were within 2% of the standard gait 

cycle described previously.  

 
Fig. 7 Output generated for the walk gait. Legs are front left (FL), front right (FR), rear right (RR) and rear left (RL). The 
up/down (U/D) motor is displayed as a solid line and the back/forward (B/F) motor is displayed as a dashed line. 

 
 

 
Fig. 8 Output generated for the trot gait. Legs and motors are labelled as before- see Fig. 7. 

 
Higher values of 10% were used in other studies (Collins and Richmond 1994), and this was 

considered reasonable due to the variation found in real animal gaits (Afelt 1983). In each case, the 

controller first generates the U/D motor oscillation and on reaching the maximum value the B/F motor 

is initiated. 

As can be seen in Fig. 7, the walk gait results show that the legs are a quarter cycle out of turn, with 

phases of 0.0, 0.25, 0.5, 0.75 between limbs in clockwise order from FL (front left) leg. Similarly, the 

trot gait results in Fig. 8 show that the opposite legs are half a cycle out of turn with phases 



respectively of 0.0, 0.5, 0.0, 0.5. The frequency of oscillations and therefore the gait speed is easily 

adjusted by applying uniform increase or decrease to kf of each unit. 

Both phase locked limb patterns produced by the ARN match the standard, and compare well with 

other connectionist models. For example, Billard and Ijspeert present a CPG (Central Pattern 

Generator) based neural controller for a quadrupedal AIBO robot, similarly with 2 DOFs for each leg 

(Billard and Ijspeert 2000). The limb phases generated by this network correspond to the standard and 

to those produced by the ARN. Here, the network is composed of 8 coupled non-linear oscillators and 

each oscillator consists of 6 leaky integrator neurons (a total of 96 neurons). Each neuron implements 

an activation function which is approximately as complex as the reaction unit function of the ARN, 

and therefore the complexity of the network is equivalent to approximately 96 ARN reaction units. 

Similar correspondence is found in other sources. For instance, Collins explores a CPG based neural 

controller for a quadrupedal robot with 1 DOF per limb, and compares 3 types of activation function 

models: Stein, Van der Pol, and FitzHugh-Nagumo. The controller is composed of a network of 4 

coupled non-linear oscillators (Collins and Richmond 1994), where each oscillator controls a separate 

limb. The Stein model consist of 3 first order differential equations, the Van der Paul model consists 

of a second order differential equation and the FitzHugh-Nagumo model consists of two first order 

differential equations. All these models have approximately twice the complexity as the output 

produced by the ARN unit. In this case all 3 models require a pulsing signal to drive the network. 

Generally speaking the structure of these models is less flexible then either the Billard and Ijspeert 

(2000) model or the ARN due to their rigidly fixed internal parameters. All these models produced the 

gait patterns within 10% of the standard, whereas the ARN matched the standard for both trot and 

walk. 

Overall the ARN has a very similar capacity to generate both walk and trot gaits as the compared 

controllers. However, in general, it affords a higher degree of flexibility and is less computationally 

complex. Although robotic gaits might seem unconnected with cellular intelligence, the ARNs ability 

to produce them illustrates how cellular networks can generate the complex temporal patterns 

necessary in emergent behaviour. 

3.3 Complete Robotic Control System 

It was demonstrated in section 3.1 that an ARN can recognize patterns. Furthermore it was 

demonstrated in section 3.2 that such a system can generate temporal output patterns which can be 

used in control tasks. Of course in the natural world these two behaviors are linked together.  

In the following experiment it is illustrated that both pattern recognition and control function can be 

combined within a single ARN based system. Here, a more complex ARN was created to recognize 

specific patterns and in response automatically generate the associated temporal gait. The ARN in this 

experiment reuses the pattern recognition and gait network previously described in sections 3.1 and 



3.2 respectively. The complete ARN system is shown in Fig. 9, and is functionally divided into 3 

smaller ARN components: pattern recognition, control, and a connecting network.  

 

 
 

Fig. 9 A complete control system for a quadrupedal robot. On recognition of particular patterns the pattern recognition ARN 
generates the associated output pattern. The connecting network implements two parallel Boolean AND gates which act as 
switches turning the walk or trot components of the control ARN off/on. The control ARN generates the required waveform 
which controls the robotic gait. 

 
The structure of the pattern recognition network, its implementation, and training methods are 

identical to those described in section 3.1. In this case the network was trained to recognize 3 separate 

patterns (as shown in Table 3) composed of 4 input and 4 associated output mass values. The output 

pools of the pattern recognition network are equal to the input pools 0, 1, 2, and 3 of the connecting 

network. The connecting module comprises 6 pools (4 inputs and 2 outputs) and 2 reaction units. 

Essentially this component operates like two parallel Boolean AND gates, where a value of 1 at pools 

0 and pool 1 will output a value of 1 at pool 4, as will a value of 1 at pools 2 and 3 output a 1 at pool 

5. Two negative feedback connections between the interface network and both ARN control system 

subunits (shown as dashed line connections) are responsible for switching between the gaits. 

Therefore, if a value of 1 is output at the interface network pool 4, it will inhibit all the reaction 2’s of 



the ARN walk subunit, thus stopping the walk gait pattern from being generated. Conversely, if a 

value of 0 is output at pool 4 the walk will be generated. In the same way, pool 5 of the interface 

controls the switching on/off of the trot control subunit. Table 3 shows the range of required behaviors 

in response to particular outputs generated by the connecting network.  

The control system comprises two separate ARN subunits, both identical in structure and 

implementation to the ARN described in section 3.2. Each of these subunits is responsible for 

generating a specific temporal gait pattern: one generates walk the other trot. The two ARN subunits 

provide distinct gait patterns due to the differences in initialization of the concentration values of C 

pools. 

 
Table 3 Patterns applied to the complete control system and expected gait generated. 

Pattern PR 
Network 
Input 
Pool No. 

PR 
Network 
Input 
Value 

CN 
network 
Input 
Pool No. 

CN Input 
Value (& 
output of the 
PR network)  

CN 
Output 
Pool No. 

CN 
Output 
Value 

Gait  

1 0 1 0 1 4 1 Inhibit 
Walk 1 0.1 1 1 

2 1 2 0 5 0 Trot 
3 0.1 3 0 

2 0 0.1 0 0 4 0 Walk 
1 1 1 0 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
3 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
KEY: PR Pattern recognition CN Connecting network 

 

Table 4 Pattern applied to the network and expected durations of gaits. 

Pattern Walk 
ARN 
Network 

Trot 
ARN 
Network 

Start 
Time 

End 
Time 

Duration 

2 On Off 0 210 210 
1 Off On 210 440 230 
2 On Off 440 560 120 
1 Off On 560 700 140 
3 Off Off 700 800 100 

 

The complete system was tested to confirm its ability to both generate the correct behavior and 

automatically transition between the behaviors in response to firing input patterns 0-3. The time 

periods in which patterns were applied, and the expected output states are shown in Table 4.  

The results for this experiment are displayed in Fig. 10. The phases produced for each gait are exactly 

as described previously in section 3.2. The on/off periods of both trot and walk gaits are in agreement 

with the expected durations displayed in Table 4 with a slight transitional delay. The ARN controller, 

and gait phases produced have previously been compared with CPG models in section 3.2. The 

transitions between gaits generated by these models may now be compared with those of the ARN. 

The results given for the Billard and Ijspeert model, show transitions from walk to gallop in 



approximately 4 leg cycles, whereas the ARN transitions from walk to trot within 2 leg cycles. In both 

cases the transitions are very smooth. There are 3 models described by Collins, and although gait 

graphs are provided for all these, gait transitions are only given for the Stein model. Here gaits 

transition quickly within approximately 2 leg cycles. However the leg movements during transition 

are very irregular- in contrast to the ARN and the Billard and Ijspeert model.  

 

Fig. 10 The output of the complete ARN control system over 800 secs. Legs and motors are labelled as before- see Fig 9. 

 

This complete control system demonstrates that the ARN, like a CSN, is capable of both recognizing 

patterns and controlling overall behavior in a single network. With the exception of spiking models, 

few ANNs can achieve this functionality. However, spiking models are often less flexible. For 

example, in the Integrate and Fire model information is rate coded and all the spikes generated are 

uniform (Maass 1997). Thus, unlike the ARN this model lacks the flexibility to produce pulse-width 

and pulse-amplitude coded information. The gait phases and transitions compared well with CPG 

neural controllers and showed that the ARN has application in similar robotic control tasks and can 

offer lower computationally complexity. These experiments illustrate how a CSN might perform the 

complex processing associated with the high-level behaviors displayed by single celled organisms. 

Furthermore, it shows that abstractions of both neural networks and CSNs operate in similar ways, 

and have comparable functionality. This illustrates a close relationship between neural and cell 

intelligence.   

4 Conclusions 
The ARN is a new connectionist model, based on the dynamics of CSNs. It is accurate enough to 

represent actual chemical concentrations in the cytoplasm of a cell, but simple enough to construct 

biological circuitry with applications in AI. Perhaps most importantly it is a useful tool for 

investigating the surprising emergent behaviours of single cells. It may help to elucidate the 

mechanisms involved in these, and their similarities and differences from neural based intelligence 



(and intelligence in its widest philosophical sense). Although other researchers have used techniques 

such as S-systems and Petri Nets to do related work, the ARN is unique in that it was conceived as a 

much more connectionist, unit-based representation, designed specifically to investigate cell 

intelligence.  

The results presented above show that the ARN (and by extension, cellular networks) are capable of 

performing pattern recognition in a similar way to artificial neural models and also producing 

complex temporal dynamics reminiscent of spiking neural models. Additionally, it was shown that the 

ARN can model biological reactions and simulate real CSN pathways with an accuracy matching 

those of standard simulation methods (Gerrard et al. 2010). This combination of attributes makes it a 

unique and useful tool. The ARN systems presented above show clearly that biochemical networks 

are quite capable of producing many of the behaviours normally ascribed to neural networks. This 

helps to illuminate the many interesting results now emerging from the behavioural biology of single 

cells. Of course the neuron is itself a biochemical network, and one future application of the ARN 

may be to help unravel its more complex internal dynamics.  

The simplicity of the ARN makes it a potentially useful model in more practical AI and engineering 

systems. As demonstrated in the case of robotics, its ability to function in both input (sensory) and 

output (efferent or motor) networks and in the interconnection between these, gives it applications 

which usually only much more complex models can fulfil. This is particularly useful in the field of 

robotics, where such flexibility has particular application in evolutionary control networks.  

The authors intend to extend the work reported here by producing more complex cell based robots 

(cytobots). These will allow us to explore more aspects of cellular intelligence (for example the role 

of learning in these systems) as well as some practical applications such as vehicles to clear oil spills- 

pollution by moving along chemical gradient, rather like that in which chemotaxis operates. The ARN 

may also have useful applications in other areas of science – for example in modelling the complex 

interconnected chemical networks present in environmental and soil chemistry.  
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