

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Journal of Cloud Computing:
Advances, Systems and Applications

Ochei et al. Journal of Cloud Computing: Advances, Systems
and Applications (2018) 7:22
https://doi.org/10.1186/s13677-018-0121-8

RESEARCH Open Access

Degrees of tenant isolation for
cloud-hosted software services: a cross-case
analysis
Laud Charles Ochei1* , Julian M. Bass2 and Andrei Petrovski1

Abstract

A challenge, when implementing multi-tenancy in a cloud-hosted software service, is how to ensure that the
performance and resource consumption of one tenant does not adversely affect other tenants. Software designers and
architects must achieve an optimal degree of tenant isolation for their chosen application requirements. The objective
of this research is to reveal the trade-offs, commonalities, and differences to be considered when implementing
the required degree of tenant isolation. This research uses a cross-case analysis of selected open source cloud-hosted
software engineering tools to empirically evaluate varying degrees of isolation between tenants. Our research reveals
five commonalities across the case studies: disk space reduction, use of locking, low cloud resource consumption,
customization and use of plug-in architecture, and choice of multi-tenancy pattern. Two of these common factors
compromise tenant isolation. The degree of isolation is reduced when there is no strategy to reduce disk space and
customization and plug-in architecture is not adopted. In contrast, the degree of isolation improves when careful
consideration is given to how to handle a high workload, locking of data and processes is used to prevent clashes
between multiple tenants and selection of appropriate multi-tenancy pattern. The research also revealed five case
study differences: size of generated data, cloud resource consumption, sensitivity to workload changes, the effect of
the software process, client latency and bandwidth, and type of software process. The degree of isolation is impaired,
in our results, by the large size of generated data, high resource consumption by certain software processes, high or
fluctuating workload, low client latency, and bandwidth when transferring multiple files between repositories.
Additionally, this research provides a novel explanatory framework for (i) mapping tenant isolation to different
software development processes, cloud resources and layers of the cloud stack; and (ii) explaining the different trade-
offs to consider affecting tenant isolation (i.e. resource sharing, the number of users/requests, customizability, the size
of generated data, the scope of control of the cloud application stack and business constraints) when implementing
multi-tenant cloud-hosted software services. This research suggests that software architects have to pay attention to
the trade-offs, commonalities, and differences we identify to achieve their degree of tenant isolation requirements.

Keywords: Multitenancy, Degree of isolation, Cloud patterns, Global software development, Software development
tools, Cloud-hosted software services, Application component, Case study research, Cross-case analysis

*Correspondence: l.c.ochei@rgu.ac.uk
1Robert Gordon University, School of Computing and Digital Media, Aberdeen
AB10 7QB, UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0121-8&domain=pdf
http://orcid.org/0000-0003-4148-1085
mailto: l.c.ochei@rgu.ac.uk
http://creativecommons.org/licenses/by/4.0/

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 2 of 39

Background
Cloud services are applications delivered over the Internet
[1] that offer users on-demand access to shared resources
such as infrastructures, hardware platforms, and software
application functionality [2].
Cloud services provide a dedicated instance of applica-

tions to multiple users using multitenancy. Multitenancy
allows a single instance of a service to serve multiple
users while retaining dedicated configuration informa-
tion, application data and user management for each
tenant [3].
A challenge when implementing multi-tenant ser-

vices is to ensure that the performance demands
and resource consumption of one tenant does not
adversely affect another tenant; this is known as
tenant isolation. Specifically, software architects need
to be able to control the required degree of isolation
between tenants sharing components of a cloud-hosted
application [4].
Varying degrees of tenant isolation is possible, depend-

ing on the type of component being shared, the process
supported by the component and the location of the com-
ponent on the cloud application stack (i.e., application
level, platform level, or infrastructure level) [3]. For exam-
ple, the degree of isolation required for a component
that cannot be shared due to strict laws and regulations
would be much higher than that of a component that
has to be reconfigured for some tenants with specific
requirements.
We previously conducted separate case studies to

empirically evaluate the degree of tenant isolation in three
cloud-hosted software development process tools: con-
tinuous integration (with Hudson), version control (with
File SCM Plugin and Subversion), and bug/issue track-
ing (with Bugzilla) [5–7]. The case studies allowed us to
investigate instances (i.e., evaluating the degree of ten-
ant isolation) of a contemporary software engineering
phenomenon within its real-life context using real-world
Global Software Development (GSD) tools deployed in
a cloud environment [8]. To build an integrated body of
knowledge from these individual case studies we decided
to perform a case study synthesis. The case study synthe-
sis allows us to extend the overall evidence base beyond
the existing case studies. We can thus, make a new whole
out of the parts, to provide new insights regarding degrees
of tenant isolation.
As a consequence of these goals, we consider three

research questions:

1. What are the commonalities and differences in the
degrees of tenant isolation for our three case studies?

2. What are the deployment trade-offs for achieving the
required degree of tenant isolation for our three case
studies?

3. What are the key challenges and recommendations
for implementing tenant isolation for our three case
studies?

We conducted the case study synthesis by employing
a cross-case analysis technique to identify commonalities
and differences in tenant isolation characteristics across
the previous case studies. The cross-case analysis allows
us to triangulate evidence from each case study to build
a more substantial body of knowledge on tenant isolation
[8, 9]. The cross-case analysis study was carried out in
three phases: data reduction, data display, and conclusion
drawing and verification. These phases were conducted
in an iterative manner during the analysis to reach the
conclusion [9].
The main contribution of this article is to provide an

explanatory framework and new insights for explaining
the commonalities and differences in the design, imple-
mentation and deployment of cloud-hosted services, and
the trade-offs to consider when implementing tenant iso-
lation [10]. The contributions of this article are sum-
marised as follows:
1. Providing patterns of commonalities and differences

across the existing cases studies:
(i) the study revealed five case study commonalities: disk

space reduction, use of locking, low cloud resource con-
sumption, customization and use of plugin architecture,
and choice of multi-tenancy pattern. Two of these factors
have a negative impact on tenant isolation. The degree
of isolation is reduced when there no strategy to reduce
disk space and customization and plugin architecture is
not adopted. In contrast, the degree of isolation improves
when careful consideration is given to handling a high
workload, locking of data and processes is used to prevent
clashes between multiple tenants, data transfer between
repositories and selection of appropriate multi-tenancy
pattern. (see “Results” section).
(ii) our research reveals five areas of case study differ-

ences: size of generated data, cloud resource consump-
tion, sensitivity to workload changes, the effect of the
software process, client latency and bandwidth, and type
of software process). The large size of generated data,
high resource consumption processes, high or fluctuating
workload, low client latency, and bandwidth when trans-
ferring multiple files between repositories reduces the
degree of isolation. The type of software process is chal-
lenging because it depends on the cloud resource being
optimised. (See “Results” section)
2. Providing a novel explanatory framework for:
(i) mapping the degrees of tenant isolation to different

software processes, cloud resources and layers of the cloud
application stack (see “Results” and “Analysis” sections).
(ii) explaining the different trade-offs which includes

tenant isolation versus (resource sharing, the number of

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 3 of 39

users/requests, customizability, the size of generated data,
the scope of control of the cloud application stack and
business constraints) to be considered for optimal deploy-
ment of components with a guarantee of the required
degree of tenant isolation (see “Results” and “Analysis”
sections).
3. Presenting challenges and recommendation for

implementing the required degree of tenant isolation. The
challenges identified in this study are related to the type
and location of components to be shared, customizability
of the software tool, optimization of resources to cope
with changing workload, hybrid cloud deployment con-
ditions, tagging components with the required degree
of isolation, error messages and security challenges dur-
ing implementation. This study suggests among other
things the following recommendations: (i) allowing the
software architect to have more control over layers of
the cloud infrastructure for configuration and provision-
ing of resources; (ii) splitting complex software processes
into phases and isolation implemented for each phase
in turn (ii) categorizing a cloud-hosted service into dif-
ferent aspects that can or cannot be customised (see
“Discussion” section).
The rest of the paper is organized as follows -

“Related work on degrees of tenant isolation for
cloud-hosted services” section gives an overview of
related work on degrees of tenant isolation for cloud-
hosted services. “Methods” section discusses the cross-
case analysis methodology used in this paper and how
it fits into the overall case study research process.
“Summary of the case studies” section provides a sum-
mary of the previous case studies. In “Results” section,
presents the results of the cross-case analysis. “Analysis”
section is a further analysis of the data produced from
the cross-case analysis. “Discussion” section is the dis-
cussion of the results of the study. The limitations and
validity of the study are presented in “Threats to validity”
section. “Conclusions” section concludes the paper with
the direction of future work.

Related work on degrees of tenant isolation for
cloud-hosted services
Research work on multitenancy has acknowledged that
there are varying degrees of isolation tenants accessing
a multitenant cloud-hosted service [11–14]. Chong and
Carraro discuss three approaches to managing multi-
tenant data, and it is stated that the distinction between
the shared data and isolated data is more of a contin-
uum, where many variations are possible between the
two extremes [11]. Threemultitenancy patterns have been
identified which express the degree of isolation between
tenants accessing a shared component of an application
[3]. These patterns are referred to as shared component,
tenant-isolated component and dedicated component.

The shared component represents the lowest degree of
isolation between tenants while the dedicated component
represents the highest. The degree of isolation between
tenants accessing a tenant-isolated component would be
in the middle.
Wang et al. explored key implementation patterns of

data tier multi-tenancy based on different aspects of iso-
lation such as security, customization and scalability [12].
For example, under the resource tier design pattern, the
authors identified the following patterns: (i) totally iso-
lated (dedicate database pattern); (ii) partially shared (ded-
icate table pattern); and (iii) totally shared (share table
pattern). These patterns are similar to the shared compo-
nent, tenant-isolated component and dedicated compo-
nent patterns at the data tier, respectively [3]. Vengurlekar
describes three forms of database consolidation which
offer differing degrees of inter-tenant isolation as follows:
(i) multiple application schemas consolidated in a single
database, multiple databases hosted on a single platform;
and (iii) a combination of both [13].
Mietzner et al. described how the services (or com-

ponents) in a service-oriented SaaS application can be
deployed using different multi-tenancy patterns and how
the chosen patterns influence the customizability, multi-
tenant awareness and scalability of the application [15].
These patterns are referred to as a single instance, single
configurable instance and multiple instances. Although
this work describes how individual services of a SaaS
application can be deployed with different degrees of cus-
tomizability, we believe that these concepts are similar to
different degrees of isolation between tenants.
The three main aspects of tenant isolation are per-

formance, stored data volume and access privileges. For
example, in performance isolation, other tenants should
not be affected by the workload created by one of the ten-
ants. Guo et al. evaluated different isolation capabilities
related to authentication, information protection, faults,
administration, etc [16]. Bauer and Adams discuss how to
use virtualization to ensure that the failure of one tenant’s
instance does not cascade to other tenant instances [4].
Walraven et al implemented a run-time enforcement

of performance isolation to comply with tenant-specific
SLAs over distributed environments for multitenant SaaS
using a real-world workflow-based SaaS offering (i.e., an
online B2B document processing) executing on a JBoss
AS-based private cloud platform [14]. Walraven et al. has
also implemented a middleware framework for enforcing
performance isolation using a multitenant implementa-
tion of a hotel booking application deployed on top of
a cluster for illustration [17]. Krebs et al. implemented a
multitenancy performance benchmark for a web applica-
tion based on the TCP-W benchmark where the authors
evaluated the maximum throughput and the number of
tenants that can be served by a platform [18].

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 4 of 39

Youngs et al. discussed the decomposition of applica-
tion functionality into application components and later
the summarization of these components to tiers to achieve
isolation between tenants [19]. Varia’s research work gen-
erally motivates why applications should be split into
separate components when using the Amazon Web Ser-
vices on the cloud to guarantee tenant isolation [20, 21].
Varia has also discussed different migration scenarios for
existing applications to Amazon Web Services (AWS) or
other cloud storage [22].
At the very basic degree of multitenancy, tenants share

application components as much as possible which trans-
lates to increased utilisation of underlying resources.
However, while some application components may ben-
efit from a low degree of isolation between tenants,
other components may need a higher degree of isola-
tion because the component may either be too critical or
needs to be configured very specifically for individual ten-
ants because of their unique deployment requirements.
Again, tenant-specific requirements, such as laws and cor-
porate regulations, may even further increase the degree
of isolation required between tenants.
A component-based approach to tenant isolation

through request re-routing, (COMITRE), was developed
in our previous work. This approach was then applied to
three case studies that empirically evaluated the varying
degrees of isolation between tenants enabled by multite-
nancy patterns for three different Global Software Devel-
opment (GSD) tools and associated processes: continuous
integration with Hudson, version control with File System
SCM plugin, and bug tracking with Bugzilla [5–7]. The
GSD tools were deployed to the cloud using differ-
ent cloud multitenancy patterns which represent varying
degrees of isolation between tenants.
The aim of this paper is, therefore, to extend the over-

all evidence beyond the existing case studies, by syn-
thesizing the findings of the three primary case studies
that have been conducted to evaluate the degree of iso-
lation between tenants accessing different cloud-hosted

GSD tools deployed using differentmultitenancy patterns.
The findings will provide the commonalities and differ-
ences across the existing case studies, and an explana-
tory framework for mapping degrees of tenant isolation
to different software processes and explaining the trade-
offs to be considered for optimal deployment of compo-
nents with a guarantee of the required degree of tenant
isolation.

Methods
In this section, we will first present the cross-case analy-
sis method used in this paper and thereafter discuss how
the cross-case analysis phase fits into the overall research
procedure from the exploratory phase to the development
of the explanatory framework.

Cross-case analysis
This study uses cross-case analysis to synthesize the find-
ings of the three primary case studies. In a cross-case
analysis, evidence from each primary study is summarised
and coded under broad thematic headings, and then sum-
marised within themes across studies with a brief citation
of primary evidence. A cross-case analysis was selected
because it involves a highly systematic process and allows
us to include diverse types of evidence [9, 23].
As shown in Fig. 1, the methodology can be divided into

three phases: gathering findings from primary case stud-
ies, cross-case analysis and framework development. In
the first phase the findings from the three primary case
studies are gathered, summarised and pushed into the sec-
ond phase which is the cross-analysis. In the cross-case
analysis phase, we mobilise knowledge from individual
case studies, compare and contrast the cases, and in doing
so, produce a new knowledge. This knowledge is fur-
ther refined to form an explanatory framework explaining
the commonalities and differences in the design, imple-
mentation and deployment of cloud-hosted applications
and the trade-offs to consider when implementing tenant
isolation [10].

Fig. 1 Cross-analysis technique used for the study

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 5 of 39

This paper adopts Miles and Huberman’s approach for
conducting the cross-case analysis. The approach con-
sists of three mains steps: data reduction, data display, and
conclusion drawing and verification [9].

Data reduction
Thismainly involves the identification of items of evidence
in the primary case studies such as the paired sample test,
plots of the estimated marginal means of change, discus-
sion of findings and recommendations from previous case
studies [9].

Data display
This step involves organising and assembling information
that allows the drawing of conclusions using tools such as
meta-matrices/tables and cause and relationships graphs.
The data display steps will be tackled from two approaches
to cross-case comparisons [24]:
(i) Variable oriented approach: This approach focuses

on the variables to explain why the cases vary. These
variables are related to performance and resource con-
sumption which are known to affect the varying degrees
of isolation between tenants.
(ii) Case-oriented approach: This approach focuses on

the case itself instead of the variables to explain in what
ways the cases are alike. By knowing the aspects in which
the cases are alike it is then possible to generalise our
findings, for example, to identify factors that appear to
lead to a high (or low) degree of tenant isolation with a
corresponding effect on resource consumption.

Conclusion drawing
This step involves further refining the above steps to
produce conclusions concerning a particular aspect of
interest. The outcomes of this step are a summary of: (i)

key conclusions from the statistical analysis, and (ii) the
recommended patterns for achieving the required degree
of tenant isolation.
In summary, the focus of this paper is on a qualitative

cross-case analysis of three quantitative case studies. We
employed this approach because the context for each of
the cases is rather different (for example, the requirements
of bug tracking applications are not the same as those of
version control applications) and because we are not try-
ing to synthesise results here, but rather analyse the three
cases and draw out commonalities and differences

Overall case study research process
The overall research procedure used in this study from
the initial selection of the Global Software Development
tools and processes up to the development of an explana-
tory framework (after carrying out cross-analysis of the
case studies) is shown in Fig. 2. The overall research pro-
cess can be regarded as a multimethod method research
approach which entails combining different research
methods: exploratory study, case study and cross-case
analysis. The different research methods were chosen
based on the qualities that each research method can con-
tribute to answering our research question. For example,
the exploratory study allowed us to carry out an empir-
ical study to find out the type of software process and
the supporting tools used in Global Software development
projects and also explore the different cloud deployment
patterns for deploying services to the cloud. The case
study provided us with an in-depth understanding of the
software processes and the effect of varying degrees of
tenant isolation on the performance and resource con-
sumption of tenants. The cross-case analysis allowed us
to accumulate knowledge, compare and contrast cases,

Fig. 2 Overall research process

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 6 of 39

and in doing so, produce new knowledge such as an
explanatory framework for explaining the commonalities
and differences in the case studies and the trade-offs to
consider when implementing tenant isolation [10].
As shown in Fig. 2, the research process started with

an exploratory study which entails reviewing related work
on multitenancy and tenant isolation, carrying out empir-
ical studies on widely used software tools, formulating
research questions, and developing the scope of study. The
next step involved selecting the software tools and sup-
porting processes based on findings of the previous step,
and then designing the experimental procedure, data col-
lection and analysis of results of from the primary case
studies. The third step, which is the focus of this study,
involves carrying out the synthesis of findings of the pri-
mary case studies in order to provide an explanatory
framework and new insights on tenant isolation.
In the next section, we will provide a summary of the

case studies. The summary is important for two main
reasons: (i) to summarise the primary case studies and
show how the cross-case analysis fits into the overall
research process; (ii) to summarise the findings of the case
studies.

Summary of the case studies
In this section, we summarise the overall research process
with particular reference to how the cases studies were
conducted.

Selection of GSD tools and processes
This study used the most-similar technique (i.e., pur-
posive, non-random selection procedure) to select the
cases, since random sampling is inappropriate as a selec-
tion method [25]. The three GSD tools we selected were
inspired by the dataset of GSD tools and processes derived
from a previous exploratory study on how to create and
use a taxonomy for selecting applicable deployment pat-
terns for cloud deployment of GSD tools. In that study,
we derived a set of five GSD tools - JIRA, VersionOne,
Hudson, Subversion and Bugzilla [26]. Each of these tools
supports different GSD processes such as continuous
integration, issue tracking, bug tracking, version control,
source code management and agile project management.
From this dataset, we then selected three GSD processes
that are widely used in Global Software Development:
continuous integration with Hudson, version control with
FileSystem SCM Plugin, and bug tracking. These GSD
processes were chosen for three main reasons: (i) these
processes are widely used in GSD; (ii)there are open-
source tools and/or plugins that are specifically developed
to support them; and (iii) they are flexible to be customize
and extended.
We have to point out here that the emphasis of this study

is not on the GSD tools or plugins themselves but on the

GSD process they support. There are different tools and
plugins that can be used to trigger these processes. Our
intention was to choose a tool or plugin that is specifically
developed to trigger the GSD processes we have selected.
For example, Hudson can be used to trigger several GSD
processes but it was mainly developed to support con-
tinuous integration. Therefore, we wanted to know how
these processes and the data they generate impact on ten-
ant isolation with respect to performance and resource
utilization.

Conducting case studies
Case studies are well suited for software engineering
research since they study contemporary phenomena in its
natural context (i.e., real-world open-source GSD tools
in our case) [27]. This study is based on three primary
case studies (published separately [5–7]) which evalu-
ated empirically the degree of isolation between ten-
ants enabled by multitenancy patterns for Cloud-hosted
GSD tools and processes under different cloud deploy-
ment conditions. Software tools used for Global Software
Development (GSD) are increasingly being deployed on
the cloud, and therefore it is essential to properly isolate
the code files and processes of tenants so that the required
performance, resource utilization, and access privileges of
one tenant does not affect other tenants.

Design of the case study
The specific design of the case study is multiple-case
design withmultiple embedded units of analysis. This case
study design represents a form of mixed method research
which relies on more holistic data collection strategy for
studying the main case but then calls upon more quanti-
tative techniques (in this case, experimentation) to collect
data about the embedded unit(s) of analysis [25, 27]. The
experiments within the case study will enable us to collect
data for evaluating the degree by which the performances
of the different deployment architecture/patterns would
differ under realistic cloud deployment conditions of GSD
tools.
Figure 3 shows the component of the design for the

first case study. Case study two and three can be cap-
tured using the same diagram by simply replacing “The
Case” with multi-tenancy deployment patterns for ver-
sion control system and bug tracking systems respectively.
The main context of the study is deployment patterns for
cloud-hosted services. Each case study focuses on multi-
tenancy patterns that can be used to deploy services to the
cloud. For each case study, there are three units of anal-
ysis and each unit of analysis represent each of the three
multitenancy patterns (i.e., shared pattern, tenant-isolated
pattern, and dedicated pattern). Each multitenancy pat-
tern captures the varying degrees of isolation between
tenants.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 7 of 39

Fig. 3Multiple-case (embedded) design adopted for the study

The results of the study were analysed using relevant
statistically techniques. We adopted the Repeated Mea-
sures Design and Two-way Repeated Measures (within-
between) ANOVA for the experimental design and
statistical analysis respectively [28, 29].

COMITRE: a framework for implementing tenant isolation in
the case studies
The implementation of the tenant isolation is done
within the framework of COMITRE and its support-
ing algorithms. We refer the reader to [5, 6, 30]
for the architecture, implementation procedure and sup-
porting algorithms for COMITRE that are integrated into
the GSD tools to support the implementation of the vary-
ing degrees of tenant isolation.

In a nutshell, the Component-based approach to
Multitenancy Isolation through Request Re-routing
(COMITRE) is an approach for implementing the vary-
ing degrees of multitenancy isolation for cloud-hosted
services/applications. It captures the essential properties
required for the successful implementation of multite-
nancy isolation while leaving large degrees of freedom to
cloud deployment architects depending on the required
degree of isolation between tenants. Figure 4 captures the
architecture of COMITRE.
The actual implementation of the COMITRE is

anchored on shifting the task of routing a request from
the server to a separate component at the application level
of the cloud-hosted GSD tool. For example, this compo-
nent could be a program component (e.g., Java class file)

Fig. 4 COMITRE Architecture

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 8 of 39

or a software component (e.g., plugin) which can be inte-
grated into the GSD tool. Once the request is re-routed to
a component and captured, then important attributes of
the request can be extracted and configured to reflect the
degree of isolation required by the tenant.

Implementation of tenant isolation
In this section, we present a short description of how
the three case studies were implemented. The three pri-
mary case studies have been published separately, and we
refer the reader to [5–7] for details. The case studies are
summarised below:

1. Case Study One - Continuous Integration with
Hudson: Hudson is a continuous integration server,
written in Java for deployment in a cross-platform
environment [31]. Large organisations such as Apple
and Oracle use Hudson for setting up production
deployments and automating the management of
cloud-based infrastructure [32]. Our main interest is
in capturing the isolation of a tenant’s data and
process during automated build verification and
testing, an essential development practice when
using a continuous integration system. Tenant
isolation was implemented by modifying Hudson
using the Hudson’s Files-Found-Trigger plugin,
which polls one or more directories and starts a build
if certain files are found within those directories [33].
This involved introducing a Java class into the plugin
that accepts a filename as an argument. During
execution, the plugin is loaded into a separate class
loader to avoid conflict with Hudson’s core
functionality. As the build process is being carried
out, data is logged into a database every time a
change is detected in the file.

2. Case Study Two - Version Control with File System
SCM plugin: Filesystem SCM plugin can be used to
simulate the file system as a source control
management (SCM) system by detecting changes
such as the file system’s last modified date [33]. Our
interest was in simulating the process on a local
development machine by pointing a build
configuration to the locally checked out code and
modified files on a shared repository residing on a
private cloud. The File System SCM plugin was
integrated into Hudson to represent a scenario where
a code file is checked into a shared repository for
Hudson to build. Tenant isolation was then
implemented by modifying this plugin within
Hudson. This involved introducing a Java class into
the plugin that accepts a file path and the type of
file(s) that should be included when checking out
from the repository into Hudson workspace. During
execution, the plugin is loaded into a separate class

loader to avoid conflict with Hudson’s core
functionality.

3. Case Study Three - Bug Tracking with Bugzilla:
Bugzilla was modified using the recommended
Bugzilla Extension mechanism. Extensions can be
used to modify either the source code or user
interface of Bugzilla, which can then be distributed to
other users and re-used in later versions of Bugzilla.
Bugzilla maintains a list of hooks which represent
areas in Bugzilla that an extension can hook into,
thereby allowing the extension to perform any
required action during that point in Bugzilla’s
extension [34]. For our experiments, a special
extension was written and then “hooked” into
Bugzilla using the hook named
install_before_final_checks. This hook allows the
execution of custom code before the final checks are
done in checksetup.pl, and so the COMITRE
algorithm was implemented in this hook.

In this study, it is important to note that the use of plug-
ins in the case study experiments is basically a mechanism
for customizing, modifying and extending the GSD tools
(e.g., Hudson and Bugzilla) to support the implementa-
tion of multitenancy architectures and is not a limitation
to providing insights about the trade-offs across the dif-
ferent multitenancy patterns. Most open-source tools are
easily extensible using plugins by relying on a series of
extension points provided to extend its functionality. For
example, the extension points provided within Hudson
plugin was customised to implement the three multite-
nancy patterns (i.e., shared component, tenant-isolated
component, dedicated component) and thus support mul-
titenancy isolation. During execution, the plugin is loaded
into a separate class loader which does not conflict with
the core functionality of the GSD tool.

Evaluation of the case studies
The three case studies were evaluated using the same
experimental design, setup, procedure and statistical anal-
ysis. The evaluation of the case studies is summarised in
the sections that follow.

Experimental design
A set of four tenants (T1, T2, T3, and T4) are configured
to access an application component deployed using three
different types of multitenancy patterns (i.e., shared com-
ponent, tenant-isolated component, and dedicated com-
ponent). Each pattern is regarded as a group in this exper-
iment. Treatment was created for configuring T1 so that
it will experience a high workload. For each experimen-
tal run, one of the four tenants (i.e., T1) is configured to
experience a demanding deployment condition (e.g., large
instant loads) while accessing the application component.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 9 of 39

The performance metrics (e.g., response times) and sys-
tems resource consumption (e.g., CPU) of each tenant
are measured before the treatment (pre-test) and after
the treatment (post-test) was introduced. The hypothesis
of the experiment is that the performance and system’s
resource utilisation experienced by tenants accessing an
application component deployed using each multitenancy
pattern changes significantly from the pre-test to the
post-test.
Based on this information, a two-way repeated mea-

sures (within-between) ANOVA was adopted as the
experimental design. This experimental design is used
when there are two independent variables (factors) influ-
encing one dependent variable [29]. In our case, the first
factor is multitenancy deployment pattern, and the sec-
ond factor is time. Multitenancy pattern is the between
factor because our interest is in looking at the differences
between the groups using different multitenancy patterns
for deployment. Time is the within factor because our
interest is in measuring each group twice (pre-test and
post-test). The data view of our experimental design is
composed of a Group column that indicates which of the
three groups the data belongs to, and 2 columns of actual
data, one for the Pre-test and one for the Post-Test.

Experimental setup
The experimental setup consists of a private cloud setup
using Ubuntu Enterprise Cloud (UEC). UEC is an open-
source private cloud software that comes with Eucalyptus

[35]. Figure 5 is the UEC configuration used for the experi-
ment. It has six physical machines - one client node(i.e, the
head node) and five server node (i.e., the sub-nodes). The
experimental setup is based on the typical minimal Euca-
lyptus configuration where all user-facing and back-end
controlling components (Cloud Controller(CLC), Wal-
rus Storage Controller (WS3), Cluster Controller (CC),
and Storage Controller (SC)) are grouped on the first
machine, and the Node Controller (NC) components are
installed on the second physical machine. The guidelines
for installing UEC as outlined in [36] were followed to
extend the configuration by installing the NC on all the
other sub-nodes to achieve scalability. The head node was
also used as the client machine since it does not have to
be a dedicated machine. Installing UEC is like installing
Ubuntu server; the only difference is the additional config-
uration screens for the UEC components. The hardware
configuration of the head node and sub-nodes is sum-
marised in Table 1.

Setup of the UEC used for experiments
Experimental procedure
An abstract summary of the experimental procedure used
for all the case studies is captured in Fig. 6. We refer
the reader to [5, 6] for specific details of how the GSD
tools weremodified for each case study, how the processes
associated the GSD tools were simulated, and the exper-
imental procedure, so these details will not be repeated
here due to space limitations.

Fig. 5 Setup of the UEC used for experiments

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 10 of 39

Table 1 Hardware and Network Configuration of the UEC

HeadNode Sub-nodes

Hardware settings

CPU VT extension, 64 bit, multicore 2 x2 GHz

Memory 4 GB 2 GB

Disk 7200 rpm SATA/SCSI 7200 rpm SATA

Disk Space 80 GB 40

Networking 1 Gbps 1Gbps

Network settings

Functionality CLC,WS3,CC,SC NC

No of NICs 2 (eth0 and eth1) 1(eth0)

IP Addresses 10.85.56.4 10.85.56.5-10.85.56.9

Hostname nc1 n1, n2,n3,n4,n5

Name Servers 10.12.5.100-10.12.5.102 10.12.5.100-10.12.5.102

Gateway IP 10.85.56.3 10.85.56.3

In a nutshell, the GSD tool used for each case study is
modified to support tenant isolation. This involved devel-
oping a plugin and integrating it with the GSD tool so that
it can be accessed by different tenants. The GSD tool is
then bundled as a VM image and uploaded to a private
cloud with a typical minimal UEC configuration.
To evaluate the degree of tenant isolation between ten-

ants, four tenants (referred to as tenant 1, 2, 3, and
4) were configured based on access to the functional-
ity/component of the GSD tool that is to be served to mul-
tiple tenants. Accesses to this functionality is associated
with a tenant identifier that is attached to every request.
Based on this identifier, a tenant-specific configuration is
retrieved from the tenant configuration file and used to

1. Prepare the Private Cloud for the Test Run
(a) Create an Ubuntu Virtual Machine Image
(b) Install the modified GSD tool on the image
(c) Upload the Image to UEC
(d) Launch the instance and SSH to the instance

2. Execute the Test Run
(a) Start the GSD tool and view it on a browser
(b) Start JMeter load test on the GSD tool
(c) Start instance monitoring with SAR tool
(d) Stop test run after all responses received

3. Collect Results
(a) Export JMeter and SAR result to text file
(b) Clear previous JMeter and SAR results
(c) Reboot instances for next test run
(d) Repeat step 2 for more runs

Fig. 6 Experimental procedure

adjust the behaviour of the GSD tool’s functionality that is
being accessed.
A remote client machine was used to access the GSD

tool running on the instance via its public IP address.
Apache JMeter is used as a load balancer as well as a
load generator to generate workload (i.e., requests) to
the instance and monitor responses [37]. To measure the
effect of tenant isolation, tenant 1 was configured to sim-
ulate a large instant load by: (i) increasing the number
of requests using the thread count and loop count; (ii)
increasing the size of the requests by attaching a large file
to it; (iii) increasing the speed at which the requests are
sent by reducing the ramp-up period by one-tenth, so that
all the requests are sent ten times faster; and (iv) creating a
heavy load burst by adding the Synchronous Timer to the
Samplers in order to add delays between requests, such
that a certain number of requests are fired at the same
time. This treatment type can be likened to an unpre-
dictable (i.e., sudden increase) workload [3] and aggressive
load [17].
Each tenant request is treated as a transaction

composed of all types of request simulated. For
example, the HTTP request triggers a build process
while the JDBC request logs data into a database
which represents an application component that is being
shared by the different tenants. The transaction con-
troller is used to group all the samplers in order to get
the total metrics (e.g., response) for carrying out the two
requests.
The setup values for the experiment are shown in

Table 2. It is important to note that since different pro-
cesses are being simulated using different GSD tools, the
setup values (e.g., thread count, loop count, and loop con-
troller count) will vary slightly. To have a balanced basis
for comparison, the workload was carefully varied to cope
with the private cloud used in such a way that: (i) the
number of requests sent by tenant 1 (i.e., the tenant that
experiences a very high workload or aggressive load) is
two times more, five times heavier, and ten times faster
than the other tenants; and (ii) all other tenants regard-
less of the type of request being simulated sends the same
number of requests. Ten iterations for each run were
performed and the values reported by JMeter used as a
measure for response times, throughput and error%. For
system activity, the average CPU, memory, disk I/O and
system load usage at a one-second interval were recorded.
The generated workload for the experiments were real-

istic and appropriate for each of the applications in the
case studies. The number and size of requests sent to
the application component during the case study exper-
iments were within the limit of the private cloud used
(i.e., Ubuntu Enterprise Cloud). This was achieved by
carefully varying the setup values to get the maximum
capacity of the software process triggered by the GSD tool

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 11 of 39

Table 2 Setup parameters used in the experiments

Parameters Values for case study 1 Values for case study 2 Values for case study 3

No of threads 10 for tenant 1 (i.e., the tenant
experiencing high load); 5 for all
other tenants

2 for all tenants 5 for all tenants

Thread Loop count 2 5 for all tenants 2 for all tenants

Loop controller count 10 for HTTP requests of tenant 1,
and 5 for all other tenants; 200 for
JDBC requests of tenant 1, and 100
for all other tenants

4 for tenant 1, and 2 for all other
tenants for each type of request
(HTTP, BeanShell, FTP upload and
FTP download samplers)

20 for tenant 1 and 10 for all other
tenants for the HTTP and BeanShell
samplers

Ramp-up period 6 seconds for tenant 1, 60 seconds
for all other tenants

6 seconds for tenant 1, 60 seconds
for all other tenants

6 seconds for tenant 1, 60 seconds
for all other tenants

Size of request 1MB for tenant 1, and 200KB for
other tenants.

1MB for tenant 1, and 200KB for
other tenants.

1MB for tenant 1, and 200KB for
other tenants.

(e.g., Hudson’s build processes) running on the private
cloud before conducting the experiments.

Statistical analysis of the case studies
Based on the information about the experimental
design, the two-way RepeatedMeasures (within-between)
ANOVA was adopted for the statistical analysis because
(i) it does not require many subjects since each subject
would be measured twice. and (ii) it eliminates the dif-
ficulty of trying to match subjects perfectly between the
different conditions in all respects [38].
The tool used for statistical analysis is SPSS v21. The

two-way (within-between) ANOVA was performed first
to determine if the groups had significantly different
changes from Pre-test to the Post-test. After that, planned
comparisons were carried out involving the following:
(i) a one-way ANOVA followed by Scheffe post hoc tests

to determine which groups showed statistically signifi-
cant changes relative to the other groups. The dependent
variable (simply called “Change”), used in the one-way
ANOVA test was determined by subtracting the Pre-test
from Post-test values.
(ii) a paired sample test to determine if the subjects

within any particular group changed significantly from
pre-test to post-test were measured at 95% confidence
interval. This would give an indication whether or not
the workload created by one tenant affected the per-
formance and resource utilisation of other tenants. The
“Select Cases” feature in SPSS was used to select the three
tenants (i.e., the T2, T3, T4 that did not experience large

instant loads) for each pattern which gives a total of 3
cases for each metrics measured [28, 29].
After the first two steps outlined above, the plots of esti-

matedmarginal means were analysed in combination with
ANOVA (plus post hoc test) and paired sample test results
from SPSS output. These plots are referred to as the “Esti-
mated Marginal Means of Change (EMMC)”. Note that
the word “Change” refers to the transformed variable used
as the dependent variable in the one-way ANOVA. The
plot of EMMC is simply a plot of the mean value for each
combination of factor level.

Results of the case studies
In this section, we present a summary of results of each
case study.

Results for case study 1 - continuous integration
The results of the case study are analysed based on the
results of the paired sample t-test shown in Table 3, and
supplemented with information from the plots of Esti-
mated Marginal Means of Change(EMMC) 1. The key
used in constructing the paired sample t-test table is as
follows: YES - represents a significant change between the
metrics measured from pre-test to post -test. NO - rep-
resents some level of change which cannot be regarded
as significant; no significant influence on the tenants.
The symbol “-” implies that the standard error of the
difference is zero and hence no correlation and t-test
statistics can be produced. This means that the differ-
ence between the pre-test and post-test values are nearly

Table 3 Paired sample test analysis for case study 1

Pattern Response times Error% Throughput CPU Memory Disk I/O System load

Shared NO NO YES YES YES NO -

Tenant-isolated NO - YES NO YES YES -

Dedicated YES YES YES NO YES - -

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 12 of 39

constant with no chance of variability. Figures 8, 9, 10, 11,
12, 13 and 14 in the Appendix A show the plots of the
estimated marginal means of change for the parameters
measured2.
(1) Response times and Error%: Table 3 shows that the

response times and error% of tenants did not change sig-
nificantly except for the dedicated component. The plot
of the EMMC revealed that the magnitude of change for
response times showed a much larger change for the ded-
icated component. This is due to the overhead incurred
because of opening multiple connections to the database
each time a JDBC request is made to a different database.
For error%, the magnitude of change was larger for ten-
ants deployed based on the shared component than for
other patterns. A possible explanation for this is that
there is resource contention since multiple connections
are opened while sending requests that log all the data
into the same component (i.e., database table) that is being
shared. Overall, this causes delay in completion times
thereby producing a negative effect on error%.
(2) Throughput: The paired sample test result showed

that the throughput changed significantly, implying a low
degree of isolation. In this situation, the shared compo-
nent is not recommended for avoiding a situation where
requests are struggling to gain access to the same applica-
tion component, thereby resulting in some request either
being delayed or rejected. For a tenant-isolated compo-
nent and dedicated component, there would not be much
change in throughput because requests are not concen-
trated on one application component but instead are
directed to the separate components reserved for different
tenants. Throughput can be likened to bandwidth, and so
it means that the bandwidth was not sufficiently large to
cope with the size, number and frequency of requests sent
to the CI system.
(3) CPU and System Load: The paired sample test

showed that the CPU consumption of tenants did not
change significantly for most patterns except for the
shared component. Therefore, once a reasonable CPU size
(e.g., multiple CPUs or a multi-core CPU) is used, there
should be no problem in performing builds. Builders are
not known to consume much CPU. For example, Hudson
does not consumemuch CPU; a build process can even be
setup to run in the background without interfering with
other processes [32].

One of the most significant findings of this study is that
the system load did not influence any of the patterns.
The paired sample test results were similar in all patterns;
that is, the standard error difference was the same for
tenants (or components) deployed using all the three mul-
titenancy patterns. This result shows that the system load
was nearly constant with no variability in the values from
pretest to post-test. Therefore, in a real cloud deployment,
the system load would not be a problem especially if CPU
is reasonably large enough to allow the application to scale
well.
(4) Memory: The paired sample test result showed that

there was a significant change in memory consumption
for all three patterns. Complex and difficult builds are
those that are composed of a vast number of modular
components including different frameworks, components
developed by different teams or vendors, and open source
libraries [39]. Compilers and builders consume a lot of
memory especially if the build is difficult and complex
[32]. In a large project, it is expected that multiple builds
will interact with multiple components to create several
dependencies and supported behaviour with each other
thereby making builds difficult and complex.
(5) Disk I/O: Compilers and builders are known to con-

sume disk I/O especially for I/O intensive builds [32].
The results show that only the shared component showed
no significant change in disk I/O usage. This is under-
standable because multiple transactions are channelled
to the same component which would either be delayed
or blocked because of sharing the components. Further
analysis of the plot of the EMMC confirmed that the mag-
nitude of change for the shared component was the least,
and therefore is recommended for builds that particularly
involve intensive I/O activity especially when locking is
enabled.

Results for case study 2 - version control
The results of the case study are analysed based on the
paired sample t-test (shown in Table 4) and supplemented
with information from the plots of Estimated Marginal
Means of Change (EMMC). Figures 15, 16, 17, 18, 19, 20
and 21 in the Appendix B show the plots of the estimated
marginal means of change for the parameters measured.
(1) Response times and Error%: The paired sample test

results showed that response times changed significantly

Table 4 Paired sample test analysis for case study 2

Pattern Response times Error% Throughput CPU Memory Disk I/O System load

Shared YES NO YES YES YES YES -

Tenant-isolated NO NO YES YES YES YES YES

Dedicated YES NO YES YES YES YES -

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 13 of 39

for most of the patterns. As expected, the plot of the
EMMC demonstrated that the magnitude of change for
response times was much higher for the shared compo-
nent and the tenant-isolated component. The results seem
to show that there were no long delays that affected the
error% rate. The error% showed no significant change
based on the paired sample t-test. One aspect where
error% (i.e., unacceptably slow response times) is known
to have an impact is when committing a large number of
files to a repository that is directly based on the native OS
file system (e.g., FSFS). Delays usually arise when finalising
a commit operation which could cause tenants requests to
time out while waiting for a response.
(2) Throughput: The paired sample t-test results show

that throughput changed significantly for all the patterns.
Further analysis of the plots of the EMMC showed that
the magnitude of change for the shared component was
much higher than the other patterns. Since locking was
enabled, it seems to show that it had an adverse impact on
a tenant deployed based on a shared component. There-
fore, the dedicated component would be recommended
for tenants accessing bugs, especially if the bugs are stored
in a database with locking enabled.
(3) CPU and System Load: The paired sample t-test

showed that CPU changed significantly for all patterns. A
possible reason for this is the overhead incurred in trans-
ferring data from the shared repository based on FSFS
to the database (i.e., MySQL). The plot of the EMMC
showed that the magnitude of change in CPU increased
steadily across the three patterns with the dedicated com-
ponent being the most influenced. Therefore, if there is
need to avoid high CPU consumption, then the dedicated
component is therefore not recommended for version
control. This is because storing or retrieving bugs could
involve locking or blocking other tenants from accessing a
component that is being shared.
Table 4 shows that system load was nearly constant

with no chance of variability, and so this means that sys-
tem load did not influence any of the patterns. Therefore,
with a reasonably high-speed network connection and
CPU size, there should be no problem with system load
when sending data across a shared repository residing in a
company’s LAN or VPN.
(4) Memory and Disk I/O: Memory consumption

changed significantly for all patterns based on the paired

sample t-test result. The plot of the EMMC showed that
the magnitude of change for the shared component was
higher than the other patterns. Therefore, the shared com-
ponent would not be recommended when there is a need
for better memory utilisation. The paired sample t-test
revealed that the usage of disk I/O by tenants changed sig-
nificantly from pre-test to post-test for all the patterns.
This is due to the intense frequency of the I/O activities in
the disk because of the file upload and download opera-
tions. The dedicated component would be recommended
since this would allow each tenant to have exclusive access
to the component being shared, thereby reducing a possi-
ble contention for disk I/O and other resources when the
number and frequency of request increase suddenly.

Results for case study 3 - bug tracking
This section presents a summary of the experimental
results for case study 3. The results of the paired sample
t-test are summarised in Table 5, while the plots of the
estimatedmarginal means of change are shown in Figs. 22,
23, 24, 25, 26, 27 and 28 in the Appendix C.
(1) Response times and Error%: From the plots of the

estimated marginal means of change (EMMC), it can
be seen that the dedicated component showed a lower
magnitude of change in response time, and it is recom-
mended for achieving isolation between tenants accessing
bugs in a database with locking enabled. However, the
plots of EMMC show that the number of requests with
unacceptable response times was much higher for shared
components compared to tenant-isolated and dedicated
components. This is possibly due to the effect of lock-
ing on the database which causes a delay in the time it
takes for requests to be committed. Using the dedicated
component ensures a high degree of isolation, but with
limitations of increased resource consumption (e.g., mem-
ory and disk I/O). To address this challenge, it is suggested
storing large bug attachments on the disk and then stor-
ing the links to these files on the bug database to improve
performance, especially when retrieving data.
(2) Throughput: The paired sample test result showed

that there was no significant change in throughput for
most of the patterns unlike two previous case studies.
This result is similar to that of the two previous case
studies where throughput was relatively stable. The impli-
cation of this is that if the component being shared is

Table 5 Paired Sample Test Analysis for Case Study 3

Pattern Response times Error% Throughput CPU Memory Disk I/O System load

Shared NO YES NO YES YES YES -

Tenant-isolated YES YES YES YES YES YES -

Dedicated NO NO NO YES YES YES -

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 14 of 39

a database, then throughput should not be expected to
change drastically. Based on the plot of the EMMC, the
shared component would be recommended when bugs are
stored in a database with locking enabled.
(3) CPU and System Load:The results of the paired sam-

ple test show that there was a significant change in CPU
for all the patterns. By analysing the plots of the EMMC,
the results show that the dedicated component changed
the most and so would not be recommended if optimis-
ing CPU usage is a key requirement. As with other case
study results, there was no influence on any of the patterns
for system load. The plots of EMMC showed that system
load increased steadily across the patterns from shared
component to dedicated component.
(4) Memory and Disk I/O: The paired sample test for

both the memory and disk I/O showed a highly signifi-
cant difference from pretest to post-test both for memory
and disk I/O. For memory, the plot of the EMMC similarly
showed that the dedicated component had the highest
significant change compared to the other patterns. This
is possibly due to running Bugzilla in a mod_perl envi-
ronment, and so using a dedicated component would
not be a good option for optimising system resources.
It is well known that running Bugzilla in mod_perl envi-
ronment consumes a lot of RAM [34]. The significant
change in disk I/O consumption is due to the intense fre-
quency of read/write activities in the database. For disk
I/O consumption, having enough storage space would be
required, especially if a large volume of bugs with attach-
ments is expected. If a large number of users are expected,
then applying disk space saving measures such as purging
unwanted error or log files regularly could reduce disk I/O
consumption and improve the chance of having a higher
degree of isolation.

Results
This section explains how the findings from the three
case studies were synthesised. The case synthesis was
done using cross-case analysis approach and then comple-
mented with narrative synthesis.

Cross-case analysis
In this section, we present the results of the cross-case
analysis that was applied in an iterative manner during the
analysis to reach the conclusion.

Data reduction
In our previous case study, much of the data reduction
process was already done in the primary case studies.
For each case study the following details are presented:
(i) the paired test sample test, (ii) plots of the estimated
marginal means of change, (iii) discussion of the findings
and recommendations for achieving the required degree
of isolation between tenants.

For each case study, we presented the paired sample
test result plus the plots of the estimated marginal means
of change (EMMC). In addition to this data, a table (i.e.,
Table 6) showing the characteristics of the three cases
studies is presented in this paper. Table 6 shows the
features that are related to each case study based on a
selected set of different aspects of the study.

Data display
This step involves organising and assembling information
that allows the drawing of conclusions using tools such as
meta-matrices/tables and cause and relationships graphs.
The data display steps will be tackled from two approaches
to cross-case comparisons: variable -orientated and case-
oriented [24].
(A) Variable oriented approach: The data derived at this

stage is a table (see Table 7) showing the factors in which
the cases vary, to explain why there is variation in the
degree of tenant isolation across the cases. It is assumed
that factors such as performance, resource utilisation, that
are known to affect isolation between tenants were already
used to evaluate the three cases independently. These fac-
tors are captured in the seven metrics used to evaluate
the three cases: response times, error%, throughput, CPU,
Memory, disk I/O, and system load. Knowing the vari-
ous aspects in which the cases vary would enable us to
explain the variation in the degrees of tenant isolation
for different GSD processes. The synthesis identified five
aspects in which the cases vary: size of data generated,
the resource consumption of the GSD process, client’s
latency and bandwidth, supporting task performed, and
error messages due to sensitivity to workload changes.
These aspects are summarised below.

1. Size of Data Generated: One of the most important
factors that account for the variation in the degree of
tenant isolation is the fact that some GSD tools
generate more data than others. For example, several
of the problems that occur in version control relate
to the fact that version control systems usually create
additional copies of files on the repository, especially
the ones that use the native operating system (OS)
file system directly. This adversely affects
performance because these files occupy more disk
space than they actually use, and the OS spends a lot
of time seeking across many files on the disk [40].

2. Effect of GSD process on Cloud Resources: The
variation in the degree of tenant isolation can also
been explained based on the effect of the particular
GSD process on the cloud infrastructure resources.
Some GSD processes consume more of a particular
resource than others, and so this is bound to affect
the degree of tenant isolation required by tenants. As
shown in the experiments, continuous integration
showed no significant change in CPU consumption

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 15 of 39

Table 6 Characteristics of the Case Studies

Aspect Case study 1 Case study 2 Case study 3

Research Aim To evaluate the degrees of isolation of
multitenancy patterns for cloud-hosted
continuous integration system

To evaluate the degrees of isolation
of multitenancy patterns for cloud-
hosted version control system.

To evaluate the degrees of isolation of
multitenancy patterns for cloud-hosted
bug tracking system

Target process Continuous integration Version control Bug tracking

GSD tool/plugin that can
be used to simulate the
process

Hudson Subversion, FileSystem SCM Plugin
(integrated in Hudson)

Bugzilla

User-level Process
investigated

Automated Build Verification/Testing Check-in, Check-out, locking Bug creation with file attachment

Process simulated in
JMeter

sending HTTP/HTTPS request to
continuous integration server

sending an FTP download file and
upload file request to a Version
control repository

sending an JDBC Request(an SQL query)
to a database, invoking external JMeter
APIs and Java classes via BeanShell

Developer community Eclipse Foundation Apache Software Foundation Mozilla Foundation

Implementation
Language

Java Python, Java Perl, Java

Mechanism for
Customization and
Extension

Hudson plug-in using Hudson HPI tool Hook scripts or any program trig-
gered by some repository event (e.g.,
pre-hooks which run in advance of a
repository operation)

Bugzilla Extensions Hooks

Storage/DBMS used (Back
end)

MySQL Postgree SQL, Berkley DB MySQL, PostgreSQL

Implementation of Ten-
ant Isolation (based on
COMITRE)

Easy to implement due to Java
programming language familiarity

Fairly simple to implement but files
permissions could be an issue

Difficult and challenging due to existing
database restrictions/constraints

Key implementation
challenges

Insufficient system resources (e.g.,
memory)

File permission errors Restrictions of database schema (e.g., file
size, maximum open connections)

when used with most of the patterns compared to
version control and bug tracking. Under normal
conditions, continuous integrations systems being
compilers consume huge amounts of memory and
disk I/O during high workload. Based on our results,

the dedicated component is recommended for
performing builds when there is a sudden increase in
workload.

3. Client Latency and Bandwidth: The variation in the
degree of tenant isolation can also be explained based

Table 7 Comparison of different aspects in which the Cases vary

Aspects Case 1- Continuous integration Case 2 – Version control Case 3 – Bug tracking system

Resource consumption High RAM and Disk I/O consumption
(e.g., during the building of files)

Some native OS filesystem format (e.g.,
FSFS) consumes CPU (e.g., Delification,
compressing data). Consumes memory
during data caching

CPU and RAM consumption (could
consume more CPU depending on
runtime library used. Bugzilla
consumes huge RAM if mod_perl is
enabled), consumes memory
during Caching DB transactions

Storage Space Requires large storage space to store
build history

Requires large storage space to store
additional copies of data

Limited (except large bug
attachments are needed)

Latency and Bandwidth
of client accessing the
server

Transferring large data size across
network; long distance between CI
server and SCM server

Compressing data across, Migrating
repository, Repository backup, Enabling
file locking

Transferring large bug attachments
across a network, Enabling Locking
on DB transactions

Type of GSD process Long running build, large number of
builds, complex and difficult builds

File locking Long running DB transactions with
support for locking could consume
more RAM

Storage format of the
backend server

Portable across different OS. Storing
massive builds on NFS mount reduces
performance.

Some DBMS (e.g., Berkeley DB) might
not be portable across different OS

Fairly portable across different OS

Interdependencies with
other tools

Depends on Version control server for
store archive data

Depend on a CI server to trigger polling
before checkout data

Integrated with CI server or other
issue tracking systems

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 16 of 39

on the latency and network bandwidth of the client
accessing the GSD tool. If a client with a low
bandwidth is trying to access a version control
repository, then response time and error% will be
negatively impacted. Compressing the data
transmitted across the network can boost
performance, but the drawback is that it consumes
much CPU. The results of case study one (i.e.,
continuous integration) showed that the magnitude
of change for response time was more for the shared
component compared to other patterns. This seems
to suggest that a CI server (e.g., Hudson) should be
configured close to an SCM server when polling a
version control repository for changes.

4. Type of GSD Process and Supporting operations:
There are several conditions associated with a GSD
process that can result in different or varying degrees
of isolation. Examples of such conditions include
running long builds, a large number of builds and
complex and difficult builds; and enabling file
locking. For instance, a complex and difficult build
involving lots of interdependencies will consume
more resources (e.g., CPU) than an ordinary
check-out process in a version control system.

5. Error Messages and Sensitivity of workload Changes:
The cases also vary in terms of their sensitivity to
workload changes as manifested in the nature and
type of error messages produced by the different
GSD processes during the implementation of tenant
isolation. The experimental results show that when a
tenant experiences a high workload, different kinds
of error messages are generated depending on the
GSD process. The error messages are summarised as
follows: for continuous integration, the most

common type of error was that of insufficient system
resource (e.g., memory); for version control, the
common error was that of directory and file
permissions; and for bug tracking the common error
was database-related errors.

(i) Case-oriented approach: The data derived at this
stage is a table (see Table 8) showing the factors that are
alike across the cases, and which appear to lead to similar
outcomes when evaluating the varying degrees of ten-
ant isolation in cloud-hosted GSD tools. The synthesis
identified five aspects in which the cases are alike: a strat-
egy for reducing disk space, locking, low consumption
of some system resources, and use of plugin architecture
for extending the GSD tool, and aspects of tenant isola-
tion. The various aspects in which the cases are alike are
summarised as follows.

1. Strategy for Reducing Disk Space: An interesting
feature of all the GSD tools is that they have strategies
for reducing disk space because of the possibility of
the GSD tool generating a large volume of data due to
the size, the number of artefact and number of users
that may be involved in the project. For instance, CI
systems can be configured to discard old builds.
Version control systems can use delification (i.e., a
process for transferring differences between versions
instead of complete copies) and packing to manage
disk space. For a bug tracking system, the error and
log files can be purged from the database regularly.

2. Locking Process: All the GSD tools implement some
form of locking whether at the database level or
filesystem level. For example, locking is used
internally in version control systems to prevent
clashes between multiple tenants operating on the

Table 8 Comparison of different aspects in which the Cases are alike

Aspects Case 1- Continuous integration Case 2 – Version control Case 3 – Bug tracking system

Generation of additional
data

Archives the results of all the builds it
performs, by default

Creates additional copies of files
which occupies space

No additional copies created except
bug attachments

Use of Locking Used to block builds dependencies from
starting if an upstream/downstream
project is in the build queue

Used to prevent clashes between
multiple tenants operating on the
same working copy

Used to prevent clashes between
multiple tenants trying to access
the bug database

Use of back-end Storage stored data native OS Filesystem directly Mostly stores data on native OS
File system directly (occasionally on
database)

DBMS or database library

Use of disk saving
strategies

Configure system to discard old builds Transfer differences between versions
instead of complete copies;
concatenate files into a single pack

Purge error files and log files

Use of Web Server and
Runtime Library

Java Runtime Environment (JRE) and
JVM

Apache Portable Runtime (APR) Mod_perl and mod_cgi

Size of users and project Multiple developers triggering multiple
concurrent builds

Multiple developers access working
copy of a project

Multiple developers and testers
submitting and corrects bugs

System Load and CPU Low consumption low consumption (could be high during
delification, data compression)

Average consumption (could be
high depending on runtime library
used)

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 17 of 39

same working copy [41]. In Bugzilla, locking is used
to prevent conflicts between multiple tenants or
programs trying to access the Bugzilla database [34].
In continuous integration, locking can be used to
block builds with either upstream or downstream
dependency from starting if an
upstream/downstream project is in the middle of a
build or the build queue [32]. When using a version
control system that implements locking, fetching
large data remotely and finalising a commit operation
can lead to unacceptably slow response times (and
can even cause tenants’ request to time out), and so
having the repository together with the working copy
located on your machine is beneficial. The results of
case study two recommended a shared component to
address the trade-off between resource utilisation and
the speed of accessing or completing a version control
process (e.g., checking out files from a repository).

3. Low Resource Consumption due to Workload
Changes: Most GSD tools do not consume much
system resources like CPU and memory but can
benefit from optimisations when there is a sudden
change in workload. For continuous integration,
memory and disk I/O will be mostly affected. For
Bugzilla, it will be memory especially if locking and
database transactions are enabled. For subversion,
disk space and disk I/O are the obvious resources
that will be most affected. System load and CPU
consumption are generally low, and so using any of
the patterns would not make much difference.
System load showed no influence on all patterns.

4. Mechanism for customization and Use of Plugin
Architecture: All the GSD tools implement a "plugin
architecture" for use in customising, modifying and
extending the GSD tool. This means that other
programs and components can be easily integrated
with it [26]. For example, Hudson is easily extensible
using plugins. A series of extension points are
provided in Hudson that allows developers to extend
its functionality [42]. These extension points are
where the GDS tools can be customised to support
tenant isolation.

5. Choice of Multitenancy Pattern for Required Degree
of Tenant Isolation: The results generally showed
that performance-related parameters such as
response time, %error and throughput had changed
significantly for shared pattern compared to system’s
resources such as CPU, memory, disk I/O and
bandwidth. For example, in version control and bug
tracking, the dedicated component is recommended
to improve response time while the shared
component is recommended to improve utilisation of
memory and disk I/O. Because of this, the dedicated
pattern (which is associated with a high degree of

isolation) is recommended to improve performance
related parameters while the shared pattern (which is
associated with a low degree of isolation) is
recommended to improve resource utilisation.

Conclusion drawing
This step involves further refining the above steps to pro-
duce conclusions concerning a particular aspect of inter-
est. The outcomes of this step are (i) key conclusions from
the statistical analysis, and (ii) the recommended patterns
for achieving the required degree of tenant isolation.
(A) Summary of Findings from Statistical Analysis The

conclusions presented in this section are based on trends
noticed in the statistical analysis performed to answer the
hypothesis of the experiment which was to determine how
tenants deployed using a particular pattern changed from
pre-test to post-test.
1. For most of the GSD tools, the shared component

changed significantly for performance-related parameters
(e.g., response times, error% and throughput), while the
dedicated component changed significantly for system’s
resource-related parameters (e.g., CPU, memory and disk
I/O). As the results show, the shared component would be
recommended for improving systems resource consump-
tion while the dedicated patterns would be recommended
for improving performance. For example, the dedicated
component was recommended to improve resource util-
isation in bug tracking and CI systems under similar
conditions. This is possibly due to the effect of locking
whichmay have had an adverse impact on tenant isolation.
2. System load is nearly constant and no variability was

found in almost all the case study results. A possible expla-
nation for this is that the configuration of the deployed
component, the nature of the tasks, and absence of a piled-
up task queue for a long time being processed resulted in
a reasonably good throughput. In most cases, if the load
average is less than the total number of processors in the
system, this suggests that the system is not overloaded
and so it is assumed that nothing else influences the load
average.
3. CPU changed significantly for version control and bug

tracking systems, but not for continuous integration. This
confirms what is already known about compiler/builders
which is that it does not consume much CPU. However,
it is important to note that certain operations or settings
could increase CPU consumption regardless of the GSD
tool used. Examples of such operations include enabling
locking, data compression, and moving data between
repositories in a different file format (i.e., FSFS).
4. Throughput changed significantly, and this change

was relatively stable formost of the patterns in all the three
case studies, except for case study three where there was
no meaningful change. This may be because the system
quickly reached peak capacity and so additional requests

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 18 of 39

simply do not add to the throughput. Furthermore, the
small private cloud used for the experiments may have
contributed to this fairly stable but significant change in
throughput.
(B) Summary of Recommended Multitenancy Patterns

for Deployment Table 9 shows a summary of the rec-
ommended multitenancy patterns for achieving isolation
between tenants when one of the tenants experiences
a high load. These recommended patterns are derived
by first checking the paired sample test result and then
analysing the plots of the estimated marginal means of
change (EMMC) to compare the magnitude of change in
each pattern. The key used in constructing the table is as
follows: (i) the symbol “�”means that the pattern is rec-
ommended; (ii) the symbol “x” means that the pattern is
not recommended; and (iii) the symbol “-” implies that
there is no difference in effect, and so any of the three
patterns can be used.
For example, to ensure performance isolation in CI

systems (e.g., regarding response time), the shared

component is recommended for performing builds gen-
erally, and a dedicated component for performing version
control especially when locking is enabled. The results
generally showed no meaningful change for system load,
and so any of the patterns can be used. For Bugzilla, the
dedicated component was recommended to improve per-
formance and the shared component to reduce resource
consumption. This is based on our experience with
Bugzilla which seems to suggest that bug trackers are very
sensitive to increase workload especially if bugs are stored
in the database with locking enabled. It was noticed that
frequent crashes of the Bugzilla database occurred in our
experiments which required recovery, and there were also
numerous database errors related to restrictions on the
maximum number of allowed queries, connections and
packets, etc.
(C) Summary of the Effect of Performance and Resource

Consumption on Multitenancy Patterns To further enrich
the case study synthesis we provide a condensed sum-
mary to explain the effect of performance and resource

Table 9 Recommended Patterns for optimal deployment of components

Case Studies Aspects of Isolation Parameters Shared Tenant-isolated Dedicated

Case Study 1- Continuous
Integration with Hudson

Performance Response �

Error% �
Throughput � �

Resource
Consumption

CPU � �

Memory �
Disk I/O �
System load - - -

Case Study 2- Version
Control with File System
SCM Plugin

Performance Res � �

Error �
Thru �

Resource
Consumption

CPU � �

Memory �
Disk I/O � �
System Load - - -

Case Study 3 - Bug
Tracking with Bugzilla

Performance Resp �

Error% � �
Throughput � �

Resource
Consumption

CPU � �

Memory � �
Disk I/O � �
System load - - -

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 19 of 39

utilisation on tenants deployed based on different mul-
titenancy patterns when one of the tenants experiences
a sudden change in workload. The summary provided
here is similar to narrative synthesis, which is a textual
approach that can be used for condensing and explaining
the findings from case studies [9].
(1) Response times and Error%: The case studies results

showed that response times and error% did not change
significantly for the shared component, and so it is rec-
ommended for addressing low latency and the bandwidth
requirements of tenants. This suggests that a GSD tool
should be configured close to the backend storage. For
example, the CI server (e.g., Hudson) should be config-
ured close to the SCM server when polling a version
control repository for changes. The performance of ten-
ants with low bandwidth accessing a version control
system can be boosted by minimising the size of the
network communications (e.g., reducing file size trans-
ferred between shared repositories). When committing
large files to a repository residing over a network, delays
could arise causing requests to time out [41]. For version
control systems, the error% (i.e., requests with unaccept-
ably slow response times) could be negatively impacted
when committing a large number of files to a repository
that is using a native OS file system (e.g., FSFS). Tenants
request could time out while waiting for a response due to
delays in finalising a commit operation [41].
(2)Throughput:Throughput did not change significantly

for most of the patterns. Throughput can be likened to
network bandwidth and so when the network is reason-
ably fast, a significant change in throughput should not
be expected for application components deployed to the
cloud. When accessing a repository over a slow or low
bandwidth network, large data sizes could be compressed
to improve throughput and performance, although this
could lead to more CPU consumption.
(3) CPU and System Load: The case study results

show that most GSD tools do not consume much CPU;
consumption only slightly increased for some patterns.
Therefore, the key in efficient utilisation of CPU while
achieving the required degree of isolation lies in avoiding
operations that are likely to increase CPU consumption.
For continuous integration systems, a build can be run
in the background without affecting other resources or
processes, but this could increase if builds are difficult
and complex [39]. For version control systems, CPU con-
sumption could increase when moving data from one
repository into another (e.g., using svnadmin dump and
svnadmin load subcommands in subversion) or switch-
ing from a repository that uses a database (e.g., Berkeley
DB or MySQL) to a repository that is based on FSFS
file format [34]. Compressing data of large sizes in a bid
to improve performance could also consume more CPU.
System load was not influenced by any of the patterns,

possibly because the number and size of requests did not
overload the system to cause any significant change.
(4) Memory: As expected, the experiments showed a

highly significant change in memory especially for the
CI system, and therefore careful consideration is required
especially when dealing with difficult and complex builds.
The dedicated pattern would be recommended for achiev-
ing a high degree of isolation, for example, during
complete integration build. When using bug tracking
systems that store bugs in a database, certain runtime
libraries could increase memory consumption. For exam-
ple, Bugzilla consumes huge RAM if used in a mod-perl
environment.
(5) Disk I/O: The experiments showed a highly signifi-

cant change in disk I/O consumption especially for the CI
system because builders and compilers consume a lot of
disk I/O. For version control systems, there would be not
much difference if any of the patterns are used, although
the dedicated pattern would be recommended for exclu-
sive access to the disk space. A large disk space would be
required to cope with additional copies of files when using
a version control system, and to cope with the large size
and volume of bugs when using a bug tracking system that
stores bugs in a database.

Analysis
This section a provides an analysis of the data produced
from the cross-case analysis in order to give us further
explanation and new insights (i.e., an explanatory frame-
work) into tenant isolation (as illustrated in Fig. 7). Firstly,
we present a mapping of different degrees of tenant iso-
lation to the GSD process, the cloud application stack
and cloud resources on which the GSD tools are hosted.
Secondly, the trade-offs that should be considered when
implementing the required degree of tenant isolation are
discussed.
Figure 7 is inspired and anchored on the structure of a

typical architectural deployment structure which has two
main components: the cloud-application (i.e., the compo-
nent or service to be deployed) and the cloud environment
(i.e., the environment on which the process/service is
being executed) [43]. In our previous researchwe used this
structure to develop a taxonomy of deployment patterns
for cloud-hosted applications that reflect the components
of an architectural deployment structure and thereafter
applied the taxonomy to position a set of GSD tools [26].
Figure 7 also captures the link between a cloud applica-

tion process (e.g., continuous integration process), being
used in a hybrid deployment (scenario) by utilizing a
cloud-hosted environment (e.g., SaaS and PaaS deploy-
ment environment). It is a well known fact in software
architectures (and in cloud deployment architectures) that
most deployment patterns are related and have to be com-
bined with others during implementation, for example,

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 20 of 39

Fig. 7Mapping of Degrees of Isolation to Cloud-hosted GSD Process and Resources

to address hybrid deployment scenarios, which usually
involves integrating processes and data in multiple clouds
[43–46].
A hybrid deployment scenario is very common in col-

laborative GSD projects, where a GSD tool requires mul-
tiple cloud deployment environments (or components),
each with its own set of requirements. For example,
when using Hudson there is usually a need to periodically
extract the data it generates to store in an external stor-
age during continuous integration of files. The hybrid data
pattern can be used in this scenario to store data of varying
sizes generated from Hudson in an elastic cloud and the
remainder of the application resides in a static environ-
ment. With respect to isolation, the dedicated component
pattern implies a high degree of isolation because tenants
do not share resources. In other words, resources are ded-
icated to individual/specific tenants and thus are isolated
from each other.

Mapping of tenant isolation to GSD processes and
resources
Figure 7 maps the different degrees of tenant isolation to
(i) software processes triggered by the cloud-hosted GSD
tools; (ii) cloud application stack; and (iii) cloud resources
on which the processes are executed. This mapping will
serve as a guide to architects to select suitable cloud
patterns, cloud layer, and requirements for cloud deploy-
ment. As shown in Fig. 7, GSD processes are placed on the

left and cloud resources on the right. In this mapping, it
is assumed that the ease and flexibility of achieving ten-
ant isolation increase vertically, from top to bottom, and
horizontally, from left to right.
(1) Mapping Tenant Isolation to Layers of a Cloud

Stack: The mapping in Fig. 7, shows that a high degree
of isolation can be achieved on the IaaS layer and vice
versa. Therefore, as the required degree of isolation
increases, the ability to improve resource consumption
reduces when implementing tenant isolation. On the
other hand, as the required degree of isolation increases,
the ability to improve performance increases. This means
that it is better to implement resource sharing or effi-
cient resource utilisation using the shared component
and reduce performance interference using a dedicated
component.
Depending on the layer of the application stack (i.e.,

application layer, the platform layer, and infrastructure
layer), tenant isolation may be realised differently with
associated implications. Assuming the component being
shared is a database, implementing the shared compo-
nent on a bug tracking system at the SaaS layer implies
allowing multiple tenants to share a single instance of
the bug database. This ensures efficient sharing of cloud
resources, but isolation is either very low or not guar-
anteed at all due to possible performance interference.
Implementing a dedicated component at the IaaS layer
would require installing the bug database for each tenant

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 21 of 39

on its own instance of virtual hardware. This guarantees a
high degree of isolation but with limitations of high run-
time cost and reduction in the number of tenants that can
be served.
(2) Mapping Tenant Isolation to GSD Processes: Tenant

isolation can be implemented at different levels of a cloud
application stack depending on the type of component or
process being shared. Due to the way in which software
processes interact with an operating system, files system
and systems resources, the GSD processes can be mapped
to varying degrees of tenant isolation, and hence the appli-
cation stack. Figure 7 shows a mapping of the three GSD
processes to different levels of the cloud application stack.
Notice that the GSD processes are placed in the following
order from top to bottom: continuous integration, version
control and bug tracking. In the mapping, the continuous
integration process is placed in the top-bottom to fit into
a situation where it is deployed to multiple users using the
SaaS model. However, in a hybrid scenario, it is possible
to place continuous integration on the middle tier of the
cloud application stack (e.g., based on the PaaS deploy-
ment model). This scenario is suitable in a case where
the continuous integration system is used as a platform to
configure and host other programs. The bug tracking sys-
tem, when used with a database to store bugs, would be
placed on the bottom layer.
(3) Mapping Tenant Isolation to Aspects of Isolation:

As shown in Fig. 7, the mapping of the different aspects
of isolation between tenants is done in the following
order: performance, security, resource consumption, from
top to bottom for process isolation, and vice versa for
data isolation. This means that it is better to use the
shared component to improve resource consumption
when implementing tenant isolation at the data level.
On the other hand, it means that it is better to use
the shared component to improve performance related
requirements when implementing tenant isolation at the
application level.
Again, the chance of implementing the required degree

of isolation increases across the mapping in Fig. 7 from
left to right for performance-related requirements such
as response time and throughput, while it increases from
right to left for system’s resource related requirements
such as CPU and disk I/O usage. Issues related to security,
privacy, trust and compliance to regulation can mostly be
tackled in a hybrid related fashion. For example, data/bugs
generated from a bug tracking system could be stored
in a certain location to comply with privacy and legal
regulations while the architecture of the GSD tool could
be modified to restrict exposure of certain data to users
located in regions not considered to be of interest to the
owners of the hosted data. Architecting the deployment
of a cloud service based on this arrangement can best be
tackled using a hybrid approach.

Trade-offs for achieving the required degree of tenant
isolation
This section discusses the key trade-offs for considera-
tion when implementing the required degree of tenant
isolation for cloud-hosted software processes.

Tenant isolation versus resource sharing
The trade-off between tenant isolation and resource shar-
ing is one of the most important considerations when
deploying services to the cloud for guaranteeing tenant
isolation. As the degree of isolation increases, the abil-
ity to share resources reduces. A low degree of isolation
promotes resource sharing in the sense that the compo-
nent and the underlying cloud resources can be shared
with other tenants, thus leading to efficient utilisation of
resources. However, there is a price to pay regarding pos-
sible performance interference. On the other hand, a high
degree of isolation implies duplicating resources for each
tenant since sharing is not allowed. This results in high
resource consumption and a reduction in the number of
users that can access the component. Therefore, if a GSD
tool naturally consumes more of a particular resource,
then the challenge would be how to avoid certain oper-
ations that would further increase the consumption of
that resource. For example, continuous integration sys-
tems (or builders) consume a lot of memory and disk I/O.
As the experiments in case study 1 showed, this consump-
tion could increase much more if locking is enabled for
application components deployed based on the dedicated
component.

Tenant isolation versus number of users
Another important trade-off to consider is that of ten-
ant isolation versus the number of users. As the degree
of isolation increases, the number of users/requests that
can access the component reduces. A possible explana-
tion is that as the number of users increases, the physical
contention also increases because more requests contend
for the available shared resources (e.g., CPU and Disk).
Contention either delays or blocks requests, meaning that
more time will be spent by requests waiting to use the sys-
tem’s resources. Thus, performance will be impacted neg-
atively leading to a low degree of isolation. This behaviour
explains why a larger magnitude of change was noticed for
the shared component and tenant-isolated component in
case study 1 with continuous integration.

Tenant isolation versus customizability
To implement the required degree of tenant isolation
on a GSD tool, some level of customization would have
to be done depending on the level where the pro-
cess or component to be customised resides [47]. The
higher the degree of isolation that is required, the eas-
ier it is to customise the GSD tool to implement ten-
ant isolation. For example, implementing tenant isolation

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 22 of 39

for a GSD tool like Hudson via virtualization on the
infrastructure level will not be as difficult as implement-
ing it on the application level in terms of the effort,
time and skill required. Implementing isolation on the
application level would require good programming skills
to modify the source code, and also address issues of
compatibility and interdependencies between the GSD
tool and required plugins and libraries [42]. Each time
a multitenant application or its deployment environment
changes, then a tedious, complex and maintenance pro-
cess may also be required.

Tenant isolation versus size of generated data
There is also a trade-off between tenant isolation and the
size of data generated by the GSD tool. The more data
is generated, the more difficult it is to achieve a higher
degree of isolation. For example, most version control sys-
tems (e.g., Subversion, File System SCM plugin) create
additional copies of files on the shared repository. Over
time, these files will occupy disk space thereby adversely
affecting the performance experience by tenants. This
will lead to a low degree of isolation between tenants
since a lot of time would be spent fetching data from the
repository that contains numerous unused or unwanted
files. The study recommended a dedicated component for
exclusive access to disk space, but again this implies sig-
nificantly increasing the disk space and other supporting
resources allocated to each tenant. In Fig. 7, the GSD tools
mapped to the lower level of the cloud stack (i.e., ver-
sion control system and bug tracking) generate the most
data. It is important to note that other GSD tools can be
configured to generate additional data. For instance, Hud-
son can be configured to archive artefacts to a repository.
Because of this, most the GSD tools have mechanisms for
removing unwanted files, thereby saving disk space.

Tenant isolation versus scope of control
Implementing the required degree of tenant isolation to
a large extent depends on the “scope of control” of the
cloud application stack. The term cloud application stack
refers to the different layers of resources provided by
the cloud infrastructure on which the cloud-hosted ser-
vice is being hosted. This could either be the SaaS, PaaS
or IaaS level [48]. The architect has more flexibility to
implement or support the implementation of the required
degree of tenant isolation when there is greater “scope of
control” of the cloud stack application. In other words,
if the scope of control is restricted to the higher level
of the cloud stack (i.e., the SaaS) then the architect may
only be able to implement a low degree of isolation (e.g.,
shared component), and vice versa. Therefore, if an archi-
tect is interested in achieving a high degree of isolation
(e.g., based on the dedicated component), then the scope
of control should extend beyond the higher level to the

lower levels of the cloud stack (i.e., PaaS and IaaS). This
would enable an architect to deploy a GSD tool on the IaaS
platform so that exclusive access can be provided to the
customer together with all the configuration requirements
to support any operation that requires frequent alloca-
tion and de-allocation of resources. For example, using a
version control system to perform operations that involve
moving a repository between different hosts and keeping
history would require having file system access in both
hosts [40].

Tenant isolation versus business constraints
The trade-offs between tenant isolation and business
requirements is a key consideration in architecting the
design and deployment of cloud-hosted services. As
the degree of isolation increases from top to bottom,
the ease and flexibility to implement business require-
ments that cannot be compensated for at the applica-
tion level reduces. The shared component, which offers
a low degree of isolation, can be used to handle business
requirements that can be compensated at the application
level. Examples of such business requirements include
performance and availability. The architect can easily
modify the application architecture of the GSD tool to
address this type of requirement.
On the other hand, the dedicated component which

offers a high degree of isolation can be used to handle
business requirements that cannot be easily compensated.
Examples of this type of requirement include legal restric-
tions and the location and configuration of the cloud
infrastructure. For instance, a legal requirement can state
that the data hosted in one place (e.g., Europe) by a
cloud provider cannot be stored elsewhere (e.g., in the
USA). An architect would, therefore, have to map this
type of requirement to a cloud infrastructure that directly
satisfies this.

Discussion
This section first presents a general discussion of findings
from the three case studies with respect to the commonal-
ities and difference identified from the three case studies.
Thereafter, it presents some recommendations that can be
followed to achieve the required degree of isolation.

Type and location of the application component or process
to be shared
The degree of isolation between tenants, to a large extent,
depends on the type and location of application compo-
nent that is being shared. There are different techniques
for realising tenant isolation depending on the level of the
application stack. On the low level (i.e., IaaS layer) ten-
ant isolation can be achieved by virtualization. On the
middle-level (i.e., the PaaS layer), a hypervisor can be used
to set up different databases for different tenants. On the

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 23 of 39

application level (i.e., the SaaS layer), tenant isolation can
be implemented by introducing a tenant-id field to tables
so that tenants can only access data that is associated with
their tenant-id [3].
Previous research on implementing multitenancy

assumes two extreme cases of isolation: shared isolation
and dedicated isolation which are mostly implemented
at the data tier [49–52]. In addition to implementing
multitenancy patterns at the data tier, our study also
takes into consideration the effect of varying degrees
of isolation between tenants. Unlike previous research
which focuses more on performance isolation [18, 53],
our case studies emphasise the need to consider (i) other
aspects of isolation such as resource consumption of
tenants, and (ii) the effect of varying degrees of tenant
isolation for individual components of a cloud-hosted
service under different cloud deployment conditions.
An approach (i.e., COMITRE) has been developed for

evaluating the required degree of isolation between ten-
ants. This approach is anchored on shifting the task of
routing a request from the server to a separate compo-
nent (e.g., Java class or plugin) at the application level of
the cloud-hosted GSD tool [5]. The approach captures
and configures tenants request/transaction so that (i)
implementation can be done at different levels (although
more flexibly at the application level for optimizing cloud
resources); (ii) individual components can be monitored
and adjusted to reflect changing workload. This means
that the underlying middleware and infrastructure do not
necessarily need to be multitenant aware as the isolation
is handled on the application level. Another key advantage
of using this approach is that it can be used at the appli-
cation level to optimise the utilisation of the underlying
cloud resources in a resource constrained environment,
for example, where there are limited CPU, Memory and
disk space. The approach can also be extended to work
at other layers of the cloud stack (e.g., the PasS layer or
IaaS layer). However, the drawback is the effort and skill
required in modifying the GSD tool (or cloud service)
before implementing COMITRE logic.

Customizability of the GSD tool and supporting process
The cases studies revealed that most global software
development (GSD) tools are not implemented using any
multitenant architecture, and so they would have to be
customised to support the required degree of tenant
isolation before deploying them to the cloud. Previous
research has applied multitenancy patterns/architectures
(and cloud patterns generally) to simple web applications,
for example, weblog applications [54, 55]. In addition to
applying multitenancy patterns on web applications, this
study incorporates into our implementation of the multi-
tenancy patterns key factors that could influence pattern
selection such as application processes, workload and

resource demands imposed on cloud service and the cloud
infrastructure on which the service is hosted.
Customizing a cloud-hosted GSD tool (or any cloud-

hosted service) can be very challenging if the tool/service
has several components that are being shared. Different
application components can be implemented at different
levels to address the problem between aspects of the GSD
that can be customised with ease and those that cannot.
For example, Bugzilla interface can be exposed as an inte-
grated component to different tenants working on other
GSD tools like JIRA while the Bugzilla database can be
implemented as a dedicated component to ensure proper
isolation of bugs belonging to various tenants.
The three case studies we conducted also revealed

another major challenge in achieving the required degree
of tenant isolation during the customization of the GSD
tools (i.e., continuous integration with Hudson, version
control with File System SCM plugin and bug tracking
with Bugzilla). The GSD tools (and many other cloud-
hosted services) can have many inter-dependencies on
different levels of the application itself and with other
applications, plugins, libraries, etc., deployed with other
cloud providers. This could affect the performance and
resource consumption of the cloud-hosted system in a
way that we did not anticipate and hence the required
degree of tenant isolation. There is also a serious risk of
using incompatible plugins and libraries required to mod-
ify, customise and execute these GSD tools. This could
corrupt the GSD tool and stop other supporting pro-
grams/processes from running. An easy way to address
this challenge on the cloud is to push the implemen-
tation of tenant isolation down the lower levels of the
cloud stack, where the architect can, for example, install
the GSD tool on a PaaS platform. Issues of middleware
and methods for customizability of Saas applications have
been discussed in [56].

Optimization of cloud resource due to changing workload
The case studies have clearly highlighted the need to opti-
mise the deployment of cloud GSD tools and support
processes under different cloud deployment conditions
while guaranteeing the required degree of tenant isolation.
Under typical configurations, most GSD tools may not
consume much cloud resources. However, there is always
a real need for optimisation of the system’s resource
in a situation where there is either under-utilisation of
resources or over utilisation of resources (e.g., if the shared
application component is overloaded).
As pointed out in the case study involving continu-

ous integration with Hudson, the CPU consumption of
tenants changed significantly for the shared component.
Therefore, on a private cloud which supports a small num-
ber of tenants, the shared component can be used to
optimise CPU utilisation. However, there would be no

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 24 of 39

guarantee of a high degree of isolation between tenants.
In CI, builds are known to consume a vast amount of disk
I/O, and so a dedicated component can be used for run-
ning (i) large number of builds concurrently, and (ii) builds
that are too complex [32]. Again if the shared component
is used to deploy Bugzilla (where mod_perl is enabled)
on the same type of cloud infrastructure described above,
then minimising RAM consumption would be the main
issue of concern, and not CPU [34]. This means that it is
better to use a dedicated component for heavy and com-
plex tasks (e.g., builds with multiple dependencies) and a
shared component for light tasks. For example, in large
projects, multiple builds interact with multiple compo-
nents to create several inter-dependencies with each other
which will consume more resources.
Models used in previous work have focused on min-

imising the cost of using cloud resources, and meta-
heuristics are not used for the optimisation (only in a
few cases are simple heuristics used [57]). A model-based
decision support system such as the one developed in
our previous work can be integrated into the GSD tool
(or any cloud-hosted application) in order to optimise
cloud resources while guaranteeing the required degree of
isolation [58].

Hybrid cloud deployment conditions
This study revealed that there are situations where com-
bining more than one multitenancy pattern is more suit-
able for implementing isolation between tenants. As the
result of case study one involving continuous integration
showed, CPU consumption of tenants changed signifi-
cantly for the shared component; and so, the first stage of
the build can use a dedicated component while the sec-
ond stage of the build can use the shared component.
Therefore, in a continuous integration process, builds or
commits to a repository could be configured to run con-
currently or at regular intervals. Running such builds as
a long complete integration build in a slow network envi-
ronment could take a lot of time and resources. To achieve
a high degree of isolation while guaranteeing efficient
resource utilization, the integration build can be split into
two different stages, so that: (i) the first stage creates a
commit build that compiles and verifies the absence of
critical errors when each developer commits changes to
the main development stream, and (ii) the second stage
creates secondary build(s) to run slow and less important
tests [59]. This will ensure that secondary builds do not
consume many resources and even if they fail, it will not
also affect other tenants.
Another area of application may be to handle hybrid

deployment scenarios, for instance, integrating data resid-
ing on different clouds and static data centres. There are
several cloud offerings such as Dropbox and Microsoft’s
Azure StorSimple that allow customers to integrate a

cloud-based storage with a company’s storage area net-
work (SAN) [60, 61]. Another scenario that is suitable for
combining more than one multitenancy pattern is when
different settings are applied concurrently to a particular
software process. For example, settings could be applied
to vary the frequency with which code files are submitted
to a shared repository or lock certain software processes
to prevent clashes betweenmultiple tenants. Several other
hybrid cloud deployment scenarios can be utilised to
guarantee the required degree of tenant isolation3.

Tagging components with the required degree of isolation
The case studies have shown that a cloud-hosted service
may have several interdependencies with components of
other services/applications that it is interacting with. It
is therefore essential that components designed to use or
integrated with a cloud-hosted service be tagged as much
as possible when there is need to implement the required
degree of tenant isolation. In our previous work, we devel-
oped a model that can be used to achieve tagging by
mapping our problem to a Multidimensional Multichoice
Knapsack Problem (MMKP) instance and associating each
component with its required degree of isolation, thus
allowing us to monitor and respond to workload changes
efficiently [58]. Tagging can be a challenging and cumber-
some process and may not even be possible under certain
conditions (e.g., in a case where the component is inte-
grated into other services and are not within the control
of the customer). Therefore, instead of tagging each com-
ponent with an isolation value as required, this can also
be predicted in a dynamic way. In our previous work [62],
an algorithm was developed which learns the features of
existing components dynamically in a repository and then
uses this information to associate each component with
the appropriate degree of isolation. This information is
crucial for making scaling decisions and optimisation of
resources consumed by the components, especially in a
real-time or dynamic environment.
Similar to our approach, many providers implement

techniques that capture client transactions/requests and
decide what level of isolation is required. However, these
approaches do not guarantee the availability and tenant
isolation of specific components/individual IT resources
(e.g., a particular virtual server or disk storage), but for
the offering as a whole (e.g., starting new virtual servers)
[63–65]. Our approach is also related in many ways to
existing cloud offering such as Amazon’s Auto Scaling and
EC2 [63, 66] and Microsoft Azure’s Web Role [67] where
users can specify the different configurations for a compo-
nent, for example, the number of components that can be
deployed for a certain number of requests. However, users
cannot tag each component with the required degree of
isolation before deployment, as has been proposed in our
approach.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 25 of 39

Errors and sensitivity to workload interference
Multitenancy can introduce significant error and secu-
rity challenges in the cloud, especially when implementing
varying degrees of isolation between multiple tenants
sharing resources. When resources are shared in a multi-
tenant application among multiple tenants, it is very easy
for errors associated with one tenant (e.g., due to overload
of the tenant or insufficient resource allocated to the ten-
ant) to affect the performance and resource consumption
of other tenants.
The type of error messages received from the case

studies is a pointer to the key resources to consider in
achieving the required degree of tenant isolation. For
continuous integration, the error messages are related to
insufficient system resources. For example, while imple-
menting tenant isolation with Hudson, the most common
error experienced was that of insufficient memory alloca-
tion. The cloud infrastructure did not cause this but partly
caused by Hudson as it is not very optimised and also by
the demands of the continuous integration process. For
the version control process, the most common error was
that of insufficient memory and file or directory permis-
sion issues (e.g., when setting FTP request configurations).
This problem becomes more acute when moving the VM
image instance (whose file permission had been set on a
local machine) to the cloud infrastructure. Therefore, it
is necessary to get repository ownership and permission
right before conducting the experiments.
For the bug tracking process where bugs are stored in a

database, the most common errors are related to resolv-
ing database errors, for example, exceeding the limit of
file size, query, connections, etc. Therefore, it is necessary
to modify the bug database to remove these restrictions.
In addition, it would be recommended to modify the
configuration of the database to increase the maximum
size of a file that can be stored in the database. It may
also be necessary to remove restrictions on the maxi-
mum number of allowed queries, connections and pack-
ets, etc. The bug database running on the VM instance
can be quite sensitive to workload changes depending
on the size, the volume of bugs, and the bug database
isolation level.
The case studies also emphasised the need to care-

fully vary the frequency with which large instant bugs are
submitted concurrently to a database when support for
locking is enabled. Locking, in this case, is used to prevent
conflicts between multiple tenants attempting to access
a bug database. This type of scenario is very important
in distributed bug tracking in which some bug trackers
such as Fossil and Veracity, are either integrated with
or designed to use distributed version control systems
or continuous integration systems, thus allowing bugs to
be generated automatically and added to the database at
varying frequencies [68, 69].

The case studies seem to suggest some of the global
software development processes are more sensitive to
workload interference than others. By workload, we mean
the impact of tenant requests to a cloud-hosted service
that results in processing load, communication traffic,
or data to be stored. For example, bug tracking (with
Bugzilla) was susceptible to increased workload especially
if locking is enabled for the bug database. It was noticed
that there were numerous database related errors and
frequent crashes of the Bugzilla MySQL database when
there is increased workload which required recovery.
This impacts on the required degree of isolation because
it forces the software architect to deploy the cloud ser-
vice using a dedicated pattern in order to avoid per-
formance interface. However, implementing components
of the cloud-hosted GSD tool as dedicated components
reduces the degree of sharing between tenants and hence
increases running cost per tenant.
In a production environment, it would be recommended

to use a cloud storage (e.g., Amazon S3, Google Cloud
Storage, Azure Blob etc.) instead of a relational database
especially if frequent workload changes are expected. The
focus for many cloud storage offerings is the need to
handle very large amounts of data that are globally dis-
tributed and whose structure can be easily adjustable to
new requirements quickly and flexibly [20, 22]. There are
several cloud patterns can be used to minimise workload
interference in multitenant applications. For example, in
[70], several cloud computing solution patterns are pre-
sented for handling application workloads such as applica-
tions with highly variable workloads in public clouds, and
workload spikes with cloud burst.

Volume of application data generated
The case studies reveal that the volume of application
data has a significant impact on the performance of the
application which in turn affects the required degree of
tenant isolation. In our experiments, for example, contin-
uous integration and version control processes, generated
more data than the bug tracking system. This adversely
affects performance because these files occupy more disk
space than they use, and the operating system spends a lot
of time seeking across many files on the disk.
It has been argued that the shared component is better

for reducing resource consumption while the dedicated
component is better in avoiding performance interfer-
ence [3, 71]. However, as the experimental results show,
there are certain software development processes where
that might not necessarily be so, for example, in version
control, where additional copies of the files are created
in the repository (especially the ones that use the native
operating system (OS) filesystem directly), thus consum-
ing more disk space [41]. Over time, performance begins
to degrade as more time is spent searching across many

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 26 of 39

files on the disk. Therefore, we recommend that in order
to implement the required degree of tenant isolation for
a cloud-hosted application/service, there should be care-
ful consideration of how to deploy certain applications
associated with software processes that create additional
copies of files as part of the software process (e.g., version
control and continuous integration) and other applica-
tions that do not (e.g., bug tracking).

Threats to validity
The validity of case study research can be evaluated
using four key criteria: construct validity, internal valid-
ity, external validity, and reliability [25]. Construct valid-
ity has been achieved by first conducting a pilot study,
and after that three case studies using the same experi-
mental procedure and analysis. The results of the study
including the plots of estimated marginal means and
the statistical results of the three case studies are com-
pared and analysed to ensure consistency. Construct
validity was further increased by maintaining a clear
chain of evidence from the primary case studies to the
synthesised evidence, including the approach for imple-
menting tenant isolation, experimental procedure, and
statistical analysis. Furthermore, the validity of the syn-
thesised information has been increased by involving the
authors of the primary case studies in reviewing the case
study synthesis.
Internal validity has been achieved by precisely distin-

guishing the units of analysis and linking the analysis to a
frame of reference about the degrees of isolation between
tenants as identified in the literature review. This frame
of reference is based on the fact that the varying degrees
of tenant isolation are captured in three multitenancy pat-
terns: shared component, tenant-isolated component and
dedicated component. The case studies are carried out
one after the other; each was done with a space of about a
three-month interval. Before the next study was done, the
cloud infrastructure was shut down, previous data erased
and then the infrastructure started again.
External validity has been achieved by using multiple

case studies design and comparing the evidence gath-
ered from the three case studies. Furthermore, statis-
tical analysis (i.e., paired sample t-test) has been used
across the three case studies to evaluate the degree
of isolation. It should be stated that the findings and
conclusions of this study should not be generalised
to small size software tools and processes, especially
the ones that are not mature and stable. This study
applies to cloud-hosted GSD tools (e.g., Hudson) for
large-scale distributed enterprise software development
projects.
Reliability is achieved by replicating the same experi-

mental procedure (based on applying COMITRE) in the
three case studies. Due to the small size of the private

cloud used for the experiment, the setup values (e.g., the
number of requests and runs for each case study experi-
ment) are carefully varied to get the maximum capacity of
the simulated process before conducting the experiments.
The case study synthesis combined two approaches: nar-
rative synthesis and cross-case analysis, thus allowing
us to gain synergies, harmonise weaknesses and assess
the relative strengths of each approach. On the trans-
parency of the case study, all the information derived
from the case studies is easily traceable, and the whole
process is repeatable. The authors had access to the raw
data which gave them the opportunity to go deeper in
their synthesis. This means that the case studies’ report
was synthesised at the right level of abstraction and
granularity.

Conclusions
In this research, we have conducted a cross-case anal-
ysis of findings from three case studies (i.e., contin-
uous integration with Hudson, version control with
FileSystem SCM Plugin and Bug tracking with Bugzilla)
that empirically evaluated the degrees of tenant isola-
tion between tenants for components of a cloud-hosted
software service. This paper has contributed to litera-
ture by: (i) providing empirical evidence on the vary-
ing degrees of tenant isolation based on case studies
of cloud-hosted GSD tools and associated processes,
and (ii) providing commonalities and differences in the
case studies as well as an explanatory framework for
explaining the trade-offs to consider when implementing
tenant isolation.
Our research revealed that: (i) certain software pro-

cesses (e.g., long-running builds) can be split into phases
and different degrees of isolation then implemented for
each phase to resolve conflicting trade-offs; (ii) cus-
tomization of a cloud-hosted tool/service is a key require-
ment for achieving the required degree of tenant isolation
and so during implementation consideration has to be
given to those aspects that can be customised and those
that cannot be customised; and (iii) implementing the
required degree of tenant isolation also depends on the
“scope of control” of the cloud application stack (i.e., abil-
ity to access one or more layers of cloud infrastructure):
the greater the scope, the more flexible an architect can
implement or support the implementation of the required
degree of isolation.
The cross-case analysis revealed five case study com-

monalities: disk space reduction, use of locking, low cloud
resource consumption, customization and use of plug-
in architecture, and choice of multi-tenancy pattern. The
degree of isolation is reduced when there no strategy to
reduce disk space and customization and plug-in archi-
tecture is not adopted. The degree of isolation improves
when careful consideration is given to how to handle a

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 27 of 39

high workload, locking of data and processes is used to
prevent clashes between multiple tenants, data transfer
between repositories and selection of appropriate multi-
tenancy pattern. The study also revealed five differences:
size of generated data, cloud resource consumption, sensi-
tivity to workload changes, the effect of the software pro-
cess, client latency and bandwidth, and type of software
process). The large size of generated data, high resource
consumption processes, high or fluctuating workload, low
client latency, and bandwidth when transferring multiple
files between repositories reduces the degree of isolation.
The type of software process is challenging because it
depends on the cloud resource being optimised.
A further contribution of this paper is an explanatory

framework for (i) mapping the tenant isolation to dif-
ferent GSD processes, cloud resources and layers of the
applications stack (ii) explaining the different trade-offs
to be considered for optimal deployment of components
with a guarantee of the required degree of tenant iso-
lation. The case study synthesis identified six trade-offs
that should be considered while implementing tenant
isolation: tenant isolation versus (resource sharing, the
number of users/requests, customizability, the size of gen-
erated data, the scope of control of the cloud applica-
tion stack and business constraints). For example, some
level of customization would have to be done depending
on the layer where the process or component associ-
ated with the cloud-hosted service resides: the higher
the required degree of isolation for components located
on the lower layer, the easier it is to implement ten-
ant isolation. While virtualization can be easily used to

implement isolation at the infrastructure level, signifi-
cant effort, time and good programming skills would be
required at the application level tomodify the source code,
and address issues of compatibility and interdependen-
cies between the GSD tool and several required plugins
and libraries.
Based on the required degree of multitenancy isolation,

a comparative analysis will be carried out on the perfor-
mance and resource consumption of each code factoring
task to the base system during every proposed improve-
ment before deploying it to the cloud. Another interesting
option would be to conduct case studies with other cloud
deployment scenarios and indicators which could affect
multitenancy isolation. Some scenarios to be explored
include the effect of different file system formats (e.g.,
version control systems like Subversion can be affected
by the type of file system format used to store artefacts),
the number and size of data generated or stored, and
concurrent running processes.

Endnotes
1 The word "Change in the acronym EMMC refers to the

dependent variable used for paired sample t-test.
2 The symbol CS1 used in Figs. 8, 9, 10, 11, 12, 13 and 14

in the Appendix A stands for Case Study 1.
3 Fehling et al. describe several cloud patterns that are

suitable for deploying cloud services in a hybrid fashion

Appendix A: Plots of estimatedmarginal means of
change for the case study 1

Fig. 8 ResTime Changes [CS1]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 28 of 39

Fig. 9 Error% Changes [CS1]

Fig. 10 Throughput Changes [CS1]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 29 of 39

Fig. 11 Changes in CPU [CS1]

Fig. 12 Changes in Memory [CS1]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 30 of 39

Fig. 13 Changes in Disk I/O [CS1]

Fig. 14 System Load [CS1]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 31 of 39

Appendix B: Plots of estimatedmarginal means of change for the case study 2

Fig. 15 Changes in Response Times [CS2]

Fig. 16 Changes in Error% [CS2]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 32 of 39

Fig. 17 Changes in Throughput [CS2]

Fig. 18 Changes in CPU [CS2]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 33 of 39

Fig. 19 Changes in Memory [CS2]

Fig. 20 Changes in Disk I/O [CS2]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 34 of 39

Fig. 21 Changes in System Load [CS2]

Appendix C: Plots of estimatedmarginal means of change for the case study 3

Fig. 22 Changes in Response Times [CS3]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 35 of 39

Fig. 23 Changes in Error% [CS3]

Fig. 24 Changes in Throughput [CS3]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 36 of 39

Fig. 25 Changes in CPU [CS3]

Fig. 26 Changes in Memory [CS3]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 37 of 39

Fig. 27 Changes in Disk I/O [CS3]

Fig. 28 Changes in System Load [CS3]

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 38 of 39

Abbreviations
The key abbreviations used in this paper are: COMITRE: Component-based
approach to tenant isolation through request re-routing; EMMC: Estimated
marginal means of change; GSD: Global software development; MMKP:
Multichoice multidimensional knapsack problem; SCM: Source configuration
management; SAR: System activity report

Acknowledgements
This research was supported by the Tertiary Education Trust Fund (TETFUND),
Nigeria and Robert Gordon University, UK.

Funding
No formal funding was received for this research, but the research was
supported by the Tertiary Education Trust Fund (TETFUND), Nigeria and Robert
Gordon University, Aberdeen, UK.

Availability of data andmaterials
Not applicable.

Authors’ contributions
LCO is the main author in this research paper. JB supervised and reviewed the
case studies and synthesis of findings from the case studies. AP contributed to
the literature review and general organization of the paper. All authors read
and approved the final manuscript.

Authors’ information
1. Dr. Laud Charles Ochei holds PhD from Robert Gordon University, Aberdeen,

United Kingdom. His research interests is in software engineering,
distributed systems, cloud computing, and Internet of things. He has
published several research papers in International Conferences and
Journals.

2. Dr. Andrei Petrovski is a Reader in Computational Systems at Robert Gordon
University, Aberdeen, United Kingdom. His primary research interests lie in
the field of Computational Intelligence (CI) - particularly, in the application
of CI heuristics (such as Genetic Algorithms and Particle Swarm
Optimisation) to single- and multi-objective optimisation problems. Andrei
has an interest in computer-assisted measurements, virtual
instrumentation, and sensor networks.

3. Dr. Julian Bass is a Senior Lecturer at University of Salford, UK. His research
interest are in software development for large-scale systems focusing on
multi-national teams and using modern lean and agile methods. He also
has interests in deployment architectures used in cloud-hosted software
services and leading KTP with Add Latent Ltd to develop and deploy
cloud-hosted asset management applications for their major clients in the
energy and utility sectors.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Robert Gordon University, School of Computing and Digital Media, Aberdeen
AB10 7QB, UK. 2University of Salford, School of Computing, Science and
Engineering, Salford M5 4WT, UK.

Received: 22 June 2018 Accepted: 26 October 2018

References
1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,

Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud
computing. Commun ACM 53(4):50–58. [Online]. Available: http://doi.
acm.org/10.1145/1721654.1721672

2. Khazaei H, Misic J, Misic VB (2012) Performance analysis of cloud
computing centers using m/g/m/m+ r queuing systems. Parallel Distrib
Syst IEEE Trans on 23(5):936–943

3. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud
Computing Patterns. Springer, London

4. Bauer E, Adams R (2012) Reliability and availability of cloud computing.
Wiley, New Jersey

5. Ochei LC, Bass J, Petrovski A (2015) Evaluating degrees of multitenancy
isolation: A case study of cloud-hosted gsd tools. In: 2015 International
Conference on Cloud and Autonomic Computing (ICCAC). IEEE.
pp 101–112. https://ieeexplore.ieee.org/abstract/document/7312145/

6. Ochei LC, Petrovski A, Bass J (2015) Evaluating degrees of isolation
between tenants enabled by multitenancy patterns for cloud-hosted
version control systems (vcs). Int J Intell Comput Res 6(3):601–612

7. Ochei LC, Bass J, Petrovski A (2016) Implementing the required degree of
multitenancy isolation: A case study of cloud-hosted bug tracking system.
In: 13th IEEE International Conference on Services Computing (SCC 2016).
IEEE

8. Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in
software engineering: Guidelines and examples. Wiley, New Jersey

9. Cruzes DS, Dybå T, Runeson P, Höst M (2015) Case studies synthesis: a
thematic, cross-case, and narrative synthesis worked example. Empir
Softw Eng 20(6):1634–1665

10. Cruzes DS, Dybå T (2011) Research synthesis in software engineering: A
tertiary study. Inf Softw Technol 53(5):440–455

11. Chong F, Carraro G (2006) Architecture strategies for catching the long
tail. technical report, microsoft. [Online https://msdn.microsoft.com/en-
us/library/aa479069.aspx]. Accessed Oct 2018

12. Wang ZH, Guo CJ, Gao B, Sun W, Zhang Z, An WH (2008) A study and
performance evaluation of the multi-tenant data tier design patterns for
service oriented computing. In: IEEE International Conference on
e-Business Engineering. IEEE. pp 94–101. https://ieeexplore.ieee.org/
abstract/document/4690605/

13. Vengurlekar N (2012) Isolation in private database clouds. Oracle
Corporation. [Online https://www.oracle.com/technetwork/database/
database-cloud/]. Accessed Oct 2018

14. Walraven S, De Borger W, Vanbrabant B, Lagaisse B, Van Landuyt D,
Joosen W (2015) Adaptive performance isolation middleware for
multi-tenant saas. In: Utility and Cloud Computing (UCC), 2015 IEEE/ACM
8th International Conference on. IEEE. pp 112–121. https://ieeexplore.
ieee.org/abstract/document/7431402/

15. Mietzner R, Unger T, Titze R, Leymann F (2009) Combining different
multi-tenancy patterns in service-oriented applications. In: Proceedings of
the 2009 IEEE International Enterprise Distributed Object Computing
Conference (edoc 2009). IEEE. pp 131–140. https://ieeexplore.ieee.org/
abstract/document/5277698/

16. Guo CJ, Sun W, Huang Y, Wang ZH, Gao B (2007) A framework for native
multi-tenancy application development and management. In:
Proceedings of the 2007 IEEE International Conference on ECommerce
Technology and the IEEE International Conference on Enterprise
Computing, E-Commerce, and EServices. IEEE. pp 551–558. http://doi.
ieeecomputersociety.org/10.1109/CEC-EEE.2007.4

17. Walraven S, Monheim T, Truyen E, Joosen W (2012) Towards performance
isolation in multi-tenant saas applications. In: Proceedings of the 7th
Workshop on Middleware for Next Generation Internet Computing. ACM. p 6

18. Krebs R, Wert A, Kounev S (2013) Multi-tenancy performance benchmark
for web application platforms. In: Web Engineering. Springer, Berlin.
pp 424–438. https://link.springer.com/chapter/10.1007/978-3-642-
39200-9_36

19. Youngs R, Redmond-Pyle D, Spaas P, Kahan E (1999) A standard for
architecture description. IBM Syst J 38(1):32–50

20. Varia(c) J Cloud architectures. Amazon Web Services (AWS). [Online
http://www.truecloudcosts.com/Docs/Amazon%20-%20Cloud
%20Architectures.pdf]. Accessed Nov 2018

21. Varia(a) J (2014) Migrating your existing applications to the cloud: a
phase-driven approach to cloud migration. Amazon Web Services (AWS).
Online https://d1.awsstatic.com/whitepapers/cloud-migration-main.pdf.
Accessed Nov 2018

22. Varia(b) J (2014) Architecting for the cloud: best practices. Amazon Web
Services (AWS). Online https://d1.awsstatic.com/whitepapers/
AWS_Cloud_Best_Practices.pdf. Accessed Oct 2018

23. Cruzes DS, Dybå T (2010) Synthesizing evidence in software engineering
research. In: Proceedings of the 2010 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM. p 1. https://
dl.acm.org/citation.cfm?id=1852788

24. RAGIN C (1997) Turning the tables: How case-oriented research challenges
variable-oriented research. Comparative Social Research 16:27–42

25. Yin RK (2014) Case Study Research: Design and methods, 4th ed, Vol. 5.
Sage Publications, Inc., California

http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://ieeexplore.ieee.org/abstract/document/7312145/
https://msdn.microsoft.com/en-us/library/aa479069.aspx
https://msdn.microsoft.com/en-us/library/aa479069.aspx
https://ieeexplore.ieee.org/abstract/document/4690605/
https://ieeexplore.ieee.org/abstract/document/4690605/
https://www.oracle.com/technetwork/database/database-cloud/
https://www.oracle.com/technetwork/database/database-cloud/
https://ieeexplore.ieee.org/abstract/document/7431402/
https://ieeexplore.ieee.org/abstract/document/7431402/
https://ieeexplore.ieee.org/abstract/document/5277698/
https://ieeexplore.ieee.org/abstract/document/5277698/
http://doi.ieeecomputersociety.org/10.1109/CEC-EEE.2007.4
http://doi.ieeecomputersociety.org/10.1109/CEC-EEE.2007.4
https://link.springer.com/chapter/10.1007/978-3-642-39200-9_36
https://link.springer.com/chapter/10.1007/978-3-642-39200-9_36
http://www.truecloudcosts.com/Docs/Amazon%20-%20Cloud%20Architectures.pdf
http://www.truecloudcosts.com/Docs/Amazon%20-%20Cloud%20Architectures.pdf
https://d1.awsstatic.com/whitepapers/cloud-migration-main.pdf
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://dl.acm.org/citation.cfm?id=1852788
https://dl.acm.org/citation.cfm?id=1852788

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:22 Page 39 of 39

26. Ochei LC, Bass JM, Petrovski A (2015) A novel taxonomy of deployment
patterns for cloud-hosted applications: A case study of global software
development (gsd) tools and processes. Int J Adv Softw 8(3-4):
420–434

27. Runeson P, Host M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empir Softw Eng 14(2):131–164

28. Sheridan JC, Ong C (2011) SPSS version 18.0 for Windows-Analysis
without anguish. Wiley, Milton

29. Verma JP (2015) Repeated Measures Design for Empirical Researchers.
Wiley, New Jersey

30. Ochei LC, Bass JM, Petrovski A (2018) A framework for achieving the
required degree of multitenancy isolation for deploying components of a
cloud-hosted service. Int J Cloud Comput 7(3/4):248–281

31. Hudson (2018) Hudson - continuous integration server. Eclipse
Foundation Project. [Online https://www.eclipse.org/hudson/]. Accessed
Nov 2018

32. Manfred Moser M, O’Brien T (2011) The Hudson book. Oracle, Inc., USA.
Oracle, Inc., California. Online https://www.eclipse.org/hudson/the-
hudson-book/book-hudson.pdf. Accessed Nov 2018

33. Hudson (2018) Files found trigger. [Online https://plugins.jenkins.io/files-
foundtrigger]. Accessed Jan 2018

34. Bugzilla (2015) The bugzilla guide - 4.0.18+ release. The Mozilla
Foundation. Oracle. [Online https://www.bugzilla.org/docs/4.0/en/pdf/
Bugzilla-Guide.pdf/]. Accessed Nov 2018

35. Johnson D, Kiran M, Murthy R, Suseendran R, Yogesh G (2016) Eucalyptus
beginner’s guide - uec edition. Eucalyptus Systems, Inc. [Online https://
www.csscorp.com/eucauecbook]. Accessed Feb 2017

36. Pantić Z, Babar MA (2012) Guidelines for building a private cloud
infrastructure. IT University of Copenhagen, Denmark. ITU Technical
Report Series (TR-2012-1530). https://pure.itu.dk/portal/en/publications/
guidelines-for-building-a-private-cloud-infrastructure(ba9de07f-75c3-
46e6-b749-6a97e94561ad).html. http://130.226.142.177/wp-content/
uploads/2012/05/Guidelines-to-BuildingPrivateCloud-Infrastructure-
Technical-Report.pdf

37. Erinle B (2013) Performance Testing with JMeter 2.9. Packt Publishing Ltd,
Birmingham

38. Field A (2013) Discovering statistics using IBM SPSS statistics. Sage
Publications Ltd, London

39. Electric-Cloud (2018) Build automation: Top 3 problems and how to solve
them. Electric Cloud, Inc. [Online https://electric-cloud.com/plugins/
build-automation]. Accessed Nov 2018

40. Subversion (2018) Working copy metadata storage improvements
(client). The Apache Software Foundation. [Online https://wiki.eclipse.
org/Hudson-ci/writing-first-hudson-plugin]. Accessed Nov 2016

41. Subversion (2018) Working copy metadata storage improvements
(client). The Apache Software Foundation. O’Reilly, California. Online
https://subversion.apache.org/docs/releasenotes/1.7. Accessed Nov 2018

42. Hudson (2018) Hudson-ci/writing-firsthudsonplugin. Eclipse. [Online
https://wiki.eclipse.org/Hudson-ci/writing-first-hudson-plugin].
Accessed Nov 2018

43. Bass L, Clements P, Kazman R (2013) Software Architecture in Practice,
3/E. Elsevier, Cambridge

44. Sharma A, Kumar M, Agarwal S (2015) A complete survey on software
architectural styles and patterns. Procedia Comput Sci 70:16–28

45. Schmerl B, Kazman R, Ali N, Grundy J, Mistrik I (2017) Managing trade-offs
in adaptable software architectures. In: Managing Trade-Offs in Adaptable
Software Architectures. Elsevier, Cambridge. pp 1–13

46. Furda A, Fidge C, Barros A, Zimmermann O (2017) Reengineering
data-centric information systems for the cloud–a method and
architectural patterns promoting multitenancy. In: Software Architecture
for Big Data and the Cloud. Elsevier, Cambridge. pp 227–251. https://
www.sciencedirect.com/science/article/pii/B9780128054673000223

47. Khan MF, Mirza AU, et al. (2012) An approach towards customized
multi-tenancy. Int J Mod Educ Comput Sci 4(9):39

48. Badger L, Grance T, Patt-Corner R, Voas J (2012) Cloud computing
synopsis and recommendations. NIST Spec Publ 800:146

49. Chong F, Carraro G, Wolter R (2017) Multi-tenant data architecture.
Microsoft Corporation. [Online https://msdn.microsoft.com/en-us/library/
aa479086.aspx]. Accessed 15 Feb 2017

50. Vanhove T, Vandensteen J, Van Seghbroeck G, Wauters T, De Turck F
(2014) Kameleo: Design of a new platform-as-a-service for flexible data

management. In: Network Operations and Management Symposium
(NOMS), 2014 IEEE. IEEE. pp 1–4

51. Schneider M, Uhle J (2013) Versioning for software as a service in the
context of multi-tenancy. University of Potsdam, Hasso-Plattner-Institute,
Potsdam, Germany, Tech. Rep. http://www.freenerd.de/assets/
VersioningSaas_SchneiderUhle.pdf

52. Schiller O (2015) Supporting multi-tenancy in relational database
management systems for oltp-style software as a service application.
Ph.D. dissertation, University of Stuttgart, Germany. https://doi.org/10.
18419/opus-3589. https://elib.uni-stuttgart.de/handle/11682/3606

53. Krebs R (2015) Performance isolation in multi-tenant applications. Ph.D.
dissertation, Karlsruhe Institute of Technology, Germany. https://se.
informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/
dissKIT_BW.PDF

54. Moyer C (2012) Building Applications for the Cloud: Concepts, Patterns
and Projects. In: Pearson Education, Inc, Rights and Contracts
Department, 501 Boylston Street, Suite 900, Boston, MA 02116.
Addison-Wesley Publishing Company, Boston

55. Homer A, Sharp J, Brader L, Narumoto M, Swanson T (2014) Cloud Design
Patterns(Corbisier R, ed.). Microsoft, Washington

56. Walraven S, Van Landuyt D, Truyen E, Handekyn K, Joosen W (2014)
Efficient customization of multi-tenant software-as-a-service applications
with service lines. J Syst Softw 91:48–62

57. Aldhalaan A, Menascé DA (2015) Near-optimal allocation of vms from iaas
providers by saas providers. In: Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on. IEEE. pp 228–231

58. Ochei LC, Petrovski A, Bass JM (2016) Optimizing the deployment of
cloud-hosted application components for guaranteeing multitenancy
isolation. In: Information Society (i-Society), 2016 International
Conference on. IEEE. pp 77 – 83. International Conference on Information
Society (i-Society 2016)

59. Fowler M (2006) Continuous integration. houghtWorks, Inc. [Online
https://www.martinfowler.com/....html]. Accessed 16 May 2018

60. Microsoft(a) (2018) Storsimple: An enterprise hybrid cloud storage
solution. Microsoft Inc. [Online https://azure.microsoft.com/en-gb/
services/storsimple/]. Accessed 10 May 2018

61. Ziembicki D (2014) Microsoft System Center Integrated Cloud Platform.
Microsoft Press, Washington

62. Ochei LC, Petrovski A, Bass J (2016) An approach for achieving the
required degree of multitenancy isolation for components of a
cloud-hosted application. In: 4th International IBM Cloud Academy
Conference (ICACON 2016). IBM Cloud Academy, IBM Corporation, New
York. https://www.ibm.com/solutions/education/cloudacademy/us/en/
cloud_academy_conference_2016.html

63. Amazon(a) (2017) Amazon elastic compute cloud (ec2) documentation.
Amazon Web Services, Inc. [Online https://aws.amazon.com/
documentation/ec2/]. Accessed 17 Feb 2017

64. Poddar R, Vishnoi A, Mann V (2015) Haven: Holistic load balancing and
auto scaling in the cloud. In: Communication Systems and Networks
(COMSNETS), 2015 7th International Conference on. IEEE. pp 1–8

65. Kim M, Mohindra A, Muthusamy V, Ranchal R, Salapura V, Slominski A,
Khalaf R (2016) Building scalable, secure, multi-tenant cloud services on
ibm bluemix. IBM J Res Dev 60(2-3):8–1

66. Amazon(b) (2017) What is auto scaling? Amazon Web Services, Inc.
[Online http://docs.aws.amazon.com/autoscaling/]. Accessed 8 Mar 2017

67. Microsoft(b) (2016) Introducing microsoft azure. Microsoft Corporation.
[Online https://azure.microsoft.com/]. Accessed 13 Sept 2016

68. German DM, Adams B, Hassan AE (2016) Continuously mining distributed
version control systems: an empirical study of how linux uses git. Empir
Softw Eng 21(1):260–299

69. Corbet J, Kroah-Hartman G, McPherson A (2013) Linux kernel
development: How fast it is going, who is doing it, what they are doing,
and who is sponsoring it. The Linux Foundation. [Online https://www2.
thelinuxfoundation.org/]. Accessed 16 May 2018

70. Doddavula SK, Agrawal I, Saxena V (2013) Cloud computing solution
patterns: Infrastructural solutions. In: Cloud Computing: Methods and
Practical Approaches. Springer, London. pp 197–219

71. Krebs R, Momm C, Kounev S (2014) Metrics and techniques for
quantifying performance isolation in cloud environments. Sci Comput
Program 90:116–134

https://www.eclipse.org/hudson/
https://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf
https://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf
https://plugins.jenkins.io/files-foundtrigger
https://plugins.jenkins.io/files-foundtrigger
https://www.bugzilla.org/docs/4.0/en/pdf/Bugzilla-Guide.pdf/
https://www.bugzilla.org/docs/4.0/en/pdf/Bugzilla-Guide.pdf/
https://www.csscorp.com/eucauecbook
https://www.csscorp.com/eucauecbook
https://pure.itu.dk/portal/en/publications/guidelines-for-building-a-private-cloud-infrastructure(ba9de07f-75c3-46e6-b749-6a97e94561ad).html
https://pure.itu.dk/portal/en/publications/guidelines-for-building-a-private-cloud-infrastructure(ba9de07f-75c3-46e6-b749-6a97e94561ad).html
https://pure.itu.dk/portal/en/publications/guidelines-for-building-a-private-cloud-infrastructure(ba9de07f-75c3-46e6-b749-6a97e94561ad).html
http://130.226.142.177/wp-content/uploads/2012/05/Guidelines-to-BuildingPrivateCloud-Infrastructure-Technical-Report.pdf
http://130.226.142.177/wp-content/uploads/2012/05/Guidelines-to-BuildingPrivateCloud-Infrastructure-Technical-Report.pdf
http://130.226.142.177/wp-content/uploads/2012/05/Guidelines-to-BuildingPrivateCloud-Infrastructure-Technical-Report.pdf
https://electric-cloud.com/plugins/build-automation
https://electric-cloud.com/plugins/build-automation
https://wiki.eclipse.org/Hudson-ci/writing-first-hudson-plugin
https://wiki.eclipse.org/Hudson-ci/writing-first-hudson-plugin
https://subversion.apache.org/docs/releasenotes/1.7
https://wiki.eclipse.org/Hudson-ci/writing-first-hudson-plugin
https://www.sciencedirect.com/science/article/pii/B9780128054673000223
https://www.sciencedirect.com/science/article/pii/B9780128054673000223
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.freenerd.de/assets/VersioningSaas_SchneiderUhle.pdf
http://www.freenerd.de/assets/VersioningSaas_SchneiderUhle.pdf
https://doi.org/10.18419/opus-3589
https://doi.org/10.18419/opus-3589
https://elib.uni-stuttgart.de/handle/11682/3606
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://www.martinfowler.com/....html
https://azure.microsoft.com/en-gb/services/storsimple/
https://azure.microsoft.com/en-gb/services/storsimple/
https://www.ibm.com/solutions/education/cloudacademy/us/en/cloud_academy_conference_2016.html
https://www.ibm.com/solutions/education/cloudacademy/us/en/cloud_academy_conference_2016.html
https://aws.amazon.com/documentation/ec2/
https://aws.amazon.com/documentation/ec2/
http://docs.aws.amazon.com/autoscaling/
https://azure.microsoft.com/
https://www2.thelinuxfoundation.org/
https://www2.thelinuxfoundation.org/

	OCHEI 2018 Degrees of tenants.pdf
	coversheetJournalArticles
	manuscript.pdf

	document.pdf
	Abstract
	Keywords

	Background
	Related work on degrees of tenant isolation for cloud-hosted services
	Methods
	Cross-case analysis
	Data reduction
	Data display
	Conclusion drawing

	Overall case study research process

	Summary of the case studies
	Selection of GSD tools and processes
	Conducting case studies
	Design of the case study
	COMITRE: a framework for implementing tenant isolation in the case studies
	Implementation of tenant isolation

	Evaluation of the case studies
	Experimental design
	Experimental setup

	Setup of the UEC used for experiments
	Experimental procedure
	Statistical analysis of the case studies

	Results of the case studies
	Results for case study 1 - continuous integration
	Results for case study 2 - version control
	Results for case study 3 - bug tracking

	Results
	Cross-case analysis
	Data reduction
	Data display
	Conclusion drawing

	Analysis
	Mapping of tenant isolation to GSD processes and resources
	Trade-offs for achieving the required degree of tenant isolation
	Tenant isolation versus resource sharing
	Tenant isolation versus number of users
	Tenant isolation versus customizability
	Tenant isolation versus size of generated data
	Tenant isolation versus scope of control
	Tenant isolation versus business constraints

	Discussion
	Type and location of the application component or process to be shared
	Customizability of the GSD tool and supporting process
	Optimization of cloud resource due to changing workload
	Hybrid cloud deployment conditions
	Tagging components with the required degree of isolation
	Errors and sensitivity to workload interference
	Volume of application data generated

	Threats to validity
	Conclusions
	Appendix A: Plots of estimated marginal means of change for the case study 1
	Appendix B: Plots of estimated marginal means of change for the case study 2
	Appendix C: Plots of estimated marginal means of change for the case study 3
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

	OA: GOLD
	OA Logo:
	AUTHORS: OCHEI, L.C., BASS, J.M. and PETROVSKI, A.
	TITLE: Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis.
	YEAR: 2018
	Publisher citation: OCHEI, L.C., BASS, J.M. and PETROVSKI, A. 2018. Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis. Journal of cloud computing [online], 7, article ID 22. Available from: https://doi.org/10.1186/s13677-018-0121-8
	OpenAIR citation: OCHEI, L.C., BASS, J.M. and PETROVSKI, A. 2018. Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis. Journal of cloud computing, 7, article ID 22. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: PUBLISHED
	Publisher: SPRINGER
	Series: Journal of cloud computing
	ISSN:
	eISSN: 2192-113X
	Set statement:
	License: BY 4.0
	License URL: https://creativecommons.org/licenses/by/4.0
	CC Logo:
		2019-01-04T15:06:00+0000
	OpenAIR at RGU

