

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

Effective and Efficient Estimation
of Distribution Algorithms for
Permutation and Scheduling

Problems

Mayowa Ayodele

Computing and Digital Media

Robert Gordon University

A thesis submitted in partial fulfilment of the requirements of the
Robert Gordon University for the degree of

Doctor of Philosophy

May, 2018

2

Abstract

Estimation of Distribution Algorithm (EDA) is a branch of evolutionary
computation that learn a probabilistic model of good solutions. Proba-
bilistic models are used to represent relationships between solution vari-
ables which may give useful, human-understandable insights into real-
world problems. Also, developing an effective PM has been shown to
significantly reduce function evaluations needed to reach good solutions.
This is also useful for real-world problems because their representations
are often complex needing more computation to arrive at good solutions.
In particular, many real-world problems are naturally represented as per-
mutations and have expensive evaluation functions. EDAs can, however,
be computationally expensive when models are too complex. There has
therefore been much recent work on developing suitable EDAs for per-
mutation representation. EDAs can now produce state-of-the-art perfor-
mance on some permutation benchmark problems. However, models are
still complex and computationally expensive making them hard to apply
to real-world problems.

This study investigates some limitations of EDAs in solving permutation
and scheduling problems. The focus of this thesis is on addressing redun-
dancies in the Random Key representation, preserving diversity in EDA,
simplifying the complexity attributed to the use of multiple local improve-
ment procedures and transferring knowledge from solving a benchmark
project scheduling problem to a similar real-world problem.

In this thesis, we achieve state-of-the-art performance on the Permutation
Flowshop Scheduling Problem benchmarks as well as significantly reduc-
ing both the computational effort required to build the probabilistic model
and the number of function evaluations. We also achieve competitive re-
sults on project scheduling benchmarks. Methods adapted for solving a
real-world project scheduling problem presents significant improvements.

Keywords: Estimation of Distribution Algorithm, Probabilistic Model,
Random Key, Genetic Algorithm, Real-world Project Scheduling Problem,
Optimisation, Gaussian Distribution, Permutation Flowshop Scheduling
Problem.

I dedicate this thesis to my heavenly father who is always with me.

Acknowledgements

I would like to thank my supervisors Prof. John McCall and Dr. Olivier
Regnier-Coudert for all the support given to me during my PhD. Words
are not enough to appreciate them. They gave me the best supervision
anyone could dream of. They are simply awesome.

I also want to thank the IDEAS institute of RGU for funding my PhD.

I say a big thanks to my family for encouraging me all through. I also
appreciate my friends for supporting me through my research journey.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Background . 1
1.3 Research Questions . 3
1.4 Published Works and Thesis Overview 4

2 Literature Review 6
2.1 Introduction . 6
2.2 Modelling Real-World Problems . 6

2.2.1 Probabilistic Models . 7
2.2.1.1 Bayesian Network 8
2.2.1.2 Gaussian Network 8
2.2.1.3 Markov Network . 8

2.3 Model-Based Search Algorithms . 9
2.3.1 Estimation of Distribution Algorithms 9
2.3.2 Ant Colony Optimisation . 10

2.4 Real-world applications of EDAs and ACOs 11
2.4.1 History Matching Problems 11
2.4.2 Routing Problems . 12
2.4.3 Job Shop Scheduling Problems 15
2.4.4 Nurse Scheduling Problem . 17
2.4.5 Other Scheduling Problems 18
2.4.6 Other Applications . 19
2.4.7 Summary . 20

2.5 Common Permutation and Scheduling Problems 23
2.5.1 Permutation Flowshop Scheduling Problem 24
2.5.2 Quadratic Assignment Problem 25
2.5.3 Travelling Salesman Problem 25
2.5.4 Linear Ordering Problem . 25
2.5.5 Resource Constrained Project Scheduling Problem 25
2.5.6 Multi-Mode Resource Constrained Project Scheduling Problem 26
2.5.7 Benchmarks . 27
2.5.8 Performance Measure . 28

2.6 EDAs for Permutation and Scheduling Problems 29
2.6.1 EDAs for Common Permutation Problems 29

i

2.6.2 EDAs for Project Scheduling 31
2.7 Conclusion . 33

3 RK-EDA: A Novel Random Key Based Estimation of Distribution
Algorithm 34
3.1 Introduction . 34
3.2 RK-EDA . 35
3.3 Experimental Settings . 36

3.3.1 Test Problems . 36
3.3.2 Parameter Setting . 37
3.3.3 Experimental Approach . 37

3.4 Results and Discussion . 38
3.5 Conclusions . 41

4 Application of RK-EDA for the Permutation Flowshop Scheduling
Problem 45
4.1 Introduction . 45
4.2 RK-EDA: Analysis of Initial Variance 45
4.3 Experimental Settings . 47

4.3.1 Preliminary Results . 48
4.4 Results and Discussion . 50

4.4.1 Comparing RK-EDA with stand-alone EDAs 50
4.4.2 Comparing RK-EDA with Leading Algorithms 54
4.4.3 Diversity in RK-EDA . 54

4.5 Conclusions . 57

5 Estimation of Distribution Algorithms for the RCPSP and MR-
CPSP 58
5.1 Introduction . 58
5.2 Problem Instances . 59

5.2.1 RCPSP Instance . 59
5.2.2 MRCPSP Instance . 59

5.3 The Bi-Population Genetic Algorithm (BPGA) 59
5.3.1 Representation . 60
5.3.2 Bi-Population . 61
5.3.3 Preprocessing . 62
5.3.4 Improvement of Initial Population 62
5.3.5 Mode Improvement . 63
5.3.6 Fitness Computation . 64
5.3.7 Parameters . 65

5.4 The Random Key based Estimation of Distribution Algorithm (RK-
EDA) for RCPSP . 65
5.4.1 Workflow of RK-EDA for RCPSP 66
5.4.2 Experimental Settings . 66

5.4.2.1 Problem Set and Performance Criteria 66

ii

5.4.2.2 RK-EDA: Parameter Settings and Preliminary Results 68
5.4.3 Results . 69

5.4.3.1 RK-EDA Results . 69
5.4.3.2 Comparing RK-EDA with Existing Algorithms . . . 70

5.5 The Bi-Population Genetic Algorithm and Estimation of Distribution
Algorithm (BPGA-EDA) for MRCPSP 71
5.5.1 Probabilistic Model for Mode generation 71
5.5.2 BPGA-EDA Workflow . 72
5.5.3 Analysis of EDA for Mode Assignment 73

5.5.3.1 Measure of Complexity 73
5.5.3.2 Feasibility of Mode Solutions: Comparing BPGA with

BPGA-EDA . 75
5.5.4 Experimental Settings . 75

5.5.4.1 Stopping Criterion and Performance Measure 77
5.5.4.2 Parameter Settings 77
5.5.4.3 Variance in Results 77
5.5.4.4 Problem Instance Selection Approach 77
5.5.4.5 BPGA-EDA: Parameter Settings and Preliminary Re-

sults . 79
5.5.5 Results . 80

5.6 The Bi-Population Estimation of Distribution Algorithm (BPEDA) for
MRCPSP . 82
5.6.1 Workflow for the BPEDA . 82
5.6.2 Experimental Settings . 84

5.6.2.1 Problem Sets . 84
5.6.2.2 Parameter settings 84
5.6.2.3 Experimental Approach 85

5.7 Results and Discussion . 85
5.7.1 Comparing BPEDA with BPGA-EDA and BPGA 86
5.7.2 Comparing the proposed EDA with existing EDAs 87
5.7.3 Comparing the proposed EDA with leading algorithms 87

5.8 Conclusion . 89

6 Estimation of Distribution Algorithm for Real-World Project Schedul-
ing 90
6.1 Introduction . 90
6.2 A Real-World Project Scheduling Problem Case Study 91
6.3 Solution Approach . 92

6.3.1 Industrial Solution Approach 92
6.3.2 EDA Solution Approach . 93

6.4 Experimental Settings . 93
6.5 Results and Analysis . 94

6.5.1 Comparing the RCPSP formulation with the MRCPSP formu-
lation . 94

6.5.2 Comparing Primavera Solution with EDA 94

iii

6.6 Conclusions . 97

7 Conclusion and Further Work 98
7.1 Introduction . 98
7.2 Research Questions Revisited . 98
7.3 Summary of Contributions and Analysis of Limitations 99
7.4 Directions for Further Research . 100

7.4.1 Investigation of Cooling Scheme in RK-EDA 100
7.4.2 Multivariate BPEDA for MRCPSP 100
7.4.3 Preserving Relative Order in RK-EDA 101
7.4.4 Efficient EAs . 101

7.5 General Conclusions . 101

A Tables 102

B Figures 119

iv

List of Figures

3.1 RK rescaling . 36

4.1 Percentage probability of a swap between k positions: problem size =
500 and initial variance = 0.0025 . 46

4.2 Percentage probability of an adjacent swap: varying problem sizes and
initial variance = 0.0025 . 47

4.3 Measure of KTD on tai20 5 0 . 55
4.4 Measure of KTD on tai50 5 0 . 56
4.5 Measure of KTD on tai100 5 0 . 56

5.1 Feasibility of BPGA compared to BPGA-EDA 76
5.2 Results for BPGA on J10 - APD . 78
5.3 Sampling along the complexity distribution of J10 79

6.1 Document Design Process . 91
6.2 Schedule by RK-EDA: DOCs 1-3 . 95
6.3 Schedule by BPEDA: DOCs 1-3 . 96

B.1 RCPSP Schedule: DOCs 1-15 . 120
B.2 RCPSP Schedule: DOCs 16-30 . 121
B.3 RCPSP Schedule: DOCs 31-45 . 122
B.4 MRCPSP Schedule: DOCs 1-15 . 123
B.5 MRCPSP Schedule: DOCs 16-30 . 124
B.6 MRCPSP Schedule: DOCs 31-45 . 125

v

List of Tables

2.1 Classification of real-world applications of model-based search algorithms 21
2.2 Stages of real-world applications of model-based search algorithms . . 22

3.1 Parameter Values for RK-EDA . 37
3.2 Travelling Salesman Problem . 39
3.3 Permutation Flowshop Scheduling Problem (Smaller Instances) 40
3.4 Permutation Flowshop Scheduling Problem (larger Instances) 41
3.5 Quadratic Assignment Problem . 42
3.6 Linear Ordering Problem . 43
3.7 Average Ranks of Algorithms . 44

4.1 Stopping Criteria: Number of Fitness Evaluations 48
4.2 Parameter Settings for RK-EDA . 48
4.3 Parameter Settings: Population Sizes 49
4.4 Parameter Settings: Truncation Sizes 49
4.5 Parameter Settings: Initial Variance Values 50
4.6 ARPD: Comparing RK-EDA with other EDAs 51
4.7 ARPD: RK-EDA and leading algorithms for PFSP (20 X 5 - 50 X 20) 52
4.8 ARPD: RK-EDA and leading algorithms for PFSP (100 X 5 - 500 X 20) 53

5.1 RCPSP Instance . 60
5.2 MRCPSP Instance . 61
5.3 Parameter Settings of the BPGA . 66
5.4 Accessing a range of population sizes 68
5.5 Accessing a range of truncation values 68
5.6 Accessing a range of variance values 69
5.7 Parameter Values for RK-EDA . 69
5.8 RK-EDA Results . 70
5.9 APD after 5000 schedules . 70
5.10 BPGA-EDA Parameters based on ESGS- b(%ps)/lr 80
5.11 BPGA-EDA Parameters based on SGS - b(%ps)/lr 80
5.12 Results based on SGS - average APD (Standard deviation) of ten runs 81
5.13 Results based on ESGS - average APD (Standard deviation) of ten runs 81
5.14 Results based on ESGS - average % deviation from optimum - best of

ten runs . 82
5.15 Parameter Settings . 85

vi

5.16 Results based on SGS - average APD (Standard deviation) 86
5.17 Results based on ESGS - average APD (Standard deviation) 86
5.18 Results comparing BPEDA with other EDAs: average APD 87
5.19 Results comparing BPEDA with leading algorithms: average APD . 88

6.1 Project Scheduling Problem . 92
6.2 Parameter Values for RK-EDA and BPEDA 93
6.3 Results Comparing RCPSP and MRCPSP Formulations 94
6.4 Results: Makespan (days) . 97

A.1 Average Ranks of Parameters for J10: ρ=1 103
A.2 Average Ranks of Parameters for J10: ρ=0.5 104
A.3 Average Ranks of Parameters for J20: ρ=1 105
A.4 Average Ranks of Parameters for J20: ρ=0.5 106
A.5 Average Ranks of Parameters for J30: ρ=1 107
A.6 Average Ranks of Parameters for J30: ρ=0.5 108
A.7 Selected Problem Instances . 109
A.8 Average Performance of RK-EDA on Benchmark Problems 110
A.9 Comparing Average ARPD of RK-EDA and other Algorithms. 110
A.10 ARPD: RK-EDA for PFSP (20 X 5 - 50 X 5) 111
A.11 ARPD: RK-EDA for PFSP (50 X 10 - 100 X 10) 112
A.12 ARPD: RK-EDA for PFSP (100 X 20 - 500 X 20) 113
A.13 Real-World Project Scheduling Problem: Start - DOC10 114
A.14 Real-World Project Scheduling Problem: DOC11 - DOC20 115
A.15 Real-World Project Scheduling Problem 116
A.16 Real-World Project Scheduling Problem: DOC21 - DOC30 117
A.17 Real-World Project Scheduling Problem: DOC41 - DOC45 118

vii

Abbreviations

ACO Ant Colony Optimisation

ARPD Average Relative Percentage Deviation

BPEDA Bi-Population Estimation of Distribution Algorithm

BPGA Bi-Population Genetic Algorithm

BPGA-EDA Bi-Population Genetic Algorithm and Estimation of Distribution Al-
gorithm

CI Computational Intelligence

DE Differential Evolution

EAs Evolutionary Algorithms

EBNA Estimation of Bayesian Network Algorithm

EC Evolutionary Computation

EDA Estimation of Distribution Algorithm

EGNA Estimation of Gaussian Network Algorithm

EHBSA Edge Histogram-Based Sampling Algorithm

EP Evolutionary Programming

ES Evolutionary Strategies

ESGS Extended Schedule Generation Scheme

GA Genetic Algorithm

GM-EDA Generalised Mallows model based EDA

GP Genetic Programming

HGM-EDA Hybrid GM-EDA

ICE Induced Chromosome elements Exchanger

KTD Kendal Tau Distance

LOP Linear Ordering Problem

MIMIC Mutual Information Maximization for Input Clustering

MPBLS Multi-mode version Permutation-Based Local Search

viii

MRCPSP Multi-Mode Resource Constrained Project Scheduling Problem

MSSGS Multi-mode Serial Schedule Generation Scheme

NHBSA Node Histogram-Based Sampling Algorithm

PBIL Population-Based Incremental Learning

PFSP Permutation Flowshop Scheduling Problem

PGM Probability Generation Mechanism

PSO Particle Swarm Optimisation

QAP Quadratic Assignment Problem

RCPSP Resource Constrained Project Scheduling Problem

REDA Recursive Estimation of Distribution Algorithm

RK Random Key

RK-EDA Random Key based Estimation of Distribution Algorithm

SGS Schedule Generation Scheme

TSP Travelling Salesman Problem

UMDA Univariate Marginal Distribution Algorithm

VNS Variable Neighbourhood Search

VRP Vehicle Routing Problem

ix

Chapter 1

Introduction

1.1 Introduction

This chapter introduces and presents the scope of study for this thesis. It also presents
the research questions as well as the summary of research publications produced
during this research.

1.2 Background

In the past decades, there has been a drive to improve classical operation research
methods by using meta-heuristics. A lot of industrial optimisation problems are con-
sidered to be NP-hard, making exact methods impracticable (Zlochin et al, 2004).
For this reason, operations research has been one of the major application areas
in the Computational Intelligence (CI) community. The community has produced
many meta-heuristics that are capable of addressing complex real-world problems.
Algorithms such as Genetic Algorithm (GA), Ant Colony Optimisation (ACO), Es-
timation of Distribution Algorithm (EDA) and Particle Swarm Optimisation (PSO)
are seen as the core of CI (Kahraman et al, 2010). Other CI tools include fuzzy sys-
tems, artificial immune systems and artificial neural networks (Engelbrecht, 2007).
Regarding impact, these algorithms have the potential of providing great benefits to
industries as they have been noted for their ability to solve complex problems found
in transportation and logistics, design and manufacturing as well as engineering. The
extent to which the CI community is providing these benefits has however been of
recent concern. Actual benefits gained in industries are not seen as commensurate
with the research effort on CI techniques (Bonyadi et al, 2013; Chiong et al, 2012;
Michalewicz, 2012a). The fact that there is a wide gap between academic research
and industrial practice in this field has been recurrently highlighted by researchers.

One major branch of CI is Evolutionary Computation (EC) which focuses on algo-
rithms that are based on the theory of evolution. Evolutionary Algorithms (EAs) are
a subclass of EC. They consist of a population of solutions that change dynamically
due to the emergence and elimination of individuals, and they also have the notion of
fitness where fitter solutions are more likely to survive (Chiong et al, 2012). Finally,

1

EAs have the concept of reproduction where individuals produce similar offspring.
Based on these defining factors, algorithms such as GA, Genetic Programming (GP),
Evolutionary Strategies (ES) and Evolutionary Programming (EP) are considered
to be direct types of EAs. Other similar algorithms such as EDAs and Differential
Evolution (DE) are also considered EAs.

The genetic algorithm whose creation dates back to the 1960s is the most mature of
EAs and has therefore been most widely studied. The GA is a population-based search
algorithm that is the original prototype of an EA (Chiong et al, 2012). GAs require
some experience of setting parameters to make the best of them. Their disadvantage
lies in their inability to sufficiently exploit problem knowledge (Larrañaga and Lozano,
2002). As an improvement, EDA was created to make better use of problem knowledge
through the use of probabilistic models.

EDAs which are also referred to as probabilistic model building genetic algorithms
replace the crossover and mutation step of the GA with learning a probabilistic model
of good quality solutions. This helps to drive the search towards promising regions
of the search space (Zlochin et al, 2004). EDAs are also able to exploit problem
knowledge and are amenable to the use of instance data to drive their model-building
process, making them better suited for real-world problems.

Several variants of EDAs have been proposed for various problem representations.
EDAs were initially designed for the binary representation, and much more were soon
proposed for vector and continuous representations (Larrañaga and Lozano, 2002).
However, EDAs have moved more slowly into permutations because of the difficulty
of deciding how to construct and sample probabilistic models for this representation
(Ceberio et al, 2012). A recurring problem is the need to respect mutual exclusivity
in permutations. Many permutation EDAs require an additional procedure to ensure
only valid permutations are produced. Their probabilistic models are also often large,
growing exponentially with the size of a problem. However, permutation problems are
sometimes solved using alternative representations such as Random Key (RK). These
naturally translate into valid permutations. Also, EDAs based on RK representation
often use probabilistic models of smaller dimension growing linearly with the size of
the problem. However, in the RK representation, multiple genotypes generate identi-
cal phenotypes. This redundancy associated with the RK representation makes it less
effective. Previous research has shown that EDAs based on RK representation exhibit
poorer performance than those using other representations when applied to common
permutation problems (Ceberio et al, 2012). Despite their poor performance, RK
representations are amenable to lighter-weight, less computationally intensive model-
building and sampling. Research continues to investigate how to design effective and
efficient EDAs for permutation problems. Redundancy elimination techniques that
can overcome the poor performance of RK representations are therefore of potential
interest and significance.

Presently, advanced permutation EDAs such as the Generalised Mallows model
based EDA (GM-EDA) exhibit the problem of premature convergence (Ceberio et al,
2014a). There has therefore been some work on improving diversity in permutation
EDAs by using local search. An example is the state-of-the-art EDA, Hybrid GM-
EDA (HGM-EDA)(Ceberio et al, 2014a) which is a hybrid of GM-EDA and Variable

2

Neighbourhood Search (VNS). Restart mechanisms are also sometimes used to escape
local optima (Ceberio et al, 2014b). The introduction of diversity preserving methods
in EDAs remains an area of interest in the community.

Scheduling problems are some of the most are frequently studied optimisation
problems. They are usually composed of a set of tasks, a set of available resources
and some constraints and are seen in many real-world situations such as timetabling,
staff rostering, equipment maintenance scheduling etc. (Hart et al, 2005). Scheduling
problems are often naturally represented as permutations. Although not all schedul-
ing problems are permutation problems and vice versa, the difficulty of EDAs in the
permutation domain affects their performance on scheduling problems.

Scheduling problems are considered even more complex when they are also cat-
egorised as multi-component problems. These are problems that consist of multiple
interacting sub-problems. Examples are the vehicle routing problems that are de-
pendent on the container loading problem (Rizzoli et al, 2007) and certain project
scheduling problems which consist of activity scheduling as well as mode assignment
problems (Voß and Witt, 2007). Researchers have argued that many real-world opti-
misation problems are multi-component problems. There has therefore been a drive
towards solving this class of problems in an attempt to bridge the theory to practice
gap that exists in the field (Bonyadi et al, 2013). Existing algorithms for solving multi-
component benchmarks are however highly complex. They combine meta-heuristics
with many improvement procedures and local search methods (Van Peteghem and
Vanhoucke, 2011). Each of these procedures contributes to the overall computational
cost. By encapsulating learning in an explicit probabilistic model, EDAs are less
noisy than classical EAs. EDAs may therefore be able to approximate the optimum
more quickly and effectively than a GA, thus reducing or eliminating the need for
local search. However, premature convergence also exists in EDAs when the variance
of iteratively re-sampled distributions becomes very small. Therefore, appropriate
control of model parameters is included in this investigation.

1.3 Research Questions

This thesis focuses on answering the following research questions

• In what way can the problem of redundancy in RK be addressed?

• In what way can diversity be controlled in EDAs designed to solve permutation
problems?

• How can we reduce the need for local improvement procedures in multi-component
scheduling problems?

• How can we transfer knowledge from solving a multi-component test problem
to a similar real-world problem?

3

1.4 Published Works and Thesis Overview

A brief background to this study has been presented in this chapter. During this
research, some research publications were produced and contribute to some of the
thesis chapters. The publications are listed as follows in ascending order of publication
date.

1. Ayodele, M., McCall, J. and Regnier-Coudert, O., 2015, July. Probabilis-
tic Model Enhanced Genetic Algorithm for Multi-Mode Resource Constrained
Project Scheduling Problem. In Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation (pp.
745-746). ACM.

2. Ayodele, M., McCall, J. and Regnier-Coudert, O., 2016, July. BPGA-EDA for
the multi-mode resource constrained project scheduling problem. In 2016 IEEE
Congress on Evolutionary Computation (CEC) (pp. 3417-3424). IEEE.

3. Ayodele, M., McCall, J. and Regnier-Coudert, O., 2016, September. RK-EDA:
A novel random key based estimation of distribution algorithm. In International
Conference on Parallel Problem Solving from Nature (pp. 849-858). Springer
International Publishing.

4. Ayodele, M., McCall, J., Regnier-Coudert, O. and Bowie, L., 2017. A random
key based estimation of distribution algorithm for the permutation flowshop
scheduling problem. In 2017 IEEE Congress on Evolutionary Computation
(CEC) (pp. 2364-2371). IEEE.

5. Ayodele, M., McCall, J. and Regnier-Coudert, O., 2017. Estimation of distri-
bution algorithms for the multi-mode resource constrained project scheduling
problem. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp.
1579-1586). IEEE.

The rest of this thesis is structured as follows.
Chapter 2, Literature Survey. This chapter presents real-world applications of

EDAs and ACO which are often studied together under model-based search algo-
rithms. Some well-studied permutation and scheduling problems are also presented.
Furthermore, a review of leading approaches to solving these problems is presented.

Chapter 3, RK-EDA: A Novel Random Key Based Estimation of Distribution
Algorithm. This chapter proposes a novel RK-EDA for solving permutation problems.
RK-EDA eliminates redundancies in the RK representation by normalising the genes
in a solution. It also uses a cooling scheme to control exploration and exploitation.
In this chapter, RK-EDA is applied to a range of common permutation problems;
Permutation Flowshop Scheduling Problem (PFSP), Quadratic Assignment Problem
(QAP), Linear Ordering Problem (LOP) and Travelling Salesman Problem (TSP)
benchmark instances and particularly showed highly competitive performance on the
PFSP. This chapter is developed from the study presented in the 3rd paper (Ayodele
et al, 2016b) listed above.

4

Chapter 4, RK-EDA for the Permutation Flowshop Scheduling Problem. A more
focused detail of the application of RK-EDA for the PFSP is presented in this chap-
ter. Parameters are tuned specifically for this problem leading to improved results
and new best-known solutions on the largest problem instances. In this chapter, the
rate of exploration/exploitation at each generation is estimated by measuring the
probability of swaps in a permutation. An experimental evaluation of the explo-
ration/exploitation is also presented showing similar results. With this approach, it
is possible to determine the expected exploration/exploitation rate during a run of
the algorithm without executing the algorithm. The 4th paper (Ayodele et al, 2017b)
was used to develop this chapter. A better set of parameters were however found
after the paper was published and new results are used in the chapter.

Chapter 5, Estimation of Distribution Algorithms for the Multi-mode Resource
Constrained Project Scheduling Problem. The Multi-Mode Resource Constrained
Project Scheduling Problem (MRCPSP) is a multi-component problem that consists
of two optimisation problems; one is permutation-based while the other is repre-
sented as a set of integers. It is common practice to embed many local search and
improvement procedures in meta-heuristics when solving this problem. The aim of
this chapter is to reduce the need for local improvements by introducing EDAs. This
chapter adapts RK-EDA for solving the Resource Constrained Project Scheduling
Problem (RCPSP), which shares similar properties with the permutation component
of the MRCPSP. BPGA-EDA which combines GA and Population-Based Incremental
Learning (PBIL) is also proposed in this chapter. Although RK-EDA struggled to
produce competitive on the RCPSP, BPGA-EDA improved one of the most compet-
itive methods of solving the MRCPSP. This chapter also presents the BPEDA which
is made up of RK-EDA and PBIL. BPEDA was able to achieve highly competitive re-
sults with fewer improvement procedures. This demonstrates that highly competitive
results can be achieved even while reducing the use of local improvement procedures.
This chapter is developed from the 1st, 2nd and 5th papers (Ayodele et al, 2015, 2016a,
2017a) listed above.

Chapter 6, EDA for Real-World Project Scheduling Problem. In this chapter,
methods of solving the RCPSP and MRCPSP are adapted for solving a real-world
project scheduling problem. The work takes business procedures into consideration.
The proposed algorithms are shown to outperform the industrial software, Primavera.

Chapter 7, Conclusions and Future Work. This chapter concludes the thesis and
presents directions for further research. Limitations of approaches used throughout
this thesis are also discussed.

5

Chapter 2

Literature Review

2.1 Introduction

In the previous chapter, the main research themes of this thesis were introduced. A
literature review investigating these research themes is presented in this chapter. One
of the most mature algorithms in CI is the GA. An adaptation of this algorithm is
the EDA also known as the probabilistic model building GA. EDAs have the benefit
of capturing knowledge about a search space making them better suited for solving
complex problems. ACOs are also often studied under the same category as EDAs
because of their use of probabilistic model known as pheromone model. These model-
based search algorithms can be fundamental in bridging the theory-to-practice gap
in the application of EAs. In this study, a review of real-world applications of EDAs
as well as ACOs is presented. This review motivates the focus on scheduling and
permutation problems.

Some of the most frequently studied permutation and/or scheduling problems
in literature are PFSP, QAP, TSP, and LOP. Another scheduling problem which
has been well-studied in the last few decades is the RCPSP as well as its variant
MRCPSP. In this chapter, we formally define these problems and present a review
of EDAs applied to solving them. Based on this review, the need for a more efficient
and effective EDA is motivated.

The rest of this chapter is structured as follows. In Section 2.2, we identify factors
that make real-world problems considered complex. Section 2.2.1 presents common
probabilistic models. Section 2.3 introduced the EDA and ACO. Section 2.4 presents
the real-world applications of ACO and EDA. Section 2.5 formally defines common
permutation and scheduling problems while Section 2.6 presents a review of EDAs
proposed for solving these problems. Section 2.7 presents a discussion on the research
focus of this thesis.

2.2 Modelling Real-World Problems

Real-world industrial problems are considered “complex” because they are:

6

• large: it is computationally infeasible to compute every possible solutions (Chiong
et al, 2012)

• multi-objective: optimal decision relies on two or more objectives which may
even be conflicting (Hart et al, 2005)

• highly constrained: the search for optimality ceases to be the major problem
but is replaced by the search for feasibility (Chiong et al, 2012)

• uncertain: real-world problems change very often, the objective function can
vary significantly with time or may be noisy. Also, applications designed to suit
a user may soon become obsolete when company rules change (Chiong et al,
2012; Michalewicz and Fogel, 2000)

• characterised by multiple dependencies: features/elements of real-world pro-
cesses are often highly interrelated (Fischer et al, 2011; Koller and Friedman,
2009).

Although EAs present an alternative to classical operational research methods,
there is a theory-to-practice gap in their applications. Methods developed based on
artificial test problems are often not directly applicable to real-world problems. This
is due to oversimplification of constraints (Michalewicz, 2012b). Many artificial test
problems are considered unrealistic because complexity has been characterised purely
in terms of size. They neglect the fact that real-world optimisation problems are
usually compound problems (consisting of 2 or more sub-problems) (Bonyadi et al,
2013). Although there has been a research focus on creating more realistic bench-
mark problems, many problem sets are still considered far from reality (Michalewicz,
2012b).

Another focus area of the community is multi-objective and constrained optimi-
sation problems (Deb, 2001). In more recent years however, there has been research
interests in dynamic and multi-component optimisation problems. Dynamic problems
require a solution approach to model uncertainties in optimisation problems. How-
ever, multi-component problems consists of sub-problems that cannot be solved in
isolation. Modelling interdependencies between components of problems using prob-
abilistic models has been a successful research area (Larrañaga and Lozano, 2002).
Probabilistic model building EAs, such as EDAs, perform competitively on many
complex problems (Hauschild and Pelikan, 2011). They are particularly considered
well suited for data-driven approaches. This work therefore focuses on problem solv-
ing using probabilistic models.

2.2.1 Probabilistic Models

Probabilistic models are formal techniques used for capturing dependencies that exist
between the parameters of a process (Baluja and Davies, 1998). They can be used for
encoding uncertain knowledge (Larrañaga and Lozano, 2002) and are considered bet-
ter at giving the reflection of a domain than purely hand constructed models (Koller

7

and Friedman, 2009). Probabilistic Models can also be useful for interpreting un-
certain data (Jordan et al, 2004). The advantage of probabilistic models in making
uncertainty explicit makes them able to depict reality more faithfully (Koller and
Friedman, 2009). In literature, Bayesian and Gaussian networks are the most exten-
sively studied Probabilistic Models (Larrañaga and Moral, 2011). Markov Network is
another probabilistic model that has been widely used (Larrañaga and Lozano, 2002).

2.2.1.1 Bayesian Network

Bayesian network has particularly been widely used by AI researchers for representing
conditional (in)dependence that exists within a system/process (Heckerman et al,
1995; Zhang and Wu, 2012).

Shakya and Santana (2012) defines a Bayesian network as a pair (B,Θ). B
and Θ respectively denote the structure of the model and the set of parameters
of the model. B is a Directed Acyclic Graph (DAG) where each node represents
a variable and the edges represent the conditional dependencies. A set of nodes
Πi is a parent of Xi if there are edges from each variable in Πi to Xi. Θ =
{ p(x1|Π1), p(x2|Π2), · · · , p(xn|Πn) } is the set of conditional probabilities. p(xn|Πn)
is used to denote the set of probabilities associate with Xi = xi given the different
configurations of its parent variables Πi.

Summarily, given a set of variables X = {X1, X2, · · · , Xn}, a joint probability
distribution p(x) for a Bayesian network is represented as shown in eq. (2.1)

p(x) =
n∏

i=1

p(xi|Πi) (2.1)

2.2.1.2 Gaussian Network

In Gaussian Network, each variable Xi ∈ X is continuous and each local density
function is the linear regression model (Larrañaga and Lozano, 2002). A Gaussian
distribution N (µ, Σ) over a vector of n random variables X = {X1, X2, · · · , Xn} is
defined by two parameters. The first is µ which is the vector of means for each
variable. When all variables of a network are assumed to be independent, Σ is a
vector of variances across the distribution. Otherwise, Σ is a positive-definite and
symmetric nn covariance matrix (Shakya and Santana, 2012).

2.2.1.3 Markov Network

A Markov network is a pair (G,Ψ) where G and Ψ respectively denote the structure
of the model and the set of parameters of the network. G is an undirected graph
where each node represents a variable and the edges represent the conditional de-
pendencies between variables. In a Markov network, relationship between nodes
are seen as a neighbourhood relationship rather than a parenthood relationship.
N = {N1, N2, · · · , Nn} denotes the neighbourhood system on G, where Ni is the
set of neighbouring nodes of node Xi.

8

Markov networks are usually represented as shown in eq. (2.2). A feature fi(x)
is a real-valued function of the state and wi are weights. T is the temperature and
Z =

∑
x∈Ω

∏m
i=1Ψ(ci) is the normalisation constant. Here, Ω is the set of all possible

combinations of variables inX. Ψ(ci) is a potential function on clique Ci ∈ X (Shakya
and Santana, 2012).

p(x) =
e−

∑m
i=1 wifi(x)/T)

Z
(2.2)

2.3 Model-Based Search Algorithms

The classic GA was not designed to explicitly learn dependencies between properties
of a problem (Larrañaga and Lozano, 2002). As noted in Chapter 1, EDA was adapted
from the GA such that it drives its search through the explicit use of probabilistic
models rather than crossover. The focus of this study is on EDAs. However, EDAs
are often classified alongside ACOs as model-based search algorithms (Zlochin et al,
2004). Also, ACO has a variant (hypercube-cube framework) that is equivalent to a
variant of the EDA (PBIL) (Blum and Dorigo, 2004). This section therefore describes
EDAs and ACOs.

2.3.1 Estimation of Distribution Algorithms

EDAs like other EAs are stochastic and population-based. They explore the search
space by building and sampling explicit probabilistic models of promising candidate
solutions (Hauschild and Pelikan, 2011; Pelikan et al, 2006). This explicit use of
probabilistic models in optimisation provides a better understanding of the problem
domain and helps drive the search towards regions of good solutions. It also makes
EDAs outperform other types of meta-heuristics on many problems (Hauschild and
Pelikan, 2011). EDAs repeatedly follow these sequence of steps; select a set of promis-
ing solutions from a population of individuals, learn the joint probability distribution
of the selected individuals and sample from this probability distribution (Larrañaga
and Lozano, 2002).

There are many types of EDAs and they can be grouped by the way they model
the interrelations between problem variables. Some EDAs are univariate ignoring all
interactions between problem variables. They assume that the problem variables are
all independent (Hauschild and Pelikan, 2011). Examples of univariate EDAs are Bit-
based simulated crossover (Syswerda, 1992), Population-Based Incremental Learning
(PBIL) (Baluja, 1994), Univariate Marginal Distribution Algorithm (UMDA) (Pe-
likan and Mühlenbein, 1998), compact Genetic Algorithm (cGA) (Harik et al, 1999)
and Genepool Optimal Mixing Evolutionary Algorithm (GOMEA) (Bosman and
Thierens, 2013). There are also bivariate EDAs that captures pair-wise interactions
between the variable of a problem. Examples are Mutual Information Maximization
for Input Clustering (MIMIC) (De Bonet et al, 1997), Combining Optimizers with Mu-
tual Information Trees (COMIT) (Baluja and Davies, 1997) and Bivariate Marginal
Distribution Algorithm (BMDA) (Pelikan and Mühlenbein, 1999). Finally, there are

9

multivariate EDAs. These are EDAs that are able to capture multiple problem depen-
dencies such as Affinity propagation EDA (Aff-EDA) (Santana et al, 2010), Bayesian
Optimization Algorithm (BOA) (Pelikan, 2005a), Hierarchical Bayesian Optimiza-
tion Algorithm (hBOA) (Pelikan, 2005b), Dependency Structure Matrix Genetic Al-
gorithm (DSMGA) (Yu et al, 2003), Distribution Estimation Using Markov network
(DEUM) (Shakya and McCall, 2007), Estimation of Bayesian Network Algorithm
(EBNA) (Etxeberria and Larranaga, 1999), Extended Compact Genetic Algorithm
(ECGA) (Harik, 1999), Factorised Distribution Algorithm (FDA) (Mühlenbein and
Mahnig, 1999), Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein
and Mahnig, 1999) and Markovianity based optimization algorithm(MOA) (Shakya
and Santana, 2008).

EDAs can also be grouped according to the problem representations they are
designed for. The three main categories are EDAs for discrete variables, real-valued
vectors and permutations (Hauschild and Pelikan, 2011).

EDAs for discrete variables work on a fixed-length solution string with a finite
cardinality. A probabilistic model is used to capture the probabilities of different
values of the variables of a problem. Two frequently used discrete variable EDAs are
UMDA and PBIL.

EDAs for real-valued vectors work on a solution with infinite cardinality. It is
therefore not possible to enumerate the probabilities of variables’ values. The Uni-
variate Marginal Distribution Algorithm for continuous domain (UMDAc) (Larranaga
et al, 1999), Estimation of Gaussian Networks Algorithm (EGNA) (Larranaga et al,
1999) and real-coded Bayesian optimization algorithm (rBOA) (Salinas-Gutiérrez
et al, 2009) are types of real-valued EDAs.

Of particular interest in this study are EDAs for permutations which are popular
for many real-world problems and in particular for scheduling problems (Hauschild
and Pelikan, 2011). These EDAs often need to capture two types of constraints
which are absolute positions as well as mutual exclusivity constraints in solutions.
EDAs for permutation problems have particularly been of recent research interest in
the community (Ceberio et al, 2012). Some examples of permutation based EDAs are
Generalized Mallows Estimation of Distribution Algorithm (GM-EDA) (Ceberio et al,
2014a), Node Histogram Based Sampling Algorithms (NHBSA) and Edge Histogram
Based Sampling Algorithms (EHBSA) (Tsutsui, 2002).

2.3.2 Ant Colony Optimisation

ACO, is a population-based and model-based search algorithm inspired by the natural
behaviour of ants when foraging for food. Real ants leaves pheromone on the ground
to attract other members of the colony to a favourable path. A similar approach is
used by the ACO. It uses a particular type of probabilistic model (called pheromone
model) whose structure is made up of some stochastic procedures called artificial ants
(Zlochin et al, 2004). Each artificial ant builds a solution to the given problem using
knowledge of the search space obtained from other ants. ACO repeatedly constructs
candidate solutions using a pheromone model and modifies the pheromone values
such that there is bias towards high quality solutions.

10

The original type of ACO proposed was the Ant System (AS) (Dorigo et al,
1996). Some other frequently used ACOs are Ant Colony System (ACS) (Montemanni
et al, 2005) and MIN-MAX Ant System (MMAS) (Stützle and Hoos, 2000)(Dorigo
et al, 2006). Other types of ACO include Hyper-Cube Framework for ACO (Blum
et al, 2001), Continuous Orthogonal Ant Colony (Hu et al, 2008) and Recursive ACO
(Gupta et al, 2012).

ACO is known for solving complex combinatorial optimization problems like TSP
and QAP (Dorigo et al, 1999). They have been widely applied to many real-world
industrial problems such as the vehicle routing problem (Donati et al, 2008; Gam-
bardella et al, 2003; González-Barbosa et al, 2010; Hämmerle and Ankerl, 2013; Ne-
chita et al, 2008; Pellegrini et al, 2007; Rizzoli et al, 2004, 2007).

2.4 Real-world applications of EDAs and ACOs

For a research to be classified as a real-world application, it must be based on real-
world data (Chiong et al, 2012). Also, a bi-directional flow of knowledge between
researchers and industrial experts is an important step to translating academic ideas
to what works in practice (DEste and Patel, 2007). Furthermore, the evaluation stage
is another important step to implementing an algorithm in practice. Many flaws may
not be discovered until algorithms are tested by experts from the industry. Finally,
evaluation helps to reveal important business rules (Rizzoli et al, 2007).

We have identified the benefits of model building EAs in solving real-world prob-
lems and also established the similarities between EDAs and ACOs. This section
therefore presents a review of both algorithms in practice using the following factors.

• Real-world data has been used

• There has been expert involvement

• There has been industrial evaluation

• Algorithm has been implemented in an industry

Each reviewed research work satisfies at least one of the attributes listed above.

2.4.1 History Matching Problems

The History matching problem is an inverse problem where observed reservoir be-
haviour is used to estimate certain parameters that caused the behaviour (Oliver and
Chen, 2011). It involves the calibration of a reservoir model to reproduce historic
observation data as well as production optimisation and forecasting (Abdollahzadeh
et al, 2013). History matching is a time consuming exercise taking several months
to do manually (Abdollahzadeh et al, 2013). It is also often full of uncertainties.
The size of the problem and the uncertainty factor makes it a complex problem to
solve. EDA has been applied to the history matching problem in (Abdollahzadeh
et al, 2013) and ACO in (Hajizadeh et al, 2011).

11

In (Abdollahzadeh et al, 2013), BOA (an EDA) was applied to the problem using a
real oilfield in the North Sea. The performance of BOA on the problem was compared
to that of a commercialised GA. BOA was seen to produce better results in terms of
lower misfit within a shorter period of time. EDA is able to better exploit problem-
specific knowledge based on historic data to achieve better solutions. The use of real
data was reported as well as interactions with industrial experts. No expert evaluation
or industrial implementation was however reported in the study.

Another EDA applied to history matching problem is the PBIL (Petrovska and
Carter, 2006). Two real-world fields were considered in the study using fifteen years
production history. Company details were kept anonymous in the study. PBIL was
shown to outperform the standard GA on this problem. Industrial involvement can
be deduced but no industrial assessment or implementation was reported.

Hajizadeh et al (2011) applied ACO to the history matching problem and un-
certainty quantification of reservoir models. The authors considered the real-world
case of the Teal south reservoir in the gulf of Mexico. Producing a lot of history
matched models is considered very important as it will help to better quantify the
level of uncertainty. ACO is able to produce multiple valid models. This research
relies on historic data for estimating the level of mismatch associated with solutions.
Real-world data has been used and interaction with the oil and gas industry can be
inferred. Industrial validation and implementation are not reported.

2.4.2 Routing Problems

The Vehicle Routing Problem (VRP) is one of the common application areas of model-
based search algorithms. This problem entails scheduling vehicles to move items from
one place to another. Researchers have classified VRPs based on features such as the
number of pick up points, whether or not there is a heterogeneous or homogeneous
fleet, whether or not there are strict or flexible time windows and whether or not
jobs can be assigned to vehicles after they have taken off (Braekers et al, 2016).
This has however led to a large number of variants, some of which are peculiar to
certain authors. Examples are VRP with Pick-up and Delivery (VRPPD) (Rizzoli
et al, 2004), VRP with time window (VRPTW) (Rizzoli et al, 2007), time dependent
VRP (TDVRP), (Donati et al, 2008), dynamic VRP (Rizzoli et al, 2004), static VRP
(Gambardella et al, 2003) and rich VRP (Pellegrini et al, 2007; Regnier-Coudert et al,
2016).

Other routing problems presented in this section are the delivery problem in Ochiai
and Kanoh (2014) and the crane routing problem in (Hirsch et al, 2012).

The VRP described by Rizzoli et al (2007) entails distributing items from a depot
to over 600 stores using heterogeneous vehicles. A real-world constraint that depicts
that all jobs must be completed within a single day while respecting each customer’s
time window is imposed. Other real-world constraints such as the unsuitability of
certain vehicles for some tasks or locations reduce the space of feasible solutions. To
meet the objectives of this VRP which are to reduce the number of vehicles and time
taken to complete tasks (Bräysy and Gendreau, 2005), this problem was solved using
Multi Ant Colony System (MACS) which is a variant of the ACS. This algorithm

12

involves two interacting colonies. An ant colony called ACS-VEI attempts to min-
imise the number of vehicles and the other ant colony called ACS-TIME attempts
to minimise the time taken (Rizzoli et al, 2007). This problem is multi-objective
(minimise time and number of vehicles) and large (entails scheduling a fleet of over a
hundred vehicles to service 600 stores on a daily basis). It can also be seen as highly
constrained (time-window constraint, vehicle compatibility constraint). The ability
of ACO to correctly model the relationship that exists in the problem is a strength of
model-based search algorithm. The solution approach also involved embedding busi-
ness rules. In (Rizzoli et al, 2007), the first set of solutions presented to the planners
were considered infeasible due to their non-adherence to a business rule which dictates
that schedules should be generated according to regions rather than considering all
locations together. This was corrected, and the final application accepted even when
results produced were considered worse compared to the first by the researchers. The
use of real-world data, expert involvement, industrial evaluation and implementation
are reported in (Rizzoli et al, 2007).

Nechita et al (2008) applied MACS to a VRP with objectives of minimising dis-
tance and the number of circuits. This study originated from a distributor of dietary
products in Romania. The VRP is characterised by strict time windows. The fact
that environmental changes such as weather can give preference to an objective over
another at a given moment created a need for the problem to be modelled in a non-
static way. The need for handling unexpected changes in route (e.g due to weather)
emerged from working on this real problem. Proposing a solution that satisfies these
constraints led to a ten percent savings on transportation in a year. This shows that
model-based search algorithms can not only replace existing methods but has the
capacity of improving them.

The VRP described in (Rizzoli et al, 2004) involves more than one pick-up point
and jobs can take over a day to be completed due to the mode of operation of the
case-studied logistics operator in Italy. These pick-up and delivery activities are done
using a homogeneous fleet of vehicles. Similar to the VRP described in (Nechita et al,
2008), time windows need to be respected. Here, a large number of customers reported
to be between 1,000 and 1,500 are served at a time. Also, drivers are constrained by
a particular number of hours of work per day and all pick-ups as a matter of policy
must be done before delivery starts. The real-world difficulty here includes the need
to handle the uncertainty related to traffic congestion as well as loading and unloading
space. This real-world problem has a business rule that depicts that the number of
cities (not customers) to visit in a tour must not be more than six. Solutions not
conforming to this standard are considered infeasible. Furthermore, the loading and
unloading time are considered to be fixed which is reported as being imposed by the
client. Different from the objective reported in theory and other practical problems,
the aim here is to improve the routing efficiency. This is to reduce pollution and traffic
congestion due to commercial transport. MACS algorithm was also used to tackle
this problem differently due to the different objectives. The implementation of this
algorithm is reported to produce a substantial improvement regarding tour efficiency
to that of the human planners. The human planners experienced a decline in efficiency
as problem size increases while the implemented algorithm produces better efficiency

13

for larger problems.
The VRP presented in (Donati et al, 2008) pays particular attention to the ef-

fective modelling of the time taken to execute tasks. Here, there is the need to
handle the uncertainty associated with the traffic situations, especially in urban re-
gions. The fact that there is a hard constraint on time window has made this aspect
very important. MACS has been used to solve this problem using real data from
the Padua logistic district in the Veneto region of Italy (Donati et al, 2008). The
case study involves servicing 60 customers with 10 trucks. This work sheds more
light on the fact that solutions to real-world problems need to be data-driven to be
indeed feasible as factors like traffic situation can vary a lot which can easily make
estimates unreasonable. A higher degree of infeasibility is reported with a higher level
of time-dependency. Although real-world data was used, no industrial involvement
or real-world implementation was however reported.

Gambardella et al (2003) analysed a VRP from both static and dynamic contexts.
Static means that all jobs are known before departure while dynamic means that
additional jobs can be assigned to vehicles after they have taken off. Gambardella
et al (2003) presented two software tools (AntRoute and DyvOil) based on the ACO.
AntRoute is developed to handle the static VRP while DyvOil is designed to han-
dle both dynamic and static scenarios. Creating such tools were made possible by
engaging with some real-world companies. A fuel oil distribution company and a su-
permarket supply chain company were noted. They were able to identify the common
needs of these companies and develop software tools that can handle them. These
needs include forecasting customer requests based on previous orders and handling
the dynamism attached to placing orders at different hours of the day. Pina Petroli,
a fuel oil distribution company is said to have recorded an increase in the number of
successful calls (customer calls leading to order) from one out of four to one out of
two which is credited to the use of DyvOil. We see this success can be attached to
dealing with real situations, engaging with the industry, getting feedback and suc-
cessful implementation in at least one company. The advantage of making solution
data-driven is also identified (Gambardella et al, 2003).

Pellegrini et al (2007) describes the VRP from the context of the problem faced
by a distributor of food products in Italy. Here, customers have strict but many time
windows which make this VRP more flexible. There is a company rule that imposes
a maximum duration to tours as drivers are paid cheaper for the first eight hours and
higher thereafter. Similar to the VRP in (Rizzoli et al, 2007), there are more than a
type of vehicle. Additionally, this particular real-world problem is characterised by
multiple time windows (i.e. having a series of time slots for pick-up/delivery rather
than a fixed time slot). This problem was solved using Multiple Ant Colony System
(MACS) and Multiple MAX-MIN Ant System (M-MMAS) working hand in hand
(Pellegrini et al, 2007). The choice of ACO was based on the complexity of the prob-
lem structure as well as its ability to solve multi-objective problems (Pellegrini et al,
2007). Real data was used in this study, and there is evidence of industrial involve-
ment in this study. There is however neither any evidence of industrial evaluation
nor implementation.

Ochiai and Kanoh (2014) presented the application of ACO to a real-world delivery

14

problem.This problem originates from a home delivery service in Tokyo, Japan and is
formulated as a TSP. Historical data has been used in this study. The study, however,
does not suggest the involvement of industrial experts at any stage. It also does not
indicate that this work has been implemented for use in a real-world industry.

ACO has been applied to the crane routing problem experienced by a roof-tile
producing company (Hirsch et al, 2012). The crane routing problem in this case study
involves minimising the sum of working times of two cranes (used to move tile batches
and load carriers). There is also the aim of balancing the workload distribution
between both cranes. The authors describe this problem as a state-dependent problem
as the operation (path) of one crane is dependent on the other. To handle this, they
used two communicating ants to represent the cranes. The path of each ant, therefore,
corresponds to the path of the cranes, therefore, ensuring feasibility regarding avoiding
collisions. The proposed method is able to give solutions within a reasonable amount
of computation time. Hirsch et al (2012) recorded success in their application of ACO
to this problem as they were able to produce feasible results for the company involved.
We can infer that the researchers used real data, engaged with the industry, had their
methods tested by industrial experts and implemented their approach

2.4.3 Job Shop Scheduling Problems

Blažewicz et al (1996) described Job Shop Scheduling Problem (JSSP) as consisting of
different machines that work on jobs. The jobs need to follow a sequence of operation
by the machines. This problem is that of specifying the job sequence on the machines
with the aim of minimising the makespan, the total time for completing all jobs.
(Blažewicz et al, 1996). When solving this problem in practice, there are often other
objectives to consider in addition to or different from minimising the makespan (Hart
et al, 2005). An example is tardiness. This section reviews the applications of model-
based search algorithms to JSSP instances. They are the applications of EDAs to
JSSPs in (Zhang and Wu, 2012), (Salhi et al, 2007) and (Wu and Huang, 2013) as
well as applications of ACO to JSSPs in (Gagné et al, 2006), (Montgomery et al,
2006) and (Chica et al, 2011).

EDA was applied to a JSSP faced by a large scale speed reducer manufacturer
in China (Zhang and Wu, 2012). The need to base the criteria of JSSP on due-
date-related performance rather than merely using the makespan was identified, the
problem was therefore addressed from this perspective. Objective functions that are
based on due dates are seen to be more practical hence the recommendation of the
total weighted tardiness criterion. Furthermore, the authors identified the need to
deal with due dates of products and consider products which must be delivered in a
batch dynamically from the experience of working with a real-world company. This
is a complex problem where due dates have to be quoted in an optimal way. A closer
date may give the company a better chance of obtaining an order (i.e. more business
at the expense of the company’s credibility) while a longer date may give the company
enough time reducing the possibility of failing on time (i.e. more credibility less chance
of obtaining orders) (Zhang and Wu, 2012). Striking a right balance between these
facts require an excellent modelling tool. EDA was used because of its ability to

15

model the relationship between decision variables. The probabilistic model of the
EDA is based on the Bayesian network. To improve the performance of this model-
based search algorithm, EDA was hybridized with a local search algorithm (Zhang
and Wu, 2012). The EDA proposed in this research is called due date assignment
EDA. There is evidence of the use of real data as well as industrial interaction, but
no expert evaluation or industrial implementation reported.

EDA was applied to a Hybrid Flow Shop (HFS) problem which is a particular case
of the JSSP in (Salhi et al, 2007). HFS is an NP-hard problem commonly experienced
in manufacturing firms; it involves processing a set of jobs through a series of stages
(Linn and Zhang, 1999). The aim is to minimise a cost function. The distinct feature
of HFS is that there is a strict order for all operations required by each job. This
problem experienced by a cardboard box company involves processing a set of jobs
while taking into consideration the fact that the processing time and the set-up time
of the machines vary from one to another. Realistic timing can be produced using
previous data. A new type of EDA with guided mutation (EDA-GM) was proposed
and used to solve this problem. The type of probabilistic model used is however not
mentioned. The authors identified that this research lacked enough data to assess
the performance of the proposed heuristic confidently. Although data used originated
from a real-world problem, there is no report of any form of industrial involvement
or implementation.

Another application of EDA to the JSSP is seen in the case study of a steel industry
(Wu and Huang, 2013). This problem is called a single-machine deteriorating jobs
scheduling problem which entails real-world factors causing the time required for the
same job to differ. The fact that it is often assumed that the time required to process
a job is always the same was faulted in this study. In this considered steel industry,
the processing time of a job will not always be the same. Also, as noted by Zhang
and Wu (2012), the need to accommodate varying due-date was also identified hence
the choice of a model-based search algorithm, particularly EDA. This is important
because due-dates are usually negotiable and not static like most theoretical previous
works assumed. Similar to (Zhang and Wu, 2012), EDA’s ability to learn problem
structure recurs as the reason for the choice of algorithm. This research work also
re-emphasises the need to base the objective function of JSSP on due-date-related
performance rather than merely using the makespan (Wu and Huang, 2013; Zhang
and Wu, 2012). The Improved EDA (IEDA) is proposed and applied to the JSSP.
They recorded feasible results using this approach. Data from a real situation has
been used in this research. However, there is no record of any form of interaction
with the industry.

The car sequencing problem as presented in (Gagné et al, 2006) is classified as a
JSSP and has been solved by an ACO. This problem is seen in an automobile assembly
line where the car passes through three main stages of production which are body
construction, paint and assembly. The construction and assembly shops have capacity
constraints, and there is a need to minimise colour changes in the paint shop. The
incorporation of more realistic constraints as well as solving this problem as a multi-
objective problem is said to have significantly increased the complexity of the problem.
The authors, however, recorded better solution structures and objective function

16

values when compared to the method used in practice. This was a collaborative
research with Groupe Renault and there is evidence of the use of real data, industrial
involvement and evaluation. There was, however, no evidence that this became a
useful tool for the company.

The JSSP faced by a printing company involves scheduling printing jobs on 18
machines at 7 work centres (Montgomery et al, 2006). Two MAX-MIN ant systems
were used to solve this JSSP problem using a month data consisting of 549 operations
divided into 159 jobs. Here, execution times of tasks are uncertain. Also, there are
no fixed due dates but rather promised dates making the problem less contained by
time. The success of ACO in solving other complex real-world problems prompted
the authors to try the algorithm on this class of problem. Data was collected from
the printing company for the purpose of trying the ACO on the real-world problem.
There is however no evidence to suggest industrial evaluation or implementation.

ACO was applied to the JSSP in Chica et al (2011). It was identified that as-
sembly line balancing problems needed to be modelled as a multi-objective problem.
This is based on the experience of working on a real-world Nissan assembling prob-
lem in Barcelona, Spain. This problem is characterised by two objectives which are
minimising the number of stations as well as their area for a given cycle time. It was
explained that it is often impossible to combine the objectives into a single objec-
tive or to work based on the seemingly most important objective. This collaborative
research described in (Chica et al, 2011) has taken some real-world factors into consid-
erations such as the fact that experts should not be presented with too many results
but a few that may be of interest to them. The authors also noted the importance of
incorporation domain expert knowledge. This study is based on the use of real-world
data, industrial involvement and expert feedback. Implementation of this research in
the Nissan plant was not reported.

2.4.4 Nurse Scheduling Problem

Nurse scheduling is a complex problem in certain medical practices, the fact that
there are a limited number of nurses to cater for patients adequately pose a real
challenge (Aickelin and Li, 2007). EDA and ACO have respectively been applied to a
nurse scheduling problem originating from a hospital in the United Kingdom (Aickelin
and Li, 2007; Aickelin et al, 2006) and a hospital in the United States (Gutjahr and
Rauner, 2007).

From the case study of a hospital in the UK (Aickelin and Li, 2007), nurses are
usually of different grades, prefer different shifts and have contracted hours. In the
cited work, it is important to have a mix of grades of nurses at every given time
slot. Also, the schedule should be fair (i.e. an even distribution of nurses). The
authors identified the fact that many previous works have suffered from the problem
of oversimplification thereby making such works inapplicable in real-world settings.
The novel EDA presented by these authors was based on the Bayesian network.
They particularly used this approach to enable them to build schedules using flexible
rules rather than fixed ones (Aickelin and Li, 2007; Aickelin et al, 2006). Aickelin
and Li (2007) obtained feasible solutions using this approach. This is a real-world

17

problem, there has been interaction with the hospital for a proper understanding of the
constraints as well as access to real data. No industrial evaluation or implementation
was reported.

Gutjahr and Rauner (2007) applied ACO to the nurse scheduling problem based
on a real-world situation in a hospital in Vienna, United States. This research was
motivated by the shortage of nurses in hospitals which was associated with poor dis-
tribution and utilisation of nurses. This is said to have been caused by a decrease
in supply (nurses) and an increase in demand (patients). Similar to Aickelin and Li
(2007), they identified that a lot of previous research suffered from problem over-
simplification. ACO is seen to be a suitable meta-heuristic because of its ability to
construct feasible solutions to highly constrained problems. ACO is able to handle
the dynamic nature of this problem. The use of real-world data and engagement
with the industry are identified, there is however no report of industrial assessment
or implementation.

2.4.5 Other Scheduling Problems

More scheduling problems are considered in this section. An application of EDA to
a vehicle charging problem (Su and Chow, 2012) as well as applications of ACOs to
a power plant maintenance scheduling problem (Foong et al, 2008) and Aluminium
casting scheduling (Gravel et al, 2002) are presented.

Su and Chow (2012) considered the large-scale plug-in hybrid electric vehicle
charging problem. This is a real-world problem which considers the need to charge
electric vehicles at a municipal parking station. A univariate EDA was used to allo-
cate electrical energy to electric vehicles connected to a grid. The authors considered
realistic constraints such as remaining battery capacity, charging time and energy
prices. The data used in this research are based on the historical data of an office
parking deck in the city of Livermore, CA. The authors explained that EDA pro-
vides many advantages over other optimisation techniques including GA. A notable
one is that the execution time of running the EDA on large scale problems did not
increase exponentially and is better than other optimisation techniques. This is not
at the expense of the quality of solutions. They, therefore, recommend EDA for sim-
ilar large-scale problems. There is no report of expert involvement, evaluation or
real-world implementation.

Foong et al (2008) applied ACO to the power plant maintenance scheduling prob-
lem in an energy production company. This problem involves determining the optimal
maintenance/servicing time for the power generating machines such that the system
reliability is maximised. The proposed algorithm relies on data relating to the power
demands and storage inflows. Results produced are considered better than those
produced by the traditional methods. This study shows that methods developed for
theoretically formulated problems can be useful for real-world problems. Foong et al
(2008) modified methods developed in their previous research (Foong et al, 2005) to
be able to fit to the real case. The use of real-world data and industrial engagement
is reported but an assessment from industry experts or industrial implementation
cannot be inferred.

18

Gravel et al (2002) applied ACO to the problem of scheduling continuous casting
of aluminium. This is a problem faced in an Alcan aluminium foundry in Québec.
Customers place orders of differing alloy types, dimensions and quantity. It is es-
sential to meet customer demands in a timely fashion. However, changing from one
alloy type to another is a time-consuming exercise of draining and cleaning to avoid
contamination. Also, having a break in production is not desirable. This is because
a costly task of shutting down and cleaning is required for operations to resume.
The complexity of this problem can be associated with many objectives. These are
maintaining continuous operations, minimising changes due to switching to a different
alloy specification and respecting the turn around time. The problem here is to deter-
mine the processing sequence for a group of jobs. A multi-objective ACO is therefore
proposed for this problem. The authors had previously successfully applied a GA
to this problem (Gravel et al, 2000) in the same company and lead to deployment
within the company. The ACO was then selected. This is because the ACO provided
better quality results within a shorter computation time when compared to the GA.
The use of real data, engagement with the industry and industrial verification and
implementation can be deduced from this research.

2.4.6 Other Applications

Other application areas of EDAs are hospital resource management for a hospital
in Netherlands (Hutzschenreuter et al, 2009), Magnetic Resonance Imaging (MRI)
magnet design (Yuan et al, 2005), Frequency Assignment Problem of a GSM network
(Chaves-Gonzalez et al, 2008) and design and rehabilitation of a water distribution
system. ACO was applied to an industrial layout problem in (Hani et al, 2007).

Hospital resource management is another area where EDA has been successfully
applied. Similar to (Aickelin and Li, 2007; Aickelin et al, 2006), staff scheduling
is a significant part of hospital resource management. However, Hutzschenreuter
et al (2009) takes additional resource such as beds into consideration. This involves
moving beds from wards that need it less to those that need it more while respecting
the number of beds to nurse ratio. The fact that a nurse is often assigned to two
beds creates a constraint on the number of beds that can be moved, it has to be
an even number. This problem is modelled as a dynamic optimisation problem.
There are conflicting objectives of minimising the cost of resources and maximising
their services. A combination of approaches which are Standard Deviation Ratio
(SDR), Adaptive Variance Scaling (AVS), and Multi-objective mixture-based Iterated
Density Estimation Evolutionary Algorithm (MIDEA) called SDR-AVS-MIDEA was
applied to the hospital resource management problem. This approach was originally
formulated by Bosman and Thierens (2007). Hutzschenreuter et al (2009) were able to
get feasible results using this approach. This algorithm is seen to be ideal for this kind
of complex multi-objective problem because of its ability to learn problem structure.
This entails searching for all (in)dependencies and learning new relationships among
problem-specific parameters. The use of realistic data, as well as expert involvement
and feedback, were reported. There is, however, no report of implementation in the
medical industry.

19

EDA has also been applied to MRI magnet design (Yuan et al, 2005) which is a
useful application in the medical industry. The objective is to reduce the patient’s
perception of claustrophobia by shortening the MRI magnet design. Also for safety
reasons, it is vital to minimise the field outside the MRI system. An EDA based
on a Gaussian multivariate probabilistic model named EDAmvg was applied to this
problem. There is a constraint on the construction of the MRI stating that coils
that make up the MRI cannot overlap or be too close to each other.This factor
makes it complex to achieve the somehow conflicting aim of minimising the size
of the MRI. Again, EDA’s ability to learn complex problem structure surfaces as
the reason for the choice of algorithm. Other factors considered important in this
study are problem characterisation, dependence capture and using problem-specific
knowledge. This study does not suggest the involvement of industry experts or real-
world implementation.

A univariate EDA, PBIL was used to solve a Frequency Assignment Problem of
a GSM network (Chaves-Gonzalez et al, 2008). This is a real-world GSM network
from Denver City, United States. The problem aims to minimise interference from
assigning frequencies to transceivers. In this study, the use of the distributed island
model applied to PBIL produced better results than the ones obtained with the
sequential version. This work was a first attempt at applying PBIL to this problem.
The use of real-world data was reported. Expert involvement, expert evaluation or
implementation was not reported.

EDA has also been applied to the design and rehabilitation of a water distribution
systems (Olsson et al, 2009). This problem involves making a decision that relates
to creating a new design or rehabilitating of an existing water distribution network.
This problem is full of dependencies and the choice of EDA is based on its ability to
perform linkage learning. The authors applied hBOA and UMDA. Although hBOA
is a multivariate EDA, the UMDA was reported to produce better results in a real-
istic computational time. Real-world data was used, but no expert involvement or
evaluation was reported. Authors do not report any implementation of method in
the industry.

ACO was applied to the industrial layout problem in (Hani et al, 2007). This
problem is a type of facility layout problem which seeks to minimise cost and maximise
production flow by creating a good configuration of resources in a given facility. This
particular industrial layout problem arises from a train maintenance facility consisting
of six locations. This problem was modelled as a QAP. Given that QAP is one of
the problems the ACO is well suited for, the authors recorded an improvement when
compared with the existing mode of operation. In this problem, it was possible to
determine the best solution using exact methods. It was therefore noted that the
ACO was able to produce the optimal solution to this problem within an acceptable
computation time. The authors used real-world data and had some interactions with
the industry but did not report any form of industrial verification nor implementation.

2.4.7 Summary

20

Table 2.1: Classification of real-world applications of model-based search algorithms

Problem Scheduling Problem Permutation Component

VRP ✓
TSP ✓
JSSP ✓ ✓
Crane Scheduling ✓ ✓
Maintenance Scheduling ✓ ✓
Aluminum Casting Scheduling ✓ ✓
History Matching
Industrial Layout Problem ✓
Nurse Scheduling ✓ ✓
Resource Management
MRI magnet design ✓ ✓
History Matching
Electric Vehicle Charging ✓ ✓
Frequency Assignment Problem
Water Distribution Problem

The use of local search is a common concept in both ACO and EDA applications.
Montgomery (2007) explains that there is an unavoidable interaction between ACO
and local search as the pheromone model is updated based on the local performance.
This is consistent with the work of Rizzoli et al (2004) that also emphasises the
strong relationship between ACO and local search methods. EDA applications have
also used local search to improve their performance (Aickelin and Li, 2007; Aickelin
et al, 2006; Zhang and Wu, 2012).

As shown in Table 2.1, 67% of the reviewed applications use the permutation
representation, 70% of these are also scheduling problems. The overlap between
scheduling and permutation problems is expected as many scheduling problems are
naturally represented as permutations. Also, the fact that most of the reviewed
problems are scheduling and/or permutation-based problems stems from the wide
application areas of these problem classes (Chiong et al, 2012).

In Table 2.2, only about 26% of the reviewed papers reach the stage where their
algorithms are integrated and used by a company. For the ACO applications, 7
out of 16 reached this final stage while none of the EDA applications did. This
may be attributed to the fact that EDAs had not been sufficiently adapted for the
permutation domain. They have therefore for many years struggled to be competitive
on permutation problems (Ceberio et al, 2012). EDAs however have the advantage
of using explicit probabilistic models which makes it easier to predict movement
in a search space (Larrañaga and Lozano, 2002). In general, ACOs use implicit
probabilistic models and consequently difficult to predict movement of population
in a search space. Ceberio (2014) showed that EDAs can produce better quality
solutions, if sufficiently adapted to solve permutation and scheduling problems. We
will therefore focus on EDAs, identifying factors that can improve their performance

21

Table 2.2: Stages of real-world applications of model-based search algorithms

ACO Applications Real data Exp. Involv. Ind. Eval. Impl.

Rizzoli et al (2007) ✓ ✓ ✓ ✓
Nechita et al (2008) ✓ ✓ ✓ ✓
Rizzoli et al (2004) ✓ ✓ ✓ ✓
Donati et al (2008) ✓
Gambardella et al (2003) ✓ ✓ ✓ ✓
Pellegrini et al (2007) ✓ ✓
Gagné et al (2006) ✓ ✓ ✓
Montgomery et al (2006) ✓ ✓
Chica et al (2011) ✓ ✓ ✓
Gutjahr and Rauner (2007) ✓ ✓
Hirsch et al (2012) ✓ ✓ ✓ ✓
Foong et al (2008) ✓ ✓
Gravel et al (2002) ✓ ✓ ✓ ✓
Hajizadeh et al (2011) ✓ ✓
Hani et al (2007) ✓ ✓ ✓ ✓
Ochiai and Kanoh (2014) ✓
EDA Applications

Aickelin and Li (2007) ✓ ✓
Hutzschenreuter et al (2009) ✓ ✓ ✓
Zhang and Wu (2012) ✓ ✓
Wu and Huang (2013) ✓
Salhi et al (2007) ✓
Yuan et al (2005) ✓ ✓
Abdollahzadeh et al (2013) ✓ ✓
Su and Chow (2012) ✓
Chaves-Gonzalez et al (2008) ✓
Olsson et al (2009) ✓

22

on permutation and scheduling problems.
Although many of the reviewed papers use the permutation representation, some

of them use more than one representation. An example is the VRP. The routing
part of the problem can be solved using the permutation representation while the
process of assigning jobs to fleets could be solved using the integer/vector represen-
tation. Problems that require the optimisation of interconnected sub-problems are
referred to as multi-component problems. Previous studies suggest that many ap-
proaches based on theoretically formulated problems are not directly applicable in
the real-world due to oversimplification. (Michalewicz, 2012a) identified the fact that
many real-world problems are multi-component problems but many benchmarks are
not formulated this way. This motivated recent research on more realistic benchmark
problem sets. Some examples are the MRCPSP (Van Peteghem and Vanhoucke,
2014), Travelling Thief Problem (Bonyadi et al, 2013; Polyakovskiy et al, 2014) and
Workforce Scheduling and Routing Problem (Castillo-Salazar et al, 2016; Hart et al,
2014). Competitions on multi-component problems have been recurrent in the two
largest annual conferences on EAs, “Genetic and Evolutionary Computation Confer-
ence” 1 and “IEEE Congress on Evolutionary Computation” 2 3, in the last five years.
To understand how EDAs solve multi-component problems, we will review EDAs ap-
plied to MRCPSP later in this chapter. This thesis will therefore explore EDAs in the
context of representations that have complexities motivated by real-world problems.

2.5 Common Permutation and Scheduling Prob-

lems

In the previous section, the close relationship between permutation and scheduling
problems was established. This is consistent with the research of Chiong et al (2012),
which shows that many real-world optimisation problems are scheduling problems
and are often represented as permutations. It was also noted in (Knjazew and Gold-
berg, 2000) that there are many commercially interesting applications within the
permutation and scheduling domain.

To assess the performance of algorithms, it is common practice to compare results
based on benchmark problem sets. Many benchmarks studied in academic research
are real-world motivated. Although they are often not perfect fits for real industrial
problems, they are useful for comparing the relative performance of algorithms. The
review in the previous section also suggests that real-world problems can be solved
by adopting approaches proposed for artificial test sets. This section reviews some
well-known permutation and scheduling problems which are PFSP, QAP, TSP, LOP,
RCPSP and MRCPSP and are formally defined in this section. PFSP, QAP, TSP and
LOP are considered the most common theoretically studied permutation problems
(Ceberio et al, 2012). RCPSP and its variant MRCPSP have also been well-studied

1http://gecco-2017.sigevo.org/index.html/HomePage
2https://cs.adelaide.edu.au/ optlog/CEC2014Comp/
3https://cs.adelaide.edu.au/ optlog/CEC2015Comp/

23

because of its real-world relevance. MRCPSP has been of interest because of its
multi-component characteristic. Bonyadi et al (2013) explains that most real-world
optimisation problems are a combination of more than one optimisation problem.
Bonyadi et al (2013) also motivates the need for the community to drive a focus
towards these problems. These problems are considered more difficult to solve as
the component problems cannot be solved in isolation, i.e. the solutions of one sub-
problem affect the other(s). In this thesis, a real-world project scheduling problem
which can be modelled as RCPSP/MRCPSP is used as a case study. This also
motivates the study of RCPSP and MRCPSP.

This section presents a formal definition of these common permutation and schedul-
ing problems. It also presents common benchmarks for these problems.

2.5.1 Permutation Flowshop Scheduling Problem

The PFSP consists of a set of jobs indexed 1, ..., n to be scheduled on a set of m
machines. Each job has m operations to be performed by all m machines where the
jth operation of each job must be performed by machine j. A job can have its jth

operation performed once its j − 1th operation has been completed by machine j − 1
and machine j is available. The objective of this problem is to find a sequence of jobs
that minimises the sum of times that each job remains on the flowshop known as the
Total Flow Time (TFT). Another common objective function for this problem is the
minimisation of the makespan. Both objective functions are considered in this thesis.

The TFT of an ordering of jobs π is formally defined as follows.

F (π) =
n∑

i=0

Cπ(i),m (2.3)

Cπ(i),j =

Pπ(i),j i = j = 1

Pπ(i),j + Cπ(i−1),j i > 1, j = 1
Pπ(i),j + Cπ(i),j−1 i = 1, j > 1

Pπ(i),j +Max(Cπ(i−1),j, Cπ(i),j−1) i > 1, j > 1

(2.4)

The makespan of an ordering of jobs π is formally defined as follows.

F (π) = Cπ(n),m (2.5)

Cπ(i),j = max
{
Cπ(i−1),j, Cπ(i),j−1

}
+ Pπ(i),j (2.6)

In eq. (2.3), Cπ(i),m denotes the completion time of a job ranked π(i) on machine
m and is calculated as shown in eq. (2.4). Similarly, Cπ(n),m in eq. (2.5) denotes the
completion time of a job ranked last π(n) on machine m and is calculated as shown
in eq. (2.6).

In eq. (2.4) and eq. (2.6), the processing time required to perform a job ranked
π(i) on machine j is denoted by Pπ(i),j.

24

2.5.2 Quadratic Assignment Problem

Given a set of locations, a set of facilities and an associated cost function, the QAP
entails assigning each facility to a location such that the cost is minimised. The cost
is calculated based on the distance between locations and the flow between facilities.
Typically, there are two square matrices of size n: H and D. ha,b is the flow between
facilities a and b . dla,lb is the distance between locations la and lb.

The QAP can be formerly defined as follows.

min

{
n∑

i=1

n∑
j=1

ha,b × dla,lb

}
(2.7)

2.5.3 Travelling Salesman Problem

Given a set of cities c = c1, c2, ..., cn, the objective is to find the shortest path between
all these cities. Solutions should involve a single visit to each city and a return to the
start city.

The TSP can be formerly defined as follows.

min

{
n∑

i=2

dci−1,ci + dcn,c1

}
(2.8)

In (2.8), dci−1,ci is the distance between cities ci−1 and ci.

2.5.4 Linear Ordering Problem

Given a square matrix B of size n, the aim is to find a permutation of the rows and
columns of D such that the sum of the super-diagonal entries is maximised.

The LOP can be formerly defined as follows.

max

{
n−1∑
i=1

n∑
j=i+1

Bωiωj

}
(2.9)

In (2.9), ωi and ωj are respectively the row and column indexes at positions i and
j of solution ω.

2.5.5 Resource Constrained Project Scheduling Problem

The RCPSP is formerly defined as follows:
A project consists of a set of n activities. Every activity i is labelled from 1,...,n.

Activity i, i ∈ [2, n] has a set of predecessors Predi which suggests that activity
i cannot be performed until every predecessor h, h ∈ Predi has been completed.
Given that there are A renewable resources, each renewable resource r, r ∈ [1, |A|] is
available per period of time. The maximum per period availability of r is denoted by
αmaxr. Each activity i requires a set of renewable resources (αi,1, ..., αi,|A|), and an
associated duration/execution time ti.

25

The aim of the RCPSP is to order activities subject to precedence constraints
such that makespan is minimised.

We formulate the RCPSP as follow.
Minimise ftn subject to:

∀ i ∈ [1, n], sti ≥ fth ∀ h ∈ Predi (2.10)

Let Cp be the set of activities being executed during time period [p-1,p], then∑
i∈Cp

αi,r ≤ αmaxr ∀ r, r ∈ [1, |A|],∀ p (2.11)

We denote the start and finish times of activity i by sti and fti respectively. The
precedence and resource constraints are respectively presented in (2.10) and (2.11).

2.5.6 Multi-Mode Resource Constrained Project Scheduling
Problem

MRCPSP is a generalisation of the well-known RCPSP. In addition to activity schedul-
ing of the RCPSP, the MRCPSP also consists of the mode assignment problem. MR-
CPSP is formerly defined as follows:

A project consists of a set of n activities. Every activity i is labelled from 1,...,n.
Activity i, i ∈ [2, n] has a set of predecessors Predi which suggests that activity
i cannot be performed until every predecessor h, h ∈ Predi has been completed.
Activity i must be performed in a mode k ∈ [1,mi], where mi is the number of
possible modes of i. Given that there are A renewable resources, each renewable
resource r, r ∈ [1, |A|] is available per period of time. The maximum per period
availability of r is denoted by αmaxr. Apart from renewable resources, there are
also B non-renewable resources that cannot be renewed but available for the entire
project duration. The overall availability of the non-renewable resource l, l ∈ [1, |B|]
is denoted by βmaxl. Each mode of execution k of an activity i is composed of
an integer vector of renewable resources (αi,k,1, ..., αi,k,|A|), an integer vector of non-
renewable resources (βi,k,1, ..., βi,k,|B|) and the associated duration/execution time ti,k.

The aim of the MRCPSP is to select exactly one mode of execution for each
activity subject to resource and precedence constraints. This is such that makespan
is minimised. We formulate the MRCPSP as follow.

Minimise ftn subject to:

∀ i ∈ [1, n], sti ≥ fth ∀ h ∈ Predi (2.12)

Let Cp be the set of activities being executed during time period [p-1,p], then∑
i∈Cp

αi,ki,r ≤ αmaxr ∀ r, r ∈ [1, |A|], ∀ p (2.13)

n∑
i=1

βi,ki,l ≤ βmaxl ∀ l, l ∈ [1, |B|] (2.14)

26

The start and finish times of activity i are denoted by sti and fti respectively. The
precedence constraint is presented in (2.12) while the renewable and non-renewable
resource constraints are respectively presented in (2.13) and (2.14). In (2.13) and
(2.14), ki is the allocated mode of i and can only be one of the predefined modes
of i. Also, αi,ki,r and βi,ki,l are respectively the amount of renewable resource r and
non-renewable resource l required by activity i performed in mode ki.

2.5.7 Benchmarks

Taillard (1993) provides benchmark for some scheduling problems such as PFSP, JSSP
and open shop scheduling problems.

1. PFSP: Taillard’s benchmark problems (Taillard, 1993) are the conventional
problem sets used to evaluate the performance of algorithms on the PFSP. The
benchmark consists of varying number of jobs and machines denoted by n×m,
where n is the number of jobs to be scheduled on m machines.

The following are the available problem sets.

• Size 20: 20× 5, 20× 10, 20× 20,

• Size 50: 50× 5, 50× 10, 50× 20,

• Size 100: 100× 5, 100× 10, 100× 20,

• Size 200: 200× 10, 200× 20 and

• Size 500: 500× 20

Furthermore, each set consists of 10 problem instances.

A similar benchmark set was created in (Ceberio et al, 2014a) because the
authors wanted to access performance between 200 and 500 jobs. They therefore
created instances with 250, 300, 350, 400 and 450 jobs using 10 and 20 machines.
Only the Taillard instances4 are however used in this thesis.

2. QAP: Some of the most widely studied QAP instances are the Taillard’s
benchmark problems5. Problem categories such as ‘uniform’, ‘asymmetrical’,
‘Burkard and Offerman’ as well as ‘Nugent Vollmann and Ruml’ were used to
compare EDAs in (Ceberio et al, 2012). The tai15a, tai15b, tai40a and tai40b
from the Taillard’s ‘uniform’ and ‘asymmetrical’ groups were used to compare
algorithms in (Regnier-Coudert and McCall, 2014). These problem instances
are used in this thesis.

3. TSP: Reinelt (1995) presents common TSP instances. These instances are
available from the TSPLIB6. In this thesis, the bays29, berlin52, dantzig42

4Éric Taillards web page. http://mistic.heig-vd.ch/taillard/problemes.
dir/ordonnancement.dir/ordonnancement.html

5Éric Taillards web page. http://mistic.heig-vd.ch/taillard/problemes. dir/qap.dir/qap.html
6TSPLIB. http://www2.iwr.uni-heidelberg.de/groups/comopt/software /TSPLIB95/tsp

27

and fri26 problem instances are used as done in (Ceberio et al, 2012; Regnier-
Coudert and McCall, 2014).

4. LOP: The conventional problem sets for LOPs are presented in (Mart́ı et al,
2012) and are obtainable from LOLIB7. Some of the common instances are
t65b11, be75np and be75oi which are also used in (Ceberio et al, 2012; Regnier-
Coudert and McCall, 2014).

5. RCPSP: RCPSP instances are available from the PSPLIB8. This library con-
sists of four problem sets; J30, J60, J90 and J120 and are respectively composed
on 30, 60, 90 and 120 non-dummy activities to be scheduled. Each project has
two additional activities which are the dummy start and finish activities. The
start activity has no predecessor while the finish activity has no successor, they
also have no resource requirements. J30-90 consists of 480 problem instances
while J120 consists of 600 instances. Only J30, J90 and J120 are considered
in this thesis are they are the frequent choice in existing research (Debels and
Vanhoucke, 2005; Fang and Wang, 2012; Wang and Fang, 2012b)

6. MRCPSP: The PSPLIB9 also consists of MRCPSP problem sets which are
J10, J12, J14, J16, J18, J20 and J30. These problems sets respectively consist
of 10, 12, 14, 16, 18, 20 and 30 non-dummy activities to be scheduled. They
also respectively contain 536, 547, 551, 550, 552, 554 and 552 feasible instances.
More recently, certain disadvantages have been identified with the PSPLIB
problem sets. One is the fact that modes of execution can be eliminated by
executing the conventional preprocessing technique, simplifying the problems
significantly. Also, some of the instances do not have any feasible solution. To
avoid these disadvantages, MMLIB10 problem sets which also consist of larger
problem instances were created (Van Peteghem and Vanhoucke, 2014). The
MMLIB50 and MMLIB100 which are made up of 540 instances and respectively
require the scheduling of 50 and 100 activities are considered in this thesis. All
PSPLIB instances are also used in this thesis.

2.5.8 Performance Measure

For common permutation and scheduling problems, the conventional measure of per-
formance is the Average Relative Percentage Deviation (ARPD) from optimal where
an optimum or a standard best solution is known. This is based on a maximum
number of fitness evaluations or schedule generations.

ARPD = (
n∑

i=0

(Algorithmi −Best)× 100

Best
)/n (2.15)

7https://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/iomat/
8http://www.om-db.wi.tum.de/psplib/getdata.cgi?mode=sm
9http://www.om-db.wi.tum.de/psplib/getdata.cgi?mode=mm

10http://mmlib.eu

28

In eq. (2.15), n is the number of runs and Algorithmi is the result derived by
an algorithm at the ith run. Best is the optimal or best known solution for a given
problem instance.

2.6 EDAs for Permutation and Scheduling Prob-

lems

This section presents a characterisation of EDAs applied for solving the common
permutation problems; LOP, QAP, PFSP and TSP. It also presents a review of
EDAs applied for solving project scheduling problems; RCPSP and MRCPSP.

2.6.1 EDAs for Common Permutation Problems

Modelling the space of permutations is generally considered a difficult task and has
been a challenging area for EDAs (Ceberio et al, 2012). This was attributed to the fact
that a large proportion of EDAs were based on concepts borrowed from the integer
and continuous optimisation domains rather than using characteristics of the permu-
tation space. However, a few EDAs are specifically designed for solving permutation
problems taking into consideration the unique properties of permutations. Ceberio
et al (2012) categorised EDAs for solving permutation problems into integer-based,
continuous and permutation-specific.

When solving integer problems, many genes can have the same value. EDAs
adapted to the permutation domain from the integer domain therefore require a
method to ensure each gene has a unique value. This is often done by changing
the sampling strategy or introducing a repair mechanism (Pelikan et al, 2007). Such
mechanisms may however disrupt the structure already learnt by the EDA. Also,
the probabilistic models of integer-based EDAs are often large. A classic example of
an integer-based EDA is the Univariate Marginal Distribution Algorithm (UMDA)
(Larrañaga et al, 2000). Based on the more promising solutions of a population, this
algorithm generates the probability of each value being in each position. For a prob-
lem of size n, the size of its probabilistic model is therefore n × n. In general, the
time complexity of learning and building its model grows to the square of size of the
problem (O(n2)). Other examples of EDAs adapted from the integer domain are de-
pendency tree EDA (Pelikan et al, 2007), Estimation of Bayesian Network Algorithm
(EBNA) (Bengoetxea et al, 2002), and Mutual Information Maximization for Input
Clustering (MIMIC) (Bengoetxea et al, 2002).

EDAs adapted from the continuous domain often use the RK representation.
These EDAs require a de-codification step to convert the real-valued solution into
a permutation. RKs have an advantage over the integer-based representation as they
always produce valid permutations. EDAs that use the RK representation also use a
relatively smaller models, the time complexity of which grows linearly with the size
of a problem. An example is UMDAc (Lozano and Mendiburu, 2002) which uses a
Gaussian distribution. It saves the mean of all genes as well as the associated variance

29

values. The size of the probabilistic model is therefore 2n. Its overall time complex-
ity for learning and sampling its model grows linearly with the size of the problem.
Irrespective of the benefits of RK based EDAs, they have struggled to produce com-
petitive results. The representation contains some inherent redundancies resulting
from several RKs producing the same ordering thereby introducing plateaux to the
search space (Bosman and Thierens, 2001; Pelikan et al, 2007). Also, this variability
in the values that represent the same priority across solutions of a population lim-
its the information captured by the probabilistic model. Other examples of EDAs
adapted from the continuous domain are Estimation of Gaussian Network Algorithm
(EGNA) (Lozano and Mendiburu, 2002) and MIMICc (Larrañaga et al, 2000).

Furthermore, Recursive Estimation of Distribution Algorithm (REDA) (Romero
and Larrañaga, 2009) and IDEA-Induced Chromosome elements Exchanger (ICE)
(Bosman and Thierens, 2001) that are adapted from the continuous domain have
been categorised as permutation-specific EDAs (Ceberio et al, 2012). REDA uses
the triangulation of Bayesian network approach and focuses on model efficiency by
modelling subset nodes of a problem. IDEA-ICE uses a specialised crossover operator
which tries to preserve building blocks in the probabilistic model learnt. These algo-
rithms perform better than other algorithms adapted from the continuous domain.
However, they are not as competitive as other permutation-specific EDAs. These
algorithms fail to address the redundancies introduced by the RK representation.

Some of the EDAs originally designed for permutation use histogram models such
as the Node Histogram-Based Sampling Algorithm (NHBSA) (Tsutsui et al, 2006) and
Edge Histogram-Based Sampling Algorithm (EHBSA) (Tsutsui, 2002), Plackett-Luce
model (Ceberio et al, 2013), Factoradic-based Model (Regnier-Coudert and McCall,
2014) or Mallows Model such as GM-EDA and HGM-EDA (Ceberio et al, 2014a).
These models which are more specific to permutations have shown better perfor-
mances. GM-EDA is one of the most successful algorithms in this category. The
process of learning its probabilistic model entails calculating the average of each gene
as well as the dispersion. This process is considered analogous to that of the Gaus-
sian distribution in continuous EDAs (Ceberio et al, 2014a). However, the average is
not sufficient in this case. The average is converted to a unique permutation using
an iterative process of selecting the gene with the minimum value that has not been
selected yet. In GM-EDA, the time complexity of learning the model is considered
less substantial compared to that of sampling it which is estimated to be O(n2). Also,
GM-EDA is not able to maintain diversity in its population of solutions but relies on
the use of restart mechanisms. It particularly presents competitive results only when
hybridised with local search (HGM-EDA).

The challenges of solving problems naturally represented as permutations by Esti-
mation of Distribution Algorithms (EDAs) therefore remains a focus of interest in the
community. The focus of the research in this thesis will be on eliminating redundancy
in the RK representation and introducing a diversity preservation technique.

30

2.6.2 EDAs for Project Scheduling

In this section, we will be reviewing existing EDAs applied for solving the RCPSP and
MRCPSP. It is however important to present some of the conventional procedures
used when applying meta-heuristics to project scheduling problems.

The Schedule Generation Scheme (SGS) is a conventional procedure for most
heuristic solution to a project scheduling problem. This is a step-wise procedure that
builds a schedule from a schedule representation by activity incrementation (serial)
or time incrementation (parallel) (Kolisch and Hartmann, 1999). The parallel SGS is
however less common because it is sometimes unable to reach optimal (Kolisch, 1996).
The SGS was proposed for the RCPSP but has been extended to the MRCPSP and
is the conventional approach for generating schedules in both problems.

It is common practice to improve the SGS with the forward-backward improve-
ment procedure when solving the RCPSP. The forward-backward improvement pro-
cedure consists of an iterative process of executing the forward pass and backward
pass. The forward pass is applied to a backward scheduled solution while the back-
ward pass is applied to a forward scheduled solution. The forward pass sorts all
scheduled activities in ascending order of their start times. Each activity is then
rescheduled at the earliest possible start time. Conversely, the backward pass sorts
activities in descending order of finish times. Each activity is then rescheduled such
that they finish at the latest possible time. The aim of this procedure is to improve
the makepsan of a solution.

To the best of our knowledge, there is only one application of EDA to the RCPSP,
outwit the work presented in this thesis. Wang and Fang (2012b) proposed HEDA
which combines EDA with a local search. This algorithm uses the serial SGS improved
by the forward-backward procedure. Even with the improvement procedures, the
EDA struggle to produce competitive results.

It is common practice to use even more improvement procedures when solving the
MRCPSP. They can be categorised into initial improvement and schedule improve-
ment. The initial improvement procedures are only executed once before an algorithm
is applied to an MRCPSP instance while schedule improvement procedures are ap-
plied to each solution through out the run of an algorithm. The schedule improvement
procedures therefore require more computation.

The pre-processing procedure of Sprecher et al (1997) is a conventional initial
improvement method, which reduces the search space by eliminating redundant and
inefficient modes of execution. Another common initial improvement procedure is
the feasibility improvement procedure which is executed on the initial population
of solutions. The feasibility improvement procedure swaps the mode of execution
of a randomly selected activity to that which improves the feasibility of the mode
solution. This process is repeated until feasibility is achieved or a maximum number
of evaluations is reached.

The most frequently used schedule improvement procedure is the forward-backward
improvement which is adapted from that of the RCPSP. It however performs an ad-
ditional step of changing the mode of activities to that which improves the start time
(forward pass) or finish time (backward pass) of an activity. The forward-backward

31

improvement ensures that the makespan of a schedule is improved. It is however
the most time consuming schedule improvement procedure because of the number
of iterative steps. A more efficient schedule improvement procedure is the Extended
Schedule Generation Scheme (ESGS) (Van Peteghem and Vanhoucke, 2010) which
attempts to improve feasibility as well as the finish time of a randomly selected ac-
tivity. Unlike the forward-backward schedule improvement, the ESGS does not try
to improve every solution neither does it guarantee an improvement in makespan. It
is however less time consuming.

Other improvement procedures are critical path improvement and work content
improvement methods of Van Peteghem and Vanhoucke (2011). In general, algo-
rithms that use more improvement procedures to solve the MRCPSP perform better.
However, since our research interest is in EDAs, we focus on improvement procedures
that are used in EDAs.

There are only two applications of EDA to the MRCPSP to the best of our knowl-
edge which are presented in (Wang and Fang, 2012a) and (Soliman and Elgendi, 2014).
The latter is an improvement of the former.

These EDAs use two probabilistic models to generate an MRCPSP solution. For
a problem consisting of n activities and m modes of execution, the probabilistic
model for generating activity solutions is of size n × n while that of mode solutions
is of size n × m. Since the probabilistic model for generating activity solution is
adapted from the integer domain, the algorithm requires a procedure to ensure only
valid permutations are produced. The permutation-based Probability Generation
Mechanism (PGM) is used to ensure that that each activity appears in an ordering
only once (Wang and Fang, 2012a). This method iteratively recalculates probabilities
based on a set of eligible activities.

Furthermore, existing applications of EDAs to the MRCPSP use the improved
serial SGS, Multi-mode Serial Schedule Generation Scheme (MSSGS). The MSSGS
includes a procedure for tackling infeasibility as well as improving the finish times of
activities in a solution. The method randomly selects the mode of an activity and
changes it to that which improves its feasibility if the solution is infeasible or improves
the finish time of an activity if the solution is feasible. It does this by changing
its mode to that which improves its finish time without delaying the finish time of
other activities. Checking each mode of execution of an activity in a bid to improve
the solution imposes a significant addition to the computational cost of evaluating a
solution. In addition, these EDAs also use the local search method called Multi-mode
version Permutation-Based Local Search (MPBLS). This method attempts to make
local improvements to the best solutions found at each generation. This is done by
changing the mode of randomly selected activities as well as its priority.

In addition to all these methods, the EDA in Soliman and Elgendi (2014) intro-
duced a random walk local search. The use of random walk is the difference between
the two EDAs. For a selected activity, the local search selects a mode with the min-
imum resource infeasibility in infeasible solutions or mode with minimum duration
in resource feasible solutions. Adding this extra local search method improves the
quality of solutions produced by the former.

The reviewed algorithms rely on many improvement procedures. Each improve-

32

ment procedure incurs additional computational cost. For EDAs to efficiently solve
this multi-component problem, the number of improvement procedures need to be re-
duced. This thesis will investigate methods of improving performance while reducing
the number of improvement procedures.

2.7 Conclusion

This chapter presents a review of real-world applications of EDAs. Since ACOs and
EDAs are often studied together within the context of model-based search algorithms,
real-world applications of ACOs are also presented. This study shows that many real-
world applications of ACOs and EDAs are scheduling problems and use the permuta-
tion representation. Thereafter, this chapter motivates the focus on EDAs. Common
probabilistic models used in EDAs such as Gaussian Network, Bayesian Network and
Markov Network are explained.

EDAs have been considered to have difficulty in modelling permutation spaces in
(Ceberio et al, 2012). We therefore investigated further the reasons for this difficulty.
We explored the benefits of EDAs that use the RK representation to solve permuta-
tion problem. They use smaller models and also always produce valid permutations.
However, such EDAs suffer from the redundancies in the RK representation. Also,
EDAs for solving permutation problems have no mechanism of preserving diversity
except when hybridised with local search. There is therefore a need for a diversity
preservation method in EDA. Also, algorithms have become increasingly complex es-
pecially when solving more complex problems like multi-component problems. This
is seen in the review presented in Section 2.6.2 where it is shown that EDAs rely on
many local improvement procedures to solve the project scheduling problems. Since
many real-world problems are multi-component problems, EDAs must be able to
handle this complexity. It is evident that EDAs need to be further investigated for
solving permutation and multi-component scheduling problems.

This thesis will therefore investigate efficient and effective strategies for the EDA
within the context of permutation and scheduling problems. We will focus on elimi-
nating redundancies in the RK representation and improving diversity in EDAs. We
will also focus on reducing the number of local improvement procedures needed to
solve the multi-component problem, MRCPSP. Proposed approach for common per-
mutation and scheduling problems will be adapted for a real-world project scheduling
problem.

33

Chapter 3

RK-EDA: A Novel Random Key
Based Estimation of Distribution
Algorithm

3.1 Introduction

EDAs for permutation problems have been a focus of research in recent years. Ceberio
et al (2012) identified that EDAs adapted from other domains do not perform well on
permutation problems. New permutation-specific models have been designed since
then but require iterative procedures where the range of valid values to sample in the
model depends on previously generated values. Complexity of these permutation-
specific models is often the main issue. The need to design EDAs based on simpler
models remains a problem in the community. Permutation problems are sometimes
solved using alternative representations such as RK. These naturally translate into
valid permutations. Also, EDAs based on RK representation often use probabilistic
models of smaller dimension growing linearly with the size of the problem. However,
in the RK representation, multiple genotypes generate identical phenotypes.

Furthermore, permutation EDAs suffer from the problem of premature conver-
gence. In previous research, techniques such as restart and hybridisation with local
search have been used to avoid this problem (Ceberio et al, 2014b).

This chapter answers the first two research questions of this thesis which are; “In
what way can the problem of redundancy in RK be addressed?” and “In what way can
diversity be controlled in EDAs designed to solve permutation problems?”. In this re-
search, the redundancy attributed to the RK representation is eliminated by rescaling
solutions to a common canonical value set before modelling. A cooling scheme is also
proposed to balance exploration and exploitation. These methods differentiate the
proposed RK-EDA from existing EDAs applied to permutation problems. RK-EDA
outperforms existing EDAs that use RKs on common permutation test problems:
PFSP, QAP, LOP, and TSP. RK-EDA is also competitive with state-of-the-art algo-
rithms, especially on the PFSP.

The rest of this chapter is described as follows. Section 3.2 describes the novel al-

34

gorithm, RK-EDA. Section 3.3 presents the experimental design. Section 3.4 presents
and discusses results. Section 3.5 concludes this chapter.

3.2 RK-EDA

In this section, the algorithmic details of RK-EDA are presented as Alg. 1. RK-EDA
requires the initialisation of three parameters which are initial variance v, truncation
size b and population size ps. It is common practice to compare algorithms using a
maximum number of fitness evaluations (fe). We estimate the number of generations
gen by dividing fe by ps.

Algorithm 1 RK-EDA

1: Initialise v, b, ps and fe
2: Generate initial population P of size ps
3: gen = fe\ps
4: for g = 1 to gen do
5: Evaluate individuals in P
6: Rescale {rk1, · · · , rkn} of individuals in P
7: Select best b < ps solutions to form S
8: Calculate µ = {µ1, µ2, · · · , µn}
9: c = 1− g

gen

10: vg = v ∗ c
11: Set σ = {σ1, σ2, · · · , σn} as vg
12: M = N(µ, σ)
13: Pnew = ∅
14: repeat
15: Sample M to generate offspring off
16: Add off to Pnew

17: until |Pnew| = ps
18: P = Pnew

19: end for

A population P of RKs is randomly generated, evaluated and rescaled. For the
rescaling procedure to be carried out, the RKs are converted to ranks as illustrated
in Fig. 3.1 for the RKs [0.12, 0.57, 0.23, 0.25, 0.99]. The ranks are then rescaled
to values in interval [0,1]. This is done by setting rescaledRKi = ranki−1

n−1
where

rescaledRKi and ranki are respectively the rescaled RK and rank of gene i, and n
is the problem size. Thus, all values of rescaledRK belong to the canonical set of
n values {0, 1/n− 1, · · · , i/n− 1, · · · , 1} . Continuing with our example, a distinct
but equivalent set of RKs [0.01, 0.06, 0.03, 0.04, 0.2] will have the same rescaled RK
values. This approach eliminates redundancy improving information captured by the
probabilistic model.

Once rescaled and evaluated, the best b solutions in P are selected to generate
a population of promising solutions S. The truncation size b is set as a fraction of

35

Figure 3.1: RK rescaling

ps. The mean of all RKs at each index {1, · · · , n} is computed from S. µ is a vector
containing the mean values for each index ({µ1, µ2, · · · , µn}).

Furthermore, the cooling rate c is calculated with respect to the algorithm’s cur-
rent generation such that its value is higher at the start of the search and low at the
end. The rate c is used to calculate the generational variance vg. Multiplying c with
v to form vg makes it possible to achieve higher exploration at the start of the run
and more exploitation as g increases.

The probabilistic model M is defined as a normal distribution N(µ, σ) where µ
and σ are vectors of size n. σ contains identical values σg. We therefore only save
n+ 1 values at each generation.

An offspring solution off is generated by sampling M . Each gene offi is generated
by sampling N(µi, σg). off is repeatedly added to the offspring population Pnew until
its size equals ps. At the end of each generation, Pnew completely replaces the parent
population P . Note that a solution value offi obtained by sampling M may be outside
the [0, 1] interval. This does not prevent ranking or rescaling.

3.3 Experimental Settings

To assess the performance of RK-EDA and compare with existing EDAs for permu-
tation problems, we select the most frequently used permutation problem instances.
These instances are presented in this section. We also present the parameter settings
and experimental approach.

3.3.1 Test Problems

In Chapter 2.5.7, we presented standard benchmarks for permutation problems. Cebe-
rio et al (2012) used instances of these benchmarks to compare EDAs in their review.
Some of these instances were also used by Regnier-Coudert and McCall (2014). In
this chapter, we used instances common to both research. TSP and LOP instances
are respectively from the TSPLIB (Reinelt, 1991) and LOLIB (Reinelt, 2002) while
the PFSP and QAP instances are from the well-known Taillard’s benchmarks (Tail-
lard, 1993). However, the PFSP instances common to the reviewed algorithms are
all of the smallest dimension (n = 20). We therefore added four larger instances
(n = 50, 100) of the PFSP to gain better insight into the scalability of RK-EDA.

36

The list of problem instances used in this chapter is presented as follows.

• TSP: bays29, berlin52, dantzig42 and fri26 1

• PFSP: tai20-5-0, tai20-5-1, tai20-10-0 and tai20-10-1 (smaller instances)
tai50-10-0, tai50-10-1, tai100-20-0 and tai100-20-1 (larger instances)2

• QAP: tai15a, tai15b, tai40a and tai40b3

• LOP: t65b11, be75np and be75oi4

3.3.2 Parameter Setting

To be able to understand the parameter settings that suit RK-EDA, a range of values
were explored, but different parameters were found suitable for different problem
classes and sizes. To be able to make a fair comparison between RK-EDA and the
considered algorithms, the same set of parameters is used across all problems as done
in the review of Ceberio et al (2012). The set of parameters used for RK-EDA is
shown in Table 3.1. Based on preliminary tests, these parameters produce relatively
good quality solutions across all problem classes and instances.

Table 3.1: Parameter Values for RK-EDA
Parameters Values

Population size (ps) 50
Truncation size (b) 0.1*ps
Variance (v) (1/(πlog10n))

2

Stopping criteria 1000n2 fe
Maximum number of generations (gen) 20n2

Number of runs 10

3.3.3 Experimental Approach

We present problem definitions and objective functions for the TSP, PFSP, QAP
and LOP in Section 2.5. Note that we presented two objective functions for the
PFSP which are makespan and total flow time. We however use the makespan in
this chapter. This enables us to compare using the same objective as the reviewed
methods.

The results used in this study are obtained from the review of Ceberio et al
(2012). Results of the algorithm presented after the review such as the Factoradics

1TSPLIB. http://www2.iwr.uni-heidelberg.de/groups/comopt/software /TSPLIB95/tsp
2Éric Taillards web page. http://mistic.heig-vd.ch/taillard/problemes.

dir/ordonnancement.dir/ordonnancement.html
3Éric Taillards web page. http://mistic.heig-vd.ch/taillard/problemes. dir/qap.dir/qap.html
4https://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/iomat/

37

are obtained from Regnier-Coudert and McCall (2014). We, therefore, use the same
performance measure, number of runs and stopping criteria. ARPD presented in Eq.
(2.15), is the normalised difference between the result obtained by an algorithm and
the best-known solution. ARPD is the most frequently used measure of performance
and has been used by the algorithms considered in this chapter. Also, results for these
algorithms are based on 10 runs and 1000n2 maximum number of fitness evaluations.

To compare results, we rank algorithms according to their performances on each
problem instance. These ranks are then averaged by problem type.

3.4 Results and Discussion

In this section, we do an empirical evaluation of RK-EDA, comparing it to other
EDAs applied to TSP, PFSP, QAP and LOP problem instances.

Tables 3.2, 3.3, 3.4, 3.5 and 3.6 respectively present ARPDs for algorithms applied
to instances of the TSP, PFSP (smaller instances), PFSP (larger instances), QAP and
LOP. In these tables, the best ARPD for each problem instance, as well as ARPDs
that are not significantly different from it, are presented in bold. The student t-test
with 95% confidence interval is used to measure statistical significance in these tables.
The best-known fitnesses for instances of each problem are presented in the last row
of each table. omeGA which is a GA was included in the review of EDAs in (Ceberio
et al, 2012) to show the relative performance of EDAs in general compared to a GA.
We also include the results of omeGA in this chapter.

As shown in Table 3.2, EHBSAWT has the best ARPD on all the TSP problem in-
stances while EHBSAWO also presents the best result on fri26. UMDAc and EGNAee

also present best ARPD on dantzig42.
In Table 3.3, RK-EDA presents the best ARPD on tai20-5-0 and tai20-5-1.

EHBSAWT also presents the best ARPD on tai20-10-0 and its ARPD is not sig-
nificantly different from the best on tai20-5-1 and tai20-10-1. NHBSAWT presents
the best ARPD on tai20-10-1 and its ARPD is not significantly different from the
best on tai20-10-0. As shown in Table 3.4, RK-EDA presents the best ARPD on all
the larger instances of PFSP (tai50-10-0, tai50-10-1, tai100-20-0 and tai100-20-1)
while the ARPD of EHBSAWT on tai50-10-0 is not significantly different from that of
RK-EDA. We do not present results for factoradics in Table 3.4 because the authors
do not present results for these instances.

For the QAP results presented in Table 3.5, NHBSAWT presents the best ARPD
on three of the instances (tai15a, tai15b and tai40b). RK-EDA also presents ARPD
that is not significantly difference from that of NHBSAWT on tai40b while NHBSAWO

presents the best ARPD on tai40a.
In Table 3.6, EHBSAWT presents the best ARPD on t65b11xx and be75np while

NHBSAWT presents the best ARPD on be75oi. Note that, unlike TSP, PFSP and
QAP, LOP is a maximisation problem.

In Table 3.7, an average rank is calculated for each algorithm according to their
relative performance on each problem instance of TSP, PFSPs, QAP, LOP and PFSPl.
Results from Tables 3.2, 3.3, 3.5, 3.6 and 3.4 are respectively used to generate the

38

Table 3.2: Travelling Salesman Problem
Algorithms bays29 berlin52 fri26 dantzig42

RK-EDA 2041.5 8404.6 949.5 771.2
proposed
Factoradics 2387.4 11440.7 982.3 805.3
(Regnier-Coudert and McCall, 2014)
UMDA 2324.5 10059.9 1085.2 949.0
(Larrañaga et al, 2000)
MIMIC 2467.6 10921.3 1156.1 1034.9
(Bengoetxea et al, 2002)
EBNABIC 2467.5 9893.8 1094.9 935.1
(Bengoetxea et al, 2002)
TREE 2818.8 12846.8 1280.8 1206.9
(Pelikan et al, 2007)
UMDAc 4305.1 20460.2 1076.5 699.0
(Lozano and Mendiburu, 2002)
EGNAee 4235.3 18728.1 1024.9 699.0
(Lozano and Mendiburu, 2002)
IDEA-ICE 3269.1 15813.6 1130.7 947.7
(Bosman and Thierens, 2001)
EHBSAWT 2020.0 7542.0 937.0 699.0
(Tsutsui, 2002)
EHBSAWO 2022.5 7584.6 937.0 701.8
(Tsutsui, 2002)
NHBSAWT 2321.8 11729.7 1041.5 1052.9
(Tsutsui et al, 2006)
NHBSAWO 2177.8 9195.8 1048.3 854.0
(Tsutsui et al, 2006)
REDAUMDA 4064.9 21875.9 1118.4 1750.0
(Romero and Larrañaga, 2009)
REDAMIMIC 3316.1 15850.3 1023.6 705.0
(Romero and Larrañaga, 2009)
omeGA 3353.5 18624.0 1461.4 1393.6
(Knjazew and Goldberg, 2000)

Best Known 2020.0 7542.0 937.0 699.0
(Ceberio et al, 2012)

average ranks presented in columns TSP, PFSPs, QAP, LOP and PFSPl of Table 3.7
.

In Table 3.7, PFSPs and PFSPl respectively denote smaller and larger instances
of the PFSP. Columns TSP, PFSPs, QAP, LOP and PFSPl show the average ranks of
algorithms on instances of their respective problem classes. Also, Column ALL is the
average rank of algorithms on all instances of TSP, PFSPs, QAP and LOP. Note that
instances of PFSPl are not used to calculate overall ranks. This is done to eliminate
bias towards performance on PFSP, especially because RK-EDA ranks highest on
PFSPl. Moreover, one of the reviewed algorithms was not applied to instances of
PFSPl. It will, therefore, be impossible to generate an overall rank for that algorithm
using results on instances of PFSPl.

39

Table 3.3: Permutation Flowshop Scheduling Problem (Smaller Instances)
Algorithms tai20-5-0 tai20-5-1 tai20-10-0 tai20-10-1

RK-EDA 1278.1 1359.5 1602.9 1685.2
(proposed)
Factoradics 1291.7 1364.4 1630.4 1723.9
(Regnier-Coudert and McCall, 2014)
UMDA 1292.8 1372.1 1621.0 1713.7
(Larrañaga et al, 2000)
MIMIC 1297.8 1368.1 1626.0 1715.5
(Bengoetxea et al, 2002)
EBNABIC 1292.3 1378.0 1630.4 1705.0
(Bengoetxea et al, 2002)
TREE 1299.0 1374.7 1659.9 1752.8
(Pelikan et al, 2007)
UMDAc 1337.8 1412.0 1816.6 1889.6
(Lozano and Mendiburu, 2002)
EGNAee 1330.1 1400.1 1803.8 1876.7
(Lozano and Mendiburu, 2002)
IDEA-ICE 1303.1 1371.2 1677.8 1760.5
(Bosman and Thierens, 2001)
EHBSAWT 1281.8 1359.7 1590.4 1673.6
(Tsutsui, 2002)
EHBSAWO 1296.0 1365.7 1606.0 1710.2
(Tsutsui, 2002)
NHBSAWT 1294.2 1362.7 1591.2 1672.5
(Tsutsui et al, 2006)
NHBSAWO 1297.0 1363.2 1599.5 1678.3
(Tsutsui et al, 2006)
REDAUMDA 1297.0 1375.5 1675.6 1764.5
(Romero and Larrañaga, 2009)
REDAMIMIC 1313.6 1409.7 1706.6 1805.5
(Romero and Larrañaga, 2009)
omeGA 1310.4 1372.7 1690.0 1763.3
(Knjazew and Goldberg, 2000)

Best Known 1278.0 1359.0 1582.0 1659.0
(Ceberio et al, 2012)

Although, Table 3.7 is generated based on relatively fewer instances compared to
the review of Ceberio et al (2012), the ranks of algorithms are similar. EHBSAWT and
NHBSAWT were the best performing algorithms in (Ceberio et al, 2012). A similar
result is depicted by the overall rank of these algorithms in Table 3.7. EHBSAWT

ranks 1st while RK-EDA ranks 2nd with NHBSAWT .
It was observed that the RK based EDAs such as REDAUMDA, REDAMIMIC ,

EGNAee, UMDAc as well as the RK based GA (OmeGA) are ranked least in Table
3.7 which is also similar to the conclusion in the review of Ceberio et al (2012).
RK-EDA outperforms all the RK based algorithms.

Furthermore, the performance of RK-EDA varies with different classes of prob-
lems. It produced competitive results on the PFSP, ranking 2nd on PFSPs and 1st on
PFSPl. It also produced competitive results for the TSP and LOP but less compet-
itive performance on the QAP. This may be attributed to the fact that parameters
that suit other problem classes are not particularly suitable for the search space pre-

40

Table 3.4: Permutation Flowshop Scheduling Problem (larger Instances)
Algorithms tai50-10-0 tai50-10-1 tai100-20-0 tai100-20-1

RK-EDA 3090.7 2937.6 6386.4 6338.6
(proposed)
UMDA 3151.6 3014.3 6907.5 6886.7
(Larrañaga et al, 2000)
MIMIC 3123.6 3011.0 6485.4 6441.6
(Bengoetxea et al, 2002)
EBNABIC 3182.6 2999.7 6917.0 6895.8
(Bengoetxea et al, 2002)
TREE 3233.0 3106.3 6760.7 6715.0
(Pelikan et al, 2007)
UMDAc 3517.1 3392.1 7400.6 7369.3
(Lozano and Mendiburu, 2002)
EGNAee 3486.7 3392.4 7352.0 7275.2
(Lozano and Mendiburu, 2002)
IDEA-ICE 3245.2 3130.4 6869.6 6896.9
(Bosman and Thierens, 2001)
EHBSAWT 3095.8 2967.9 6605.3 6585.6
(Tsutsui, 2002)
EHBSAWO 3265.5 3124.2 6992.1 6989.6
(Tsutsui, 2002)
NHBSAWT 3103.0 2978.2 6584.7 6543.9
(Tsutsui et al, 2006)
NHBSAWO 3126.0 3009.8 6643.1 6575.9
(Tsutsui et al, 2006)
REDAUMDA 3336.7 3194.4 7381.2 7407.0
(Romero and Larrañaga, 2009)
REDAMIMIC 3378.4 3339.2 7370.6 7392.3
(Romero and Larrañaga, 2009)
omeGA 3487.0 3440.0 7524.8 7526.5
(Knjazew and Goldberg, 2000)

Best Known 2991.0 2867.0 6106.0 6183.0
(Ceberio et al, 2012)

sented by the QAP. Also, the operation of RK-EDA may not be particularly suited
for the QAP because solving this problem requires the preservation of relative order
which is not explicitly done by RK-EDA.

The results presented show that RK-EDA is competitive with leading EDAs on
common permutation problems. More detailed results of the RK-EDA summarised
according to the minimum, maximum, average and standard deviation values are
presented in Table A.8.

3.5 Conclusions

EDAs based on RKs have previously been considered the poorest of permutation-
based EDAs (Ceberio et al, 2012). One of the problems posed by RKs is attributed to
representational redundancy (Pelikan et al, 2007). In this chapter, a novel RK based
EDA (RK-EDA) is proposed which addresses this redundancy by rescaling RKs. This

41

Table 3.5: Quadratic Assignment Problem
Algorithms tai15a tai15b tai40a tai40b

RK-EDA 404616.6 52088443.6 3391139.0 652079961.9
(proposed)
Factoradics 399889.0 52002721.0 3327464.0 699677162.0
(Regnier-Coudert and McCall, 2014)
UMDA 403520.2 51949250.0 3268661.0 687946100.0
(Larrañaga et al, 2000)
MIMIC 404128.2 51975200.0 3296989.0 699671200.0
(Bengoetxea et al, 2002)
EBNABIC 397903.0 51971170.0 3261389.0 674194300.0
(Bengoetxea et al, 2002)
TREE 404677.8 52033070.0 3383855.0 703873000.0
(Pelikan et al, 2007)
UMDAc 437695.4 52952320.0 3592347.0 958721300.0
(Lozano and Mendiburu, 2002)
EGNAee 424760.2 52412710.0 3569396.0 894976600.0
(Lozano and Mendiburu, 2002)
IDEA-ICE 421157.8 52217565.2 3469006.2 750040138.1
(Bosman and Thierens, 2001)
EHBSAWT 397816.8 51917837.8 3375198.4 664187682.6
(Tsutsui, 2002)
EHBSAWO 418679.2 52322201.9 3551799.2 699043048.0
(Tsutsui, 2002)
NHBSAWT 389737.4 51765268.0 3311038.4 649637801.9
(Tsutsui et al, 2006)
NHBSAWO 396383.6 51845196.3 3235093.8 677273159.5
(Tsutsui et al, 2006)
REDAUMDA 426467.8 52397560.0 3500793.0 868630000.0
(Romero and Larrañaga, 2009)
REDAMIMIC 434397.2 52447330.0 3558663.0 886682900.0
(Romero and Larrañaga, 2009)
omeGA 430513.4 52416541.2 3600130.6 904728560.3
(Knjazew and Goldberg, 2000)

Best Known 388214.0 51765268.0 3139370.0 637250948.0
(Ceberio et al, 2012)

approach improves the information captured by the probabilistic model. Furthermore,
RK-EDA uses a cooling scheme to manage the rate of exploration/exploitation of the
search space so that there is better exploration at the start of the algorithm and
better exploitation of already found good pattern as the search progresses.

Learning a probability structure is considered the most expensive operation in
EDAs (Bosman and Thierens, 2001). Here, a simple model which only stores the
mean of solutions in a selected population is presented. This is computationally
efficient compared to larger models used by the leading EDAs that grow exponentially
with the size of a problem. Although RK-EDA uses simple procedures, it produces
very competitive results. It outperforms other reviewed continuous EDAs. It is also
competitive with the best EDAs.

RK-EDA’s least competitive performance is observed on the QAP. This can be
attributed RK-EDA’s inability to explicitly preserve relative order.

42

Table 3.6: Linear Ordering Problem

Algorithms t65b11xx be75np be75oi

RK-EDA 356028.2 716644.3 111012.3
(proposed)
Factoradics 350134.0 709328.0 110323.0
(Regnier-Coudert and McCall, 2014)
UMDA 347664.7 713228.8 110227.0
(Larrañaga et al, 2000)
MIMIC 349367.5 710296.2 110430.0
(Bengoetxea et al, 2002)
EBNABIC 347066.5 711958.9 110055.5
(Bengoetxea et al, 2002)
TREE 337591.3 693237.8 108584.7
(Pelikan et al, 2007)
UMDAc 285721.2 528949.0 91976.1
(Lozano and Mendiburu, 2002)
EGNAee 293023.9 528798.3 89905.6
(Lozano and Mendiburu, 2002)
IDEA-ICE 338262.6 694163.3 107582.0
(Bosman and Thierens, 2001)
EHBSAWT 356357.4 716816.1 110997.1
(Tsutsui, 2002)
EHBSAWO 318403.9 644297.8 105619.4
(Tsutsui, 2002)
NHBSAWT 355904.9 716799.8 111138.6
(Tsutsui et al, 2006)
NHBSAWO 355235.0 716395.8 110963.8
(Tsutsui et al, 2006)
REDAUMDA 332107.8 649867.6 103679.3
(Romero and Larrañaga, 2009)
REDAMIMIC 324124.2 541302.8 90079.3
(Romero and Larrañaga, 2009)
omeGA 293642.6 501186.0 96929.2
(Knjazew and Goldberg, 2000)

Best Known 411733.0 790966.0 118159.0
(Ceberio et al, 2012)

RK-EDA’s most competitive performance is seen on PFSP. Its performance on
PFSP gets more competitive as the problem size increases presenting the best results
on the largest of the considered PFSP instances. The next chapter will, therefore,
focus on a wider range of PFSP instances.

43

Table 3.7: Average Ranks of Algorithms
Algorithms TSP PFSPs QAP LOP ALL PFSPl

EHBSAWT 1.00 1.75 4.00 2.00 2.13 3.25
(Tsutsui, 2002)
RK-EDA 3.75 2.50 7.00 2.25 4.00 1.00
(proposed)
NHBSAWT 8.50 3.00 2.00 1.75 4.00 3.00
(Tsutsui et al, 2006)
NHBSAWO 6.00 4.50 2.50 4.25 4.27 4.75
(Tsutsui et al, 2006)
Factoradics 6.50 6.25 6.75 7.00 6.47 -
(Regnier-Coudert and McCall, 2014)
UMDA 8.25 6.75 4.75 6.25 6.53 7.00
(Larrañaga et al, 2000)
EBNABIC 8.25 7.50 3.75 6.50 6.67 7.00
(Bengoetxea et al, 2002)
EHBSAWO 2.25 6.00 10.00 10.75 7.27 9.75
(Tsutsui, 2002)
MIMIC 10.50 8.00 6.25 6.50 7.80 3.50
(Bengoetxea et al, 2002)
TREE 12.25 10.50 8.75 9.75 10.33 7.00
(Pelikan et al, 2007)
IDEA-ICE 11.25 10.75 10.50 9.75 10.53 8.75
(Bosman and Thierens, 2001)
REDAUMDA 14.50 11.00 12.00 11.50 12.27 12.25
(Romero and Larrañaga, 2009)
REDAMIMIC 8.50 14.25 14.00 13.25 12.47 12.25
(Romero and Larrañaga, 2009)
EGNAee 9.00 14.75 13.25 15.00 12.93 12.25
(Lozano and Mendiburu, 2002)
omeGA 14.25 12.00 14.75 14.50 13.80 14.75
(Knjazew and Goldberg, 2000)
UMDAc 10.25 16.00 15.75 15.00 14.13 13.50
(Lozano and Mendiburu, 2002)

44

Chapter 4

Application of RK-EDA for the
Permutation Flowshop Scheduling
Problem

4.1 Introduction

The previous chapter introduced RK-EDA and presented results on some common
permutation problems. Although each permutation problem examined in the pre-
vious chapter has unique features, the same set of algorithm parameters was used
across all problems. While we have explored the robustness of RKEDA’s perfor-
mance under a fixed set of parameters, we have not fully explored the capability of
the algorithm. For this reason and following promising results on the Permutation
Flowshop Scheduling Problem (PFSP), this chapter presents an analysis of RK-EDA
for PFSP. As is conventional in recent research, the focus is on optimising the Total
Flow Time (TFT).

In Chapter 3, we started to answer the research question “In what way can explo-
ration and exploitation be controlled in EDAs designed to solve permutation prob-
lems?”. This chapter focuses on showing the effect of the proposed cooling scheme
in RK-EDA. We show that RK-EDA can preserve diversity better than one of the
leading EDAs, GM-EDA.

Experiments show that RK-EDA outperforms other permutation-based EDAs on
instances of larger dimensions. It also outperforms other algorithms, presenting new
best-known solutions on the largest problem instances.

4.2 RK-EDA: Analysis of Initial Variance

Several EDAs for permutation problems including the leading EDAs for this domain
use large models. These models can grow up to the square of the size of the input
(O(n2)). RK-EDA, however, uses a model that increases linearly, its model grows
according to the order of the magnitude of the input (O(n)). This in itself is a
significant gain for the RK-EDA.

45

As shown in the previous chapter, RK-EDA requires standard EDA parameters
such as population size and truncation size. Also, a parameter which is unique to
RK-EDA is the initial variance. The initial variance determines the initial exploration
rate of the algorithm. This value should be tuned carefully with respect to the size
of a problem.

The behaviour of the RK-EDA can be examined through the search by measuring
the probability of a job moving from its current position/changing its rank. Figure
4.1 shows the probability of a swap between jobs that are k position(s) apart in a
problem of size 500. Based on variance value 0.0025, the percentage probabilities
when k is 1, 10, 20, 30, 40 and 50 are respectively 48%, 41%, 34%, 27%, 21% and
15%. These values reduce as the search progresses as shown in Figure 4.1.

Figure 4.1: Percentage probability of a swap between k positions: problem size = 500
and initial variance = 0.0025

Due the rescaling procedure of RK-EDA (rescaledRKi =
ranki−1

n−1
) as shown in the

previous chapter, the granularity of RK values in a solution is inversely proportional
to the problem size. Consequently, the difference between the RKs of consecutive
ranks will reduce as the problem size grows.

Figure 4.2 shows the probability of a swap based on a variance value of 0.0025
across problem instances of sizes 20-500. For problem sizes 20, 50, 100, 200 and
500, the initial percentage probability of a swap between two consecutive ranks will
respectively be 15%, 34%, 42%, 46% and 48%.

Previous studies applying the GM-EDA (Ceberio et al, 2014a) and DEP (Santucci
et al, 2016) to the PFSP experienced an unexpected behaviour on problem instances
with the largest number of jobs (500). These algorithms suffered from premature
convergence suggesting that more exploration is needed to solve this problem effec-
tively. These existing algorithms, therefore, used restart mechanism as well as local
search procedures to achieve good quality solutions. This study leveraged on this in-
formation to ensure RK-EDA scales better to problems of larger dimensions without

46

Figure 4.2: Percentage probability of an adjacent swap: varying problem sizes and
initial variance = 0.0025

requiring additional methods such as local search. This chapter does not consider
restart mechanisms either.

4.3 Experimental Settings

This section presents the problem sets considered in this chapter as well as the pa-
rameter settings for RK-EDA.

To be able to assess the performance of RK-EDA on different sizes of the PFSP, it
is applied to problems of sizes 20-500 from the Taillard’s benchmark problems Taillard
(1993).

The following problem sets were considered.

1. Size 20: 20× 5, 20× 10, 20× 20,

2. Size 50: 50× 5, 50× 10, 50× 20,

3. Size 100: 100× 5, 100× 10, 100× 20,

4. Size 200: 200× 10, 200× 20 and

5. Size 500: 500× 20

Problem sets of sizes 20-100 are categorised based on 5, 10 and 20 machines while
problem sets of size 200 are categorised by 10 and 20 machines only. Finally, all
problem instances of size 500 are based on the use of 20 machines only.

Recent studies on PFSP (Ceberio et al, 2014a; Santucci et al, 2016) use a defined
number of fitness evaluations as stopping criteria. The number of fitness evaluations
is set according to the problem sizes as presented in Table 4.1.

47

Table 4.1: Stopping Criteria: Number of Fitness Evaluations

Problem Sizes Fitness Evaluations

20× 05 182,224,100
20× 10 224,784,800
20× 20 256,896,400
50× 05 220,712,150
50× 10 256,208,100
50× 20 275,954,150
100× 5 235,879,800
100× 10 266,211,000
100× 20 283,040,000
200× 10 272,515,500
200× 20 287,728,850
500× 20 260,316,750

RK-EDA varies its exploration-exploitation balance according to the evaluation
budget. For this reason, it can present competitive results even with a relatively low
budget. To be able to parametrise the algorithm, RK-EDA is set to use only 20% of
the conventionally used budget.

The range of population size, truncation size and variance values used to parametrise
RK-EDA are presented in Table 4.2. Although population size 10n was used in the
previous chapter, smaller values (n, 2n and 3n) are considered in this chapter. This
will allow the algorithm run for more generations. We try truncation values that are
10%, 25% and 40% of the population size. Initial variance values are varied between
0.0025 and 0.0400.

Due to constraints on computational cost, problems sets of sizes 20-100 are used
to parametrise the algorithm.

Table 4.2: Parameter Settings for RK-EDA

Parameters Values

Population Size (ps) n, 2n, 3n
Truncation Size (ts) 0.1*ps, 0.25*ps , 0.4*ps
Variance (σ) 0.0025, 0.0100, 0.0225, 0.0400
Stopping Criteria 20% FEs, 100% FEs

4.3.1 Preliminary Results

Tables 4.3, 4.4 and 4.5 respectively present results for tuning the population size,
truncation size and initial variance. The values in these tables are the ARPD from
the best-known solution for each problem instance based on 20 runs of RK-EDA. The
lowest ARPD, as well as ARPD that are not significantly different, are presented in

48

Table 4.3: Parameter Settings: Population Sizes

Problem Instances n 2n 3n

tai20 5 0 14039 14046 14073
tai20 5 1 15160 15170 15185
tai20 10 0 20957 20966 20979
tai20 10 1 22493 22482 22530
tai20 20 0 33652 33670 33676
tai20 20 1 31592 31593 31595
tai50 5 0 65571 65466 65536
tai50 5 1 68990 69067 69152
tai50 10 0 89412 89130 89198
tai50 10 1 84547 84561 84676
tai50 20 0 128039 127729 127850
tai50 20 1 120974 120662 120671
tai100 5 0 256650 256608 256699
tai100 5 1 245498 245697 245686
tai100 10 0 303820 303688 303731
tai100 10 1 279378 279439 280008
tai100 20 0 373070 372743 372725
tai100 20 1 380043 379185 379019

Table 4.4: Parameter Settings: Truncation Sizes
Problem Instances 10% 25% 40%

tai20 5 0 14039 14044 14068
tai20 5 1 15160 15197 15224
tai20 10 0 20957 20979 20995
tai20 10 1 22493 22609 22674
tai20 20 0 33652 33701 33721
tai20 20 1 31592 31593 31603
tai50 5 0 65571 65568 65702
tai50 5 1 68990 69182 69299
tai50 10 0 89412 89349 89590
tai50 10 1 84547 84923 84957
tai50 20 0 128039 127963 127962
tai50 20 1 120974 120773 120942
tai100 5 0 256650 256866 257206
tai100 5 1 245498 246032 246682
tai100 10 0 303820 303990 304123
tai100 10 1 279378 280155 280607
tai100 20 0 373070 372996 373347
tai100 20 1 380043 379448 380727

bold. The student t-test with 95% confidence interval is used to measure statistical
significance.

While the population size is tuned, the truncation size is set to 10% of the pop-
ulation size and the variance set to 0.0225. Table 4.3 presents the ARPD values for
population sizes n, 2n and 3n where n is the problem size. The performance of pop-
ulation sizes n and 2n are particularly similar. We however selected n as this allows
RK-EDA to run for even more generations.

To tune the truncation size, the population size is set to n, and the variance value
is not changed from 0.0225. Table 4.4 presents the ARPD for each problem instance
using truncation sizes equal to 10%, 25% and 40% of the population size. The results
show that 10% presents the best ARPD or results that are not significantly different
from the best on all but one of the instances. The truncation size is therefore set to
10% of the population size.

49

Table 4.5: Parameter Settings: Initial Variance Values
Problem Instances 0.0025 0.0100 0.0225 0.0400

tai20 5 0 14036 14038 14039 14042
tai20 5 1 15153 15160 15160 15166
tai20 10 0 20957 20962 20957 20964
tai20 10 1 22446 22464 22493 22504
tai20 20 0 33623 33629 33652 33666
tai20 20 1 31587 31590 31592 31592
tai50 5 0 65412 65540 65571 65553
tai50 5 1 68810 68944 68990 68968
tai50 10 0 89262 89242 89412 89417
tai50 10 1 84442 84472 84547 84645
tai50 20 0 128005 128076 128039 128261
tai50 20 1 120689 121013 120974 121100
tai100 5 0 256365 256506 256650 256791
tai100 5 1 245118 245458 245498 245495
tai100 10 0 303079 303770 303820 304344
tai100 10 1 279254 279413 279378 280037
tai100 20 0 372604 372735 373070 373360
tai100 20 1 379089 379545 380043 380242

The initial variance value is then tuned while the population size is set to n and
truncation size is a tenth of the population size. Table 4.5 presents the ARPD from
the best known solution for each instance using variance values 0.0025, 0.0100, 0.0225
and 0.0400. The lowest variance value 0.0025 presents the best ARPD or ARPD that
is not significantly different from the best. The initial variance value is therefore set
to 0.0025 for subsequent experiments in this chapter.

The parameter settings that will be used in this chapter are therefore population
size n, truncation size 0.1n and variance value 0.0025.

4.4 Results and Discussion

In this section, we present the results obtained by RK-EDA on the selected PFSP
problem instances. RK-EDA is compared with leading permutation-based EDAs
as well as leading algorithms on PFSP. Finally, we investigate whether mechanisms
inherent to RK-EDA such as its cooling scheme can maintain diversity throughout
the search without requiring the use of LS. We use the Kendal Tau Distance (KTD)
as a measure of diversity to compare RK-EDA with one of the leading permutation
EDAs, GM-EDA.

4.4.1 Comparing RK-EDA with stand-alone EDAs

In this section, RK-EDA is compared with GM-EDA, NHBSA and EHBSA which are
the leading stand-alone EDAs applied to the PFSP (Ceberio et al, 2014a). Table 4.6
presents the ARPD based on 20 runs of each of these algorithms. Results for GM-
EDA, NHBSA and EHBSA are obtained from (Ceberio et al, 2014a). Note however
that RK-EDA was only executed for 20% of the fitness evaluations used by GM-EDA,
NHBSA and EHBSA. This is because RK-EDA can present competitive results even

50

with fewer evaluations as it can adjust its search pattern according to the fitness
budget.

Table 4.6: ARPD: Comparing RK-EDA with other EDAs
Problem Size Best Known GM-EDA EHBSA NHBSA RK-EDA Problem Size Best Known GM-EDA EHBSA NHBSA RK-EDA

20 X 5 14033 0.18 0.00 0.00 0.02 100 X 5 253605 0.87 1.08 1.75 1.09
15151 0.48 0.00 0.00 0.01 242579 1.08 0.88 1.83 1.05
13301 0.50 0.02 0.00 0.03 238075 0.85 0.79 1.53 0.94
15447 0.43 0.03 0.01 0.00 227889 0.78 0.69 1.53 0.88
13529 0.21 0.00 0.00 0.04 240589 0.80 0.76 1.56 0.95
13123 0.08 0.01 0.00 0.00 232689 0.90 1.03 1.84 1.06
13548 0.79 0.00 0.00 0.36 240669 1.00 0.57 1.47 1.07
13948 0.18 0.03 0.00 0.01 231064 1.06 1.05 1.94 1.24
14295 0.18 0.11 0.00 0.11 248039 1.05 1.18 1.93 1.20
12943 0.46 0.00 0.00 0.07 243258 1.00 0.57 1.58 1.02

20 X 10 20911 0.45 0.00 0.00 0.22 100 X 10 299101 1.80 2.80 2.60 1.33
22440 0.54 0.00 0.00 0.03 274566 2.08 3.17 3.03 1.71
19833 0.31 0.00 0.00 0.12 288543 1.74 2.87 2.69 1.63
18710 0.75 0.06 0.02 0.31 301552 2.08 3.03 2.78 1.60
18641 0.35 0.06 0.02 0.07 284722 1.95 2.88 2.91 1.61
19245 0.77 0.02 0.10 0.02 270483 1.83 3.45 2.89 1.36
18363 0.47 0.05 0.02 0.12 280257 1.65 2.45 2.45 1.39
20241 0.47 0.00 0.00 0.19 291231 2.03 3.24 2.83 1.56
20330 0.27 0.02 0.00 0.00 302624 1.76 2.70 2.48 1.67
21320 0.24 0.01 0.00 0.01 291705 1.68 3.07 2.93 1.56

20 X 20 33623 0.65 0.46 0.00 0.00 100 X 20 366438 2.26 4.55 3.12 1.68
31587 0.28 0.01 0.00 0.00 373138 2.04 4.13 3.17 1.59
33920 0.04 0.00 0.00 0.00 371206 1.99 3.92 2.86 1.57
31661 0.28 0.00 0.00 0.09 373574 1.92 4.20 3.19 1.59
34557 0.26 0.00 0.00 0.05 369850 1.93 4.27 3.17 1.61
32564 0.30 0.00 0.00 0.00 372752 2.17 4.22 3.10 1.71
32922 0.61 0.03 0.00 0.32 373447 2.19 4.62 3.35 1.80
32412 0.52 0.08 0.02 0.28 385456 1.96 4.03 2.92 1.45
33600 0.56 0.03 0.00 1.03 375352 2.01 3.93 3.10 1.48
32262 0.41 0.03 0.00 0.01 379899 2.05 4.01 3.08 1.71

50 X 5 64802 0.79 0.03 0.79 0.94 200 X 10 1047541 1.20 5.03 4.06 0.75
68058 0.94 0.04 0.92 1.10 1035783 1.49 5.89 4.65 0.93
63162 1.34 0.33 1.28 1.35 1045706 1.30 5.32 4.34 0.82
68226 1.27 0.20 1.15 1.28 1029580 1.38 5.31 4.18 1.00
69392 0.89 0.08 0.78 1.02 1036464 1.37 5.62 4.16 0.76
66841 0.82 0.14 0.95 0.91 1006650 1.39 6.46 5.01 0.92
66253 0.96 0.00 0.87 1.15 1052786 1.23 6.49 5.10 0.79
64359 0.97 0.08 0.86 1.16 1044961 1.39 5.66 4.47 0.85
62981 0.81 0.11 0.87 1.11 1023315 1.29 6.28 4.81 0.80
68811 1.06 0.26 1.10 1.35 1029198 1.48 6.32 4.92 0.84

50 X 10 87204 2.11 0.72 1.86 2.36 200 X 20 1225282 1.72 6.26 5.24 0.90
82820 2.45 1.03 1.97 1.96 1239246 1.66 6.98 5.59 1.04
79987 1.84 0.48 1.61 1.60 1263134 1.57 5.88 5.27 0.84
86545 1.87 0.72 1.51 1.54 1233443 1.73 7.01 5.80 1.03
86424 2.05 0.89 1.73 1.92 1220117 1.93 7.28 5.65 1.01
86637 1.55 0.45 1.45 1.51 1223238 1.69 7.24 5.41 0.85
88866 1.97 0.77 1.63 1.72 1237116 1.66 7.48 5.64 0.91
86820 2.04 0.89 1.73 1.63 1238975 1.72 6.74 5.45 0.96
85526 2.10 0.78 1.76 1.73 1225186 1.80 7.59 5.93 0.98
87998 2.09 0.76 1.99 1.89 1244200 1.68 6.55 5.46 0.82

50 X 20 125831 1.76 1.20 1.75 1.73 500 X 20 6638306 10.05 9.68 8.39 0.49
119247 1.59 0.98 1.75 1.21 6764798 9.63 9.25 7.91 0.55
116459 2.24 1.30 1.90 1.88 6692427 9.35 9.58 8.14 0.48
120712 1.92 1.07 1.76 1.53 6725985 9.74 9.22 7.97 0.47
118184 2.30 1.32 1.92 1.76 6686734 9.84 9.48 8.08 0.62
120703 1.78 1.13 1.67 1.39 6687549 9.62 10.03 8.36 0.52
122962 2.10 1.46 1.85 1.94 6635167 10.36 9.97 8.44 0.54
122489 2.24 1.69 1.96 1.72 6713812 9.53 9.79 8.30 0.55
121872 1.79 1.16 1.76 1.49 6654590 9.77 9.41 8.13 0.43
124064 1.95 1.17 1.71 1.76 6695956 9.67 9.59 8.31 0.47

Table 4.6 presents the ARPD for GM-EDA, EHBSA, NHBSA and RK-EDA based
on 20 runs. The best ARPD of the four algorithms is presented in bold while results
that are not significantly different are also presented in bold. The student t-test is
also used based on 95% confidence interval.

51

Table 4.7: ARPD: RK-EDA and leading algorithms for PFSP (20 X 5 - 50 X 20)
n x m best AGA DEP HGM-EDA IGA ILS RK-EDA

20× 5 14033 0.00 0.00 0.00 0.00 0.00 0.00
15151 0.00 0.00 0.00 0.00 0.00 0.00
13301 0.00 0.00 0.00 0.00 0.00 0.00
15447 0.00 0.00 0.00 0.00 0.00 0.00
13529 0.00 0.00 0.00 0.00 0.00 0.00
13123 0.00 0.00 0.00 0.00 0.00 0.00
13548 0.00 0.00 0.00 0.02 0.00 0.08
13948 0.00 0.00 0.00 0.00 0.00 0.00
14295 0.00 0.00 0.00 0.00 0.00 0.01
12943 0.00 0.00 0.00 0.00 0.00 0.00

20× 10 20911 0.00 0.00 0.00 0.00 0.00 0.17
22440 0.00 0.00 0.00 0.00 0.00 0.00
19833 0.00 0.00 0.00 0.00 0.00 0.02
18710 0.00 0.00 0.00 0.00 0.00 0.04
18641 0.00 0.00 0.00 0.00 0.00 0.01
19245 0.00 0.00 0.00 0.00 0.00 0.00
18363 0.00 0.00 0.00 0.00 0.00 0.02
20241 0.00 0.00 0.00 0.00 0.00 0.10
20330 0.00 0.00 0.00 0.00 0.00 0.00
21320 0.00 0.00 0.00 0.00 0.00 0.00

20× 20 33623 0.00 0.00 0.00 0.00 0.00 0.00
31587 0.00 0.00 0.00 0.00 0.00 0.00
33920 0.00 0.00 0.00 0.00 0.00 0.00
31661 0.00 0.00 0.00 0.00 0.00 0.01
34557 0.00 0.00 0.00 0.00 0.00 0.02
32564 0.00 0.00 0.00 0.00 0.00 0.00
32922 0.00 0.00 0.00 0.00 0.00 0.13
32412 0.00 0.00 0.00 0.00 0.00 0.14
33600 0.00 0.00 0.00 0.00 0.00 0.51
32262 0.00 0.00 0.00 0.00 0.00 0.00

50× 5 64802 0.05 0.06 0.12 0.08 0.05 0.87
68058 0.06 0.09 0.13 0.14 0.13 1.01
63162 0.19 0.21 0.38 0.24 0.24 1.18
68226 0.17 0.13 0.22 0.26 0.13 1.12
69392 0.09 0.09 0.15 0.14 0.16 0.91
66841 0.10 0.04 0.18 0.16 0.19 0.91
66253 0.03 0.03 0.08 0.10 0.09 0.96
64359 0.05 0.05 0.23 0.32 0.15 0.98
62981 0.09 0.05 0.14 0.23 0.19 0.93
68811 0.20 0.15 0.34 0.33 0.22 1.09

50× 10 87204 0.33 0.18 0.39 0.40 0.44 1.81
82820 0.22 0.30 0.60 0.39 0.59 1.55
79987 0.23 0.22 0.36 0.40 0.32 1.40
86545 0.21 0.16 0.36 0.31 0.26 1.23
86424 0.17 0.28 0.41 0.35 0.24 1.54
86637 0.13 0.11 0.29 0.35 0.17 1.11
88866 0.25 0.42 0.48 0.27 0.28 1.53
86820 0.19 0.01 0.36 0.44 0.43 1.28
85526 0.29 0.28 0.42 0.49 0.44 1.46
87998 0.18 0.51 0.54 0.45 0.39 1.89

50× 20 125831 0.10 0.14 0.39 0.41 0.33 1.57
119247 0.05 0.07 0.23 0.15 0.14 0.98
116459 0.19 0.28 0.44 0.36 0.33 1.68
120712 0.22 0.34 0.34 0.36 0.35 1.40
118184 0.40 0.39 0.52 0.60 0.48 1.39
120703 0.19 0.16 0.35 0.47 0.34 1.11
122962 0.38 0.36 0.47 0.47 0.52 1.55
122489 0.16 0.14 0.55 0.45 0.41 1.40
121872 0.16 0.12 0.37 0.41 0.34 1.12
124064 0.23 0.29 0.42 0.64 0.35 1.36

As shown in Table 4.6, the EHBSA presents the best ARPD for most of the
instances of size 20 (20 × 5, 20 × 10 and 20 × 20) while the NHBSA presents the

52

Table 4.8: ARPD: RK-EDA and leading algorithms for PFSP (100 X 5 - 500 X 20)
n x m best AGA DEP HGM-EDA IGA ILS RK-EDA

100× 5 253605 0.29 0.05 0.23 0.46 0.48 0.97
242579 0.30 0.05 0.35 0.82 0.80 0.88
238075 0.22 0.07 0.26 0.29 0.34 0.82
227889 0.17 0.06 0.20 0.32 0.45 0.78
240589 0.21 0.02 0.23 0.45 0.56 0.79
232689 0.32 0.06 0.28 0.47 0.37 0.94
240669 0.15 0.25 0.34 0.34 0.47 0.90
231064 0.29 0.07 0.35 0.81 0.56 1.05
248039 0.40 0.09 0.38 0.67 0.66 1.11
243258 0.19 0.07 0.28 0.70 0.51 0.90

100× 10 299101 0.43 0.16 0.44 0.56 0.42 1.14
274566 0.60 0.28 0.69 0.85 0.54 1.30
288543 0.37 0.18 0.38 0.88 0.82 1.25
301552 0.50 0.18 0.53 0.96 0.88 1.32
284722 0.61 0.22 0.54 0.64 0.73 1.47
270483 0.42 0.19 0.45 0.63 0.52 1.18
280257 0.37 0.25 0.40 0.41 0.46 1.20
291231 0.49 0.27 0.61 0.72 0.69 1.34
302624 0.36 0.20 0.41 0.66 0.57 1.36
291705 0.48 0.06 0.50 0.45 0.47 1.35

100× 20 366438 0.80 0.37 0.67 0.71 0.79 1.36
373138 0.55 0.25 0.58 0.73 0.54 1.44
371206 0.53 0.27 0.41 0.49 0.38 1.29
373574 0.60 0.26 0.45 0.49 0.50 1.38
369850 0.59 0.21 0.48 0.50 0.57 1.32
372752 0.51 0.30 0.42 0.56 0.56 1.41
373447 0.70 0.33 0.63 0.90 0.73 1.49
385456 0.46 0.20 0.43 0.64 0.48 1.29
375352 0.62 0.41 0.52 0.54 0.44 1.39
379899 0.48 0.46 0.49 0.48 0.44 1.42

200× 10 1047541 0.49 0.22 0.19 0.15 0.29 0.52
1035783 0.94 0.15 0.32 0.65 0.71 0.70
1045706 0.66 0.15 0.32 0.48 0.55 0.63
1029580 0.77 0.12 0.45 0.48 0.51 0.74
1036464 0.68 0.13 0.19 0.39 0.42 0.49
1006650 0.50 0.23 0.19 0.55 0.67 0.67
1052786 0.95 0.10 0.24 0.58 0.61 0.54
1044961 0.62 0.11 0.25 0.34 0.35 0.65
1023315 0.81 0.24 0.28 0.86 0.93 0.58
1029198 0.97 0.25 0.39 0.78 0.87 0.62

200× 20 1225282 0.76 0.20 0.39 0.40 0.30 0.58
1239246 1.07 0.21 0.54 0.74 0.64 0.71
1263134 1.08 0.26 0.48 0.51 0.44 0.52
1233443 1.25 0.24 0.58 1.03 0.83 0.80
1220117 1.12 0.17 0.53 0.78 0.80 0.72
1223238 1.17 0.19 0.46 0.86 0.77 0.60
1237116 1.03 0.15 0.64 0.81 0.70 0.67
1238975 1.25 0.19 0.51 0.72 0.81 0.69
1225186 1.44 0.14 0.59 0.87 0.88 0.75
1244200 1.16 0.11 0.52 0.55 0.48 0.61

500× 20 6638306 1.16 2.07 3.09 0.96 0.88 0.17
6764798 1.21 1.62 2.92 1.02 0.90 0.24
6692427 1.06 1.90 2.88 0.77 0.77 0.16
6725985 1.17 1.75 2.81 0.81 0.77 0.14
6686734 1.42 1.77 2.97 0.67 0.66 0.14
6687549 1.14 1.27 3.11 0.71 0.67 0.21
6635167 1.38 2.05 3.18 0.92 0.88 0.21
6713812 1.15 1.57 2.94 1.03 1.12 0.21
6654590 1.14 1.96 2.92 0.83 0.80 0.11
6695956 1.26 1.94 3.09 1.00 1.04 0.17

best results on most of the instances of size 50 (50 × 5, 50 × 10 and 50 × 20).
RK-EDA was able to present the best ARPD or results that are not significantly
different from the best ARPD on some of the size 20 and 50 instances. GM-EDA

53

was able to achieve ARPD that is not significantly different from the best ARPD on
only one instance of the 20 × 20 category and none of the other size 20/50 instances.
For problem size 100, GM-EDA and EHBSA present the best ARPD on most of the
instances of the 100 × 5 category. RK-EDA however presents best ARPD on the 100
× 10 and 100 × 20 categories. RK-EDA also presents the best ARPD on all instances
of size 200 and 500.

The results presented in Table 4.6 show that RK-EDA scales better to larger
problems than the other EDAs. Although RK-EDA was executed with just 20% of the
fitness evaluations used by other algorithms, it significantly outperforms other EDAs
on problems of larger dimensions. This may be attributed to the use of cooling scheme
in RK-EDA which helps it to maintain better exploration-exploitation balance.

Although GM-EDA also seems to have the same characteristic of scaling better
to larger problems, its performance becomes the worst on the largest problem set
(500 × 20). RK-EDA’s best performance is seen on the largest instances where it
presents results that are at least 7.7% better than other EDAs.

4.4.2 Comparing RK-EDA with Leading Algorithms

The leading algorithms applied to the PFSP as presented in (Santucci et al, 2016) are
HGM-EDA, AGA, ILS, IGA and DEP. In contrast to the previous section, RK-EDA
is compared with these algorithms using on the same number of fitness evaluations
presented in Table 4.1. Tables 4.7 and 4.7 present the ARPDs obtained by these
algorithms based on 20 runs. Table 4.7 presents results for problem sizes 20 - 50 while
Table 4.7 presents results for sizes 100 - 500. The best ARPD of these algorithms
for each problem instance is presented in bold. Based on student t-test and 95%
confidence interval, ARPDs that are not significantly different from the best ARPD
are also presented in bold.

As shown in Table 4.7, AGA, DEP, HGM-EDA and ILS are all able to reach best
known ARPD on all problem instances of categories 20 × 5, 20 × 10 and 20 × 20.
IGA is also able to reach the best-known solution on most of the instances but one
instance of the 20× 5 category. RK-EDA, however, performs significantly worse on a
third of instances of size 20.

For problem instances consisting of 50-200 jobs, DEP presents significantly better
ARPD compared to other algorithms on most of the problem instances. AGA, HGM-
EDA and ILS also present the best ARPD on a few of these instances. However, for
problem instances made up of 500 jobs, RK-EDA presents not only best ARPDs but
also new best-known TFTs for all the problem instances.

Detailed results of RK-EDA based on 100% of the conventionally used number of
fitness evaluations are presented in Tables A.10, A.11 and A.12 of the Appendix.

4.4.3 Diversity in RK-EDA

Since RK-EDA does not use restart mechanisms or LS methods, it is important to
ensure that the algorithm allows the search to both explore and exploit the search
space. In section 4.2, we analysed the probability of an adjacent swap. We showed

54

experimentally that the search converged too quickly for the smaller problems. In
this section, we do a measure of similarity of actual solutions during the run of
RK-EDA. The diversity of this population is measured using the KTD Fligner and
Verducci (1988). KTD represents the number of adjacent transposition that needs to
be performed to transform a permutation into another one.

Pairwise KTD between two permutations π1 and π2 is calculated following eq. 4.1.
The elements i and j belong to the set P of unordered pairs of elements obtained
from π1 and π2. Kij(π1, π2) equals either 0 if i and j are in the same order, or 1 if i
and j are in a different order in π1 and π2

KTD(π1, π2) =
∑

{i,j}∈P

Kij(π1, π2) (4.1)

We calculate the KTD for all pairwise comparison from all solution pairs in a
population at each generation. These are summed up and averaged by the number
of pairwise comparisons. To normalise the average KTD, we divide it by n(n− 1)/2
where n is the problem size. This way, a value of 1 indicates maximum disagreement
while 0 indicates two identical permutations.

In this section, diversity in GM-EDA is compared to RK-EDA using three problem
instances of different sizes. Figures 4.3, 4.4 and 4.5 respectively shows the KTD during
a run of both algorithms on tai20 5 0, tai50 5 0 and tai100 5 0.

Figure 4.3: Measure of KTD on tai20 5 0

In Figures 4.3, 4.4 and 4.5, RK-EDA and GM-EDA explored least on the smallest
and most of the largest of the three problems. GM-EDA, however, converged much

55

Figure 4.4: Measure of KTD on tai50 5 0

Figure 4.5: Measure of KTD on tai100 5 0

56

quicker than RK-EDA on tai20 5 0 and tai50 5 0. In Figure 4.5, GM-EDA main-
tained a high diversity all through the run while RK-EDA was able to maintain high
exploration at the start and more exploitation closer to the end of the run.

4.5 Conclusions

In this chapter, RK-EDA which uses a lightweight univariate model based on RKs
is further adapted for the PFSP. The lightweight characteristic of the model is of
particular importance considering that learning a probability structure is considered
the most expensive operation in EDAs (Bosman and Thierens, 2001). One of the
key features of RK-EDA is its cooling scheme which manages the variance used in
the model. Based on the cooling scheme which adapts to the number of fitness
evaluations, the algorithms can present competitive results when given less budget.
With only a fifth of the conventionally applied number of fitness evaluations, RK-
EDA outperformed other EDAs on problems of larger dimensions. RK-EDA also
outperforms state-of-the-art algorithms on the largest PFSP instances, presenting
new best-known solutions.

Furthermore, diversity computed experimentally confirmed that RK-EDA avoids
premature convergence in larger problems and exhibits both exploration and exploita-
tion behaviours during the search.

57

Chapter 5

Estimation of Distribution
Algorithms for the RCPSP and
MRCPSP

5.1 Introduction

The MRCPSP is a multi-component problem consisting of activity scheduling and
mode assignment problems. Due to the interactions between these sub-problems,
they cannot be solved in isolation. A similar problem, which is only made up of the
activity scheduling problem, is the RCPSP. Activity scheduling requires that prece-
dence constraints are respected in addition to generating a valid permutation. To
achieve good quality RCPSP solutions, it is conventional to use local search proce-
dures to improve the performance of meta-heuristics.

This chapter adapts RK-EDA to solve the RCPSP, providing more insight into
the activity scheduling problem. To gain more insight into the mode assignment
problem, this chapter also proposes the BPGA-EDA which focuses on solving the
mode assignment component of the MRCPSP with an EDA. Finally, the approaches
are brought together in BPEDA, which uses RK-EDA for activity scheduling and the
mechanisms of BPGA-EDA for mode assignment.

This chapter addresses the research question “How can we reduce the need for local
improvement procedures in multi-component scheduling problems?”. Using MRCPSP
as a case study, this chapter explains how adapting EDAs to components of the
MRCPSP led to competitive results with fewer improvement procedures.

The rest of the chapter is structured as follows. Section 5.2 describes problem
instances of the RCPSP and MRCPSP. Section 5.3 presents the base method, BPGA,
used in this chapter. Section 5.4 presents RK-EDA adapted for solving the RCPSP.
Section 5.5 presents BPGA-EDA applied to solve the MRCPSP. BPEDA is presented
in Section 5.6. In Section 5.7, BPEDA is compared with existing methods of solving
the MRCPSP. This chapter is concluded in Section 5.8.

58

5.2 Problem Instances

5.2.1 RCPSP Instance

RCPSP is formally defined in Chapter 2.5.5. An example of an RCPSP instance
with 30 activities to be scheduled is presented in Table 5.1. Activities 1 and 32 are
respectively the dummy start and finish activities. Unlike MRCPSP, there is only one
mode of execution for each activity. Furthermore, each activity requires four different
renewable resources R1-R4 for the given duration. Each non-dummy activity also has
at least one successor as presented in the last column of Table 5.1.

The precedence constraint requires that an activity cannot be performed before
any activity defined as its predecessor. Also, each activity can only be performed if
there are resources to perform it. These resources are available per period of time
as shown in the last row of Table 5.1. Therefore, assigning start and finish times to
an activity of a project will depend on the latest finish time of the predecessors and
the earliest available time of all the resources required to perform that activity. The
aim is to assign start and finish times to all activities of the project such that the
makespan is minimised.

5.2.2 MRCPSP Instance

MRCPSP is formally defined in Chapter 2.5.6. An example of an MRCPSP instance
with 10 activities to be scheduled is presented in Table 5.2. Activities 1 and 12 are
respectively the dummy start and finish activities. There are three modes of execu-
tion for each non-dummy activity. Furthermore, each activity requires two different
renewable resources (R1 and R2) as well as non-renewable resources (N1 and N2)
for the given duration. Each non-dummy activity also has at least one successor as
presented in the last column of Table 5.2.

The precedence constraint requires that an activity cannot be performed before
any activity defined as its predecessor. Also, each activity can only be performed if
there are enough resources R1 and R2 to perform it. Also, each activity can only
be performed in one mode of execution. R1 and R2 are available per period of time
while the availabilities of N1 and N2 are for the entire project duration. The sum
of N1 and N2 for all mode selections must therefore be less than their respective
availabilities. The availabilities of these resources are shown in the last row of Table
5.2. Also, assigning start and finish times to an activity of a project will depend
on the latest finish time of the predecessors and the earliest available time of all the
resources required to perform that activity. The aim is to assign start and finish times
to all activities of the project such that the makespan is minimised.

5.3 The BPGA

BPGA is one of the leading approaches of solving the RCPSP (Debels and Vanhoucke,
2005) as well as the MRCPSP (Van Peteghem and Vanhoucke, 2010). BPGA also uses
relatively simpler approaches compared to other leading algorithms. The BPGA is

59

Table 5.1: RCPSP Instance
Activities Mode Duration R1 R2 R3 R4 Successors

1 1 0 0 0 0 0 2, 3, 4
2 1 8 4 0 0 0 6, 11, 15
3 1 4 10 0 0 0 7, 8, 13
4 1 6 0 0 0 3 5, 9, 10
5 1 3 3 0 0 0 20
6 1 8 0 0 0 8 30
7 1 5 4 0 0 0 27
8 1 9 0 1 0 0 12, 19, 27
9 1 2 6 0 0 0 14
10 1 7 0 0 0 1 16, 25
11 1 9 0 5 0 0 20, 26
12 1 2 0 7 0 0 14
13 1 6 4 0 0 0 17, 18
14 1 3 0 8 0 0 17
15 1 9 3 0 0 0 25
16 1 10 0 0 0 5 21, 22
17 1 6 0 0 0 8 22
18 1 5 0 0 0 7 20, 22
19 1 3 0 1 0 0 24, 29
20 1 7 0 10 0 0 23, 25
21 1 2 0 0 0 6 28
22 1 7 2 0 0 0 23
23 1 2 3 0 0 0 24
24 1 3 0 9 0 0 30
25 1 3 4 0 0 0 30
26 1 7 0 0 4 0 31
27 1 8 0 0 0 7 28
28 1 3 0 8 0 0 31
29 1 7 0 7 0 0 32
30 1 2 0 7 0 0 32
31 1 2 0 0 2 0 32
32 1 0 0 0 0 0

Resource availabilities: R1 R2 R3 R4

12 13 4 12

used as a base method in this study. We attempt to improve the BPGA by introducing
EDAs. This section therefore describes the key features of the BPGA. Note however
that some of these methods are only peculiar to the MRCPSP.

5.3.1 Representation

BPGA uses RKs to represent its activity scheduling solutions. RK value (RKi) serves
as a priority value for activity i. An activity with a lower priority value is considered
before that with a higher value.

The mode assignment solution is represented as a string of integers. Mode ki
defines the mode of execution of an activity i.

60

Table 5.2: MRCPSP Instance
Activities Mode Duration R1 R2 N1 N2 Successors

1 1 0 0 0 0 0 2, 3, 4
2 1 3 6 0 9 0 5, 6

2 9 5 0 0 8
3 10 0 6 0 6

3 1 1 0 4 0 8 10, 11
2 1 7 0 0 8
3 5 0 4 0 5

4 1 3 10 0 0 7 9
2 5 7 0 2 0
3 8 6 0 0 7

5 1 4 0 9 8 0 7, 8
2 6 2 0 0 7
3 10 0 5 0 5

6 1 2 2 0 8 0 10, 11
2 4 0 8 5 0
3 6 2 0 0 1

7 1 3 5 0 10 0 9, 10
2 6 0 7 10 0
3 8 5 0 0 10

8 1 4 6 0 0 1 9
2 10 3 0 10 0
3 10 4 0 0 1

9 1 2 2 0 6 0 12
2 7 1 0 0 8
3 10 1 0 0 7

10 1 1 4 0 4 0 12
2 1 0 2 0 8
3 9 4 0 0 5

11 1 6 0 2 0 10 12
2 9 0 1 0 9
3 10 0 1 0 7

12 1 0 0 0 0 0

Resource availabilities: R1 R2 N1 N2

9 4 29 40

5.3.2 Bi-Population

The BPGA uses two populations of solutions. One is a population of left justified
schedules where activities are scheduled as early as possible. The other is a popu-
lation of right justified schedules where activities are scheduled as late as possible.
To encourage improvement in the scheduling process, parents from one population
produce the offspring for the other and vice versa. The concept of scheduling activi-
ties forward and then backwards has been considered beneficial in previous research
(Lova et al, 2009; Wang and Fang, 2012a). It was however used as a schedule im-
provement approach which iteratively schedules activities forward and backward until
no further improvement can be made. Van Peteghem and Vanhoucke (2010) use the
bi-population approach to improve search in a relatively more efficient way.

61

5.3.3 Preprocessing

The preprocessing procedure of (Sprecher et al, 1997) reduces the search space of
feasible solutions by eliminating non-executable and inefficient modes as well as re-
dundant resources.

In a problem with A renewable and B non-renewable resources, a mode ki is
redundant if there exists another mode ki

′ with:

ti,ki′ ≤ ti,ki (5.1)

αi,ki′,r ≤ αi,ki,r ∀ r ∈ [1, |A|] (5.2)

βi,ki′,l ≤ βi,ki,l ∀ l ∈ [1, |B|] (5.3)

In eqs. (5.1), (5.2) and (5.3), ti,ki′ and ti,ki are execution times, αi,ki′,r and αi,ki,r

are renewable resources while βi,ki′,r and βi,ki,r are non-renewable resources of activity
i respectively performed in the allocated modes ki

′ and ki.
A non-renewable resource l is redundant if:

n∑
i=1

βmaxi,l ≤ βmaxl (5.4)

In eq. (5.4), the maximum non-renewable resource request of l for activity i;
βmaxi,l = max {βi,k,l|k = 1, ...,mi}. βi,k,l is the amount of non-renewable resource l
required by activity i performed in mode k. βmaxl is the maximum availability of
non-renewable resource l.

A mode k is non-executable with respect to non-renewable resource l and renew-
able resource r if:

n∑
j=1 j ̸=i

βminj,l + βi,k,l > βmaxl (5.5)

αi,k,r > αmaxr (5.6)

In eq. (5.5), the minimum non-renewable resource request of l for activity i is
denoted by βmini,l = min {βi,k,l|k = 1, ...,mi}. In eq. (5.6), αi,k,r is the amount of
renewable resource r required by activity i performed in mode k while αmaxr is the
maximum availability of renewable resource r.

Note that this is a conventional procedure and is peculiar to the MRCPSP.

5.3.4 Improvement of Initial Population

Improvement of initial population is also peculiar to the MRCPSP and refers to the
method of improving the quality of mode solutions in the initial population (Lova
et al, 2009; Van Peteghem and Vanhoucke, 2010, 2011) and presented in Alg. 2.

62

Algorithm 2 Improving Feasibility of Mode Solutions

1: compute ERR(µ) of randomly generated mode solution µ
2: set count to 0;
3: while ERR(µ) > 0 and count < maxIteration do
4: select an activity i at random
5: set new mode solution µ′ equal to existing mode solution µ
6: select a new mode of execution ki

′ different from ki
7: update mode solution µ′ with ki

′

8: compute ERR(µ′)
9: if ERR(µ′) ⩽ ERR(µ) then

10: set µ = µ′

11: set ERR(µ) = ERR(µ′)
12: end if
13: increment count
14: end while

The Excess Resource Requirement ERR of mode solution µ is calculated as fol-
lows.

ERR(µ) =

|B|∑
x=1

(max(0,
n∑

i=1

βi,ki,l − βmaxl)) (5.7)

ERR(µ) is set to 0, if mode solution µ is feasible. Otherwise, it is set to the
difference between the sum of requirements of each non-renewable resources l, for
each activity i in its allocated mode mi, and the maximum availability of l; βmaxl.

The improvement of initial population procedure attempts to improve feasibility
by changing the mode of execution ki of a randomly selected activity i. ki

′ and
µ′ respectively denote the new mode of execution of i and a new mode solution.
If ERR(µ′) is less than that of the existing mode solution ERR(µ), then the new
mode solution µ′ is adopted else the existing mode solution µ is unchanged. This
procedure is executed until feasibility is reached or the maximum number of iterations
maxIteration is reached. For the BPGA, maxIteration is set to 4 times the problem
size.

This procedure is executed on the first population of mode solutions.

5.3.5 Mode Improvement

The mode improvement method is only used when solving the MRCPSP. When the
mode improvement method is embedded into the well-known SGS, it is referred to
as the ESGS. This is done to improve the quality of mode solutions generated. The
mode improvement procedure, as presented in Alg. 3, attempts to improve feasibility
as well as the finish time of an activity i.

For an activity i, |mi| is the maximum number of modes while ki denotes its
existing mode of execution. Mode solution µ′ is generated by replacing ki in µ with
ki

′. The ERRs of the existing mode solution µ and the new mode solution µ′ are

63

Algorithm 3 Mode Improvement Method

1: for j = 1 to |mi| do
2: set new mode solution µ′ to existing mode solution µ
3: compute ERR(µ)
4: if ki ̸= j then
5: set new mode ki

′ = j
6: update mode solution µ′ with ki

′

7: compute ERR(µ′)
8: if ERR(µ′) ⩽ ERR(µ) then
9: compute fi

′

10: if fi
′ < fi then

11: µ = µ′

12: ERR(µ) = ERR(µ′)
13: fi = fi

′

14: end if
15: end if
16: end if
17: end for

calculated. If ERR(µ) is not higher than ERR(µ′), the procedure executes the next
stage. This stage compares the finish times of i using µ′ and µ and are respectively
denoted by fi

′ and fi. If fi
′ is less than fi, mode solution µ, ERR(µ) and fi are

respectively replaced µ′, ERR(µ′) and fi
′ .

The mode improvement method encourages activities to run in parallel thereby
increasing the possibility of an improvement in makespan (Van Peteghem and Van-
houcke, 2010). In the BPGA, the mode improvement method is applied randomly to
30% of the activities.

5.3.6 Fitness Computation

Fitness is the measure of the quality of a solution. It is important to assign values
that discriminate between the quality of solutions in a population.

For the RCPSP, the makespan is directly used as the fitness. In MRCPSP, how-
ever, the makespan is not a good discriminatory factor because non-renewable re-
source infeasible solutions will eliminate feasible solutions in the search.

A common approach in previous study is to penalise infeasible solutions. Hart-
mann (2001) proposed a fitness function as shown in Eq. (5.8). In this equation,
mak(x) is the makespan of a solution x while T is the upper bound of the project’s
makespan. T is calculated by adding the maximum durations of all activities of a
project. ERR(µ) is calculated as shown in Eq. (5.7). The fitness is set to mak(x)
when the solution is feasible with respect to non-renewable resource constraint or
penalised according to how much excess non-renewable resource is required by the
mode solution. With this approach, the fitness of an infeasible solution is always
worse than a feasible one.

64

f(x) =

mak(x) if x is feasible

T + ERR(µ) otherwise
(5.8)

Two disadvantages were identified by Alcaraz et al (2003). The first disadvan-
tage is that the makespan of an infeasible solution is not considered. Consequently,
solutions with identical ERR(µ) but different makespan will have the same fitness.
The second disadvantage is that the upper bound will be much higher than any
makespan. Adding the ERR(µ) to the already high value gives infeasible solutions
almost no chance of survival. Alcaraz et al (2003) therefore proposed the fitness func-
tion shown in Eq. (5.9) which was adopted by (Lova et al, 2009; Van Peteghem and
Vanhoucke, 2011) and used in the BPGA.

f(x) =

mak(x) if x is feasible

UBmak(g) +mak(x)− LB CP + ERR(x) otherwise
(5.9)

In Eq. (5.9), the Upper Bound makespan at a generation g; UBmak(g) is the max-
imum makespan of feasible solutions in the population. LB CP is, however, a Lower
Bound Critical Path which is calculated using the lowest duration of each activity.
The critical path determines the shortest possible duration required to perform all
activities of a project. Note that LB CP is calculated only once while UBmak(g) is
calculated at each generation. The makespan of each infeasible solution x is penalised
by adding UBmak(g) and ERR(x) as well as subtracting LB CP . Unlike the fitness
function of Hartmann (2001), the makespan of an infeasible solution contributes to
its fitness. Also, the fitness of infeasible solutions will generally be better than that of
Hartmann (2001). Note that the solutions will still be poor enough not to eliminate
feasible solutions in a population.

5.3.7 Parameters

The set of parameters used by BPGA are summarised in Table 5.3. Van Peteghem
and Vanhoucke (2010) found the one-point crossover to be better than other crossover
types. Although each solution of a population is selected as the first parent, the
second parent is selected by two-tournament selection. Furthermore, Van Peteghem
and Vanhoucke (2010) found that the population size was inversely proportional to
the number of activities n. They use an improvement rate of 0.3 where only 30% of
activities have their modes of execution improved. The mutation rate of activity and
mode solutions (pmut act and pmut mod) are respectively set to 0.04 and 0.02. In the
BPGA, preliminary algorithm comparison is done with 1000 number of schedules as
stopping criteria while more detailed experiments are done using 5000 schedules.

5.4 The RK-EDA for RCPSP

65

Table 5.3: Parameter Settings of the BPGA

Parameter Values

Crossover type one-point
Selection tournament

Population size (ps) e3.552+
22.72

n

Mode improvement rate 0.3
pmut act 4%
pmut mod 2%
Number of evaluations 1000, 5000
Number of Runs 1

In this section, we present RK-EDA which uses the bi-population procedure of the
BPGA. We also present the parameters used and compare results with previous ap-
proaches to solving the RCPSP.

5.4.1 Workflow of RK-EDA for RCPSP

Alg. 4 presents a bi-population RK-EDA for the RCPSP. Line 1 of the algorithm
initialises the population of left-justified schedules POPL with randomly generated
solutions. Each solution of POPL is then evaluated in line 2. As shown in line 3, the
probabilistic model of right-justified schedules MR is generated based on the best b
solutions in POPL. Similarly, the probabilistic model of left-justified schedules ML is
generated based on the best b solutions in POPR (line 16). Note that the makespan
is used as the fitness in this study. Solutions with the lowest makespan in POPL and
POPR are respectively denoted by bestL and bestR. For the first iteration, x = 1 of
POPL/POPR, the best solution from the other population (bestR/bestL) is retained
as the first offspring. bestL is converted into a right-justified schedule before it is
added to POPR (line 5) while bestR is converted to a left-justified schedule before it
is added to POPL (line. 15). For subsequent iterations x ∈ [2, n], we generate new
offspring solutions RChild/LChild by sampling MR/ML (line 10/21). The parent so-
lution POPRx/POPLx is replaced by RChild/LChild (line 13/24). Once the stopping
criteria is satisfied, the overall best solution from both populations is returned.

5.4.2 Experimental Settings

In this section, we present the problem sets and parameter settings used in this chap-
ter. An experimental justification for the selection of parameters is also presented.

5.4.2.1 Problem Set and Performance Criteria

Although the PSPLIB for RCPSP consists of J30, J60, J90 and J120. The most
frequently used problem sets are J30, J60 and J120. These problems respectively
consist of 480, 480 and 600 problem instances. J30, J60 and J120 are composed of 30,

66

Algorithm 4 RK-EDA for RCPSP

1: generate initial population POPL

2: evaluate POPL as left-justified schedules
3: build probabilistic model MR from |POPL|
4: repeat
5: set bestL as best solution in POPL

6: for x = 1 to |POPL| do
7: if x = 1 then
8: set RChild = bestL
9: else

10: sample MR to produce RChild
11: end if
12: evaluate RChild as a right justified schedule
13: set POPRx as RChild
14: end for
15: set bestR as best solution in POPR

16: build probabilistic model ML from POPR

17: for i = 1 to |POPR| do
18: if i = 1 then
19: set LChild = bestR
20: else
21: sample ML to produce LChild
22: end if
23: evaluate LChild as a left justified schedule
24: set POPLx as LChild
25: end for
26: build probabilistic model MR from POPL

27: until stopping criteria is satisfied
28: return overall best solution

67

60 and 120 non-dummy activities to be scheduled. Each project has two additional
activities which are the dummy start and finish activities. The start activity has
no predecessor while the finish activity has no successor, they also have no resource
requirements. This study does not consider the J90 because most previous approaches
do not present results for this problem set.

The most frequently used performance measure for the RCPSP is the APD (pre-
sented in Eq. (2.15)). In J30, the optimal values presented represents the best-known
makespan while the Critical Path-Based Lower Bound (CPBLB) is used for J60 and
J120. CPBLB is calculated by relaxing the resource constraints; it is only based on
precedence and duration of activities.

5.4.2.2 RK-EDA: Parameter Settings and Preliminary Results

Although previous studies are based on only one run, we present results averaged
over 10 runs. We use the student t-test and a confidence interval of 95% to measure
statistical significance during parameter tuning. However, we are unable to test for
statistical significance when RK-EDA is compared with other algorithms because
previous approaches present results based on one run only.

To be able to parametrise RK-EDA for the RCPSP, a range of population sizes
and variance values are examined. An attempt is made to improve each parameter
based on the best set of parameters used in the previous chapter. Population sizes
30, 60 and 120 were used across the three problem sets while setting the truncation
size to 10% and variance value to 0.0025. The truncation size and variance value
are parameters that showed good performance in the previous chapter. As shown in
Table 5.4, a population size of 60 performed best across all three problems.

Table 5.4: Accessing a range of population sizes

Problems sets 30 60 120

J30 0.63 (0.04) 0.55 (0.04) 0.56 (0.03)
J60 12.24 (0.07) 12.09 (0.03) 12.25 (0.04)
J120 36.85 (0.04) 36.53 (0.06) 37.00 (0.06)

While the population size is set to 60 and variance again set to 0.0025, truncation
sizes 10%, 25% and 40% of the population size were applied to all problems. Results
are presented in Table 5.5

Table 5.5: Accessing a range of truncation values

Problems sets 10% 25% 40%

J30 0.55 (0.04) 0.59 (0.02) 0.64 (0.03)
J60 12.09 (0.03) 12.17 (0.05) 12.26(0.03)
J120 36.53 (0.06) 36.29 (0.04) 36.44 (0.06)

Although the 10% truncation size was the best for J30 and J60, this is not the

68

case for J120 where truncation size of 25% presented the best results. These values
are used for further experiments in this study.

Furthermore, variance values 0.0025, 0.0100, 0.0225 and 0.0400 were applied to the
three problem sets. These values are taken from the range that produced promising
solutions in the previous two chapters.

Table 5.6: Accessing a range of variance values

Problems sets 0.0025 0.0100 0.0225 0.0400

J30 0.55 (0.04) 0.33(0.04) 0.35 (0.03) 0.33 (0.02)
J60 12.09 (0.03) 12.36 (0.04) 12.16 (0.05) 12.59 (0.03)
J120 36.53 (0.06) 38.06 (0.06) 37.39 (0.07) 38.62 (0.07)

For J60 and J120, increasing the variance value from 0.0025 did not improve
the performance of the algorithm. However, the variance of 0.0400 improved the
performance of the algorithm on J30.

Based on the results presented in Tables 5.4, 5.5 and 5.6, the final set of parame-
ters for RK-EDA is presented in Table 5.7. Although preliminary experiments were
based on 1000 fitness evaluations, final results will be compared based on 5000 fitness
evaluations. Note that it is common practice to use different parameters for different
problem sets.

Table 5.7: Parameter Values for RK-EDA
Parameters J30 J60 J120

Population Size (ps) 60 60 60
Truncation Size (b) 0.1 * ps 0.1 * ps 0.25 * ps
Variance (σ) 0.0400 0.0025 0.0025

Stopping Criteria 5000 fitness evaluations
Number of Runs 10 runs

5.4.3 Results

In this section, detailed results for RK-EDA on the problem sets are presented. RK-
EDA is also compared with existing methods.

5.4.3.1 RK-EDA Results

Results of RK-EDA based on ten runs on J30, J60 and J90 are presented in Table
5.8. We present the minimum, maximum, mean and standard deviation APD for
each problem set in columns min, max, avg and stdev.

69

Table 5.8: RK-EDA Results
Problem sets min max avg stdev

J30 0.17 0.21 0.19 0.01
J60 11.59 11.71 11.65 0.04
J120 33.88 34.03 33.97 0.05

5.4.3.2 Comparing RK-EDA with Existing Algorithms

Some of the leading approaches of solving RCPSP are ACOSS, which combines a local
search strategy, Ant Colony Optimization (ACO), and a Scatter Search (SS) (Chen
et al, 2010), Multi-Agent Optimisation Algorithm (MAOA) (Zheng and Wang, 2015),
Shuffled Frog Leaping Algorithm (SFLA) (Fang and Wang, 2012), GA (Debels and
Vanhoucke, 2005, 2007; Valls et al, 2008) and Scatter Search (SS) (Debels et al, 2006;
Ranjbar et al, 2009). Some more recent methods are the local search procedure in
(Chand et al, 2017) and GA in (Goncharov and Leonov, 2017). Other popularly
cited research are EDA (Wang and Fang, 2012b), PSO (Chen, 2011), GA (Alcaraz
and Maroto, 2001; Hartmann, 2002), SA (Bouleimen and Lecocq, 2003) and other
heuristics Kolisch and Drexl (1996); Tormos and Lova (2003).

Table 5.9: APD after 5000 schedules
Algorithms J30 J60 J120

DBGA (Debels and Vanhoucke, 2007) 0.04 10.95 32.18
BPGA (Debels and Vanhoucke, 2005) 0.06 11.00 32.34
ACOSS (Chen et al, 2010) 0.06 10.98 32.48
GA (Goncharov and Leonov, 2017) - 10.87 32.51
GA (Valls et al, 2008) 0.06 11.10 32.54
MAOA (Zheng and Wang, 2015) 0.06 10.84 32.64
SS (Debels et al, 2006) 0.11 11.10 33.10
SFLA (Fang and Wang, 2012) 0.21 10.87 33.20
SS (Ranjbar et al, 2009) 0.03 11.07 33.24
EDA (Wang and Fang, 2012b) 0.14 11.43 33.61
PSO (Chen, 2011) 0.14 11.43 33.88
RK-EDA 0.19 11.65 33.97
Other heuristic (Chand et al, 2017) 0.07 11.25 34.04
other heuristic (Tormos and Lova, 2003) 0.14 11.72 35.30
GA (Hartmann, 2002) 0.22 11.70 35.39
other heuristic (Kolisch and Drexl, 1996) 0.15 11.82 35.62
GA (Alcaraz and Maroto, 2001) 0.12 11.86 36.57
SA (Bouleimen and Lecocq, 2003) 0.23 11.90 37.68

Table 5.9 presents the APD of each algorithm on J30, J60 and J120. Results are
sorted according to performance on the largest problem sets (J120). Missing results
are represented with “-”, this is when authors have not applied their algorithm to

70

a given problem set. This is seen in (Goncharov and Leonov, 2017) where results
are only presented for J60 and J120. Also, the lowest APD for each problem set is
presented in bold. We are unable to do statistical significance tests because existing
algorithms do not report variance across many runs.

The SS of Ranjbar et al (2009) presents the lowest APD on J30 while MAOA
(Zheng and Wang, 2015) presents the lowest APD on J60. The DBGA presents the
lowest APD on J120. Although RK-EDA is not one of the leading methods in this
study, the difference between its results and other leading algorithms is not more
than 1.79%. Also, RK-EDA presents a relatively simple technique requiring no local
search or other improvement methods which are conventionally used when applying
algorithms to the RCPSP.

The rest of this chapter will focus on solving the MRCPSP.

5.5 The BPGA-EDA for MRCPSP

BPGA-EDA replaces the mechanism of generating mode assignment solutions in
BPGA with an EDA. BPGA-EDA generates new mode assignment solutions by sam-
pling a probabilistic model rather than using crossover. This section presents the
probabilistic model for generating mode solutions and the overall workflow of BPGA-
EDA

5.5.1 Probabilistic Model for Mode generation

The probability matrix of mode solutions PMmod is generated using a population S
made up of the best b solutions of a given population.

PMmod =

p11 · · · p1m
...

. . .
...

pn1 · · · pnm

 (5.10)

In PMmod, each row, pi1 + · · · + pim = 1. The probability that activity i will
be performed in mode k; pik is calculated as count(i,k)

b
where count(i, k) denotes the

number of solutions in S where activity i is performed in mode k. For example, if
the truncation size b is set as 10 and amongst the selected solutions, activity 2 was
executed in mode 1: six times, mode 2: four times and no occurrence of mode 3. The
probability values p21, p22 and p23 will be 0.6, 0.4 and 0 respectively.

Note that modes of activities that are impossible or have been eliminated dur-
ing the preprocessing stage will always have probability scores equal to 0. For this
reason, unlike existing EDAs applied to MRCPSP, BPGA-EDA does not initialise
its probabilistic model with equal probabilities. With this approach, inefficient and
non-executable modes will have no chance of being sampled at any generation.

In this study, the Sum of Durations SUD proposed in (Van Peteghem and Van-

71

houcke, 2011) is adopted for initialising PMmod.

SUD =
n∑

i=1

ti,ki (5.11)

As shown in Eq. (5.11), SUD is the sum of the execution times ti,ki of all activity
i in their assigned mode of execution ki. SUD is a measure of mode solutions only
and has been reported to have a strong correlation with fitness (Van Peteghem and
Vanhoucke, 2011).

To create a bias towards modes of execution with short execution times, the initial
population is ranked using SUD rather than fitness. Truncation is applied, and the
selected solutions are used to initialise the probability matrix PMmod. The probability
matrix of subsequent generations is however generated using fitness.

Since BPGA-EDA uses a Population-Based Incremental Learning (PBIL) style,
the model uses a learning rate lr as shown in Eq. (5.12).

pik(g) = (lr ∗ pik(g)) + ((1− lr) ∗ pik(g − 1)) (5.12)

In eq. (5.12), pik(g) and pik(g − 1) are pik values at generations g and g − 1
respectively. The probabilistic model is updated at the end of each generation until
the stopping criteria is met.

5.5.2 BPGA-EDA Workflow

BPGA-EDA starts by executing the conventional pre-processing procedure described
in Section 5.3.3.

The BPGA-EDA is formally defined in Alg. 5. The algorithm uses two populations
of solutions. The population of left-justified schedules is denoted by POPL while that
of right-justified schedules is denoted by POPR. Left-justified schedules are generated
using the well known (forward) SGS while right-justified schedules are generated
with the backward SGS. SGS schedules each activity as soon as its predecessors have
been scheduled and there are enough resources to execute it. In backward SGS,
each activity is scheduled when all its successors have been performed, and there are
enough resources to perform it.

The algorithm starts by generating activity and mode solutions for POPL at
random. The mode solutions are further improved using the improvement of initial
population technique presented in Section 5.3.4. Each solution in POPL is then
evaluated.

BPGA-EDA uses an EDA to generate new mode solutions. The best b solutions
are selected from a population POPL to form S. Population S is used to gener-
ate a probabilistic model of mode solutions PMmod as described in Section 5.5.1.
Probabilistic models of mode solutions for left justified schedules and right justified
schedules are respectively denoted by LPMmod and RPMmod. These models are ini-
tialised with PMmod. Subsequently, LPMmod is updated using POPL while RPMmod

is updated using POPR. New mode solutions for POPL and POPR are respectively
generated by sampling LPMmod and RPMmod.

72

Activity solutions are generated by crossover as done by the BPGA. Each indi-
vidual i in POPL or POPR is selected as the first parent (parent1) while the second
parent (parent2) is selected by tournament selection. To generate a new population
of solutions which replaces the old (POPL or POPR), the activity solution of each
parent1 and a selected parent2 are crossed over. The one-point crossover is used in
this study in the same way as the BPGA. Note that POPL is used to generate the
activity solutions for POPR and vice versa.

In BPGA-EDA, parameter: ρ ∈ [0, 1] is introduced to determine the rate at which
EDA will be applied for generating mode solutions. We use the following notation
BPGA-EDAρ to express the type of BPGA-EDA used. BPGA-EDA0 is equivalent
to the BPGA (i.e. when ρ = 0, EDA is not used), but BPGA-EDA1 indicates that
all mode solutions are generated by the EDA. Where the EDA component of the
BPGA-EDA is not invoked, mode solutions are generated by crossover just like the
activity solutions. Note that r is a random number between 0 and 1.

Once offspring solutions are generated, the respective activity and mode solutions
go through mutation at specified rates pmut act and pmut mod. For activity solutions,
a randomly selected activity takes on a randomly generated priority while in mode
solutions, the mode of a randomly selected activity is changed to another possible
mode of execution. Although two offspring are generated at each iteration of solution
generation, the best offspring from POPL or POPR replaces individual i in POPR or
POPL. The best solutions in POPL or POPR are however not replaced except the
new offspring is better. Once the algorithm reaches optimal or exhausts the maximum
number of schedules, the overall best solution is returned.

5.5.3 Analysis of EDA for Mode Assignment

Since the focus of BPGA-EDA study is on generating high-quality mode solutions, it
is important for the proposed algorithm to be able to generate non-renewable feasible
solutions. To do this, a measure of complexity relating to the ease of generating a
mode feasible solution is proposed.

5.5.3.1 Measure of Complexity

There are many measures of complexity in literature, some relate to activity solutions
while others relate to mode solutions. Three complexity measures that relate to mode
solution are resource factor, resource strength and resource constrainedness (Kolisch
and Sprecher, 1997). These measures alongside network complexity were used to
generate problem instances of the PSPLIB. The resource strength and resource con-
strainedness are considered the most widely used in literature (Van Peteghem and
Vanhoucke, 2011). Resource strength was however used by Van Peteghem and Van-
houcke (2011) because there was no standard formula for the resource constrainedness.

Resource strength is the average measure of resources requested per activity. It is
a measure of the scarceness of a resource but not limited to non-renewable resources.
This measure has been used for generating problem instances rather than sampling
from existing problem sets (Van Peteghem and Vanhoucke, 2011, 2014). Van Pe-

73

Algorithm 5 BPGA-EDA Workflow

1: execute preprocessing procedure (see Section 5.3.3)
2: generate initial population POPL

3: execute improvement of initial population (see Section 5.3.4)
4: apply SGS/ESGS to each solution in POPL.
5: calculate SUD and fitness for solutions in POPL (see eqs. (5.11) and (5.9))
6: repeat
7: if ρ > 0 then
8: select best b < |POPL| solutions using SUD to create S.
9: build probabilistic model PMmod from S (see Section 5.5.1)

10: initialise probabilistic models LPMmod and RPMmod with PMmod

11: end if
12: for i = 1 to |POPL| do
13: set individual i in POPL as parent1
14: generate parent2 by tournament selection from POPL

15: if r < ρ then
16: perform crossover to generate two offspring activity solutions
17: sample LPMmod to produce two offspring mode solutions
18: else
19: perform crossover to generate two offspring solutions
20: end if
21: perform activity mutation with probability pmut act

22: perform mode mutation with probability pmut mode

23: apply backward SGS/ESGS and compute fitness of the offspring
24: update POPR with the best offspring
25: end for
26: for i = 1 to |POPR| do
27: set individual i in POPR as parent1
28: generate parent2 by tournament selection from POPR

29: if r < ρ then
30: perform crossover to generate two offspring activity solutions
31: sample RPMmod to produce two offspring mode solutions
32: else
33: perform crossover to generate two offspring solutions
34: end if
35: perform activity mutation with probability Pmutact

36: perform mode mutation with probability Pmutmode

37: apply SGS and compute fitness of the offspring
38: update POPL with the best offspring
39: end for
40: if ρ > 0 then
41: update LPMmod using POPL

42: update RPMmod using POPR

43: end if
44: until stopping criteria satisfied
45: return overall best solution

74

teghem and Vanhoucke (2014) noted that the feasibility of a problem could not be
ensured even with low resource strength. This suggests that low resource strength will
not particularly correlate to the ease of generating non-renewable resource feasible
solutions. For this reason, the Relative non-renewable Resource Availability (RRA)
is proposed in this chapter. This is a measure that relates to the ease of generating
non-renewable resource feasible solutions. Since problem instances become simpli-
fied after preprocessing, the RRA is calculated after preprocessing. This means that
instances with redundant non-renewable resources will have zero complexity scores.
This is because it is impossible to generate infeasible solutions for these instances.

To generate the RRA score, the following formula is used.

RRA = Max

∑n
i=1

∑mi
k=1 βi,k,1

|mi|

βmax1

, · · · ,
∑n

i=1

∑mi
k=1 βi,k,|B|

|mi|

βmax|B|

 (5.13)

For a mode solution to be feasible, the sum of each non-renewable resource utili-
sation for all activities must be less than the maximum availability of that resource.
RRA measure the ratio of utilisation to the availability of non-renewable resources.
The higher the RRA, the more difficult it is to generate feasible solutions. In Eq.
(5.13), the amount of non-renewable resource l required by activity i performed in
mode k, βi,k,l is averaged across all possible modes of execution of each activity. The
result is divided by the maximum availability of l, βmaxl. This is done for all l ∈ |B|
and the highest value is returned as the RRA of each problem instance. This way, the
complexity of a problem is defined by its most constrained non-renewable resource.

5.5.3.2 Feasibility of Mode Solutions: Comparing BPGA with BPGA-
EDA

In this section, the relative performance of EDA compared to GA for generating non-
renewable resource feasible mode solutions is assessed. Some preliminary tests are
performed to show the rate of feasible solutions produced in a generation of BPGA
and BPGA-EDA. In Figure 5.1, the GA is based on crossover while EDA is based on
sampling a probabilistic model (based on fitness). The charts on the left show the
RRA across the problem instances of J10, J20 and J30. The charts on the right show
the feasibility rate of mode solutions generated by BPGA and BPGA-EDA across the
same problem instances. Note that problems are ordered in increasing order of RRA.
Also, feasibility score is between 0 and 1, score 0 means that there is no feasible
solution in the population while 1 means all the solutions are feasible.

Figure 5.1 shows that both algorithms produce less feasible solutions as the com-
plexity increases. However, EDA generates a relatively higher number of feasible
solutions for more complex problems than the GA.

5.5.4 Experimental Settings

75

Figure 5.1: Feasibility of BPGA compared to BPGA-EDA

In this section, we present the experimental justification and parameter settings for
BPGA-EDA. The conventionally used J10, J20 and J30 problem sets of the PSPLIB
described in Chapter 2 are used to assess the BPGA-EDA.

76

5.5.4.1 Stopping Criterion and Performance Measure

In the applications of meta-heuristics to the MRCPSP, the conventional stopping
criterion is the number of schedules generated. For ease of comparison, the same
criterion is used in this chapter. Note that a schedule refers to a single time (start and
finish) assignment for each activity of a project. However, some local search methods
like the makespan improvement (Lova et al, 2009; Van Peteghem and Vanhoucke,
2010) may require more than one time assignment for an activity. To cater for this,
Lova et al (2009) calculate the number of schedules by dividing the number of times
the activities of a project have been assigned a start time by the total number of
activities. This implies that each change in the start time of an activity contributes
to a fraction of a schedule. For instance, if each activity of a project has been assigned
a feasible start time twice, the number of schedules will be equal to 2. This method of
calculating number of schedules is also used in (Van Peteghem and Vanhoucke, 2010,
2014). The same method is also adopted in this chapter.

Furthermore, the most common performance measure is the average percentage
deviation from optimal (APD) which is presented in Eq. (2.15). Where there are no
optimal values, the critical path based lower bound (CPBLB) is used instead of the
optimal. The CPBLB is estimated using the critical path based on the modes with
the least durations. We average the APD across all instances of each problem set.

5.5.4.2 Parameter Settings

Like the BPGA, most previous algorithms are evaluated based on only one run per
problem instance. This limits the computational cost associated with running exper-
iments. However, meta-heuristics are non-deterministic and results may vary from
one run to another. It is therefore important to measure variance in algorithm per-
formance. The fact that algorithms behave differently across instances of the same
problem set has been established in 5.1. For this reason, there is a need to repeat
runs so that the variance can be captured and used to asses the algorithms. However,
parameter tuning based on repeated runs is computationally expensive. To do this
efficiently, this section proposes a method of selecting instances for parameter tuning.

5.5.4.3 Variance in Results

To show the claim regarding the variance between different runs of the BPGA, results
based on ten runs on J10 are generated. The APD values varied between 0.018 and
0.096 as shown in Figure 5.2. To make the most meaningful comparisons, the average
performance of BPGA-EDA with variance alongside best performance over several
runs are reported in this chapter.

5.5.4.4 Problem Instance Selection Approach

Considering the need for repeated runs and the number of instances in the problem
sets, the computational cost of experiments grows very quickly. To be able to make
comparisons based on several runs with limited computational cost, we make use of

77

Figure 5.2: Results for BPGA on J10 - APD

smaller number of instances. To ensure that the selected instances are representative
of the problem sets, we sort them by RRA and select uniformly across the distribution.

To generate x selected instances, the aim is to divide the instances in a problem
set into x complexity groups and select the instance with the highest RRA from each
group.

Algorithm 6 Sample Set Generation Mechanism

1: order problem set of size d in ascending order of RRA
2: initialise the required number of instances x
3: create an array dataGroupSizes of size x
4: leftOver = d%x
5: for i = 1 to d do
6: dataGroupSizes[i] = d/x
7: if leftOver > 0 then
8: add 1 to dataGroupSizesi
9: subtract 1 from leftOver

10: end if
11: end for
12: define a variable j=0
13: for i = 1 to x do
14: add dataGroupSizes[i] to j
15: select the jth element of the problem set
16: end for

As shown in Alg. 6, the size dataGroupSizes of each group is calculated as the
integer division of the number of instances d in a problem set and x. We distribute
the remainder leftOver over the earlier groups. This is so that groups of easier

78

problems are the ones that get the bigger group sizes where x does not divide d
without remainders. After setting the dataGroupSizes, instances in a problem set
are ordered in increasing order of RRA. Problems are sampled according to j which
is a cumulative value of dataGroupSizes. This way, only the last problems of each
group (hardest) are sampled.

For example, 20 instances are sampled from J10. Figure 5.3 shows the complexity
distribution of J10, where the dots indicates the selected instances.

Figure 5.3: Sampling along the complexity distribution of J10

Only 20 instances are selected from the J10, J20 and J30 to parametrise the
BPGA-EDA. This makes it possible to examine a wider range of parameters than
would have been possible if all problem instances are used. Selected instances are
presented in Table A.7.

5.5.4.5 BPGA-EDA: Parameter Settings and Preliminary Results

BPGA-EDA uses most of the recommended parameters of BPGA as presented in
Table 5.3. The same population size, crossover type, selection method, mode im-
provement rate and mutation rates are used. However, results are based on ten runs
and 5000 schedules as the stopping criteria. Although we note that this may not be
the best set of parameters for the EDA aspect of BPGA-EDA, we retain them for
simplicity of parameter tuning.

Furthermore, since EDAs and GAs traverse search spaces in different ways, there
has been research on combining both algorithms (Pena et al, 2004; Zhang et al, 2004).
We introduced a variable ρ which defines how often solutions are generated with the
EDA. Apart from generating all mode solutions with EDA (ρ = 1.0), we considered
combining crossover (GA) and sampling of the probabilistic model (EDA) equally for
the generation of mode solutions (ρ = 0.5). Note that ρ = 0 is equivalent to BPGA.
Although more values of ρ can be tried, it is out of the scope of this study.

Apart from ρ, BPGA-EDA requires two additional parameters which are b and
lr. We vary b between 10% and 50% using a step size of 10 and lr from 0.1 to 1.0
using a step size of 0.1.

79

BPGA-EDA is applied to sample sets from J10, J20 and J30. The APD values
are averaged across 10 runs. The Friedman ranking test (Theodorsson-Norheim,
1987) is used to select the set of parameters used in this chapter. Average ranks of
parameters are presented in Tables A.1 to A.6. It was observed that b set to 10% of
ps was consistent amongst the best-ranked parameters. However, lr varied a lot but
generally greater than or equal to 0.4. Table 5.10 shows the b and lr for BPGA-EDA0.5

and BPGA-EDA1.

Table 5.10: BPGA-EDA Parameters based on ESGS- b(%ps)/lr

Problem Sets BPGA-EDA0.5 BPGA-EDA1

J10 10/0.9 10/1.0
J20 10/0.6 10/0.4
J30 10/0.7 10/0.5

Since the aim of this study is to access performance of EDA on the mode compo-
nent of the problem. We also compare without the use of mode improvement method
(i.e. standard SGS). This will help to access the independent performance of the
algorithms. As shown in Tables A.1 to A.6, we observe that the algorithm is more
sensitive to parameters when the standard SGS is used. As shown in Table 5.11, the lr
for BPGA-EDA1 remains the same but requires less selective pressure as the problem
size increases. BPGA-EDA0.5, also requires higher b values for J20 and J30. Higher
lr are required for J10 and J20 but lower for J30. Note that many parameters are
often ranked the same and we have used the number of schedules required to reach
optimal as a discriminating criteria.

Table 5.11: BPGA-EDA Parameters based on SGS - b(%ps)/lr

Problem Sets BPGA-EDA0.5 BPGA-EDA1

J10 10/1.0 10/1.0
J20 20/0.8 20/0.4
J30 20/0.5 30/0.5

5.5.5 Results

In this section, results from comparing the BPGA-EDA0.5 and BPGA-EDA1 with our
implementation of the BPGA are presented. It was shown that there are variations in
multiple runs of the BPGA but results for only one run is reported in literature. For
this reason, we use our implementation of the BPGA so that comparison can be made
based on average and standard deviations based on several runs. Also, for a fairer
assessment, comparison has been made based using the same algorithm with just an
additional parameter ρ to determine how much of EDA is used for mode generation.
All algorithms are therefore based on same conditions and implementation.

In Tables 5.12 and 5.13, we present the average of APD and the standard deviation
(in brackets) for ten runs of our implementation of the BPGA, BPGA-EDA0.5 and

80

Table 5.12: Results based on SGS - average APD (Standard deviation) of ten runs

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.61 (0.08) 0.19 (0.05) 0.20 (0.04)
J20 2.34 (0.05) 1.21 (0.06) 1.60 (0.07)
J30 17.89 (0.18) 14.67 (0.06) 15.06 (0.07)

Table 5.13: Results based on ESGS - average APD (Standard deviation) of ten runs

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.05 (0.02) 0.03 (0.02) 0.03 (0.02)
J20 0.88 (0.04) 0.53 (0.04) 0.69 (0.04)
J30 14.41 (0.05) 13.68 (0.03) 13.87 (0.07)

BPGA-EDA1 on the J10, J20 and J30. Results that are statistically better than
the BPGA are displayed in bold. In this section, the student t-test with confidence
interval 95% is used to measure statistical significance.

Comparison Based on the SGS: Table 5.12 shows results using the SGS for
schedule generation. The BPGA-EDA0.5 and BPGA-EDA1 have significantly lower
APD than the BPGA on all the problem sets: J10, J20 and J30. Using EDA for
mode generation significantly improves the performance of the BPGA.

Comparison Based on the ESGS: Table 5.13 shows results that are based on
the ESGS. The BPGA-EDA0.5 and BPGA-EDA1 produce statistically lower APD
than the BPGA on J10, J20 and J30. Again, a significant improvement is achieved
by using EDA for mode generation.

Impact of ESGS: SGS extended by the local search method (mode improvement)
not only improves results produced by BPGA but also improves the results of BPGA-
EDA0.5 and BPGA-EDA1. Although there is a clear advantage of hybridising EDA
with BPGA (BPGA-EDA), the mode improvement local search method cannot be
eliminated by applying the BPGA-EDA without compromising the quality of results
produced. The results in Tables 5.12 and 5.13 therefore also show that the BPGA-
EDA0.5 and BPGA-EDA1 without mode improvement are worse than the BPGA with
mode improvement.

BPGA-EDA0.5 and BPGA-EDA1.0: BPGA-EDA0.5 produces significantly bet-
ter APD than the BPGA-EDA1.0 on the J20 and J30 but not significantly better on
the J10. This is true when the SGS or the ESGS is used. In general, the BPGA-
EDA0.5 performs better than the BPGA-EDA1.0 as shown in Tables 5.12 and 5.13.
The competitive performance of the hybridised GA and EDA has been attributed to
the exploration ability of the GA and the exploitation ability of EDA (Pena et al,
2004; Zhang et al, 2004).

For the purpose of comparison with existing published values, Table 5.14 shows
the BPGA-EDA’s best of ten runs as well as the published value of the BPGA.

The results in Table 5.14 are similar and it is not clear which approach is bet-
ter than which. We assert that results averaged over several runs provide a fairer
assessment of the algorithms.

81

Table 5.14: Results based on ESGS - average % deviation from optimum - best of ten
runs

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.01 0.01 0.00
J20 0.57 0.46 0.62
J30 13.75 13.73 13.61

Following these promising results, a full EDA approach to solving the MRCPSP
is presented in Section 5.6.

5.6 The BPEDA for MRCPSP

BPEDA combines RK-EDA for generating activity solution presented in Section 5.4
with the mechanism of generating mode assignment solutions in Section 5.5. This
section presents the algorithmic details of BPEDA and the experimental settings used
in this chapter.

5.6.1 Workflow for the BPEDA

BPEDA also uses the bi-population approach (POPL and POPR). As shown in
Alg. 7, we start by executing the conventional preprocessing procedure of Sprecher
et al (1997) to eliminate non-executable and inefficient modes as well as redundant
non-renewable resources. The preprocessing procedure is presented in Section 5.3.3.
After this, POPL is randomly generated. The conventional feasibility improvement
of initial mode solutions (Van Peteghem and Vanhoucke, 2010) is executed to im-
prove solutions in the initial POPL. This procedure reduces the number of resource
infeasible solutions in the initial population. This is done by changing the modes
of randomly selected activities to those that reduce the infeasibility with respect to
non-renewable resources. The solutions in this population are then evaluated using
the SGS.

A selected population S which contains the best b (truncation size) solutions in
POPL is generated. Probabilistic models of activity solutions and mode solutions,
PMact and PMmod are generated based on POPL. Note that PMact is generated
based on the procedures of RK-EDA presented in Alg. 1 while PMmod is generated
as described in Section 5.5.1.

Probabilistic models LPMmod and RPMmod which are respectively used for gen-
erating mode solutions in POPL and POPR are both initialised with PMmod. Prob-
abilistic model RPMact for generating activity solutions in POPR is initialised with
PMact. Probabilistic model LPMact for generating activity solutions in POPL is
however generated based on b most promising solutions in POPR. In a similar way,
POPR is updated based on b most promising solutions in POPL.

At each generation, the solution that generates the best schedule in POPL, bestL
is rescheduled as a right-justified solution and set as an offspring of POPR. Similarly,
the best solution in POPR, bestR is rescheduled as a left justified solution and set as an

82

Algorithm 7 Proposed EDA for the MRCPSP

1: execute preprocessing procedure
2: generate initial population POPL

3: evaluate POPL with SGS/ESGS
4: select best b < |POPL| solutions to form S.
5: build probabilistic models PMact and PMmod from S
6: initialise LPMmod = RPMmod = PMmod

7: initialise RPMact = PMact

8: repeat
9: set bestL as best solution in POPL

10: for i = 1 to |POPL| do
11: if i = 1 then
12: set POPRi

as the genome of bestL
13: else
14: sample RPMact and RPMmod to produce POPRi

15: apply backward SGS to POPRi

16: end if
17: update POPR with POPRi

18: end for
19: build probabilistic model LPMact from POPR

20: Update RPMmod with POPR

21: set bestR as best solution in POPR

22: for i = 1 to |POPR| do
23: if i = 1 then
24: set POPLi

as the genome of bestR
25: else
26: sample LPMact and LPMmod to produce POPLi

27: apply SGS/ESGS to POPLi

28: end if
29: update POPL with POPLi

30: end for
31: build probabilistic model RPMact from POPL

32: update LPMmod with POPL

33: until stopping criteria satisfied
34: return overall best solution

83

offspring of POPL. To produce the remaining population of right/left justified sched-
ules, RPMact and RPMmod / LPMact and LPMmod are sampled to produce POPRi

/ POPLi
. POPRi

/ POPLi
is evaluated using backward SGS/ forward SGS where

activities are scheduled as late as possible/as early as possible within resource and
precedence feasibility. Also, while the forward SGS schedules activities in increasing
order of their RKs, backward SGS schedules in decreasing order of RKs.

Also, once each solution has been scheduled, the RKs of that solution is updated
to respect the order in which the activities were performed. This is because the order
depicted by the RKs would not be the same as the order of execution because of
resource and precedence constraints. We therefore respectively rank the activities of
solutions in POPL and POPR by start and finish times. To fulfil the normalisation
step of the RK-EDA, the RK of each activity in the jth rank is set to j−1

n
where n is

the number of activities in the project

5.6.2 Experimental Settings

This section presents the approach of evaluating the quality of solutions produced by
the BPEDA. This includes the problem sets, parameter settings and the experimental
approach.

5.6.2.1 Problem Sets

In addition to J10, J20 and J30 problem sets used in Section 5.5, we also included
other problem sets in the PSPLIB; J12, J14, J16 and J18. Comparison with existing
EDAs is done based on all instances of the PSPLIB.

We observed that BPGA-EDA scaled better to larger problems and so did RK-
EDA. We therefore also introduced larger problems from the MMLIB which are MM-
LIB50 and MMLIB100 (Van Peteghem and Vanhoucke, 2014). As presented in Section
2.5.7, MMLIB50 and MMLIB100 respectively consist of 50 and 100 activities to be
scheduled.

5.6.2.2 Parameter settings

RK-EDA which is used for generating activity solutions and the integer based EDA
used for generating mode solutions require two parameters in common which are
population size ps and truncation size b . The integer based EDA, in addition, requires
a learning rate lr while RK-EDA requires a variance parameter σ. The parameters
for BPEDA are presented in Table 5.15.

Values presented in Table 5.15 are derived based on preliminary tests. These
tests reveal that different ps and σ values are required for the MMLIB and PSPLIB
problem sets. This may be attributed to the difference in the formulation of both
libraries.

We have set the limit on the number of evaluations to 5000 as this is the most
frequently used stopping criteria (Van Peteghem and Vanhoucke, 2014).

84

Table 5.15: Parameter Settings

Parameter PSPLIB MMLIB

Population Size (ps) 3000
n

100
Truncation Size (b) 0.1× ps 0.1× ps
Variance (σ) Minimum of 0.2 and 3

n
0.05

Mode improvement rate 0.0, 0.2 0.0, 0.2
Learning rate 0.8 0.8
Number of evaluations 5000 5000
Number of Runs 10 10

5.6.2.3 Experimental Approach

The most common performance measure, using number of schedules as stopping cri-
teria, is the APD presented in Eq. (2.15). In Eq. (2.15), Best is the fitness of the
best solution generated by an algorithm. The value of optimal is either the reported
optimal value for J10 and J20 or CPBLB for J30, MMLIB50 and MMLIB100. This
is common practice in previous research especially the review in (Van Peteghem and
Vanhoucke, 2014). As noted in Chapter 3, CPBLB is used because the optimal values
of certain problem instances are unknown.

Furthermore, local search methods have been reported to significantly improve the
performance of meta-heuristics (Van Peteghem and Vanhoucke, 2014). The proposed
approach also considers the mode improvement method which is one of the most
efficient improvement methods shown to improve the performance of most leading
algorithms. These include the SS, BPGA and BPGA-EDA. Since the proposed ap-
proach uses a similar approach as the BPGA and BPGA-EDA, we will be comparing
directly with these algorithms with and without the use of the mode improvement
local search method.

The mode improvement rate relates to the number of activities that are improved
when scheduling a project. Based on preliminary results, 0.2 mode improvement rate
gave the best results. Using 0.2 rather than 0.3 used in Chapter 3 implies that 10%
fewer activities will be going through the improvement procedure. We also considered
applying ESGS and SGS at every other generation (e = 0.5). This further reduces
additional computation that may be attributed to the ESGS. In ESGS, each possible
start time assignment of an activity counts as a fraction of a schedule evaluation,
calculating the ERR each time can, however, be considered additional computation.
Setting e to 0 or 1 respectively denotes that SGS or ESGS is used at every generation.

In literature, it is common practice to run algorithms only once across all problem
sets of the PSPLIB/MMLIB. It was however shown in Chapter 3 that several runs
are needed to capture the true performance of non-deterministic algorithms applied
to these problem sets. In this chapter, results are averaged over ten runs.

5.7 Results and Discussion

85

In this section, BPEDA is compared with BPGA, BPGA-EDA, existing EDAs and
other leading algorithms. The student t-test with 95% confidence interval is used to
measure statistical significance.

5.7.1 Comparing BPEDA with BPGA-EDA and BPGA

To be able to compare based on several runs for results based on the standard SGS
and ESGS, results for the BPGA are obtained from experiments in Chapter 3.

In Table 5.16, we present the APD averaged over ten runs (alongside the standard
deviation) for the BPGA, BPGA-EDA and BPEDA. These results are based on the
standard SGS.

Table 5.16: Results based on SGS - average APD (Standard deviation)

Problem sets BPGA BPGA-EDA BPEDA

J10 0.61 (0.08) 0.20 (0.04) 0.19 (0.04)
J20 2.34 (0.05) 1.60 (0.07) 1.05 (0.08)
J30 17.89 (0.18) 15.06 (0.07) 14.52 (0.07)

In Table 5.16, the best results as well as results that are not significantly different
from the best are presented in bold. BPEDA is significantly better than the BPGA
on J10, J20 and J30 problem sets. The performance of BPEDA is also better than
BPGA-EDA with no statistical difference on J10 but significantly better results on
J20 and J30.

The performance of BPEDA in comparison with BPGA-EDA show that RK-EDA
can produce better quality of activity solutions than GA. Since the Proposed EDA
uses similar procedures as the BPGA and BPGA-EDA, Its relative performance also
shows that EDA can outperform the GA on both components of the MRCPSP.

Since previous research has shown that the mode improvement method can signif-
icantly improve the performance of BPGA and BPGA-EDA, we also compare perfor-
mance based on the use of this improvement method. Table 5.17 presents the APD
(and Standard deviation) averaged across ten runs of the algorithms based on ESGS
(i.e. e =1).

Table 5.17: Results based on ESGS - average APD (Standard deviation)

Problem sets BPGA BPGA-EDA BPEDA

J10 0.05 (0.02) 0.03 (0.02) 0.06 (0.02)
J20 0.88 (0.04) 0.69 (0.04) 0.64 (0.04)
J30 14.41 (0.05) 13.87 (0.07) 13.66 (0.07)

Based on Table 5.17, there is no statistical difference between the performance
of BPEDA and BPGA on J10, but BPEDA performs significantly better than the
BPGA on J20 and J30. BPEDA is however significantly worse than the BPGA-EDA
on J10 but significantly better on J20 and J30.

86

5.7.2 Comparing the proposed EDA with existing EDAs

Since existing EDAs use an improved SGS (MSSGS), we compare them with BPEDA
based on ESGS. Table 5.18 presents the result of the EDAs in (Wang and Fang,
2012a) and (Soliman and Elgendi, 2014) as well as BPEDA.

Table 5.18: Results comparing BPEDA with other EDAs: average APD

Problem Sets BPEDA EDAw EDAs

J10 0.06 0.12 0.09
J12 0.17 0.14 0.12
J14 0.28 0.43 0.36
J16 0.40 0.59 0.42
J18 0.48 0.90 0.85
J20 0.64 1.28 1.09
J30 13.95 15.55 -

In Table 5.18, EDAw is used to represented the EDA of Wang and Fang (2012a)
while EDAs denotes the EDA of Soliman and Elgendi (2014)

Although the results of the EDA in (Soliman and Elgendi, 2014) are based on
several runs, information about variance are however not presented. Similarly, there
is no information on variance provided in (Wang and Fang, 2012a). We are therefore
unable to test for statistical significance. Apart from J12, BPEDA shows better
performance than the EDA in (Wang and Fang, 2012a) or (Soliman and Elgendi,
2014).

This is a competitive performance by BPEDA considering the fact that it uses
fewer improvement methods and also a lighter weight model. The probabilistic model
used by this EDA (of size n + 1) for activity solutions is much smaller than that of
existing EDAs (of size n× n)

5.7.3 Comparing the proposed EDA with leading algorithms

Having established the competitive performance of BPEDA with BPGA, BPGA-EDA
and existing EDAs, this section focuses on comparing BPEDA with other leading
algorithms.

As previously noted, results presented based on applications of meta-heuristics to
the MRCPSP are often based on a single run. This includes the review in (Van Pe-
teghem and Vanhoucke, 2014). However, to be able to compare with other algorithms
on the MMLIB datasets as well as PSPLIB, most results are retrieved from (Van Pe-
teghem and Vanhoucke, 2014). Some more recent algorithms not captured in the
review such as algorithms presented in (Soliman and Elgendi, 2014), (Geiger, 2016)
and (Vanhoucke and Coelho, 2016) are however retrieved from the authors’ papers.
Apart from results presented in (Soliman and Elgendi, 2014) which are averaged across
many runs, the results for other algorithms are based on a single run as presented
by the authors are used. Note that results of the BPGA in Table 5.17 is therefore
different from Table 5.19, as the former is based on our implementation and based on
multiple runs. Some more literature on MRCPSP exist, but we have not been able

87

to compare with them because they have presented results based on different criteria
such as CPU time.

Table 5.19: Results comparing BPEDA with leading algorithms: average APD
Algorithms Improved SGS J10 J20 J30 MMLIB50 MMLIB100
MMHGA (Lova et al, 2009) ✓ 0.04 0.89 14.58 28.59 31.01
DE (Damak et al, 2009) × 0.74 1.62 15.43 32.46 36.87
BPGA (Van Peteghem and Vanhoucke, 2010) ✓ 0.01 0.57 13.75 27.12 29.55
GA (Elloumi and Fortemps, 2010) × 0.12 1.51 16.16 32.47 40.22
GA (Coelho and Vanhoucke, 2011) ✓ 0.07 0.80 14.44 - -
EDA (Wang and Fang, 2012a) ✓ 0.09 1.28 15.55 31.95 38.55
EDA (Soliman and Elgendi, 2014) ✓ 0.09 1.09 - - -
LS (Geiger, 2016) ✓ - - - 33.02 44.11
GA (Vanhoucke and Coelho, 2016) ✓ 0.07 0.94 14.62 29.42 34.60
BPGA-EDA ✓ 0.03 0.69 13.87 27.96 31.38
BPEDA (e = 0.0) × 0.19 1.05 14.52 28.27 28.94
BPEDA (e = 0.5) ✓ 0.09 0.71 13.65 26.20 27.47
BPEDA (e = 1.0) ✓ 0.06 0.64 13.66 26.52 28.46
SS (Van Peteghem and Vanhoucke, 2011) ✓ 0.00 0.32 13.66 25.45 26.51

In Table 5.19, results based on improved SGS such as ESGS, MSSGS, MM-FBI
are appended a “✓” while those that are based on standard SGS are appended a “×”.
Also, missing results or problem set for which an algorithm has not been able to attain
feasibility for its instances are represented by ”-”. Although we show SS on the table,
we do not directly compare the proposed method with it. This is because we have
shown that it contains many other evaluations of complete solutions in addition to
the SGS, which inhibits fair comparison.

We present results for BPEDA based on the standard SGS (e = 0.0), standard
SGS/ESGS and at every other generation (e = 0.5) and ESGS (e = 1.0) only. Of the
three configurations, e = 0.5 presents the best results, especially for larger problems.
The e = 1.0 configuration, however, presents the best results on smaller problems.
We show that the performance of the proposed EDA approach when e = 0.5 is the
most competitive on the largest problem, MMLIB100. This indicates that larger
problem requires less of the improvement procedure. This may be because the mode
improvement only encourages more activities to run in parallel (Van Peteghem and
Vanhoucke, 2010) but does not guarantee an improvement in makespan. The mode
improvement method helps to explore the search space better in smaller problems
but do not scale well to larger problems. Moreover, as shown in (Van Peteghem and
Vanhoucke, 2011), certain problem instances benefits more from some improvement
techniques than others.

Furthermore, compared to the algorithms that do not use any schedule improve-
ment procedure (GA in (Elloumi and Fortemps, 2010) and DE in (Damak et al,
2009)), the BPEDA without schedule improvement (e = 0) presents better results.

Summarily, BPGA presents the best results on J10 and J20. However, BPEDA
when e = 0.5 presents the best performance on J30, MMLIB50 and MMLIB100.
This is consistent with the behaviour of RK-EDA on common permutation problems
scaling better to larger problems.

88

5.8 Conclusion

Since RCPSP shares common characteristics with theActivity Scheduling sub-problem
of the MRCPSP, RK-EDA is adapted to solve the RCPSP. Although RK-EDA pre-
sented worse results compared to the leading approaches, it produced results better
than some of the existing approaches with a much simpler approach.

This chapter also proposed a hybrid of the state of the art GA; BPGA and an
EDA. The proposed BPGA-EDA introduces a probabilistic model into the BPGA for
generating mode solutions. Experiments comparing the BPGA-EDA with the BPGA
show that hybridisation with EDA produces significant performance improvements.
BPGA-EDA is also shown to scale better to larger problem sets than the BPGA. We
conclude that the EDA is better suited for the generation of modes than the GA.

In this chapter, BPEDA was also proposed. BPEDA uses RK-EDA to solve the
activity scheduling sub-problem and the same approach as BPGA-EDA to solve the
mode assignment sub-problem. BP-EDA presented even further improvement when
compared to the BPGA-EDA.

BPEDA showed better performance than existing EDAs on most of the problem
sets used in this chapter. It also uses a lighter weight model for generating activity
solutions. Additional procedures for achieving mutual exclusivity in activity solutions
which is common in existing EDAs is also not used by the BPEDA. This makes
BPEDA more effective and efficient than existing EDAs.

BPEDA is also compared with state-of-the-art approaches of solving the MR-
CPSP and shown to be competitive with these approaches. Its performance is most
competitive on the larger problem sets (MMLIB50 and MMLIB100).

In this study, however, we have not been able to test for statistical significance
when comparing with most of the previous methods because results for only one run
were presented.

89

Chapter 6

Estimation of Distribution
Algorithm for Real-World Project
Scheduling

6.1 Introduction

The previous three chapters are on the applications of Estimation of Distribution
Algorithms (EDAs) to benchmark problems. Although many of these problems are
motivated by real-world problems, they are often not perfect fits for industrial prob-
lems Chiong et al (2012). Comparison with other meta-heuristics based on benchmark
problems only gives an idea of how a designed approach performs in the research com-
munity but not necessarily in the industry. It is therefore important to assess the
performance of the proposed algorithms on an actual real-world problem.

In this chapter, we answer the research question ”How can we transfer knowledge
from solving a multi-component test problem to a similar real-world problem?”. A
project scheduling problem experienced in a construction company is used as a case
study in this study. This problem has been formulated as an RCPSP as well as
MRCPSP. RK-EDA and BPEDA presented in Chapter 5 are respectively applied to
the RCPSP and MRCPSP formulations. The results produced are compared to that
of Primavera software, the software currently used in the case-studied construction
company.

The rest of the chapter is structured as follows. The formulation of the case study
is presented in Section 6.2. Section 6.3 presents the industrial solution approach as
well as the proposed solution approach. The experimental settings are presented in
Section 6.4. Results are presented in 6.5 while conclusions are presented in Section
6.6

90

6.2 A Real-World Project Scheduling Problem Case

Study

The case-studied project scheduling problem is from Saudi Aramco, a petroleum and
natural gas company. Saudi Aramco is a state-owned oil company of Saudi Arabia
with subsidiaries and affiliates in many countries of the world such as China, United
States of American and the United Kingdom. Saudi Aramco is one of the world’s
largest oil producers, and its operations also include exploration, production, refining,
chemicals, distribution and marketing (Demirbas et al, 2016).

The case studied project scheduling problem originated from the company’s branch
in Abu Dhabi which executes projects of various sizes. Some projects consist of tens of
activities while others consist of thousands of activities. Furthermore, certain projects
may take several months/years to execute; it is, therefore, essential to minimise the
duration of projects. Unlike many industries that require results in real-time, this
company can spare more time to get good quality results.

As noted in the RCPSP/MRCPSP formulation, a project consists of a series of
activities with precedence relationships between them. In this case study, design
documents are generated for one of the company’s projects. However, the design of
some documents must be approved before the design of other documents can proceed.
Also, the design of each document requires the completion of four activities as shown
in Figure 6.1.

Figure 6.1: Document Design Process

The development activities (i.e. first stage development and second stage devel-
opment) are performed by developers while review activities (i.e. first stage review
and second stage review) are performed by reviewers. The company outsources for
developers and therefore assumes they are unlimited. However, reviewers are staff of
the company. There are often a limited number of reviewers at a given time. Also, a
reviewer is either given 20 working days to complete a review activity or 10 working
days if two reviewers are assigned to the same review activity. This duration is based
on company policy and will be given to reviewers irrespective of how quickly they are
able to perform the activity.

Since the design of each document requires four stages, the problem size is 4d
where d is the number of documents to be prepared. The considered problem consists
of 45 documents and is presented in Tables A.13 - A.17 of the Appendix. Table 6.1 is
a sample of the problem instance. As shown in this table, development activities are
denoted by DOCx-y while review activities are denoted by DOCxR-y, x represents
the document number while y is the development/review stage (1 or 2). AA001 and
AA002 respectively represent the dummy start and finish activities.

91

Table 6.1: Project Scheduling Problem
Activity ID Document Reference Original Duration Predecessors Successors

AA001 START 0d DOC1-1, · · · , DOC38-1

DOCUMENT 01
DOC1-1 DOCUMENT 1 FIRST STAGE 30d AA001 DOC1R-1
DOC1-2 DOCUMENT 1 SECOND STAGE 10d DOC1R-1 DOC1R-2
DOC1R-1 DOCUMENT 1 FIRST STAGE REVIEW 10d DOC1-1 DOC1-2, DOC4-1, DOC7-1
DOC1R-2 DOCUMENT 1 SECOND STAGE REVIEW 10d DOC1-2 DOC4-2, DOC7-2

...

DOCUMENT 45
DOC45-1 DOCUMENT 45 FIRST STAGE 70d DOC44R-1 DOC45-2
DOC45-2 DOCUMENT 45 SECOND STAGE 40d DOC45-1, DOC44R-2 DOC45R-1
DOC45R-1 DOCUMENT 45 FIRST STAGE REVIEW 10d DOC45-2 DOC45R-2
DOC45R-2 DOCUMENT 45 SECOND STAGE REVIEW 10d DOC45R-1 AA002

AA002 COMPLETION 0d DOC3R-2,· · · , DOC45R-2

Although theoretical problems are often not perfect fits for real-world problems,
they however often serve as a guide to solving them (Chiong et al, 2012). As previously
expressed in Chapter 2, MRCPSP is a generalisation of the RCPSP. The difference
is that MRCPSP requires the choice of a mode of execution for each activity while
RCPSP has only one mode of execution. In this case study, the development activities
have only one mode of execution. However, the review activities have more than one
mode of execution. In the case studied company, there are only two reviewers and
there are three modes of execution; the first reviewer, the second reviewer or both
reviewers may execute a review activity. Each review activity can, therefore, be
performed in modes 1, 2 or 3 while each development activity has only one mode of
execution which is represented by mode 0. This problem can be formulated as an
MRCPSP.

In the industrial solution approach however, an assumption that both reviewers
combine to perform every review activity is made. Since this problem also does
not consider non-renewable resources, this makes the problem simply an instance of
RCPSP.

In this chapter, we consider the RCPSP and MRCPSP formulations of this prob-
lem and are respectively solved with RK-EDA and BPEDA. We compare both ap-
proaches as well as compare with results from Primavera.

6.3 Solution Approach

6.3.1 Industrial Solution Approach

In the case study company, project schedules are generated using the industrial soft-
ware, Primavera 1. This is a project management software which uses a deterministic
approach to build project schedules. It uses a resource levelling approach where an
attribute of the project is used to resolve resource conflicts. When there are insuffi-
cient resources to execute all activities required to be performed at a given time, this
attribute serves as a way to prioritise activities.

To solve the considered problem instance, an assumption that each review activity
is always performed by both reviewers was made, making the problem an instance

1https://www.oracle.com/uk/applications/primavera/index.html

92

of RCPSP. Furthermore, the resources are levelled in ascending as well as descending
order of activity IDs. The activity ID serves as a priority definer determining which
activity gets a resource when there are conflicting resource needs.

6.3.2 EDA Solution Approach

In this chapter, we apply RK-EDA proposed for RCPSP in the previous chapter to the
RCPSP formulation of the case study without modifications. BPEDA for MRCPSP
also proposed in Chapter 5 is applied to the MRCPSP formulation but with some
changes.

Some procedures of BPEDA are not applicable to the case study and were there-
fore removed. One such method is the mode improvement because there is no non-
renewable resource infeasibility considered in this problem. Also, each mode of exe-
cution requires the same resource to duration ratio meaning jobs can not necessarily
be done faster by changing the mode of execution. Furthermore, the preprocessing
procedure is also not executed because there are no redundant, inefficient or non-
executable modes in the considered problem. In Chapter 5, the fitness of a feasible
solution is set to its makespan while the makespan of a non-renewable resource in-
feasible solution is penalised. However, since there are no non-renewable resources in
this case study, the makespan is directly used as fitness. Other aspects of Alg. 7 are
retained for the MRCPSP formulation.

6.4 Experimental Settings

In this chapter, the parameters used are adapted from Chapter 5 as presented in
Table 6.2. Given that the problem size is 180, the parameters for the largest problem
set in the previous chapter is used. We use the same set of parameters for the RCPSP
and MRCPSP formulations. We use a population size of 100 and 10% of it as the
truncation size. The variance value and number of fitness evaluation are respectively
set to 0.05 and 5000. Since the BPEDA requires an additional parameter which is
learning rate, value 0.8 is applied when solving the MRCPSP formulation. Individual
runs of each algorithm are repeated 20 times.

Table 6.2: Parameter Values for RK-EDA and BPEDA
Parameters RK-EDA BPEDA

Learning Rate (lr) − 0.8
Population Size (ps) 100 100
Truncation Size (ts) 10 10

Variance (σ) 0.05 0.05
Maximum Fitness Evaluations (MaxFEs) 5000 5000

Number of Runs 20 20

93

6.5 Results and Analysis

6.5.1 Comparing the RCPSP formulation with the MRCPSP
formulation

Table 6.3: Results Comparing RCPSP and MRCPSP Formulations
RCPSP MRCPSP

Best makespan 920 920
Worst makespan 920 930
Median makespan 920 920
Number of evaluations for best run 100 401
Number of evaluations for worst run 211 5000
Average (stdev) number of evaluations 124 (37) 1471 (1077)

Based on the results presented in Table 6.3, solving the RCPSP formulation of the
problem required only a fraction of the number of fitness evaluations of the MRCPSP
formulation. This is expected as the RCPSP formulation simplifies the problem re-
ducing the number of possible solutions. Also, the best and median makespan are
the same. However, the worst makespan of the RCPSP is 10 days better than the
MRCPSP.

To test for significant difference, we use a non-parametric test in this chapter.
This is because the D’Agostino-Pearson normality test shows that the data is not
normally distributed. The Wilcoxon matched-pairs signed-rank test and a confidence
interval of 95% is used. This test shows that there is no significant difference in
the performance of RK-EDA and BPEDA on the case-studied problem. This can be
attributed to the fact that each reviewer is allocated the same duration to complete a
review task. Also, assigning a task to both reviewers reduces the duration by half. It
is therefore more efficient to assign two reviewers to all activities which is consistent
with the assumption made for the industrial approach.

Although there is no significant difference between the RCPSP and MRCPSP
formulations, formulating the problem as an MRCPSP may however make the solution
approach more flexible. We respectively show the schedules for the RCPSP and
MRCPSP on the first three documents in Figures 6.2 and 6.3. The full project
schedule for the RCPSP formulation is presented in Figures B.1 - B.3 while that of
the MRCPSP is also presented in Figures B.1 - B.3 of the Appendix. From Figure
6.3, we see how the algorithm schedules different review activities based on different
modes. This may be of benefit if a reviewer is not available for a given period. It is
also easily adaptable to company policies which may increase/reduce the number of
reviewers or vary the number of working days required by individual reviewers.

6.5.2 Comparing Primavera Solution with EDA

As shown in Table 6.4, when resources are levelled in ascending order of activity ID,
a makespan of 1120 days was obtained. However, when executed in descending order
of activity ID, a lower makespan of 955 days was achieved by the Primavera software.

94

Figure 6.2: Schedule by RK-EDA: DOCs 1-3

95

Figure 6.3: Schedule by BPEDA: DOCs 1-3

96

Table 6.4: Results: Makespan (days)
Primavera (Asc) Primavera (Desc) EDA

1120 955 920

Since the results from Primavera are deterministic, each run of the software will
produce the same result. Using the Wilcoxon matched-pairs signed-rank test and a
confidence interval of 95%, the results of EDA(BPEDA/RK-EDA) are significantly
better than Primavera. The saving for the industry is to reduce the duration of
engaging staff for that project by at least 2%.

6.6 Conclusions

This study benefits from a problem which has been pre-formulated such that it can be
solved with the Primavera software. The EDA proposed for the RCPSP/MRCPSP
was therefore directly applicable with only minor changes. These changes include
excluding non-renewable resources which are not presented as part of this problem.

Although the case study problem is neither a perfect fit to the RCPSP nor the
MRCPSP, understanding this theoretically formulated problem gave more insight to
solving the real-world problem. In this chapter, EDA is shown to outperform the
industrial software (Primavera) on the case studied problem because it has already
been optimised for solving benchmark problems. The EDA also present more op-
portunities for flexibility in modes of executing activities of a project. This can be
especially important in handling changes such as new availability of staff or temporary
unavailability of staff.

We found that business rules play an important role in the formulation of a prob-
lem. The assumption that each Reviewer takes exactly the same duration, makes the
RCPSP a more suitable formation for the case-study problem.

In this chapter, we compare based on makespan rather than ARPD which was
used in previous chapter. This is because there are not many methods to compare
with, there is no known optimal and the interest of the company is in the number of
days that can be saved by using an EDA.

In summary, we have been able to achieve a proof-of-concept real-world appli-
cation. The result of this research has however not been used in the industry. To
achieve this, further effort would be needed to package the algorithm in a form that
could be easily integrated into the business processes of the company.

97

Chapter 7

Conclusion and Further Work

7.1 Introduction

This thesis contributes to a number of research areas within the field of evolutionary
computation in general and EDA in particular. Those contributions are presented in
this chapter. Also, some limitations of this study are presented. Finally, this chapter
presents a prospectus for possible future work.

7.2 Research Questions Revisited

This section presents answers to the research questions presented in Chapter 1.

• In what way can the problem of redundancy in RK be addressed?

In this thesis, we identified the problem of redundancy in the RK representation
where more than one genotype generates the same phenotype. This problem
is solved by rescaling solutions to a common canonical value set. With this
approach, each genotype generates a unique phenotype. This approach was
used in the proposed RK-EDA which significantly outperforms other EDAs
that use the RK representation. Results are presented in Chapter 3

• In what way can diversity be controlled in EDAs designed to solve permutation
problems?

This research has also addressed the problem of premature convergence that
exists in EDAs. This is inevitable when the variance of iteratively re-sampled
distributions becomes very small. In this study, the variance of the distribution
is pre-defined and controlled using a cooling scheme. This enables the EDA to
control diversity in the search leading to improved performance. The proposed
cooling scheme used by RK-EDA was shown to preserve diversity better than
the state-of-the-art EDA, GM-EDA. Detailed analysis of this is presented in
Chapter 4

• How can we reduce the need for local improvement procedures in multi-component
scheduling problems?

98

We have also shown that multi-component problems are often more difficult to
solve. To handle the complexity of this class of problems, meta-heuristics have
relied on many local improvement procedures. This has led to many complex
algorithms consisting of many parts and requiring the tuning of many param-
eters. In this study, we investigated how the introduction of EDAs can reduce
the need for local improvement procedures. Since EDAs encapsulate learning in
an explicit probabilistic model, they can identify and preserve patterns better
than other classical EAs like the GA. We show that EDA was able to produce
more solutions that respect constraints than the classical GA. Also, algorithms
are sometimes not sufficiently adapted for solving a problem. In Chapter 5,
each component of the MRCPSP was independently examined leading to a so-
lution approach that produced better quality solutions with fewer improvement
procedures.

• How can we transfer knowledge from solving a multi-component test problem to
a similar real-world problem?

The EA community has identified the fact that real-world problems can be
significantly different from benchmark problems. Methods designed for bench-
marks are sometimes considered inapplicable for solving real-world problems.
In this study, we show how methods proposed for solving RCPSP and MR-
CPSP benchmarks can be adapted for solving a real-world project scheduling
problem. A difference between the benchmarks and the case-study presented in
this thesis are business-specific rules. This has also been identified as a major
factor in previous study. Apart from business rules, we see that the perfor-
mance measureARPD used in previous chapters in not useful when solving the
real-world problem.This is because there is no known optimal and the interest
is in the number of days that can be saved. Results produced in Chapter 6
show that the proposed methods perform significantly better than one of the
standard industrial software for project scheduling, Primavera.

7.3 Summary of Contributions and Analysis of Lim-

itations

The following are the main contributions of this thesis.
This thesis proposed a novel RK based EDA (RK-EDA) which was adapted for

solving common permutation and scheduling problems. These problems are PFSP,
TSP, QAP, LOP and RCPSP. The performance of RK-EDA was less competitive on
QAP and RCPSP. When solving the QAP, it is particularly important to preserve
relative order. Also, the RCPSP requires that precedence is always respected. Since
RK-EDA is a univariate EDA, it is not able to explicitly define relative order or
precedence relationships. However, RK-EDA was particularly competitive on the
PFSP, presenting new best-known solutions on the largest problem instances. RK-
EDA was able to perform well on the PFSP because the algorithm has a mechanism

99

for controlling diversity in a population. Previous approaches to solving the PFSP
had suffered from premature convergence.

This thesis also presents the BPGA-EDA which combines a GA with an EDA
to solve the MRCPSP. The hybrid algorithm was shown to be better than the stand
alone GA. As an improvement to the BPGA-EDA, BPEDA was proposed to solve the
MRCPSP. BPEDA’s performed significantly better than one of the leading methods
of solving the MRCPSP, BPGA. It also performs better than BPGA-EDA. However,
it is common practice to present results for only one run in previous studies. It
was therefore impossible to determine the statistical significance of the difference in
performance of BPEDA and results presented in literature.

In Chapter 2, we categorised real-world applications using four factors. These
are the use of real-world data, expert involvement, industrial evaluation and real-
world implementation. In Chapter 6, we were able to obtain realistic data. We also
have an industrial contact who provided all the necessary background information
and business rules relating to the case study. Furthermore, the results produced was
presented to the industrial expert who validated them. Although there is potential for
further work with the case-study company, we did not attain the stage of real-world
implementation during the period of this research. To be usable by the company,
further effort would be needed to package the algorithm in a form that could be
easily integrated into their business processes.

The work presented resulted in four conference papers and a workshop paper in
highly-ranked conferences in EC.

7.4 Directions for Further Research

7.4.1 Investigation of Cooling Scheme in RK-EDA

RK-EDA performs competitively with leading algorithms applied to permutation and
scheduling problems. However, investigations on the cooling scheme presented in
Chapter 4 shows that RK-EDA converges to similar solutions too quickly. More
detailed analysis of cooling schemes in RK-EDA is recommended for further studies.
Alternative cooling schemes such as logarithmic schemes may further improve the
performance of the algorithm.

7.4.2 Multivariate BPEDA for MRCPSP

In this thesis, BPEDA was proposed for the MRCPSP. As shown in Chapter 5,
BPEDA combines RK-EDA with an integer-based EDA to solve the MRCPSP. How-
ever, BPEDA does not model the interactions between the two sub-problems of the
MRCPSP. A multivariate approach may further improve the performance of the al-
gorithm.

100

7.4.3 Preserving Relative Order in RK-EDA

RK-EDA does not have an explicit mechanism for preserving relative order. The
QAP amongst other permutation problems is sensitive to the preservation of relative
order. RK-EDA’s relatively poor performance on QAP compared to other common
permutation problems can be attributed to this fact. A multivariate RK-EDA may
perform better on the QAP.

7.4.4 Efficient EAs

Hybridising evolutionary algorithms with local search and improvement procedures
has been a common trend in the community. In this thesis, we see that these methods
perform well on problems of lower dimensions but do not scale well to problems of
larger dimensions. This thesis shows that progress can be achieved by sufficiently
adapting algorithms to a problem domain rather than improving algorithms by in-
cluding more complex operations.

7.5 General Conclusions

The work presented in this thesis covers many areas in the application of EDAs to
permutation and scheduling problems. RK-EDA presents competitive results and
even best-known results on some of the permutation problem instances. This shows
that EDAs can outperform many leading algorithms on permutation and scheduling
problems if sufficiently adapted to the problem domain. The introduction of a rescal-
ing approach and a cooling scheme moves random key EDAs from being the poorest
for permutation problems to be one of the best EDAs. RK-EDA also outperforms
other leading evolutionary algorithms on the PFSP.

Also, we show that EDA can outperform even software that is currently used
in the industry. Applying RK-EDA to an actual real-world problem confirms the
applicability of EDA in practice. Based on the factors listed in Section 2.4, we were
able to use real-world data, ensure the problem is understood from the industrial
perspective and results were also verified by an industrial expert. However, we did
not achieve the final attribute listed which is real-world implementation. Although
there is a prospect for real-world implementation, we did not get to this stage during
the period of this research.

Furthermore, there has been a recent trend of using many local search and im-
provement procedures in evolutionary algorithms to achieve better results at the
expense of computation and simplicity of procedures. We observe that these methods
do well on smaller problems but often do not scale well to larger problems. In this
thesis, results produced by the proposed algorithms emphasise the importance of fo-
cusing on simpler methods that scale well to larger problems. Proposing less complex
methods that effectively and efficiently solve larger problems is a major step towards
bridging the theory-to-practice gap in the community.

101

Appendix A

Tables

102

Table A.1: Average Ranks of Parameters for J10: ρ=1
Parameter (SGS) Ranking
b-34, lr-1.0 21.250
b-68, lr-0.7 21.350
b-68, lr-0.9 21.375
b-34, lr-0.6 21.400
b-101, lr-1.0 21.700
b-101, lr-0.7 21.775
b-68, lr-0.8 21.975
b-34, lr-0.4 22.200
b-101, lr-0.9 22.275
b-34, lr-0.8 22.500
b-34, lr-0.5 22.525
b-68, lr-1.0 22.550
b-135, lr-1.0 22.750
b-34, lr-0.9 22.925
b-101, lr-0.8 23.075
b-101, lr-0.6 23.225
b-68, lr-0.6 23.325
b-68, lr-0.4 23.375
b-34, lr-0.7 23.450
b-68, lr-0.3 23.625
b-68, lr-0.2 24.325
b-34, lr-0.3 24.425
b-135, lr-0.7 24.525
b-68, lr-0.1 24.675
b-169, lr-0.9 24.725
b-101, lr-0.5 24.850
b-135, lr-0.9 24.975
b-135, lr-0.8 25.350
b-101, lr-0.4 25.525
b-68, lr-0.5 25.650
b-135, lr-0.6 26.100
b-169, lr-0.8 26.200
b-34, lr-0.2 26.275
b-169, lr-1.0 26.625
b-34, lr-0.1 27.225
b-101, lr-0.3 27.250
b-169, lr-0.7 28.025
b-135, lr-0.5 28.475
b-101, lr-0.1 28.975
b-169, lr-0.5 29.650
b-135, lr-0.3 29.675
b-135, lr-0.4 29.800
b-135, lr-0.1 29.800
b-169, lr-0.4 29.875
b-169, lr-0.6 29.975
b-135, lr-0.2 30.225
b-101, lr-0.2 30.275
b-169, lr-0.1 30.400
b-169, lr-0.3 30.675
b-169, lr-0.2 31.850

Parameter (ESGS) Ranking
b-101, lr-0.7 23.200
b-101, lr-0.9 23.200
b-135, lr-1.0 23.200
b-34, lr-1.0 23.200
b-68, lr-1.0 23.200
b-135, lr-0.7 23.825
b-68, lr-0.5 23.825
b-68, lr-0.9 23.825
b-169, lr-1.0 24.450
b-101, lr-0.6 24.575
b-135, lr-0.6 24.575
b-68, lr-0.6 24.575
b-68, lr-0.8 24.575
b-101, lr-0.5 24.700
b-135, lr-0.9 24.700
b-34, lr-0.4 24.700
b-34, lr-0.6 24.700
b-34, lr-0.7 24.700
b-34, lr-0.8 24.700
b-68, lr-0.7 24.700
b-101, lr-0.2 25.025
b-169, lr-0.6 25.100
b-169, lr-0.8 25.100
b-34, lr-0.5 25.250
b-34, lr-0.9 25.425
b-101, lr-0.4 25.450
b-101, lr-0.8 25.450
b-101, lr-1.0 25.450
b-135, lr-0.8 25.450
b-34, lr-0.2 25.450
b-68, lr-0.3 25.775
b-169, lr-0.3 25.800
b-169, lr-0.9 25.825
b-101, lr-0.3 25.975
b-135, lr-0.4 25.975
b-169, lr-0.5 25.975
b-34, lr-0.1 26.275
b-169, lr-0.7 26.275
b-68, lr-0.2 26.325
b-68, lr-0.4 26.525
b-34, lr-0.3 26.625
b-101, lr-0.1 26.675
b-68, lr-0.1 26.925
b-169, lr-0.4 27.350
b-135, lr-0.3 27.500
b-135, lr-0.1 27.700
b-135, lr-0.2 27.700
b-135, lr-0.5 27.775
b-169, lr-0.2 28.075
b-169, lr-0.1 31.675

103

Table A.2: Average Ranks of Parameters for J10: ρ=0.5
Parameter (SGS) Ranking
b-34, lr-1.0 19.675
b-34, lr-0.8 20.050
b-34, lr-0.7 20.150
b-68, lr-1.0 20.225
b-34, lr-0.4 20.350
b-34, lr-0.5 20.525
b-34, lr-0.9 20.525
b-34, lr-0.6 20.675
b-34, lr-0.3 21.050
b-68, lr-0.8 21.150
b-68, lr-0.7 21.175
b-101, lr-1.0 21.600
b-68, lr-0.9 22.250
b-101, lr-0.7 22.450
b-68, lr-0.6 22.775
b-101, lr-0.9 22.925
b-101, lr-0.8 23.100
b-68, lr-0.5 23.550
b-101, lr-0.6 24.150
b-135, lr-1.0 24.150
b-135, lr-0.8 24.150
b-101, lr-0.5 24.725
b-34, lr-0.2 25.075
b-68, lr-0.4 25.175
b-135, lr-0.7 25.325
b-135, lr-0.9 25.575
b-34, lr-0.1 25.625
b-101, lr-0.4 26.175
b-169, lr-1.0 26.200
b-169, lr-0.9 26.625
b-135, lr-0.5 26.800
b-68, lr-0.3 27.375
b-68, lr-0.2 27.475
b-135, lr-0.6 27.700
b-101, lr-0.3 27.950
b-135, lr-0.3 28.000
b-135, lr-0.4 28.100
b-68, lr-0.1 28.100
b-169, lr-0.8 28.275
b-169, lr-0.6 28.300
b-169, lr-0.5 29.125
b-169, lr-0.7 30.150
b-101, lr-0.2 30.300
b-135, lr-0.2 30.550
b-169, lr-0.1 30.675
b-101, lr-0.1 30.800
b-169, lr-0.3 30.800
b-135, lr-0.1 31.625
b-169, lr-0.4 32.425
b-169, lr-0.2 33.325

Parameter (ESGS) Ranking
b-101, lr-0.2 25.000
b-101, lr-0.3 25.000
b-101, lr-0.4 25.000
b-101, lr-0.6 25.000
b-101, lr-0.7 25.000
b-101, lr-0.8 25.000
b-101, lr-0.9 25.000
b-101, lr-1.0 25.000
b-135, lr-0.1 25.000
b-135, lr-0.4 25.000
b-135, lr-0.6 25.000
b-135, lr-0.7 25.000
b-135, lr-0.8 25.000
b-135, lr-0.9 25.000
b-135, lr-1.0 25.000
b-169, lr-0.1 25.000
b-169, lr-0.5 25.000
b-169, lr-0.6 25.000
b-169, lr-0.7 25.000
b-169, lr-0.8 25.000
b-169, lr-0.9 25.000
b-169, lr-1.0 25.000
b-34, lr-0.1 25.000
b-34, lr-0.3 25.000
b-34, lr-0.5 25.000
b-34, lr-0.6 25.000
b-34, lr-0.8 25.000
b-34, lr-0.9 25.000
b-34, lr-1.0 25.000
b-68, lr-0.3 25.000
b-68, lr-0.4 25.000
b-68, lr-0.5 25.000
b-68, lr-0.8 25.000
b-68, lr-0.9 25.000
b-68, lr-1.0 25.000
b-101, lr-0.5 26.200
b-34, lr-0.7 26.200
b-68, lr-0.6 26.200
b-101, lr-0.1 26.250
b-135, lr-0.2 26.250
b-135, lr-0.3 26.250
b-135, lr-0.5 26.250
b-68, lr-0.1 26.250
b-68, lr-0.7 26.250
b-34, lr-0.2 26.425
b-169, lr-0.2 27.450
b-169, lr-0.4 27.450
b-68, lr-0.2 27.450
b-169, lr-0.3 27.500
b-34, lr-0.4 27.625

104

Table A.3: Average Ranks of Parameters for J20: ρ=1
Parameter (SGS) Ranking
b-11, lr-0.4 18.600
b-22, lr-0.4 18.675
b-22, lr-0.6 18.850
b-22, lr-0.8 19.875
b-22, lr-0.5 19.900
b-33, lr-0.6 20.150
b-22, lr-0.7 20.325
b-11, lr-0.5 21.150
b-44, lr-0.8 21.375
b-33, lr-0.9 21.375
b-33, lr-0.8 21.575
b-22, lr-0.9 21.600
b-11, lr-0.7 21.875
b-11, lr-0.3 22.025
b-11, lr-0.6 22.025
b-33, lr-0.7 22.250
b-33, lr-0.5 22.375
b-44, lr-0.9 22.675
b-22, lr-1.0 22.800
b-44, lr-0.7 22.850
b-11, lr-0.8 23.000
b-44, lr-1.0 23.175
b-33, lr-0.4 23.200
b-55, lr-0.8 23.325
b-55, lr-0.9 24.025
b-33, lr-1.0 24.150
b-11, lr-0.2 24.150
b-22, lr-0.3 24.250
b-44, lr-0.6 24.350
b-11, lr-1.0 24.400
b-11, lr-0.9 25.425
b-55, lr-0.6 25.800
b-44, lr-0.5 25.800
b-55, lr-1.0 26.325
b-22, lr-0.2 26.625
b-55, lr-0.7 26.950
b-33, lr-0.3 26.975
b-44, lr-0.4 28.500
b-55, lr-0.5 28.675
b-55, lr-0.4 29.475
b-11, lr-0.1 30.425
b-33, lr-0.2 31.375
b-44, lr-0.3 32.300
b-44, lr-0.2 33.125
b-55, lr-0.3 33.200
b-22, lr-0.1 34.150
b-33, lr-0.1 34.925
b-55, lr-0.2 36.850
b-44, lr-0.1 37.725
b-55, lr-0.1 40.025

Parameter (ESGS) Ranking
b-22, lr-0.7 19.725
b-22, lr-1.0 20.400
b-11, lr-0.8 20.725
b-11, lr-0.7 21.150
b-11, lr-0.6 21.200
b-22, lr-0.9 21.450
b-22, lr-0.4 21.725
b-22, lr-0.8 21.775
b-11, lr-1.0 22.150
b-11, lr-0.9 22.175
b-33, lr-1.0 22.200
b-11, lr-0.5 22.250
b-33, lr-0.7 22.375
b-44, lr-0.6 22.450
b-11, lr-0.4 22.625
b-22, lr-0.5 22.675
b-33, lr-0.9 22.775
b-22, lr-0.6 23.125
b-44, lr-0.9 23.250
b-44, lr-1.0 23.600
b-33, lr-0.8 23.750
b-11, lr-0.3 23.800
b-55, lr-1.0 23.850
b-22, lr-0.3 23.900
b-55, lr-0.8 24.050
b-44, lr-0.8 24.550
b-44, lr-0.7 24.725
b-33, lr-0.5 25.525
b-33, lr-0.6 25.550
b-11, lr-0.2 25.575
b-55, lr-0.9 25.925
b-44, lr-0.5 26.250
b-33, lr-0.4 26.950
b-44, lr-0.4 27.450
b-55, lr-0.5 27.525
b-33, lr-0.3 27.875
b-55, lr-0.6 28.250
b-55, lr-0.7 28.500
b-44, lr-0.3 28.900
b-22, lr-0.2 28.975
b-33, lr-0.2 29.200
b-22, lr-0.1 30.075
b-55, lr-0.4 30.150
b-11, lr-0.1 30.150
b-55, lr-0.3 30.225
b-44, lr-0.2 31.075
b-33, lr-0.1 32.100
b-44, lr-0.1 32.600
b-55, lr-0.2 33.050
b-55, lr-0.1 34.700

105

Table A.4: Average Ranks of Parameters for J20: ρ=0.5
Parameter (SGS) Ranking
b-22, lr-0.8 18.575
b-22, lr-0.4 18.650
b-33, lr-0.7 19.050
b-33, lr-0.6 19.350
b-22, lr-0.5 19.375
b-11, lr-0.4 19.450
b-22, lr-0.7 19.850
b-33, lr-0.8 19.975
b-11, lr-0.6 21.050
b-22, lr-0.6 21.400
b-11, lr-0.5 21.425
b-33, lr-0.5 21.425
b-44, lr-0.8 21.450
b-22, lr-0.9 21.500
b-11, lr-0.8 22.250
b-11, lr-0.3 22.350
b-11, lr-0.7 22.375
b-11, lr-1.0 22.425
b-33, lr-0.4 22.475
b-44, lr-0.9 23.200
b-44, lr-0.6 23.500
b-55, lr-0.9 23.625
b-22, lr-0.3 23.875
b-33, lr-1.0 24.125
b-33, lr-0.9 24.175
b-44, lr-0.7 24.275
b-22, lr-1.0 24.600
b-44, lr-1.0 24.800
b-55, lr-0.8 24.975
b-33, lr-0.3 25.325
b-55, lr-0.7 25.575
b-44, lr-0.5 25.925
b-11, lr-0.2 26.200
b-55, lr-0.6 26.300
b-11, lr-0.9 26.825
b-55, lr-1.0 27.000
b-44, lr-0.4 27.750
b-22, lr-0.2 27.925
b-33, lr-0.2 29.150
b-55, lr-0.5 29.200
b-44, lr-0.3 30.025
b-55, lr-0.4 30.600
b-22, lr-0.1 31.575
b-55, lr-0.3 32.375
b-11, lr-0.1 32.750
b-44, lr-0.2 33.025
b-55, lr-0.2 34.875
b-44, lr-0.1 37.675
b-55, lr-0.1 38.975
b-33, lr-0.1 40.400

Parameter (ESGS) Ranking
b-11, lr-0.6 20.975
b-33, lr-0.7 21.450
b-22, lr-0.4 21.675
b-22, lr-0.8 21.725
b-11, lr-0.8 21.850
b-11, lr-0.3 21.925
b-22, lr-0.7 22.350
b-33, lr-1.0 22.425
b-11, lr-0.4 22.700
b-11, lr-1.0 23.225
b-22, lr-0.5 23.350
b-11, lr-0.7 23.375
b-44, lr-0.9 23.475
b-33, lr-0.6 23.625
b-44, lr-0.6 23.675
b-55, lr-1.0 23.750
b-22, lr-0.9 24.100
b-11, lr-0.5 24.125
b-33, lr-0.8 24.250
b-22, lr-1.0 24.300
b-11, lr-0.9 24.375
b-55, lr-0.7 24.450
b-44, lr-0.8 24.675
b-11, lr-0.2 24.675
b-44, lr-0.7 24.825
b-33, lr-0.5 24.850
b-44, lr-1.0 24.850
b-22, lr-0.6 24.925
b-33, lr-0.9 25.175
b-55, lr-0.8 25.275
b-33, lr-0.4 25.325
b-55, lr-0.9 25.425
b-44, lr-0.4 25.575
b-33, lr-0.3 26.175
b-22, lr-0.3 26.525
b-44, lr-0.5 27.000
b-55, lr-0.6 27.450
b-55, lr-0.4 27.700
b-55, lr-0.3 27.925
b-44, lr-0.3 28.150
b-22, lr-0.2 28.300
b-33, lr-0.2 28.450
b-44, lr-0.2 28.725
b-55, lr-0.5 29.075
b-11, lr-0.1 29.200
b-55, lr-0.2 29.575
b-55, lr-0.1 30.700
b-22, lr-0.1 31.025
b-33, lr-0.1 32.950
b-44, lr-0.1 33.350

106

Table A.5: Average Ranks of Parameters for J30: ρ=1
Parameter (SGS) Ranking
b-22, lr-0.7 16.775
b-22, lr-0.6 16.800
b-15, lr-0.6 17.575
b-22, lr-0.9 17.700
b-30, lr-0.7 17.750
b-15, lr-0.7 17.825
b-15, lr-0.9 19.275
b-15, lr-0.5 19.350
b-30, lr-0.9 19.575
b-30, lr-0.8 19.950
b-37, lr-0.9 19.950
b-37, lr-0.8 20.475
b-15, lr-0.4 20.550
b-22, lr-0.8 20.700
b-15, lr-0.8 20.700
b-7, lr-0.6 20.950
b-30, lr-0.6 21.150
b-15, lr-1.0 21.200
b-30, lr-1.0 21.475
b-30, lr-0.5 21.625
b-7, lr-0.5 21.800
b-22, lr-0.5 21.800
b-37, lr-1.0 22.375
b-7, lr-0.4 22.550
b-37, lr-0.7 22.875
b-22, lr-0.4 23.125
b-22, lr-1.0 23.200
b-37, lr-0.6 23.800
b-15, lr-0.3 24.275
b-7, lr-0.3 25.425
b-37, lr-0.5 25.950
b-22, lr-0.3 26.300
b-30, lr-0.4 26.700
b-7, lr-0.7 28.025
b-7, lr-0.8 28.250
b-7, lr-0.2 28.700
b-7, lr-0.9 29.875
b-15, lr-0.2 30.175
b-37, lr-0.4 31.300
b-30, lr-0.3 31.500
b-37, lr-0.3 32.975
b-7, lr-1.0 33.000
b-22, lr-0.2 33.725
b-7, lr-0.1 33.825
b-15, lr-0.1 36.125
b-30, lr-0.2 36.725
b-37, lr-0.2 37.525
b-22, lr-0.1 38.250
b-30, lr-0.1 41.500
b-37, lr-0.1 42.000

Parameter (ESGS) Ranking
b-7, lr-0.5 18.025
b-15, lr-0.9 18.325
b-7, lr-0.6 18.875
b-15, lr-1.0 18.925
b-7, lr-0.7 18.975
b-15, lr-0.8 19.050
b-7, lr-1.0 19.150
b-15, lr-0.7 19.225
b-7, lr-0.8 19.600
b-22, lr-0.9 20.150
b-7, lr-0.9 20.300
b-7, lr-0.4 20.600
b-22, lr-0.8 20.825
b-15, lr-0.6 20.875
b-22, lr-0.7 21.175
b-22, lr-1.0 22.025
b-15, lr-0.5 22.275
b-30, lr-0.9 22.275
b-22, lr-0.6 22.450
b-30, lr-1.0 22.675
b-15, lr-0.4 22.700
b-30, lr-0.8 22.975
b-7, lr-0.3 23.225
b-30, lr-0.7 24.125
b-37, lr-0.8 24.300
b-22, lr-0.5 24.725
b-37, lr-1.0 24.950
b-37, lr-0.9 25.075
b-37, lr-0.7 25.825
b-15, lr-0.3 25.950
b-30, lr-0.6 26.075
b-22, lr-0.4 27.200
b-30, lr-0.5 27.325
b-37, lr-0.6 27.425
b-7, lr-0.2 28.150
b-30, lr-0.4 28.175
b-37, lr-0.5 28.650
b-22, lr-0.3 29.150
b-37, lr-0.4 29.675
b-30, lr-0.3 30.025
b-15, lr-0.2 30.375
b-22, lr-0.2 32.000
b-37, lr-0.3 32.150
b-30, lr-0.2 33.275
b-37, lr-0.2 34.525
b-7, lr-0.1 34.975
b-22, lr-0.1 35.250
b-15, lr-0.1 36.175
b-30, lr-0.1 37.275
b-37, lr-0.1 37.525

107

Table A.6: Average Ranks of Parameters for J30: ρ=0.5
Parameter (SGS) Ranking
b-22, lr-0.5 16.275
b-30, lr-1.0 17.625
b-22, lr-0.8 17.750
b-15, lr-0.6 18.425
b-30, lr-0.6 18.775
b-22, lr-0.7 19.975
b-15, lr-0.5 20.125
b-15, lr-0.4 20.225
b-30, lr-0.5 20.375
b-22, lr-0.9 20.475
b-37, lr-0.9 20.725
b-37, lr-0.7 20.750
b-22, lr-1.0 20.750
b-15, lr-0.7 20.850
b-37, lr-0.8 21.000
b-22, lr-0.6 21.875
b-30, lr-0.9 22.175
b-30, lr-0.7 22.350
b-30, lr-0.8 22.500
b-15, lr-0.9 22.550
b-7, lr-0.6 22.600
b-7, lr-0.4 23.275
b-22, lr-0.4 23.400
b-7, lr-0.5 23.475
b-30, lr-0.4 23.775
b-15, lr-0.8 24.050
b-37, lr-0.5 24.350
b-15, lr-0.3 24.375
b-37, lr-0.6 24.675
b-37, lr-1.0 24.975
b-22, lr-0.3 24.975
b-7, lr-0.7 25.100
b-7, lr-0.8 25.675
b-30, lr-0.3 26.500
b-15, lr-0.2 27.125
b-7, lr-0.3 27.650
b-15, lr-1.0 27.775
b-37, lr-0.4 27.775
b-7, lr-0.2 28.725
b-22, lr-0.2 30.025
b-37, lr-0.3 31.100
b-7, lr-0.9 31.350
b-7, lr-1.0 32.250
b-30, lr-0.2 33.650
b-37, lr-0.2 34.100
b-15, lr-0.1 34.900
b-7, lr-0.1 37.600
b-22, lr-0.1 37.925
b-30, lr-0.1 41.925
b-37, lr-0.1 44.375

Parameter (ESGS) Ranking
b-7, lr-0.7 18.650
b-7, lr-0.9 18.725
b-7, lr-1.0 18.900
b-15, lr-0.9 19.300
b-22, lr-0.9 19.450
b-7, lr-0.8 19.725
b-7, lr-0.5 20.125
b-7, lr-0.4 20.750
b-7, lr-0.6 20.875
b-15, lr-0.8 21.175
b-22, lr-1.0 21.300
b-15, lr-1.0 21.600
b-22, lr-0.7 22.025
b-15, lr-0.6 22.175
b-15, lr-0.7 22.300
b-30, lr-1.0 22.400
b-30, lr-0.9 23.300
b-22, lr-0.8 23.350
b-30, lr-0.7 23.675
b-30, lr-0.8 24.175
b-15, lr-0.5 24.275
b-15, lr-0.3 24.675
b-7, lr-0.3 24.825
b-37, lr-0.9 24.900
b-30, lr-0.6 24.925
b-22, lr-0.6 25.000
b-22, lr-0.5 25.175
b-15, lr-0.4 25.275
b-37, lr-0.8 25.575
b-37, lr-0.6 26.100
b-22, lr-0.3 26.450
b-22, lr-0.4 26.675
b-37, lr-1.0 26.800
b-7, lr-0.2 27.175
b-30, lr-0.5 27.375
b-37, lr-0.7 27.600
b-37, lr-0.5 28.100
b-30, lr-0.4 28.775
b-37, lr-0.4 29.000
b-15, lr-0.2 29.775
b-37, lr-0.3 29.850
b-30, lr-0.3 30.200
b-30, lr-0.2 31.475
b-22, lr-0.2 31.725
b-37, lr-0.2 32.350
b-7, lr-0.1 32.525
b-15, lr-0.1 32.775
b-37, lr-0.1 33.475
b-30, lr-0.1 33.525
b-22, lr-0.1 34.675

108

Table A.7: Selected Problem Instances
J10 J20 J30

j1020 6.mm j2027 7.mm j3027 7.mm
j1032 4.mm j2030 5.mm j3030 5.mm
j1044 3.mm j2057 3.mm j3057 3.mm
j1052 2.mm j2060 10.mm j3060 10.mm
j1060 9.mm j2062 9.mm j3062 9.mm
j1043 2.mm j2018 10.mm j3020 10.mm
j1019 10.mm j2023 6.mm j3024 5.mm
j103 6.mm j2021 9.mm j3024 8.mm
j1055 6.mm j2055 7.mm j3054 8.mm
j1018 4.mm j2051 10.mm j3049 10.mm
j1039 3.mm j2055 9.mm j3055 3.mm
j1050 3.mm j209 5.mm j309 10.mm
j1046 3.mm j2015 4.mm j3016 2.mm
j1058 10.mm j2042 8.mm j3014 9.mm
j1050 10.mm j2015 10.mm j3045 2.mm
j1030 9.mm j2048 6.mm j3042 8.mm
j105 8.mm j2011 4.mm j3011 2.mm
j1061 5.mm j2035 3.mm j3033 2.mm
j1013 5.mm j2033 6.mm j3040 8.mm
j1053 1.mm j203 2.mm j308 6.mm

109

Table A.8: Average Performance of RK-EDA on Benchmark Problems

Problems Instances Minimum Maximum Mean Stdev

TSP bays29 2020.0 2091.0 2041.5 21.3
berlin52 8207.0 8742.0 8404.6 164.0
dantzig42 729.0 824.0 771.2 35.6
fri26 937.0 968.0 949.5 11.9

PFSPs tai20-5-0 1278.0 1279.0 1278.1 0.3
tai20-5-1 1359.0 1360.0 1359.5 0.5
tai20-10-0 1586.0 1618.0 1602.9 11.1
tai20-10-1 1680.0 1691.0 1685.2 3.2

PFSPl tai50-10-0 3046.0 3119.0 3090.7 24.2
tai50-10-1 2923.0 2964.0 2937.6 14.9
tai100-20-0 6344.0 6424.0 6386.4 21.0
tai100-10-1 6291.0 6381.0 6338.6 27.2

QAP tai15a 393496.0 412072.0 404616.6 5350.2
tai15b 51968294.0 52238818.0 52088443.6 72876.7
tai40a 3353650.0 3418792.0 3391139.0 20951.9
tai40b 642257062.0 659424886.0 652079961.9 4690584.3

LOP t65b11 355180.0 356311.0 356028.2 295.6
be75np 716221.0 716930.0 716644.3 249.8
be75oi 110928.0 111156.0 111012.3 77.8

Table A.9: Comparing Average ARPD of RK-EDA and other Algorithms.
Problem Size AGA VNS4 GM-EDA VNS HGM-EDA ILS IGA DEP EHBSA NHBSA RK-EDA

20X5 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.07
20X10 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.11
20X20 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.18
50X5 0.10 0.93 0.98 0.21 0.20 0.15 0.20 0.09 0.13 0.96 1.14
50X10 0.22 0.97 2.01 0.43 0.42 0.36 0.39 0.25 0.75 1.72 1.79
50X20 0.21 0.71 1.97 0.43 0.41 0.36 0.43 0.23 1.25 1.80 1.64
100X5 0.25 1.49 0.94 0.37 0.29 0.52 0.53 0.08 0.86 1.70 1.05
100X10 0.46 1.66 1.86 0.73 0.49 0.61 0.67 0.20 2.97 2.76 1.54
100X20 0.58 1.47 2.05 0.78 0.51 0.54 0.60 0.31 4.19 3.11 1.62
200X10 0.74 1.54 1.35 1.04 0.28 0.59 0.53 0.17 5.84 4.57 0.85
200X20 1.13 1.70 1.72 1.43 0.52 0.67 0.73 0.19 6.90 5.54 0.93
500X20 0.88 1.08 9.40 2.71 2.65 0.52 0.54 1.46 9.24 7.85 0.18

110

Table A.10: ARPD: RK-EDA for PFSP (20 X 5 - 50 X 5)

jobs machines instance min max avg std

20 5 1 14033 14034 14033 0
20 5 2 15151 15151 15151 0
20 5 3 13301 13313 13302 3
20 5 4 15447 15447 15447 0
20 5 5 13529 13529 13529 0
20 5 6 13123 13123 13123 0
20 5 7 13548 13583 13559 8
20 5 8 13948 13948 13948 0
20 5 9 14295 14315 14297 6
20 5 10 12943 12943 12943 0

20 10 1 20911 20958 20947 18
20 10 2 22440 22440 22440 0
20 10 3 19833 19850 19836 5
20 10 4 18710 18755 18718 14
20 10 5 18641 18644 18642 1
20 10 6 19245 19249 19245 1
20 10 7 18363 18396 18367 9
20 10 8 20241 20315 20260 21
20 10 9 20330 20330 20330 0
20 10 10 21320 21323 21320 1

20 20 1 33623 33623 33623 0
20 20 2 31587 31587 31587 0
20 20 3 33920 33920 33920 0
20 20 4 31661 31698 31663 8
20 20 5 34557 34586 34565 11
20 20 6 32564 32564 32564 0
20 20 7 32922 33039 32964 43
20 20 8 32412 32481 32457 20
20 20 9 33600 34175 33773 263
20 20 10 32262 32262 32262 0

50 5 1 65088 65546 65369 112
50 5 2 68521 69030 68748 133
50 5 3 63760 64129 63904 93
50 5 4 68669 69281 68989 168
50 5 5 69718 70302 70026 160
50 5 6 67306 67619 67452 82
50 5 7 66767 67211 66892 99
50 5 8 64881 65329 64988 101
50 5 9 63377 63745 63564 108
50 5 10 69343 69918 69563 131111

Table A.11: ARPD: RK-EDA for PFSP (50 X 10 - 100 X 10)

jobs machines instance min max avg std

50 10 1 88191 89348 88781 310
50 10 2 83763 84578 84104 223
50 10 3 80698 81477 81105 228
50 10 4 87207 88215 87613 199
50 10 5 87340 88118 87759 215
50 10 6 87089 88118 87596 271
50 10 7 89777 90658 90223 248
50 10 8 87468 88460 87935 255
50 10 9 86231 87292 86775 305
50 10 10 89124 90093 89662 264

50 20 1 127185 128432 127801 318
50 20 2 119816 120847 120416 289
50 20 3 117818 119047 118416 339
50 20 4 121661 122910 122405 327
50 20 5 119323 120496 119825 345
50 20 6 121639 122496 122041 244
50 20 7 124441 125699 124874 333
50 20 8 123490 124785 124205 366
50 20 9 122625 123859 123238 341
50 20 10 125285 126534 125755 299

100 5 1 255576 256754 256060 307
100 5 2 244263 245120 244726 201
100 5 3 239639 240358 240029 178
100 5 4 229348 230246 229678 199
100 5 5 242031 242960 242484 220
100 5 6 234423 235453 234866 273
100 5 7 242077 243175 242831 253
100 5 8 233166 233959 233481 203
100 5 9 250156 251368 250801 275
100 5 10 245004 245800 245451 200

100 10 1 301544 303562 302513 462
100 10 2 277047 280182 278149 807
100 10 3 290742 293531 292153 731
100 10 4 304730 306617 305526 461
100 10 5 287353 289801 288916 544
100 10 6 272432 274526 273662 481
100 10 7 282770 284722 283611 439
100 10 8 293554 295899 295139 550
100 10 9 305733 308222 306747 658
100 10 10 294564 296656 295650 487

112

Table A.12: ARPD: RK-EDA for PFSP (100 X 20 - 500 X 20)

jobs machines instance min max avg std

100 20 1 370429 372495 371407 521
100 20 2 376789 379691 378512 737
100 20 3 374108 376894 376006 805
100 20 4 377273 379848 378724 675
100 20 5 373269 375668 374716 597
100 20 6 375902 379468 378013 948
100 20 7 378105 380267 379028 539
100 20 8 388879 392169 390445 753
100 20 9 379394 381511 380564 509
100 20 10 384306 386302 385289 582

200 10 1 1050445 1055241 1052984 1042
200 10 2 1042005 1045015 1043077 982
200 10 3 1050267 1054507 1052313 1102
200 10 4 1035560 1039071 1037174 696
200 10 5 1040108 1042448 1041536 612
200 10 6 1011959 1014775 1013372 750
200 10 7 1056734 1060129 1058500 907
200 10 8 1049162 1054427 1051739 1300
200 10 9 1026541 1031220 1029249 1202
200 10 10 1033504 1038601 1035575 1248

200 20 1 1229135 1236326 1232389 1652
200 20 2 1244509 1252292 1247999 2037
200 20 3 1267859 1273800 1269641 1749
200 20 4 1240742 1247241 1243256 1650
200 20 5 1226326 1231966 1228899 1538
200 20 6 1226790 1233815 1230572 1887
200 20 7 1242066 1249482 1245372 1798
200 20 8 1243468 1251454 1247495 1773
200 20 9 1232200 1236999 1234396 1296
200 20 10 1248854 1254938 1251788 2162

500 20 1 6638306 6662109 6649445 4933
500 20 2 6764798 6804378 6780722 9366
500 20 3 6692427 6710148 6703236 4533
500 20 4 6725985 6747612 6735550 4463
500 20 5 6686734 6712450 6696428 6407
500 20 6 6687549 6709387 6701524 6167
500 20 7 6635167 6660516 6649215 6607
500 20 8 6713812 6744287 6728245 6850
500 20 9 6654590 6672419 6661983 4147
500 20 10 6695956 6725370 6707349 5832

113

Table A.13: Real-World Project Scheduling Problem: Start - DOC10
Activity ID Document Reference Duration Predecessors Successors

AA001 START 0d DOC1-1, DOC2-1, DOC3-1, DOC6-1,
DOC8-1, DOC12-1, DOC14-1, DOC18-1,
DOC21-1, DOC26-1, DOC28-1, DOC34-1,
DOC38-1

AA002 COMPLETION 0d DOC3R-2, DOC12R-2, DOC15R-2, DOC17R-2,
DOC19R-2, DOC20R-2, DOC6R-2, DOC14R-2,
DOC25R-2, DOC28R-2, DOC33R-2, DOC35R-2,
DOC37R-2, DOC39R-2, DOC41R-2, DOC42R-2,
DOC43R-2, DOC45R-2

DOCUMENT 01
DOC1-1 DOCUMENT 1 FIRST STAGE 30d AA001 DOC1R-1
DOC1-2 DOCUMENT 1 SECOND STAGE 10d DOC1R-1 DOC1R-2
DOC1R-1 DOCUMENT 1 FIRST STAGE REVIEW 10d DOC1-1 DOC1-2, DOC4-1, DOC7-1
DOC1R-2 DOCUMENT 1 SECOND STAGE REVIEW 10d DOC1-2 DOC4-2, DOC7-2
DOCUMENT 02
DOC2-1 DOCUMENT 2 FIRST STAGE 40d AA001 DOC2R-1
DOC2-2 DOCUMENT 2 SECOND STAGE 20d DOC2R-1 DOC2R-2
DOC2R-1 DOCUMENT 2 FIRST STAGE REVIEW 10d DOC2-1 DOC2-2, DOC5-1, DOC29-1
DOC2R-2 DOCUMENT 2 SECOND STAGE REVIEW 10d DOC2-2 DOC5-2, DOC29-2
DOCUMENT 03
DOC3-1 DOCUMENT 3 FIRST STAGE 50d AA001 DOC3R-1
DOC3-2 DOCUMENT 3 SECOND STAGE 30d DOC3R-1 DOC3R-2
DOC3R-1 DOCUMENT 3 FIRST STAGE REVIEW 10d DOC3-1 DOC3-2
DOC3R-2 DOCUMENT 3 SECOND STAGE REVIEW 10d DOC3-2 AA002
DOCUMENT 04
DOC4-1 DOCUMENT 4 FIRST STAGE 20d DOC1R-1 DOC4R-1
DOC4-2 DOCUMENT 4 SECOND STAGE 10d DOC4R-1, DOC1R-2 DOC4R-2
DOC4R-1 DOCUMENT 4 FIRST STAGE REVIEW 10d DOC4-1 DOC4-2, DOC9-1
DOC4R-2 DOCUMENT 4 SECOND STAGE REVIEW 10d DOC4-2 DOC9-2
DOCUMENT 05
DOC5-1 DOCUMENT 5 FIRST STAGE 60d DOC2R-1 DOC5R-1
DOC5-2 DOCUMENT 5 SECOND STAGE 40d DOC5R-1, DOC2R-2 DOC5R-2
DOC5R-1 DOCUMENT 5 FIRST STAGE REVIEW 10d DOC5-1 DOC5-2, DOC10-1, DOC24-1
DOC5R-2 DOCUMENT 5 SECOND STAGE REVIEW 10d DOC5-2 DOC10-2, DOC24-2
DOCUMENT 06
DOC6-1 DOCUMENT 6 FIRST STAGE 40d AA001 DOC6R-1
DOC6-2 DOCUMENT 6 SECOND STAGE 30d DOC6R-1 DOC6R-2
DOC6R-1 DOCUMENT 6 FIRST STAGE REVIEW 10d DOC6-1 DOC6-2
DOC6R-2 DOCUMENT 6 SECOND STAGE REVIEW 10d DOC6-2 AA002
DOCUMENT 07
DOC7-1 DOCUMENT 7 FIRST STAGE 50d DOC1R-1 DOC7R-1
DOC7-2 DOCUMENT 7 SECOND STAGE 40d DOC7R-1, DOC1R-2 DOC7R-2
DOC7R-1 DOCUMENT 7 FIRST STAGE REVIEW 10d DOC7-1 DOC7-2, DOC11-1
DOC7R-2 DOCUMENT 7 SECOND STAGE REVIEW 10d DOC7-2 DOC11-2
DOCUMENT 08
DOC8-1 DOCUMENT 8 FIRST STAGE 70d AA001 DOC8R-1
DOC8-2 DOCUMENT 8 SECOND STAGE 40d DOC8R-1 DOC8R-2
DOC8R-1 DOCUMENT 8 FIRST STAGE REVIEW 10d DOC8-1 DOC8-2, DOC37-1
DOC8R-2 DOCUMENT 8 SECOND STAGE REVIEW 10d DOC8-2 DOC37-2
DOCUMENT 09
DOC9-1 DOCUMENT 9 FIRST STAGE 30d DOC4R-1 DOC9R-1
DOC9-2 DOCUMENT 9 SECOND STAGE 20d DOC9R-1, DOC4R-2 DOC9R-2
DOC9R-1 DOCUMENT 9 FIRST STAGE REVIEW 10d DOC9-1 DOC9-2, DOC13-1
DOC9R-2 DOCUMENT 9 SECOND STAGE REVIEW 10d DOC9-2 DOC13-2
DOCUMENT 10
DOC10-1 DOCUMENT 10 FIRST STAGE 60d DOC5R-1 DOC10R-1
DOC10-2 DOCUMENT 10 SECOND STAGE 20d DOC10R-1, DOC5R-2 DOC10R-2
DOC10R-1 DOCUMENT 10 FIRST STAGE REVIEW 10d DOC10-1 DOC10-2, DOC17-1
DOC10R-2 DOCUMENT 10 SECOND STAGE REVIEW 10d DOC10-2 DOC17-2

114

Table A.14: Real-World Project Scheduling Problem: DOC11 - DOC20
Activity ID Document Reference Duration Predecessors Successors

DOCUMENT 11
DOC11-1 DOCUMENT 11 FIRST STAGE 30d DOC7R-1 DOC11R-1
DOC11-2 DOCUMENT 11 SECOND STAGE 10d DOC11R-1, DOC7R-2 DOC11R-2
DOC11R-1 DOCUMENT 11 FIRST STAGE REVIEW 10d DOC11-1 DOC11-2, DOC20-1
DOC11R-2 DOCUMENT 11 SECOND STAGE REVIEW 10d DOC11-2 DOC20-2
DOCUMENT 12
DOC12-1 DOCUMENT 12 FIRST STAGE 20d AA001 DOC12R-1
DOC12-2 DOCUMENT 12 SECOND STAGE 10d DOC12R-1 DOC12R-2
DOC12R-1 DOCUMENT 12 FIRST STAGE REVIEW 10d DOC12-1 DOC12-2
DOC12R-2 DOCUMENT 12 SECOND STAGE REVIEW 10d DOC12-2 AA002
DOCUMENT 13
DOC13-1 DOCUMENT 13 FIRST STAGE 50d DOC9R-1 DOC13R-1, DOC15-1, DOC16-1
DOC13-2 DOCUMENT 13 SECOND STAGE 25d DOC13R-1, DOC9R-2 DOC13R-2, DOC15-2
DOC13R-1 DOCUMENT 13 FIRST STAGE REVIEW 10d DOC13-1 DOC13-2
DOC13R-2 DOCUMENT 13 SECOND STAGE REVIEW 10d DOC13-2 DOC15-2, DOC16-2
DOCUMENT 14
DOC14-1 DOCUMENT 14 FIRST STAGE 80d AA001 DOC14R-1
DOC14-2 DOCUMENT 14 SECOND STAGE 60d DOC14R-1 DOC14R-2
DOC14R-1 DOCUMENT 14 FIRST STAGE REVIEW 10d DOC14-1 DOC14-2
DOC14R-2 DOCUMENT 14 SECOND STAGE REVIEW 10d DOC14-2 AA002
DOCUMENT 15
DOC15-1 DOCUMENT 15 FIRST STAGE 60d DOC13-1 DOC15R-1
DOC15-2 DOCUMENT 15 SECOND STAGE 40d DOC15R-1, DOC13-2, DOC13R-2 DOC15R-2
DOC15R-1 DOCUMENT 15 FIRST STAGE REVIEW 10d DOC15-1 DOC15-2
DOC15R-2 DOCUMENT 15 SECOND STAGE REVIEW 10d DOC15-2 AA002
DOCUMENT 16
DOC16-1 DOCUMENT 16 FIRST STAGE 40d DOC13-1 DOC16R-1
DOC16-2 DOCUMENT 16 SECOND STAGE 30d DOC16R-1, DOC13R-2 DOC16R-2
DOC16R-1 DOCUMENT 16 FIRST STAGE REVIEW 10d DOC16-1 DOC16-2, DOC19-1, DOC23-1
DOC16R-2 DOCUMENT 16 SECOND STAGE REVIEW 10d DOC16-2 DOC19-2, DOC23-2
DOCUMENT 17
DOC17-1 DOCUMENT 17 FIRST STAGE 40d DOC10R-1 DOC17R-1
DOC17-2 DOCUMENT 17 SECOND STAGE 20d DOC17R-1, DOC10R-2 DOC17R-2
DOC17R-1 DOCUMENT 17 FIRST STAGE REVIEW 10d DOC17-1 DOC17-2
DOC17R-2 DOCUMENT 17 SECOND STAGE REVIEW 10d DOC17-2 AA002
DOCUMENT 18
DOC18-1 DOCUMENT 18 FIRST STAGE 50d AA001 DOC18R-1
DOC18-2 DOCUMENT 18 SECOND STAGE 20d DOC18R-1 DOC18R-2
DOC18R-1 DOCUMENT 18 FIRST STAGE REVIEW 10d DOC18-1 DOC18-2, DOC22-1
DOC18R-2 DOCUMENT 18 SECOND STAGE REVIEW 10d DOC18-2 DOC22-1
DOCUMENT 19
DOC19-1 DOCUMENT 19 FIRST STAGE 60d DOC16R-1 DOC19R-1
DOC19-2 DOCUMENT 19 SECOND STAGE 40d DOC19R-1, DOC16R-2 DOC19R-2
DOC19R-1 DOCUMENT 19 FIRST STAGE REVIEW 10d DOC19-1 DOC19-2
DOC19R-2 DOCUMENT 19 SECOND STAGE REVIEW 10d DOC19-2 AA002
DOCUMENT 20
DOC20-1 DOCUMENT 20 FIRST STAGE 70d DOC11R-1 DOC20R-1
DOC20-2 DOCUMENT 20 SECOND STAGE 50d DOC20R-1, DOC11R-2 DOC20R-2
DOC20R-1 DOCUMENT 20 FIRST STAGE REVIEW 10d DOC20-1 DOC20-2
DOC20R-2 DOCUMENT 20 SECOND STAGE REVIEW 10d DOC20-2 AA002

115

Table A.15: Real-World Project Scheduling Problem
Activity ID Document Reference Duration Predecessors Successors

DOCUMENT 21
DOC21-1 DOCUMENT 21 FIRST STAGE 50d AA001 DOC21-2
DOC21-2 DOCUMENT 21 SECOND STAGE 20d DOC21-1 DOC21R-1
DOC21R-1 DOCUMENT 21 FIRST STAGE REVIEW 10d DOC21-2 DOC21R-2, DOC36-1
DOC21R-2 DOCUMENT 21 SECOND STAGE REVIEW 10d DOC21R-1 DOC36-2
DOCUMENT 22
DOC22-1 DOCUMENT 22 FIRST STAGE 70d DOC18R-1, DOC18R-2 DOC22-2
DOC22-2 DOCUMENT 22 SECOND STAGE 40d DOC22-1 DOC22R-1
DOC22R-1 DOCUMENT 22 FIRST STAGE REVIEW 10d DOC22-2 DOC22R-2, DOC31-1
DOC22R-2 DOCUMENT 22 SECOND STAGE REVIEW 10d DOC22R-1 DOC31-2
DOCUMENT 23
DOC23-1 DOCUMENT 23 FIRST STAGE 40d DOC16R-1 DOC23-2
DOC23-2 DOCUMENT 23 SECOND STAGE 30d DOC23-1, DOC16R-2 DOC23R-1
DOC23R-1 DOCUMENT 23 FIRST STAGE REVIEW 10d DOC23-2 DOC23R-2, DOC25-1
DOC23R-2 DOCUMENT 23 SECOND STAGE REVIEW 10d DOC23R-1 DOC25-2
DOCUMENT 24
DOC24-1 DOCUMENT 24 FIRST STAGE 60d DOC5R-1 DOC24-2
DOC24-2 DOCUMENT 24 SECOND STAGE 25d DOC24-1, DOC5R-2 DOC24R-1
DOC24R-1 DOCUMENT 24 FIRST STAGE REVIEW 10d DOC24-2 DOC24R-2, DOC32-1
DOC24R-2 DOCUMENT 24 SECOND STAGE REVIEW 10d DOC24R-1 DOC32-2
DOCUMENT 25
DOC25-1 DOCUMENT 25 FIRST STAGE 80d DOC23R-1 DOC25-2
DOC25-2 DOCUMENT 25 SECOND STAGE 60d DOC25-1, DOC23R-2 DOC25R-1
DOC25R-1 DOCUMENT 25 FIRST STAGE REVIEW 10d DOC25-2 DOC25R-2
DOC25R-2 DOCUMENT 25 SECOND STAGE REVIEW 10d DOC25R-1 AA002
DOCUMENT 26
DOC26-1 DOCUMENT 26 FIRST STAGE 60d AA001 DOC26-2
DOC26-2 DOCUMENT 26 SECOND STAGE 40d DOC26-1 DOC26R-1
DOC26R-1 DOCUMENT 26 FIRST STAGE REVIEW 10d DOC26-2 DOC26R-2, DOC27-1
DOC26R-2 DOCUMENT 26 SECOND STAGE REVIEW 10d DOC26R-1 DOC27-2
DOCUMENT 27
DOC27-1 DOCUMENT 27 FIRST STAGE 60d DOC26R-1 DOC27-2
DOC27-2 DOCUMENT 27 SECOND STAGE 20d DOC27-1, DOC26R-2 DOC27R-1
DOC27R-1 DOCUMENT 27 FIRST STAGE REVIEW 10d DOC27-2 DOC27R-2, DOC44-1
DOC27R-2 DOCUMENT 27 SECOND STAGE REVIEW 10d DOC27R-1 DOC44-2
DOCUMENT 28
DOC28-1 DOCUMENT 28 FIRST STAGE 90d AA001 DOC28-2
DOC28-2 DOCUMENT 28 SECOND STAGE 70d DOC28-1 DOC28R-1
DOC28R-1 DOCUMENT 28 FIRST STAGE REVIEW 10d DOC28-2 DOC28R-2
DOC28R-2 DOCUMENT 28 SECOND STAGE REVIEW 10d DOC28R-1 AA002
DOCUMENT 29
DOC29-1 DOCUMENT 29 FIRST STAGE 45d DOC2R-1 DOC29-2
DOC29-2 DOCUMENT 29 SECOND STAGE 30d DOC29-1, DOC2R-2 DOC29R-1
DOC29R-1 DOCUMENT 29 FIRST STAGE REVIEW 10d DOC29-2 DOC29R-2, DOC30-1
DOC29R-2 DOCUMENT 29 SECOND STAGE REVIEW 10d DOC29R-1 DOC30-2
DOCUMENT 30
DOC30-1 DOCUMENT 30 FIRST STAGE 50d DOC29R-1 DOC30-2
DOC30-2 DOCUMENT 30 SECOND STAGE 30d DOC30-1, DOC29R-2 DOC30R-1
DOC30R-1 DOCUMENT 30 FIRST STAGE REVIEW 10d DOC30-2 DOC30R-2, DOC33-1
DOC30R-2 DOCUMENT 30 SECOND STAGE REVIEW 10d DOC30R-1 DOC33-2

116

Table A.16: Real-World Project Scheduling Problem: DOC21 - DOC30
Activity ID Document Reference Duration Predecessors Successors

DOCUMENT 31
DOC31-1 DOCUMENT 31 FIRST STAGE 60d DOC22R-1 DOC31-2
DOC31-2 DOCUMENT 31 SECOND STAGE 20d DOC31-1, DOC22R-2 DOC31R-1
DOC31R-1 DOCUMENT 31 FIRST STAGE REVIEW 10d DOC31-2 DOC31R-2, DOC42-1
DOC31R-2 DOCUMENT 31 SECOND STAGE REVIEW 10d DOC31R-1 DOC42-2
DOCUMENT 32
DOC32-1 DOCUMENT 32 FIRST STAGE 70d DOC24R-1 DOC32-2
DOC32-2 DOCUMENT 32 SECOND STAGE 40d DOC32-1, DOC24R-2 DOC32R-1
DOC32R-1 DOCUMENT 32 FIRST STAGE REVIEW 10d DOC32-2 DOC32R-2, DOC43-1
DOC32R-2 DOCUMENT 32 SECOND STAGE REVIEW 10d DOC32R-1 DOC43-2
DOCUMENT 33
DOC33-1 DOCUMENT 33 FIRST STAGE 50d DOC30R-1 DOC33-2
DOC33-2 DOCUMENT 33 SECOND STAGE 25d DOC33-1, DOC30R-2 DOC33R-1
DOC33R-1 DOCUMENT 33 FIRST STAGE REVIEW 10d DOC33-2 DOC33R-2
DOC33R-2 DOCUMENT 33 SECOND STAGE REVIEW 10d DOC33R-1 AA002
DOCUMENT 34
DOC34-1 DOCUMENT 34 FIRST STAGE 50d AA001 DOC34-2
DOC34-2 DOCUMENT 34 SECOND STAGE 20d DOC34-1 DOC34R-1
DOC34R-1 DOCUMENT 34 FIRST STAGE REVIEW 10d DOC34-2 DOC34R-2, DOC35-1
DOC34R-2 DOCUMENT 34 SECOND STAGE REVIEW 10d DOC34R-1 DOC35-2
DOCUMENT 35
DOC35-1 DOCUMENT 35 FIRST STAGE 80d DOC34R-1 DOC35-2
DOC35-2 DOCUMENT 35 SECOND STAGE 60d DOC35-1, DOC34R-2 DOC35R-1
DOC35R-1 DOCUMENT 35 FIRST STAGE REVIEW 10d DOC35-2 DOC35R-2
DOC35R-2 DOCUMENT 35 SECOND STAGE REVIEW 10d DOC35R-1 AA002
DOCUMENT 36
DOC36-1 DOCUMENT 36 FIRST STAGE 50d DOC21R-1 DOC36-2
DOC36-2 DOCUMENT 36 SECOND STAGE 20d DOC36-1, DOC21R-2 DOC36R-1
DOC36R-1 DOCUMENT 36 FIRST STAGE REVIEW 10d DOC36-2 DOC36R-2, DOC39-1
DOC36R-2 DOCUMENT 36 SECOND STAGE REVIEW 10d DOC36R-1 DOC39-2
DOCUMENT 37
DOC37-1 DOCUMENT 37 FIRST STAGE 70d DOC8R-1 DOC37-2
DOC37-2 DOCUMENT 37 SECOND STAGE 20d DOC37-1, DOC8R-2 DOC37R-1
DOC37R-1 DOCUMENT 37 FIRST STAGE REVIEW 10d DOC37-2 DOC37R-2
DOC37R-2 DOCUMENT 37 SECOND STAGE REVIEW 10d DOC37R-1 AA002
DOCUMENT 38
DOC38-1 DOCUMENT 38 FIRST STAGE 80d AA001 DOC38-2
DOC38-2 DOCUMENT 38 SECOND STAGE 60d DOC38-1 DOC38R-1
DOC38R-1 DOCUMENT 38 FIRST STAGE REVIEW 10d DOC38-2 DOC38R-2, DOC40-1
DOC38R-2 DOCUMENT 38 SECOND STAGE REVIEW 10d DOC38R-1 DOC40-2
DOCUMENT 39
DOC39-1 DOCUMENT 39 FIRST STAGE 60d DOC36R-1 DOC39-2
DOC39-2 DOCUMENT 39 SECOND STAGE 40d DOC39-1, DOC36R-2 DOC39R-1
DOC39R-1 DOCUMENT 39 FIRST STAGE REVIEW 10d DOC39-2 DOC39R-2
DOC39R-2 DOCUMENT 39 SECOND STAGE REVIEW 10d DOC39R-1 AA002
DOCUMENT 40
DOC40-1 DOCUMENT 40 FIRST STAGE 70d DOC38R-1 DOC40-2
DOC40-2 DOCUMENT 40 SECOND STAGE 40d DOC40-1, DOC38R-2 DOC40R-1
DOC40R-1 DOCUMENT 40 FIRST STAGE REVIEW 10d DOC40-2 DOC40R-2, DOC41-1
DOC40R-2 DOCUMENT 40 SECOND STAGE REVIEW 10d DOC40R-1 DOC41-2

117

Table A.17: Real-World Project Scheduling Problem: DOC41 - DOC45
Activity ID Document Reference Duration Predecessors Successors

DOCUMENT 41
DOC41-1 DOCUMENT 41 FIRST STAGE 70d DOC40R-1 DOC41-2
DOC41-2 DOCUMENT 41 SECOND STAGE 40d DOC41-1, DOC40R-2 DOC41R-1
DOC41R-1 DOCUMENT 41 FIRST STAGE REVIEW 10d DOC41-2 DOC41R-2
DOC41R-2 DOCUMENT 41 SECOND STAGE REVIEW 10d DOC41R-1 AA002
DOCUMENT 42
DOC42-1 DOCUMENT 42 FIRST STAGE 60d DOC31R-1 DOC42-2
DOC42-2 DOCUMENT 42 SECOND STAGE 30d DOC42-1, DOC31R-2 DOC42R-1
DOC42R-1 DOCUMENT 42 FIRST STAGE REVIEW 10d DOC42-2 DOC42R-2
DOC42R-2 DOCUMENT 42 SECOND STAGE REVIEW 10d DOC42R-1 AA002
DOCUMENT 43
DOC43-1 DOCUMENT 43 FIRST STAGE 70d DOC32R-1 DOC43-2
DOC43-2 DOCUMENT 43 SECOND STAGE 40d DOC43-1, DOC32R-2 DOC43R-1
DOC43R-1 DOCUMENT 43 FIRST STAGE REVIEW 10d DOC43-2 DOC43R-2
DOC43R-2 DOCUMENT 43 SECOND STAGE REVIEW 10d DOC43R-1 AA002
DOCUMENT 44
DOC44-1 DOCUMENT 44 FIRST STAGE 60d DOC27R-1 DOC44-2
DOC44-2 DOCUMENT 44 SECOND STAGE 20d DOC44-1, DOC27R-2 DOC44R-1
DOC44R-1 DOCUMENT 44 FIRST STAGE REVIEW 10d DOC44-2 DOC44R-2, DOC45-1
DOC44R-2 DOCUMENT 44 SECOND STAGE REVIEW 10d DOC44R-1 DOC45-2
DOCUMENT 45
DOC45-1 DOCUMENT 45 FIRST STAGE 70d DOC44R-1 DOC45-2
DOC45-2 DOCUMENT 45 SECOND STAGE 40d DOC45-1, DOC44R-2 DOC45R-1
DOC45R-1 DOCUMENT 45 FIRST STAGE REVIEW 10d DOC45-2 DOC45R-2
DOC45R-2 DOCUMENT 45 SECOND STAGE REVIEW 10d DOC45R-1 AA002

118

Appendix B

Figures

119

Figure B.1: RCPSP Schedule: DOCs 1-15

120

Figure B.2: RCPSP Schedule: DOCs 16-30

121

Figure B.3: RCPSP Schedule: DOCs 31-45

122

Figure B.4: MRCPSP Schedule: DOCs 1-15

123

Figure B.5: MRCPSP Schedule: DOCs 16-30

124

Figure B.6: MRCPSP Schedule: DOCs 31-45

125

Bibliography

Abdollahzadeh A, Reynolds A, Christie M, Corne DW, Williams GJ, Davies BJ,
et al (2013) Estimation of distribution algorithms applied to history matching.
SPE Journal 18(03):508–517

Aickelin U, Li J (2007) An estimation of distribution algorithm for nurse scheduling.
Annals of Operations Research 155(1):289–309

Aickelin U, Burke EK, Li J (2006) An estimation of distribution algorithm with
intelligent local search for rule-based nurse rostering. Journal of the Operational
Research Society 58(12):1574–1585

Alcaraz J, Maroto C (2001) A robust genetic algorithm for resource allocation in
project scheduling. Annals of Operations Research 102(1-4):83–109

Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained
project scheduling problem with genetic algorithms. Journal of the Operational
Research Society 54(6):614–626

Ayodele M, McCall J, Regnier-Coudert O (2015) Probabilistic model enhanced ge-
netic algorithm for multi-mode resource constrained project scheduling problem.
In: Proceedings of the Companion Publication of the 2015 on Genetic and Evolu-
tionary Computation Conference, ACM, pp 745–746

Ayodele M, McCall J, Regnier-Coudert O (2016a) BPGA-EDA for the multi-mode
resource constrained project scheduling problem. In: Evolutionary Computation
(CEC), 2016 IEEE Congress on, IEEE, pp 3417–3424

Ayodele M, McCall J, Regnier-Coudert O (2016b) RK-EDA: A novel random key
based estimation of distribution algorithm. In: International Conference on Parallel
Problem Solving from Nature, Springer, pp 849–858

Ayodele M, McCall J, Regnier-Coudert O (2017a) Estimation of distribution algo-
rithms for the multi-mode resource constrained project scheduling problem. In:
Evolutionary Computation (CEC), 2017 IEEE Congress on, IEEE, pp 1579–1586

Ayodele M, McCall J, Regnier-Coudert O, Bowie L (2017b) A random key based
estimation of distribution algorithm for the permutation flowshop scheduling prob-
lem. In: Evolutionary Computation (CEC), 2017 IEEE Congress on, IEEE, pp
2364–2371

126

Baluja S (1994) Population-based incremental learning. a method for integrating
genetic search based function optimization and competitive learning. Tech. rep.,
DTIC Document

Baluja S, Davies S (1997) Combining multiple optimization runs with optimal depen-
dency trees. Tech. rep., DTIC Document

Baluja S, Davies S (1998) Fast probabilistic modeling for combinatorial optimization.
In: AAAI/IAAI, pp 469–476

Bengoetxea E, Larrañaga P, Bloch I, Perchant A, Boeres C (2002) Inexact graph
matching by means of estimation of distribution algorithms. Pattern Recognition
35(12):2867–2880

Blažewicz J, Domschke W, Pesch E (1996) The job shop scheduling problem: Con-
ventional and new solution techniques. European journal of operational research
93(1):1–33

Blum C, Dorigo M (2004) The hyper-cube framework for ant colony optimiza-
tion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on 34(2):1161–1172

Blum C, Roli A, Dorigo M (2001) Hc–aco: The hyper-cube framework for ant colony
optimization. In: Proceedings of MIC, vol 2, pp 399–403

Bonyadi MR, Barone L, Michalewicz Z (2013) The travelling thief problem: the first
step in the transition from theoretical problems to realistic problems. In: Proceed-
ings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico

Bosman PA, Thierens D (2001) Crossing the road to efficient ideas for permutation
problems. In: Proceedings of the 6th annual conference on Genetic and evolutionary
computation, ACM, pp 219–226

Bosman PA, Thierens D (2007) Adaptive variance scaling in continuous multi-
objective estimation-of-distribution algorithms. In: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, ACM, pp 500–507

Bosman PA, Thierens D (2013) More concise and robust linkage learning by filtering
and combining linkage hierarchies. In: Proceedings of the 15th annual conference
on Genetic and evolutionary computation, ACM, pp 359–366

Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version.
European Journal of Operational Research 149(2):268–281

Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering
99:300–313

127

Bräysy O, Gendreau M (2005) Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation science 39(1):119–139

Castillo-Salazar JA, Landa-Silva D, Qu R (2016) Workforce scheduling and routing
problems: literature survey and computational study. Annals of Operations Re-
search 239(1):39–67

Ceberio J (2014) Solving permutation problems with estimation of distribution al-
gorithms and extensions thereof. PhD thesis, PhD thesis, Faculty of Computer
Science, University of the Basque Country

Ceberio J, Irurozki E, Mendiburu A, Lozano JA (2012) A review on estimation of
distribution algorithms in permutation-based combinatorial optimization problems.
Progress in Artificial Intelligence 1(1):103–117

Ceberio J, Mendiburu A, Lozano JA (2013) The plackett-luce ranking model on
permutation-based optimization problems. In: Evolutionary Computation (CEC),
2013 IEEE Congress on, IEEE, pp 494–501

Ceberio J, Irurozki E, Mendiburu A, Lozano JA (2014a) A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
Evolutionary Computation, IEEE Transactions on 18(2):286–300

Ceberio J, Irurozki E, Mendiburu A, Lozano JA (2014b) Extending distance-based
ranking models in estimation of distribution algorithms. In: Evolutionary Compu-
tation (CEC), 2014 IEEE Congress on, IEEE, pp 2459–2466

Chand S, Singh HK, Ray T (2017) A heuristic algorithm for solving resource con-
strained project scheduling problems. In: Evolutionary Computation (CEC), 2017
IEEE Congress on, IEEE, pp 225–232

Chaves-Gonzalez JM, Dominguez-Gonzalez D, Vega-Rodriguez MA, Gomez-Pulido
JA, Sanchez-Perez JM (2008) Parallelizing pbil for solving a real-world frequency
assignment problem in gsm networks. In: Parallel, Distributed and Network-Based
Processing, 2008. PDP 2008. 16th Euromicro Conference on, IEEE, pp 391–398

Chen RM (2011) Particle swarm optimization with justification and designed mech-
anisms for resource-constrained project scheduling problem. Expert Systems with
Applications 38(6):7102–7111

Chen W, Shi Yj, Teng Hf, Lan Xp, Hu Lc (2010) An efficient hybrid algorithm for
resource-constrained project scheduling. Information Sciences 180(6):1031–1039

Chica M, Cordón O, Damas S, Bautista J (2011) Including different kinds of prefer-
ences in a multi-objective ant algorithm for time and space assembly line balancing
on different nissan scenarios. Expert Systems with Applications 38(1):709–720

Chiong R, Weise T, Michalewicz Z (2012) Variants of evolutionary algorithms for
real-world applications. Springer

128

Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project schedul-
ing using RCPSP and SAT solvers. European Journal of Operational Research
213(1):73–82

Damak N, Jarboui B, Siarry P, Loukil T (2009) Differential evolution for solving multi-
mode resource-constrained project scheduling problems. Computers & Operations
Research 36(9):2653–2659

De Bonet JS, Isbell CL, Viola P, et al (1997) Mimic: Finding optima by estimating
probability densities. Advances in neural information processing systems pp 424–
430

Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16.
John Wiley & Sons

Debels D, Vanhoucke M (2005) A bi-population based genetic algorithm for the
resource-constrained project scheduling problem. In: International Conference on
Computational Science and Its Applications, Springer, pp 378–387

Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem. Operations Research 55(3):457–
469

Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling. European Journal
of Operational Research 169(2):638–653

Demirbas A, Alsulami H, Nizami AS (2016) The natural gas potential of saudi ara-
bia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
38(18):2635–2642

Donati AV, Montemanni R, Casagrande N, Rizzoli AE, Gambardella LM (2008) Time
dependent vehicle routing problem with a multi ant colony system. European jour-
nal of operational research 185(3):1174–1191

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 26(1):29–41

Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimiza-
tion. Artificial life 5(2):137–172

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Computational
Intelligence Magazine, IEEE 1(4):28–39

DEste P, Patel P (2007) University–industry linkages in the uk: What are the factors
underlying the variety of interactions with industry? Research policy 36(9):1295–
1313

129

Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied
to multi-mode resource-constrained project scheduling problem. European Journal
of Operational Research 205(1):31–41

Engelbrecht AP (2007) Computational intelligence: an introduction. John Wiley &
Sons

Etxeberria R, Larranaga P (1999) Global optimization using bayesian networks. In:
Second Symposium on Artificial Intelligence (CIMAF-99), pp 332–339

Fang C, Wang L (2012) An effective shuffled frog-leaping algorithm for resource-
constrained project scheduling problem. Computers & Operations Research
39(5):890–901

Fischer A, Greiff S, Funke J (2011) The process of solving complex problems. Journal
of Problem Solving 4(1):19–42

Fligner MA, Verducci JS (1988) Multistage ranking models. Journal of the American
Statistical association 83(403):892–901

Foong WK, Maier HR, Simpson AR (2005) Ant colony optimization for power plant
maintenance scheduling optimization. In: Proceedings of the 2005 conference on
Genetic and evolutionary computation, ACM, pp 249–256

Foong WK, Simpson AR, Maier HR, Stolp S (2008) Ant colony optimization for
power plant maintenance scheduling optimizationa five-station hydropower system.
Annals of Operations Research 159(1):433–450

Gagné C, Gravel M, Price WL (2006) Solving real car sequencing problems with ant
colony optimization. European Journal of Operational Research 174(3):1427–1448

Gambardella LM, Rizzoli AE, Oliverio F, Casagrande N, Donati AV, Montemanni R,
Lucibello E (2003) Ant colony optimization for vehicle routing in advanced logistics
systems. In: Proceedings of the International Workshop on Modelling and Applied
Simulation (MAS 2003), pp 3–9

Geiger MJ (2016) A multi-threaded local search algorithm and computer implemen-
tation for the multi-mode, resource-constrained multi-project scheduling problem.
European Journal of Operational Research

Goncharov E, Leonov V (2017) Genetic algorithm for the resource-constrained project
scheduling problem. Automation and Remote Control 78(6):1101–1114

González-Barbosa JJ, Delgado-Orta JF, Cruz-Reyes L, Fraire-Huacuja HJ, Ramirez-
Saldivar A (2010) Comparative analysis of hybrid techniques for an ant colony
system algorithm applied to solve a real-world transportation problem. In: Soft
Computing for Recognition Based on Biometrics, Springer, pp 365–385

130

Gravel M, Price WL, Gagné C (2000) Scheduling jobs in an alcan aluminium
foundry using a genetic algorithm. International Journal of Production Research
38(13):3031–3041

Gravel M, Price WL, Gagné C (2002) Scheduling continuous casting of aluminum
using a multiple objective ant colony optimization metaheuristic. European Journal
of Operational Research 143(1):218–229

Gupta DK, Arora Y, Singh UK, Gupta JP (2012) Recursive ant colony optimization
for estimation of parameters of a function. In: Recent Advances in Information
Technology (RAIT), 2012 1st International Conference on, IEEE, pp 448–454

Gutjahr WJ, Rauner MS (2007) An aco algorithm for a dynamic regional nurse-
scheduling problem in austria. Computers & Operations Research 34(3):642–666

Hajizadeh Y, Christie M, Demyanov V (2011) Ant colony optimization for history
matching and uncertainty quantification of reservoir models. Journal of Petroleum
Science and Engineering 77(1):78–92

Hämmerle A, Ankerl M (2013) Solving a vehicle routing problem with ant colony
optimisation and stochastic ranking. In: Computer Aided Systems Theory-
EUROCAST 2013, Springer, pp 259–266

Hani Y, Amodeo L, Yalaoui F, Chen H (2007) Ant colony optimization for solving an
industrial layout problem. European Journal of Operational Research 183(2):633–
642

Harik G (1999) Linkage learning via probabilistic modeling in the ecga. Urbana
51(61):801

Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algorithm. Evolution-
ary Computation, IEEE Transactions on 3(4):287–297

Hart E, Ross P, Corne D (2005) Evolutionary scheduling: A review. Genetic Pro-
gramming and Evolvable Machines 6(2):191–220

Hart E, Sim K, Urquhart N (2014) A real-world employee scheduling and routing
application. In: Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ACM, pp 1239–1242

Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm.
Annals of Operations Research 102(1-4):111–135

Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under
resource constraints. Naval Research Logistics (NRL) 49(5):433–448

Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distri-
bution algorithms. Swarm and Evolutionary Computation 1(3):111–128

131

Heckerman D, Geiger D, Chickering DM (1995) Learning bayesian networks: The
combination of knowledge and statistical data. Machine learning 20(3):197–243

Hirsch P, Palfi A, Gronalt M (2012) Solving a time constrained two-crane routing
problem for material handling with an ant colony optimisation approach: an ap-
plication in the roof-tile industry. International Journal of Production Research
50(20):6005–6021

Hu XM, Zhang J, Li Y (2008) Orthogonal methods based ant colony search for solv-
ing continuous optimization problems. Journal of computer science and technology
23(1):2–18

Hutzschenreuter AK, Bosman PA, La Poutré H (2009) Evolutionary multiobjective
optimization for dynamic hospital resource management. In: Evolutionary Multi-
criterion Optimization, Springer, pp 320–334

Jordan MI, et al (2004) Graphical models. Statistical Science 19(1):140–155

Kahraman C, Kaya I, Çinar D (2010) Computational intelligence: Past, today, and
future. In: Computational Intelligence in Complex Decision Systems, Springer, pp
1–46

Knjazew D, Goldberg DE (2000) Omega-ordering messy ga: Solving permutation
problems with the fast messy genetic algorithm and random keys. In: Proceedings
of Genetic and Evolutionary Computation Conference, pp 181–188

Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods
revisited: Theory and computation. European Journal of Operational Research
90(2):320–333

Kolisch R, Drexl A (1996) Adaptive search for solving hard project scheduling prob-
lems. Naval Research Logistics (NRL) 43(1):23–40

Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained
project scheduling problem: Classification and computational analysis. Springer

Kolisch R, Sprecher A (1997) PSPLIB-a project scheduling problem library: OR
software-ORSEP operations research software exchange program. European Jour-
nal of Operational Research 96(1):205–216

Koller D, Friedman N (2009) Probabilistic graphical models: principles and tech-
niques. MIT press

Larrañaga P, Lozano JA (2002) Estimation of distribution algorithms: A new tool
for evolutionary computation, vol 2. Springer

Larrañaga P, Moral S (2011) Probabilistic graphical models in artificial intelligence.
Applied soft computing 11(2):1511–1528

132

Larranaga P, Etxeberria R, Lozano J, Pena J, Pe J, et al (1999) Optimization by
learning and simulation of bayesian and gaussian networks. Tech. rep., Department
of Computer Science and Artificial Intelligence, University of the Basque Country

Larrañaga P, Etxeberria R, Lozano JA, Peña JM (2000) Optimization in Continuous
Domains by Learning and Simulation of Gaussian Networks. In: Workshop in Op-
timization by Building and using Probabilistic Models, Las Vegas, Nevada, USA,
A Workshop withing the 2000 Genetic and Evolutionary Computation Conference,
GECCO 2000, pp 201–204

Linn R, Zhang W (1999) Hybrid flow shop scheduling: a survey. Computers & Indus-
trial Engineering 37(1):57–61

Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm
for scheduling projects with resource constraints and multiple execution modes.
International Journal of Production Economics 117(2):302–316

Lozano J, Mendiburu A (2002) Estimation of distribution algorithms applied to the
job shop scheduling problem: Some preliminary research. In: Estimation of Distri-
bution Algorithms, Springer, pp 231–242

Mart́ı R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of
heuristic methods for the linear ordering problem. Computational optimization
and applications 51(3):1297–1317

Michalewicz Z (2012a) Quo vadis, evolutionary computation? In: Advances in Com-
putational Intelligence, Springer, pp 98–121

Michalewicz Z (2012b) Ubiquity symposium: Evolutionary computation and the pro-
cesses of life: the emperor is naked: evolutionary algorithms for real-world appli-
cations. Ubiquity 2012(November):3

Michalewicz Z, Fogel DB (2000) How to solve it: Modern Heuristics. Springer New
York

Montemanni R, Gambardella LM, Rizzoli AE, Donati AV (2005) Ant colony system
for a dynamic vehicle routing problem. Journal of Combinatorial Optimization
10(4):327–343

Montgomery J (2007) Alternative solution representations for the job shop scheduling
problem in ant colony optimisation. In: Progress in Artificial Life, Springer, pp 1–12

Montgomery J, Fayad C, Petrovic S (2006) Solution representation for job shop
scheduling problems in ant colony optimisation. In: Ant Colony Optimization and
Swarm Intelligence, Springer, pp 484–491

Mühlenbein H, Mahnig T (1999) Fda-a scalable evolutionary algorithm for the opti-
mization of additively decomposed functions. Evolutionary computation 7(4):353–
376

133

Nechita E, Crisan GC, Talmaciu M (2008) Cooperative ant colonies for vehicle routing
problem with time windows. a case study in the distribution of dietary products.
In: Proceedings of the 12th World Multiconference on Systemics, Cybernetics and
Informatics (WMSCI 2008) Orlando, USA, vol 5

Ochiai J, Kanoh H (2014) Hybrid ant colony optimization for real-world delivery
problems based on real time and predicted traffic in wide area road network. In:
Fourth International conference on Computer Science and Information Technology-
CCSIT, vol 4

Oliver DS, Chen Y (2011) Recent progress on reservoir history matching: a review.
Computational Geosciences 15(1):185–221

Olsson RJ, Kapelan Z, Savic DA (2009) Probabilistic building block identification
for the optimal design and rehabilitation of water distribution systems. Journal of
Hydroinformatics 11(2):89–105

Pelikan M (2005a) Bayesian optimization algorithm. In: Hierarchical Bayesian Opti-
mization Algorithm, Springer, pp 31–48

Pelikan M (2005b) Hierarchical Bayesian optimization algorithm. Springer

Pelikan M, Mühlenbein H (1998) Marginal distributions in evolutionary algorithms.
In: Proceedings of the International Conference on Genetic Algorithms Mendel,
Citeseer, vol 98, pp 90–95

Pelikan M, Mühlenbein H (1999) The bivariate marginal distribution algorithm. In:
Advances in Soft Computing, Springer, pp 521–535

Pelikan M, Sastry K, Cantú-Paz E (2006) Scalable optimization via probabilistic
modeling: From algorithms to applications, vol 33. Springer

Pelikan M, Tsutsui S, Kalapala R (2007) Dependency trees, permutations, and
quadratic assignment problem. In: Genetic And Evolutionary Computation Con-
ference: Proceedings of the 9 th annual conference on Genetic and evolutionary
computation, vol 7, pp 629–629

Pellegrini P, Favaretto D, Moretti E (2007) Multiple ant colony optimization for a rich
vehicle routing problem: a case study. In: Knowledge-Based Intelligent Information
and Engineering Systems, Springer, pp 627–634

Pena J, Robles V, Larrañaga P, Herves V, Rosales F, Pérez MS (2004) Ga-eda: Hybrid
evolutionary algorithm using genetic and estimation of distribution algorithms. In:
Innovations in Applied Artificial Intelligence, Springer, pp 361–371

Petrovska I, Carter J (2006) Estimation of distribution algorithms for history match-
ing. In: 10th European Conference on the Mathematics of Oil Recovery

134

Polyakovskiy S, Bonyadi MR, Wagner M, Michalewicz Z, Neumann F (2014) A com-
prehensive benchmark set and heuristics for the traveling thief problem. In: Pro-
ceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
ACM, pp 477–484

Ranjbar M, De Reyck B, Kianfar F (2009) A hybrid scatter search for the discrete
time/resource trade-off problem in project scheduling. European Journal of Oper-
ational Research 193(1):35–48

Regnier-Coudert O, McCall J (2014) Factoradic representation for permutation op-
timisation. In: Parallel Problem Solving from Nature, PPSN XIII, Springer, pp
332–341

Regnier-Coudert O, McCall J, Ayodele M, Anderson S (2016) Truck and trailer
scheduling in a real world, dynamic and heterogeneous context. Transportation
Research Part E: Logistics and Transportation Review 93:389–408

Reinelt G (1991) Tspliba traveling salesman problem library. ORSA journal on com-
puting 3(4):376–384

Reinelt G (1995) Tsplib95. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
(IWR), Heidelberg

Reinelt G (2002) Linear ordering library (lolib). University of Heidelberg, Dec

Rizzoli A, Oliverio F, Montemanni R, Gambardella LM (2004) Ant colony optimisa-
tion for vehicle routing problems: from theory to applications. Reports of Istituto
Dalle Molle di Studi sull’Intelligenza Arti?ciale 9(1):1–50

Rizzoli AE, Montemanni R, Lucibello E, Gambardella LM (2007) Ant colony opti-
mization for real-world vehicle routing problems. Swarm Intelligence 1(2):135–151

Romero T, Larrañaga P (2009) Triangulation of bayesian networks with recursive esti-
mation of distribution algorithms. International Journal of Approximate Reasoning
50(3):472–484

Salhi A, Rodŕıguez JAV, Zhang Q (2007) An estimation of distribution algorithm
with guided mutation for a complex flow shop scheduling problem. In: Proceedings
of the 9th annual conference on Genetic and evolutionary computation, ACM, pp
570–576

Salinas-Gutiérrez R, Aguirre AH, Diharce ERV (2009) Using copulas in estimation of
distribution algorithms. In: MICAI, Springer, vol 9, pp 658–668

Santana R, Larranaga P, Lozano JA (2010) Learning factorizations in estimation
of distribution algorithms using affinity propagation. Evolutionary Computation
18(4):515–546

135

Santucci V, Baioletti M, Milani A (2016) Algebraic differential evolution algorithm for
the permutation flowshop scheduling problem with total flowtime criterion. IEEE
Transactions on Evolutionary Computation 20(5):682–694

Shakya S, McCall J (2007) Optimization by estimation of distribution with deum
framework based on markov random fields. International Journal of Automation
and Computing 4(3):262–272

Shakya S, Santana R (2008) An eda based on local markov property and gibbs sam-
pling. In: Proceedings of the 10th annual conference on Genetic and evolutionary
computation, ACM, pp 475–476

Shakya S, Santana R (2012) Markov Networks in Evolutionary Computation. Springer

Soliman OS, Elgendi EA (2014) A hybrid estimation of distribution algorithm with
random walk local search for multi-mode resource-constrained project scheduling
problems. arXiv preprint arXiv:14025645

Sprecher A, Hartmann S, Drexl A (1997) An exact algorithm for project scheduling
with multiple modes. Operations-Research-Spektrum 19(3):195–203

Stützle T, Hoos HH (2000) Max–min ant system. Future generation computer systems
16(8):889–914

Su W, Chow MY (2012) Performance evaluation of an eda-based large-scale plug-
in hybrid electric vehicle charging algorithm. IEEE Transactions on Smart Grid
3(1):308–315

Syswerda G (1992) Simulated crossover in genetic algorithms. In: FOGA, pp 239–255

Taillard E (1993) Benchmarks for basic scheduling problems. european journal of
operational research 64(2):278–285

Theodorsson-Norheim E (1987) Friedman and quade tests: Basic computer program
to perform nonparametric two-way analysis of variance and multiple comparisons
on ranks of several related samples. Computers in biology and medicine 17(2):85–99

Tormos P, Lova A (2003) An efficient multi-pass heuristic for project scheduling with
constrained resources. International Journal of Production Research 41(5):1071–
1086

Tsutsui S (2002) Probabilistic model-building genetic algorithms in permutation rep-
resentation domain using edge histogram. In: Parallel Problem Solving from Na-
ture, PPSN VII, Springer, pp 224–233

Tsutsui S, Pelikan M, Goldberg DE (2006) Node histogram vs. edge histogram: a
comparison of pmbgas in permutation domains. MEDAL Report

136

Valls V, Ballestin F, Quintanilla S (2008) A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research
185(2):495–508

Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and
non-preemptive multi-mode resource-constrained project scheduling problem. Eu-
ropean Journal of Operational Research 201(2):409–418

Van Peteghem V, Vanhoucke M (2011) Using resource scarceness characteristics to
solve the multi-mode resource-constrained project scheduling problem. Journal of
Heuristics 17(6):705–728

Van Peteghem V, Vanhoucke M (2014) An experimental investigation of metaheuris-
tics for the multi-mode resource-constrained project scheduling problem on new
dataset instances. European Journal of Operational Research 235(1):62–72

Vanhoucke M, Coelho J (2016) An approach using SAT solvers for the RCPSP with
logical constraints. European Journal of Operational Research 249(2):577–591

Voß S, Witt A (2007) Hybrid flow shop scheduling as a multi-mode multi-project
scheduling problem with batching requirements: A real-world application. Interna-
tional journal of production economics 105(2):445–458

Wang L, Fang C (2012a) An effective estimation of distribution algorithm for the
multi-mode resource-constrained project scheduling problem. Computers & Oper-
ations Research 39(2):449–460

Wang L, Fang C (2012b) A hybrid estimation of distribution algorithm for solving the
resource-constrained project scheduling problem. Expert Systems with Applications
39(3):2451–2460

Wu HP, Huang M (2013) Improved estimation of distribution algorithm for the prob-
lem of single-machine scheduling with deteriorating jobs and different due dates.
Computational and Applied Mathematics pp 1–17

Yu TL, Goldberg DE, Yassine A, Chen YP (2003) Genetic algorithm design inspired
by organizational theory: Pilot study of a dependency structure matrix driven
genetic algorithm. In: GECCO, pp 1620–1621

Yuan B, Gallagher M, Crozier S (2005) Mri magnet design: search space analysis,
edas and a real-world problem with significant dependencies. In: Proceedings of the
2005 conference on Genetic and evolutionary computation, ACM, pp 2141–2148

Zhang Q, Sun J, Tsang E, Ford J (2004) Hybrid estimation of distribution algorithm
for global optimization. Engineering computations 21(1):91–107

Zhang R, Wu C (2012) A hybrid local search algorithm for scheduling real-world job
shops with batch-wise pending due dates. Engineering Applications of Artificial
Intelligence 25(2):209–221

137

Zheng Xl, Wang L (2015) A multi-agent optimization algorithm for resource
constrained project scheduling problem. Expert Systems with Applications
42(15):6039–6049

Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based search for com-
binatorial optimization: A critical survey. Annals of Operations Research 131(1-
4):373–395

138

	coversheetTheses
	Ayodele_Mayowa_PhD_Thesis.pdf

	OA Logo:
	AUTHOR: AYODELE, M.
	TITLE: Effective and efficient estimation of distribution algorithms for permutation and scheduling problems.
	YEAR: 2018
	OpenAIR citation: AYODELE, M. 2018. Effective and efficient estimation of distribution algorithms for permutation and scheduling problems. Robert Gordon University, PhD thesis.
	Degree: Doctor of Philosophy, School of Computing and Digital Media.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:

