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Abstract 

The plasticizer bisphenol-A (BPA) is common to municipal wastewaters and can exert toxicity to 

exposed organisms in the environment.  Here BPA concentration at 5 sewage treatment works (STW) 

and distribution throughout a river catchment in South West UK were investigated.  Sampling sites 

included influent and effluent wastewater (n=5), river water (n=7) and digested sludge (n=2) which 

were monitored for 7 consecutive days.  Findings revealed average BPA loads in influent wastewater 

at two STWs were 10-37 times greater than the other wastewaters monitored.  Concentrations up to 

~100 µg L
-1

 were measured considerably higher than previously reported for municipal wastewaters.  

Temporal variability throughout the week (i.e., highest concentrations during weekdays) suggests 

these high concentration are linked with industrial activity.  Despite ≥90 % removal during 

wastewater treatment, notable concentrations remained in tested effluent (62-892 ng L
-1

).  However, 

minimal impact on BPA concentrations in river water was observed for any of the effluents.  The 

maximum BPA concentration found in river water was 117 ng L
-1

 which is considerably lower than 

the current predicted no effect concentration of 1.6 µg L
-1

.  Nevertheless, analysis of digested sludge 

from sites which received these elevated BPA levels revealed average concentrations of 4.6±0.3 and 

38.7±5.4 µg g
-1

.  These sludge BPA concentrations are considerably greater than previously reported 
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and are attributed to the high BPA loading in influent wastewater.  A typical sludge application 

regime to agricultural land would result in a predicted BPA concentration of 297 ng g
-1 

in soil.  

Further studies are needed on the toxicological thresholds of exposed terrestrial organisms in amended 

soils to better assess the environmental risk here.    

   

Keywords: bisphenol-A; plasticizer; wastewater; river; sludge; industry 
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1. Introduction 

It is estimated that 2.2 million tonnes of bisphenol-A (BPA) is manufactured globally each year 

(Kelland, 2010), and demand is expected to rise by 6-7 % per year (Wright-Walters et al., 2011).  

BPA is used in the production of epoxy resins and polycarbonate plastics as well as phenol resins, 

polyacrylates and polyesters (Staples et al., 1998).  Due to its high production and widespread usage 

in numerous products, BPA is commonly found in the environment, including surface waters 

(Belfroid et al., 2002; Santhi et al., 2012), despite a relatively short environmental half-life of 2.5 to 5 

days (Babić et al., 2016).  Concentrations previously reported in river water are generally in the ng L
-1

 

range (Belfroid et al., 2002; Santhi et al., 2012; Petrie et al., 2015).  However, concentrations 

exceeding 1 µg L
-1

 have been reported including river waters in the United States, Japan, Spain, China 

and the Netherlands (Matsumoto et al., 1982; Staples et al., 2000; Belfroid et al., 2002; Vethaak et al., 

2005; Céspedes et al., 2005).  The presence of BPA in the aquatic environment is concerning due to 

its possible toxic effects on exposed biota (Brian et al., 2005).  Evidence of endocrine disruption 

caused by BPA has been observed in numerous aquatic organisms including fish, amphibians and 

invertebrate (Kang et al., 2008).  These toxicity studies conducted under laboratory conditions 

typically use BPA at µg L
-1

 concentration levels.  Risk assessment of BPA has established a predicted 

no effect concentration (PNEC) of 1.6 µg L
-1

 established (EU, 2008).  However, this PNEC has been 

questioned by the scientific community with the suggestion that such levels may not be adequate to 

protect the most sensitive organisms to BPA exposure (Oehlmann et al., 2008).           

The main source of BPA in rivers is from the discharge of wastewater effluents.  There are other 

possible sources such as the leaching of BPA from submerged or discarded plastic in the river itself.  

Nevertheless, BPA is present in municipal wastewaters at high concentration due to the continual 

leaching from plastics and resins (Rubin, 2011; Flint et al., 2012), including pipes and drinking cups 

and bottles.  Typical concentrations of BPA in municipal wastewater influent are <5 µg L
-1

 (Rudel et 

al., 1998; Lee and Peart, 2000; Zafra et al., 2003; Hernando et al., 2004; Drewes et al., 2005; Petrie et 

al., 2015).  However it can also be present in municipal wastewater from the discharge of industrial 

wastewater.  Manufacturing and processing industries can be permitted to discharge their waste into 
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municipal wastewater systems for treatment.  Industrial wastewater from a paper production facility 

has previously been found to contain BPA concentrations ranging from 28 to 72 µg L
-1 

(Fürhaker et 

al., 2000).   

BPA is considered moderately biodegradable during biological wastewater treatment with removal 

transformation >80 % commonly reported (Clara et al., 2005; Petrie et al., 2015).  Nevertheless BPA 

is commonly reported in treated effluents discharged into the environment (Nakada et al., 2006; 

Gardner et al., 2012; Petrie et al., 2015).   

Other than being biodegradable BPA is considered moderately hydrophobic and has a Log KOW of 3.4 

(Staples et al., 1998).  Therefore it can adsorb to particulate organic matter including sludge during 

biological wastewater treatment.  BPA has been reported from ng g
-1

 levels to >300 µg g
-1

 in activated 

sludge (Meesters and Schröder, 2002; Nie et al., 2009).  Excess or waste activated sludge produced is 

normally digested anaerobically.  Organic contaminants such as BPA have been found to persist 

during anaerobic digestion with concentrations up to 1 µg g
-1

 reported (Tan et al., 2007; Pothitou and 

Voutsa, 2008; Stasinakis et al., 2008; Nie et al., 2009; Langdon et al., 2011; Guerra et al., 2015).  

Persisting BPA can be a significant issue as digested sludge (or biosolids) are recycled to land as 

fertilizer.  Staples et al (2010) investigated the possible risks of BPA exposure to organisms at the 

base of terrestrial food webs (2 species of invertebrates and 6 plant species).  A soil PNEC of 3.7 µg 

g
-1

 was proposed indicating the risk to these organisms is low based on current BPA concentrations 

reported in sludge for land application.  However, a lowest observed effect concentration of 10 µg g
-1

 

has been reported for female juvenile woodlouse (Lemos et al., 2010).  Applying an assessment factor 

of 10 would result in a soil PNEC of 1 µg g
-1

.  There are comparatively fewer studies which 

investigate BPA toxicity to exposed organisms in the terrestrial environment which make the 

derivation of a PNEC challenging.             

Due to the continuing increase in BPA production and use, it is essential to understand its current 

distribution in the water cycle.  Such information is vital for assessing environmental risk and 

developing environmental policy.  Therefore the aim of this study was to provide a holistic 
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understanding of the source, fate and behaviour of BPA throughout a river catchment.  To achieve this 

understanding the following objectives were identified: (i) to investigate the presence and source of 

BPA in influent wastewaters, (ii) to determine the fate and behaviour of BPA during wastewater 

treatment, (iii) to assess the impact of effluent discharges to river water quality with respect to BPA, 

and (iv) to evaluate the significance of BPA in digested sludge destined for land application.  This 

was achieved by investigating BPA at 5 strategic sampling sites throughout a river catchment in South 

West UK.  At each site, influent and effluent wastewater, and river water from upstream and 

downstream of the effluent discharge point (where possible) were sampled for 7 consecutive days. 

Digested sludge was also collected from sites with sludge treatment facilities. 
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2. Materials and methods 

2.1. Materials 

The analytical reference standards BPA and BPA-d16 were purchased from Sigma-Aldrich 

(Gillingham, UK).  Methanol (MeOH) was HPLC grade and obtained from Sigma-Aldrich. Water 

used throughout the study was 18.2 MΩ quality (Elga, Marlow, UK).  Ammonium fluoride (NH4F) 

for the preparation of mobile phases was obtained from Fisher Scientific (Loughborough, UK).  

Oasis® HLB and MCX (60 mg, 3 mL) SPE cartridges were purchased from Waters (Manchester, 

UK). 

 

2.2. Extraction methods 

Aqueous matrices (influent wastewater – 50 mL, effluent wastewater – 50 mL and river waters – 100 

mL) were filtered using GF/F filters (0.7 µm) and adjusted to pH 7.5 ±0.1.  Samples were then spiked 

with 50 ng (50 µL of a 1 µg mL
-1

 methanolic solution) of BPA-d16 and loaded onto Oasis® HLB 

cartridges conditioned using 2 mL MeOH followed by 2 mL H2O at 1 mL min
-1

.  Samples were 

loaded at 5 mL min
-1

 and dried under vacuum.  Elution was performed using 4 mL MeOH at a rate of 

1 mL min
-1

.  Methanolic extracts were subsequently dried under nitrogen using a TurboVap 

evaporator (Caliper, UK, 40 ºC, N2, <5 psi).  Dried extracts were reconstituted in 500 µL 80:20 

H2O:MeOH ready for analysis.   

Suspended particulate matter from influent wastewaters and digested sludge were frozen, freeze-dried 

and 0.25 g samples spiked with 50 ng of BPA-d16. Samples were then left for a minimum of 1 h.  

Extraction was achieved using 25 mL of 50:50 MeOH:H2O (pH 2) at 110 ºC using a 800 W MARS 6 

microwave (CEM, UK).  Samples extracts were adjusted to <5 % MeOH using H2O (pH 2).  SPE was 

performed using Oasis® MCX cartridges conditioned with 2 mL MeOH followed by 2 mL H2O (pH 

2).  Samples were loaded and dried as described previously.  Elution was performed using 2 mL 0.6 % 

HCOOH in MeOH.  Once dried extracts were reconstituted in 500 µL 80:20 H2O:MeOH and filtered 
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using pre-LCMS 0.2 μm PTFE filters (Whatman, Puradisc).  The full methodology is described in 

Petrie et al (2016).  

 

2.3. UPLC-MS/MS analysis 

Chromatography was performed on a Waters Acquity UPLC system (Waters, Manchester, UK).  A 

reversed-phase BEH C18 column (150 x 1.0 mm, 1.7 µm particle size) (Waters, Manchester, UK) was 

utilised with a 0.2 µm, 2.1 mm in-line column filter maintained at 25 ºC.    Separation was achieved 

using 80:20 H2O:MeOH containing 1 mM NH4F (mobile phase A) and 5:95 H2O:MeOH also 

containing 1 mM NH4F (mobile phase B).  Starting conditions were 100 % A which was maintained 

for 0.5 min.  This was reduced to 40 % A over 2 min and to 0 % A over a further 5.5 min.  These 

conditions were maintained for 6 min before returning to starting conditions.  Starting conditions were 

held for 8.4 min to allow re-equilibration (total run time was 22.5 min).  The mobile phase flow rate 

was 0.04 mL min
-1

 and the injection volume was 15 µL.  The UPLC was coupled to a Xevo TQD 

Triple Quadrupole Mass Spectrometer (Waters, Manchester, UK), equipped with an electrospray 

ionisation source. Analysis was performed in negative ionisation mode with a capillary voltage of 

3.20 kV.  The source temperature was 150 °C and the desolvation temperature was 400 °C.  The cone 

gas flow was 100 L h
−1

and the desolvation gas flow was 550 L h
−1

. Nitrogen was used as the 

nebulising and desolvation gas, and argon as the collision gas.  The multiple reaction monitoring 

(MRM) transitions for BPA were 227.3>212.1 m/z (quantifier, 22 eV collision energy) and 

227.3>132.7 m/z (qualifier, 25 eV collision energy).  The MRM transition for BPA-d16 was 

241.1>223.1 m/z (20 eV collision energy).  The cone voltage for both BPA and BPA-d16 was 40 V. 

 

2.4. Quality control 

Spiked quality control samples (as well as procedural blanks) were analysed every 7 environmental 

samples to ensure the quality of generated data.  Samples used to determine recovery were spiked at 

additional concentration levels of 100 and 1,000 ng L
-1

 for wastewaters and 50 and 500 ng L
-1

 for 
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river waters.  Solid matrices were spiked at 100 and 1,000 ng g
-1

.  Methods recoveries were in the 

range 64-112 % for influent wastewater, 109-120 % for effluent wastewater, 89-131 % for river 

waters and 55-96 % for influent wastewater particulate matter and digested sludge.  Furthermore, 

standard tolerances of deviation in retention time and ion ratio were adhered to (Official Journal of the 

European Communities, 2002).  Method detection limits (MDLs) and method quantitation limits 

(MQLs) for liquid samples were <1 ng L
-1

 and <3 ng L
-1

, respectively (Petrie et al., 2016).  In digested 

sludge the MDL was 0.3 ng g
-1

 and the MQL was 0.9 ng g
-1

.  All sample analysis was performed in 

duplicate with the average of the 2 analysis reported.   

 

2.5. Sampling regime 

The studied river catchment is located in the South West of the UK and covers an area of 

approximately 2,000 km
2 

(Figure 1).  The population within the catchment is ~1.5 million.  Sampling 

was undertaken at five STWs (named STWs A-E), utilising a range of treatment technologies (Table 

1).  Trickling filters (STW B, C and D), conventional activated sludge (STW A) and sequencing batch 

reactors (STW E) were all investigated.  At each site influent wastewater (between screening and 

primary sedimentation) and effluent wastewater was collected.  Digested sludge was also collected at 

those sites which had anaerobic digestion facilities (Site B and E).  River water was collected from 

upstream and downstream of the effluent discharge point at varying distances depending on 

accessibility (Table 1).  River water was not collected for Site E as the STW discharges directly to 

estuarine waters. 

Wastewater was collected as volume proportional 24 h composites with average sub-sample 

collection frequencies of ≤15 min.  Sub-samples (80 mL) were cooled to 4˚C during collection to limit 

biological activity and pooled after 24 h (Petrie et al., 2017).  River waters (8 L) were collected as 

grab samples.  All samples were transported to the laboratory on ice for further processing.  Grab 

samples of digested sludge were also collected.  At each site sampling was undertaken for 7 
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consecutive days running from Wednesday to Tuesday with no significant rainfall experienced.  

Sampling was undertaken during summer in 2015. 

BPA removal efficiency during wastewater treatment was calculated according to: 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 (%) =
(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑡−𝐸𝑓𝑓𝑙𝑢𝑒𝑛𝑡)

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑡
𝑥100        [1] 

Influent is the BPA influent wastewater load (g d
-1

) and Effluent is the BPA effluent wastewater load 

(g d
-1

).  
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3. Results and discussion 

3.1. BPA in municipal wastewaters and its source 

BPA loads normalized  accounting for wastewater flow and population/inhabitant numbers (mg 1000
-1

 

inh. d
-1

) were used to compare BPA levels in influent wastewater at 5 different STWs.  Findings 

revealed considerable spatial variability in BPA load.  STWs A, C and D were similar, with loads 

(n=7) in the range 201 to 339 mg 1000
-1

 inh. d
-1

 (Figure 2).  However, average loads at STWs B and E 

were 3,400±2,820 and 7,420±6,280 mg 1000
-1

 inh. d
-1

, respectively, more than an order of magnitude 

greater than A, C and D.  These elevated levels corresponded to influent concentrations up to 100 µg 

L
-1

 and are considerably greater than previously observed municipal wastewaters in the UK (Petrie et 

al., 2015).  BPA is typically found in municipal wastewater at concentrations in the range 500-2,000 

ng L
-1

 (Clara et al., 2005; Nakada et al., 2006; Fernandez et al., 2007; Gatidou et al., 2007; Guerra et 

al., 2015; Petrie et al., 2015).  Such concentrations are considered typical for household wastewater 

due to BPA leaching from polycarbonates and epoxy resins (Rubin, 2011; Flint et al., 2012), including 

pipes and other items such as water bottles.  At STW B and E where elevated BPA loads were 

observed, both have ≥5 % industrial wastewater contributions within their upstream wastewater 

network (Table 1).  In contrast STW A, C and D received ≤1 % industrial contributions to the total 

wastewater flow.        

Another notable difference between the BPA loads observed in the studied municipal wastewaters 

was the temporal variability over the 7 d study period.  At STWs A, C and D the variability in load 

(expressed as RSD) was in the range 12 to 38 % (Figure 2).  This stability showed BPA loads here 

were relatively consistent, supporting the hypothesis that it is continually leached from plastics and 

resins in the upstream wastewater network.  Variability in BPA load to STW B and E was 83 % and 

85 %, respectively.  The comparatively high variability at STW B and E was due to marked 

differences in BPA loads observed between weekdays and weekends.  For example, at STW E 

weekday (Monday to Friday) loads ranged from 3,210 to 19,100 mg 1000
-1

 inh. d
-1 

(Figure 2).  On 

Saturday and Sunday loads were considerably lower at 1,530 and 1,500 mg 1000
-1

 inh. d
-1

, 

respectively.  Similarly, weekday loads up to 7,060 mg 1000
-1

 inh. d
-1 

were found at STW B whereas 
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weekend loads were 538-539 mg 1000
-1

 inh. d
-1

.  This difference suggests the high loads of BPA 

observed at STW B and E was attributed to industrial wastewater discharges.  These elevated loads 

are most likely from manufacturing industries which use BPA in the production process, explaining 

the considerably lower loads during weekends.  Such a relationship has not been observed previously 

for BPA in municipal wastewaters.     

Currently, businesses which produce wastewater (also known as ‘trade effluents’) through 

manufacturing or processing of materials require consent to discharge into public sewers.  Water 

utilities issue a permit stating the volume of wastewater which can be discharged as well as the limits 

of certain pollutants which the business must adhere to.  Permits do not limit non-regulated chemicals 

such as BPA, but can be used to identify the types of business discharging industrial wastewater into 

the sewer network.  Therefore, these permits can be used to indicate the possible source of the 

elevated BPA levels found.  At STW B, a total of 14 permits are issued with the majority being food 

manufacture, car washing and launderette facilities, and these discharges are not expected to account 

for the high BPA loads observed.  However, one permit gives the trader description as ‘rubber to 

metal bonding’.  In such industries, BPA can be used in the manufacture process (Green and Mowrey, 

2001; Khoudary et al., 2012), and this facility is the most likely source of the high loads observed.  At 

STW E, a total of 145 permits are issued from a range of industries making the identification of the 

likely source(s) of the high BPA loads here more difficult.  Possible sources identified from the permit 

information include ‘leachate from landfill/industrial landfill’, ‘manufacture of corrugated/polystyrene 

packaging’ and ‘printing and coating packing materials’. 

 

3.2. Fate and behaviour of BPA in wastewater and during wastewater treatment 

BPA has been found to be stable in influent wastewaters stored at 18 ˚C for 24 h (Petrie et al., 2017).  

Although this does not replicate conditions experienced in sewers, the lack of degradation suggests 

BPA loads are largely unchanged when they arrive at the STW because the upstream sewer hydraulic 

retention times (HRTs) were ≤24 h (Table 1).  In influent wastewaters up to 18 % of the BPA load 
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was found in the particulate phase of wastewater.  This partitioning is mainly attributed to its log KOW 

of 3.40 which makes it susceptible to sorption onto particulate organic matter (Staples et al., 1998).  

Calculated BPA particulate-aqueous phase partition distribution coefficients (log Kd) ranged from 2.9 

to 3.0 at STWs A, C and E.  At STWs B and D log Kd’s were notably lower (log Kd 2.6) (Table 2).  

This difference was due to BPA being distributed at higher concentrations in the aqueous phase 

relative to the particulate phase of influent wastewaters.  These findings is in agreement with work by 

pH can also influence BPA sorption to organic matter (Clara et al., 2004); however, the pH of influent 

wastewater was similar between STWs (7.53-7.77) and probably did not contribute to the differences 

in log Kd observed..   

Mean removals of BPA during wastewater treatment ranged from 91 to 98 % (n=7) (Table 2).  

Removals by different process type were 98 ±1 % by the SBRs (STW E), 91 ±6% by conventional 

activated sludge (STW B) and 95 ±5 %, 92 ±2 % and 94 ±2 % by the trickling filters (STWs A, C and 

D, respectively).  These removals are typical of what is reported in the literature for secondary 

biological STWs (e.g., trickling filters and activated sludge) with removals of >80 % typical (Clara et 

al., 2005; Drewes et al., 2005; Nakada et al., 2006).  Removal here is mainly attributed to biological 

degradation and sorption to particulate matter (Staples et al., 1998; Zhao et al., 2008; Stasinakis et al., 

2013).  Notable partitioning of BPA in both primary and secondary sludge has been reported 

previously, with log Kd of 3.2 and 2.9, respectively (Stasinakis et al., 2013). Mean BPA 

concentrations in effluents at STWs A, C and D were 37 ±19, 63 ±37 and 94 ±24 ng L
-1

, respectively
 

(Table 2).  To better understand the possible environmental risk it is preferred to report concentration 

over normalized load.  Over the course of the 7 day monitoring period no substantial changes in BPA 

concentration were noted (Figure 3).   

There were no notable differences between observed BPA removal at STWs B and E compared to 

STWs A, C and D.  Despite high removal efficiency during wastewater treatment (>90 %), 

comparatively high concentrations remained in treated effluent.  Effluent concentrations at STWs B 

and E were 474 ±277 and 462 ±266 ng L
-1

 (Table 2).  Furthermore, the temporal trends in influent 

wastewater were translated to effluent observations with highest concentrations found during 
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weekdays (Figure 3).  The highest concentration recorded was 892 ng L
-1

 at STW B on Monday.  

Considering the STW HRT of 24.5 h (STW B, Table 1), industrial discharges of BPA from Monday 

should be observed in effluent on Tuesday.  However, 24 h composite samples were collected from 

this STW at 10:30 am.  Therefore any BPA discharged into the sewer network at approximately 6:00 

am on Monday morning will be collected as part of the Monday effluent sample.                   

 

3.3. BPA in the receiving river and the impact of effluent discharges 

To assess the impact of effluent discharge to river water quality, spot samples from both upstream and 

downstream of the effluent discharge point were collected over 7 consecutive days.  Downstream 

samples were collected at a minimum of 0.5 km below the effluent discharge point (Table 1).  STW A 

is the furthest up the river catchment and is in a rural location.  BPA was not detected (<1 ng L
-1

) in 

any river water sample collected upstream of the effluent discharge point of STW A.  As there was no 

suitable access points to the river downstream of STW A (i.e., within adequate proximity to the 

effluent discharge point), concentrations here were estimated using upstream and effluent BPA loads, 

as well as river flow data (e.g., 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝐵𝑃𝐴 𝑐𝑜𝑛𝑐. =
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝐵𝑃𝐴 𝑙𝑜𝑎𝑑+𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 𝐵𝑃𝐴 𝑙𝑜𝑎𝑑

𝑅𝑖𝑣𝑒𝑟 𝑓𝑙𝑜𝑤
).  

This equation assumes instantaneous mixing of river water and effluent without any loss of BPA.  

Assuming a zero loss of BPA is unlikely due to the relatively short half-life of BPA in river waters 

(Kang and Kondo, 2002), and this estimation is therefore conservative towards the BPA 

concentration.  The estimated downstream BPA concentrations at STW A ranged from 1.9 to 16.2 ng 

L
-1 

(Figure 4).          

BPA concentrations upstream of STW B ranged from 20.1 to 38.1 ng L
-1 

(average = 30.1 ±6.6 ng L
-1

) 

(Figure 4).  Downstream BPA concentrations ranged from 15.2 to 57.6 ng L
-1 

(average = 38.1 ±16.3 

ng L
-1

).  There was no substantial impact to the receiving river here despite the higher BPA 

concentrations in wastewater effluent due to industrial inputs.  We suspect that there was little impact 

due to an effluent/riverine dilution factor of 15 (Table 1).  However, it should be noted that STWs can 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

have considerably lower dilution factor or effectively no dilution in some cases (Gardner et al., 2013).  

In such cases the effluent discharge will have a greater impact to river water quality.  

Similar findings were observed in river waters collected upstream and downstream of STW C and D 

effluent discharge points (Figure 4).  No river water was collected for STW E as effluent is discharged 

directly into estuarine waters.  The highest riverine concentration reported was 116.9 ng L
-1

 upstream 

of STW D on Monday.  On 2 days, upstream river water samples were found to contain higher 

concentrations of BPA than the downstream sample.  Short-term temporal concentration variability 

which was not accounted for using spot sampling could be responsible for this observation.  

Nevertheless, the BPA concentrations reported in river waters are similar to those previously reported 

in the UK (Petrie et al., 2015; Wilkinson et al., 2017) and throughout Europe (Loos et al., 2009).       

To assess the possible impact of BPA in the environment we can compare measured river 

concentrations with the PNEC.  All riverine (and effluent) BPA concentrations are below the current 

PNEC of 1.6 µg L
-1 

(EU, 2008), and no risk can be assumed.  However, the derivation of this PNEC 

does not include organisms such as mollusks which can be more sensitive to BPA exposure.  A 

review of the literature found the lowest reported EC10 (effective concentration at 10 %) is 14.8 ng L
-1

, 

Oehlmann et al. (2006) who investigated the effect of BPA to egg production of the freshwater snail 

Marisa cornuarietis.  Applying an action factor of 10 to this value would result in a PNEC of 1.48 ng 

L
-1

.  At 7 of the 8 river sampling points this proposed PNEC was exceeded indicating a potential risk 

to the survival of sensitive organisms.                 

        

3.4. BPA concentrations in digested sludge and the possible impact on the terrestrial 

environment 

The other main entry route of BPA into the environment is through the application of digested sludge 

and biosolids to agricultural land.  Within the catchment area studied, 2 STWs process sludge for 

biogas production (STW B and E).  Both receive sludge from other STWs but the majority treated is 

produced on-site.  BPA concentrations in digested sludge were 4,560±333 and 38,700±5,410 ng g
-1

 at 
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STW B and E, respectively (Table 2).  Average concentrations previously reported in the literature are 

typically <1,000 ng g
-1

 (Tan et al., 2007; Pothitou and Voutsa, 2008; Stasinakis et al., 2008; Nie et al., 

2009; Langdon et al., 2011; Guerra et al., 2015).  Both digested sludges analysed were obtained from 

the STWs which receive industrial BPA discharges, explaining the comparatively high concentrations 

of BPA compared to that previously reported in the literature.  Digested sludge from STW E was >8 

times higher than sludge from STW B.  Elevated concentrations at STW E are attributed to the higher 

receiving load of BPA than at STW B (Figure 2), and the difference in processing (activated sludge 

vs. trickling filters).  Partitioning into sludge can be considerable for micropollutants during active 

sludge treatment (Clara et al., 2011; Salgado et al., 2012), and excess (waste) activated sludge is 

blended with carbon rich primary sludge for digestion.  This blending is likely to contribute to the 

higher BPA concentrations found in digested sludge collected from STW E (Table 2).  The trickling 

filters produce comparatively less sludge (from sloughing of the biofilm) during secondary treatment. 

The main concern for the presence of micropollutants such as BPA being present in digested sludge is 

the land application of sludge to farmland as fertilizer, and the possible impact on the terrestrial 

environment.  Considering a typical sludge application regime as outlined by Stasinakis et al (2008) 

whereby sludge is applied to soil (1.3 kg L
-1

) at 10 t ha
-1

 and tilled to 10 cm would result in an 

effective dilution factor of 130.  Application of sludge from STW E would see a theoretical BPA 

concentration in soil of 297 ng g
-1

.  However, tilling to a greater depth would result in greater 

‘dilution’, or not conducted at all resulting in higher soil surface BPA concentrations.  Controlled 

laboratory soil degradation studies have found BPA to have a half-life of <3 d (Fent et al., 2003), and 

concluded that if BPA reaches the terrestrial environment it is not anticipated to be bioavailable.  

However, the impact of BPA on the terrestrial environment will be dependent on the concentration at 

which adverse effects are observed.  For example if the concentration threshold is very low, even a 

short half-life can result in BPA concentrations above the critical level for sufficient time for chronic 

exposure.  PNEC has yet to be established due to insufficient toxicity data available for a full range of 

terrestrial organisms (Thomaidi et al., 2016).    
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3.5. Future viewpoint for BPA in municipal wastewaters 

BPA entering municipal wastewater has the potential to cause adverse effects to organisms in both 

riverine and terrestrial environments.  To better assess the potential risk, it is essential to have robust 

toxicological data available for the most sensitive species such that PNECs can be derived for both 

impacted environments.  Despite substantial research on aquatic organisms, uncertainty remains on 

currently derived PNECs (Oehlmann et al., 2008).  This derivation process is likely to take 

considerable time particularly for terrestrial environments due to the paucity of toxicological 

information.  In the short term it is recommended that improved control of industrial charges 

containing BPA could be implemented to reduce BPA concentrations in both treated effluents and 

digested sludge.  For example, UK businesses which discharge wastewater into municipal streams are 

currently required to apply for a wastewater discharge permit.  Such permits outline limits for 

legislated pollutants (e.g., metals) but do not include emerging micropollutants such as BPA.  

Inclusion of micropollutants such as BPA in wastewater discharge permits would oblige companies to 

put steps in place to reduce their BPA emissions to municipal wastewater.  Pretreatment or process 

reduction would help reduce the elevated levels of BPA found in effluent and treated sludge due to 

industrial discharges (Figure 3; Table 3).  In the longer term, end-of-pipe treatment options may need 

to be considered once PNECs are established.                        
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Figure 1. Catchment area schematic illustrating sampling points   
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Figure 2. Temporal change in BPA influent wastewater load (mg 1000
-1

 inh. d
-1

) during 7 d at five 

STWs in South West UK (n=2). Inset, BPA loads at STWs A, C and D only.  Note: load includes both 

aqueous and particulate phase of wastewater. Key: STW, sewage treatment works; PE, population 

equivalents 
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Figure 3.  BPA concentrations in effluent wastewater from five different STWs during 7 d (n=2). Key: 

STW, sewage treatment works 
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Figure 4.  Riverine concentrations of BPA from spot samples collected upstream and downstream of 

effluent discharge points from STW A (A), STW B (B), STW C (C) and STW D (D) (n=2).  Note: 

BPA in upstream river water at STW A was <1 ng L
-1

, and BPA reported in downstream river water 

was estimated using effluent and upstream river data. Key: STW, sewage treatment works; PNEC, 

predicted no effect concentration  
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Table 1. Site information of studied STWs and corresponding river locations   

Site 

Sewer 

residence 

timea (h) 

STW 

secondary 

processb 

SRT 

(d) 

HRTa 

(h) 
Media type Configuration 

Population served 

(no. of inhabitants) 

Industrial 

contribution 

(%) 

Mean flow 

(m3 d-1) 

Effluent dilution 

factor 

River sampling, distance to 

discharge point (km) 

Upstream Downstream 

A <0.5-4 AS 19 46.2 - 
Carbonaceous 

& nitrifying 
37,000 <1 8,242±3,085 14 0.5 n/ac 

B <0.5-4 TF n/a 24.5 Stone 
Carbonaceous 

& nitrifying 
67,870 19 11,202±3,202 15 0.5 0.5 

C <0.5-9 TF n/a 13.9 Stone – limestone 
Carbonaceous 
& nitrifying 

105,847 1 24,875±2,167 15 2 2 

D <0.5-2 TF n/a 17.6 Stone – blast furnace slag 
Carbonaceous 

& nitrifying 
17,638 <1 2,924±199 113 1 1 

E <1-24 
90 % SBR 

10 % AS 

4 

8 

10.9 

25.8 
- Carbonaceous 909,617 5 153,061±12,245 n/ad - - 

Key: STW, wastewater treatment process; SRT, solids retention time; HRT, hydraulic retention time; AS, activated sludge; TF, trickling filter; SBR, sequencing batch reactor 
a
Under summer (dry weather) flow 

b
All STWs utilised primary sedimentation dosed with ferric sulfate for phosphorus removal and all processes used conventional sedimentation following secondary treatment 

except SBRs which decanted following settling in-situ 
c
Due to limited river access, mass loads in river water downstream of the discharge point were estimated by adding effluent loads with upstream  river water loads.  This 

assumes complete mixing without any BPA losses.  BPA concentrations in downstream river water were then estimated using river flow data.    
d
Effluent discharged into estuary 
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Table 2. Concentrations of BPA observed in wastewater matrices during 7 d sampling and their removal 

efficiency during wastewater treatment (average from n=7 days) 

STW 

Influent 

wastewater 

(ng L
-1

) 

Influent 

wastewater 

(ng g
-1

) 

Influent 

wastewater 

log Kd 

Removal 

from aqueous 

phase (%) 

Effluent 

wastewater 

(ng L
-1

) 

Digested 

sludge (ng g
-1

) 

A 874±266 754±187 2.9 91±6 37±19 - 

B 20,400±17,000 8,090±6,320 2.6 95±5 474±277 4,560±333 

C 976±105 794±307 2.9 92±2 63±37 - 

D 1,660±240 1,850±3,130 3.0 94±2 94±24 - 

E 37,200±31,700 16,300±17,500 2.6 98±1 462±266 38,700±5,410 

Key: STW, wastewater treatment works 
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Highlights 

Comprehensive study of BPA in the water cycle reported 

Industrial discharges of BPA in municipal wastewater identified through wastewater analysis 

Considerable temporal and spatial variability of BPA loads in wastewater 

Effluent discharges had little impact to river quality and levels below current PNEC 

High BPA concentrations (4.6 and 38.7 µg g
-1

) in digested sludge for land application 
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