
 
 

OpenAIR@RGU 

 

The Open Access Institutional Repository 

at Robert Gordon University 
 

http://openair.rgu.ac.uk 
 

This is an author produced version of a paper published in  
 

Energy (ISSN 0360-5442) 

 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

ABU-BAKAR, S. H., MUHAMMAD-SUKKI, F., FREIER, D., RAMIREZ-
INIGUEZ, R., MALLICK, T. K., MUNIR, A. B., YASIN, S. H. M., 
MAS’UD, A. A. and BANI, N. A., 2016. Performance analysis of a 
solar window incorporating a novel rotationally asymmetrical 
concentrator.  Available from OpenAIR@RGU. [online]. Available 

from: http://openair.rgu.ac.uk 

 
Citation for the publisher’s version: 

 

ABU-BAKAR, S. H., MUHAMMAD-SUKKI, F., FREIER, D., RAMIREZ-
INIGUEZ, R., MALLICK, T. K., MUNIR, A. B., YASIN, S. H. M., 
MAS’UD, A. A. and BANI, N. A., 2016. Performance analysis of a 
solar window incorporating a novel rotationally asymmetrical 
concentrator.  Energy, Vol. 99, pp. 181-192. 

 

 
 

This work is licensed under a Creative Commons Attribution - Non-
Commercial - No-Derivatives 4.0 International Licence 

 
Copyright 

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 

details. The item will be removed from the repository while the claim is investigated. 

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk


© 2016. This manuscript version is made available under the CC-BY-

NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
http://dx.doi.org/10.1016/j.energy.2016.01.006 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.energy.2016.01.006


Performance analysis of a solar window incorporating a novel 1 

rotationally asymmetrical concentrator  2 

Siti Hawa Abu-Bakar a,b, *, Firdaus Muhammad-Sukki c,d , Daria Freier a, Roberto Ramirez-Iniguez a,  3 

Tapas Kumar Mallick e, Abu Bakar Munir f,g, Siti Hajar Mohd Yasin h, 4 

 Abdullahi Abubakar Mas’ud i, Nurul Aini Bani j 5 
 6 

a School of Engineering & Built Environment, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA Scotland, United Kingdom 7 
b Universiti Kuala Lumpur British Malaysian Institute, Batu 8, Jalan Sungai Pusu, 53100 Gombak, Selangor, Malaysia 8 

c School of Engineering, Faculty of Design and Technology, Robert Gordon University, Garthdee House, Garthdee Road, Aberdeen, AB10 7QB, Scotland, 9 
United Kingdom  10 

d Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia 11 
e Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, United Kingdom 12 

f Faculty of Law, University of Malaya, 50603 Kuala Lumpur, Malaysia 13 
g University of Malaya Malaysian Centre of Regulatory Studies (UMCoRS), University of Malaya, 59990 Jalan Pantai Baru, Kuala Lumpur, Malaysia 14 

h Faculty of Law, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia 15 
i Department of Electrical and Electronic Engineering Technology, Jubail Industrial College, P O Box 10099, Saudi Arabia 16 

j UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia  17 
* Phone/Fax number: +44(0)141 273 1482/+44(0)141 331 3690, e-mail:  sitihawa.abubakar@gcu.ac.uk/ hawa012@gmail.com 18 

 19 

 20 

Abstract: The race towards achieving a sustainable zero carbon building has spurred the 21 

introduction of many new technologies, including the building integrated photovoltaic 22 

(BIPV) system. To tackle the high capital cost of BIPV systems, low-concentration 23 

photovoltaic (LCPV) technology was developed. Besides the reduction of cost, the LCPV 24 

technology also produces clean energy for the building and promotes innovative architectural 25 

design. This paper presents a novel type of concentrator for BIPV systems. This concentrator, 26 

known as the rotationally asymmetrical dielectric totally internally reflecting concentrator 27 

(RADTIRC), was incorporated in a small double glazing window. The RADTIRC has a 28 

geometrical concentration ratio of 4.9069x. A series of experiments were carried out to 29 

evaluate the performance of the solar PV window both indoors and outdoors. It was found 30 

that the RADTRIC-PV window increases the short circuit current by 4.13x when compared 31 

with a non-concentrating solar PV window. In terms of maximum power generation, the 32 

RADTIRC-PV window generates 0.749 W at normal incidence, 4.8x higher than the non-33 

concentrating counterpart.  34 

 35 

Keywords: solar photovoltaic; solar concentrator; rotationally asymmetrical concentrator; 36 

building integrated photovoltaic system. 37 
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 38 

1. Introduction 39 

 40 

Solar photovoltaic (PV) – a technology that converts solar energy directly into 41 

electricity – has great potential in satisfying the world’s energy needs. The 2014 report [1] 42 

published by the International Energy Agency (IEA) emphasises that this technology will 43 

possibly be the “dominant power source by 2050”. Governments and private sectors have 44 

invested a huge amount of money on solar PV technology [2]. In 2014 alone, solar 45 

technology attracted approximately USD150 billion1 (GBP94.5 billion)2 worth of investment 46 

[2] for funding technology research, development, commercialisation, manufacturing and 47 

new projects. To further accelerate the uptake of solar PV, several governments have 48 

introduced a number of measures. One of the most effective ones is known as the feed-in 49 

tariff (FiT) scheme [3–7]. An FiT scheme pays a consumer a specific tariff per kWh of 50 

electricity generated from solar PV technology for a duration of time [8]. The FiT scheme has 51 

now been implemented in more than 80 countries [2]. The investment and policies have had a 52 

positive effect on solar PV installations worldwide with the cumulative installed capacity of 53 

177 GW by the end of 2014 [2]. From this figure, approximately 49% of these installations 54 

were carried out in Europe (see Fig. 1) [2]. It is reported that solar PV was considered as the 55 

fastest growing renewable technology in 2014 [2], with an average annual growth rate 56 

recorded at 30% when compared with the growth in 2013 [2]. To date, solar PV technology 57 

has created approximately 2.5 million jobs around the globe [2]. 58 

 59 

                                                           
1 Here, 1 billion is defined as 1 thousand million, i.e. 109. 

2 Based on the conversion rate carried out on 10/11/2014, USD1.00 is equivalent to GBP0.63 [34]. This value is 

used throughout this paper. 



 60 

Fig. 1: Cumulative PV installed capacity in 2014. Adapted from [2,9]. 61 

 62 

Despite the rapid growth in terms of installed capacity, solar PV only supplied around 63 

1% of the world’s electricity requirement in 2014 [9]. One of the reasons is the high capital 64 

cost of installing a solar PV system, which ranges between USD1200 (GBP756) to 65 

USD24000(GBP15120) per kWp according to the recent data from the IEA [10]. The largest 66 

proportion of the cost is from the PV module (around 40%) [10], and the PV material 67 

contributes up to 73% of the module cost [11], i.e. 29.2% of the overall installation cost. By 68 

reducing the usage of PV material in a PV module, it is possible to achieve a cheaper PV 69 

system which could further attract more consumers in opting for and installing this 70 

technology.  71 

 72 

One of the solutions suggested by several researchers to reduce the cost of a solar PV 73 

module is to incorporate an optical concentrator into the solar PV design [12]. A concentrator 74 

works by focusing the solar energy from a large entrance aperture area to a smaller exit 75 

aperture area to which a solar PV cell is attached [12]. By doing this, the amount of PV 76 

material can be reduced significantly while maintaining the same electrical output. The 77 

concentrator can be fabricated using low cost materials such as plastic or mirrors, which 78 

offsets the cost of the displaced PV material [12]. The PV technology that includes a low gain 79 



concentrator (gains < 10x) in the design is known as low-concentration photovoltaics 80 

(LCPV). 81 

Researchers have proposed various designs of LCPV in the past 40 years. Pei et al. 82 

[13] demonstrated that a dielectric Compound Parabolic Concentrator (CPC) extrusion in an 83 

LCPV design was capable of increasing the electrical power by 73% when compared with the 84 

non-concentrating PV. Another study conducted by Goodman et al. [14] showed that a 85 

rotationally symmetrical dielectric CPC design increased the short circuit current of the 86 

LCPV system by a factor of 5.7x when compared with a bare solar cell. Muhammad-Sukki et 87 

al. [15] simulated the performance of an extrusion of a dielectric totally internally reflecting 88 

concentrator (DTIRC) and concluded that the design could increase the electrical output by 89 

nearly 5 times when compared with a non-concentrating system. From their analysis, their 90 

LCPV design could reduce the cost by 41% [16]. On the other hand, Sarmah et al. [17] 91 

showed that an LCPV design employing a dielectric extrusion of asymmetrical CPC 92 

produced 2.27 times more electrical power when compared with a system without a 93 

concentrator. Their LCPV design could reduce the cost of a solar panel by 20% per kWp 94 

[17]. Abu-Bakar et al. [18] proposed an LCPV system based on a rotationally asymmetrical 95 

CPC which could potentially increase the short circuit current by as much as 6.18 times than 96 

the non-concentrating counterpart. 97 

 This paper evaluates an LCPV design incorporating a novel concentrator known as 98 

the rotationally asymmetrical dielectric totally internally reflecting concentrator (RADTIRC). 99 

The authors has recently investigated a new RADTIRC prototype which was created from the 100 

polymethyl methacrylate acrylic (PMMA) material by using an injection moulding method 101 

and its performance was compared with the old prototype that was created from an acrylic 102 

type material known as ‘6091’ by using a silicon moulding technique [19]. The study [19] 103 

concluded that the injection moulding technique enables the prototype to achieve a much 104 

closer dimension to the desired design than one created from silicon mould, with an area 105 

deviation of 0.8%. In terms of the selection of material, the concentrator created from PMMA 106 

material provides a much better performance than the ‘6091’ material, an increase of 13.57% 107 

in terms of the short circuit current generated at normal incidence [19].  108 

This paper aims to demonstrate that an LCPV system could be created (in this case a 109 

small solar PV window) by incorporating an array of 12 concentrators for use in building 110 

integration and at the same time could provide substantial electrical output when compared to 111 

a similar non-concentrating PV window. The electricity generated can be utilised in the 112 



building, stored in a battery (for off-grid connection) or exported to the grid (for on-grid 113 

connection).  114 

 115 

2. System description 116 

 117 

2.1 Design of optical concentrator 118 

 119 

 The design of the optical concentrator discussed in this paper, for which there is a 120 

patent [20], is discussed in detail in [21]. The creation of the RADTIRC is complex where 121 

various 2D templates need to be created at each angle of rotation - with each template has the 122 

same total height but has different values of exit aperture width and half-acceptance angle. 123 

These two values (i.e. the exit aperture width and the half-acceptance angle) were 124 

predetermined by the programme from the input parameters chosen by the users. After 180 of 125 

these 2D templates are created, a point cloud is formed by combining all the surface point of 126 

these 2D templates to produce the desired RADTIRC. A variety of RADTIRC designs were 127 

simulated [21] and one specific design was fabricated and tested indoors and outdoors [22]. 128 

The fabricated design has a total height of 3 cm, a square exit aperture of 1 cm by 1 cm, a 129 

geometrical concentration ratio3 of 4.9069, an index of refraction of 1.5, two half-acceptance 130 

angles which are ±40° along the x-axis and ±30° along the z-axis (see Fig. 2) [22] to cater for 131 

variation of sun path during the day and throughout the year. Although the first prototype 132 

yielded a good result, two problems were identified: (i) the dimensions of the concentrator 133 

were smaller than the design specifications due to the usage of a silicon mould (see Fig. 3), 134 

and (ii) the material used in the prototype suffered a discoloration (from clear to yellowish 135 

colour as illustrated in Fig. 3) and photo degradation with time, which reduced its 136 

performance by 4% after 2 years. To overcome these problems, the same design was 137 

fabricated by UK Optical Plastic Limited using an injection moulding machine BOY 35M 138 

[23]. The material chosen for the concentrators is a variation of PMMA resin which is known 139 

as Altuglas® V825T and has a refractive index of 1.49 [24]. PMMA is a widely used material 140 

for optical concentrators due to its high transmittance (minimum 92%) and good resistance to 141 

photo degradation properties [25].  142 

 143 
                                                           

3 For a 3D concentrator, a geometrical concentration ratio is defined as the area ratio of the area of the 

entrance aperture to the area of the exit aperture [35]. 

 



 144 

Fig. 2: Prototype RADTIRC dimensions. 145 

 146 

 147 

Fig. 3: Comparison of the old and new prototype of the RADTIRC. 148 

  149 

2.2 Solar cell 150 

 151 

 The solar cells used for the test were supplied by Solar Capture Technologies Ltd, 152 

United Kingdom and each cell has dimensions of 1 x 1 cm. These monocrystalline silicon 153 

solar cells have Laser Grooved Buried Contact (LGBC) and are suitable for LCPV 154 

applications [26]. 155 

 156 

2.3 Assembly process 157 

 158 



 The small solar PV window prototype 4 (250mm x 289mm x 70mm) was constructed 159 

by utilising 12 RADTIRC prototypes and 12 LGBC cells to create the concentrating-PV 160 

windows. The cells were interconnected in series using a pre-design template in a 4 x 3 array 161 

(see Fig. 4) and were then glued on a glass substrate. The arrangement of the cells was 162 

created in such a way that when the RADTIRCs were placed on the cells, these concentrators 163 

achieved the ‘best’ alignment between the cells and the exit aperture of the concentrators to 164 

minimise optical losses. The distance between two cell arrays was chosen such that the cells 165 

enabled the concentrators to create an optimum and compact arrangement of concentrators. 166 

i.e. the concentrators could be placed as close as possible to each other to create the ‘best’ 167 

packaging density5. The RADTIRC here has a packaging density of 84%.   168 

To permanently mount the concentrators on the solar cells, a silicon elastomer 169 

Sylgard-184® from Dow Corning was chosen as the binding material. This material also acts 170 

as an encapsulation material for the solar cells and as an index matching gel between the 171 

concentrator and the cells [22]. It has a high transmission value of 94.4% [27] and can be 172 

cured using a simple process [17,21,25]. The Sylgard-184® was prepared by mixing the 173 

supplied base and curing agent in a 10:1 weight ratio in a small beaker. The mixture is then 174 

placed in a vacuum chamber for 15 minutes to eliminate air bubbles. A Dow Corning Primer 175 

92-023 was applied on the solar cells for a better adhesion between the Sylgard and the cells.  176 

Once the Sylgard was free from air bubbles, the mixture was poured on top of the inter -177 

connected cells. Afterwards, the RADTIRCs were placed carefully on top of the solar cells 178 

and the elastomer was left to cure for 48 hours under room temperature to ensure good 179 

binding between the concentrators and the cells. To compare the performance of this LCPV 180 

system with a non-concentrating one, a non-concentrating PV system was created using the 181 

same procedure and material.  182 

Both the concentrating and non-concentrating PV systems were sent to Strathclyde 183 

Insulating Glass Limited, United Kingdom for assembly within sealed double glazing units 184 

and subsequently to Windowplus, United Kingdom to fabricate the window frames. The final 185 

form of the solar PV window incorporating the RADTIRCs is presented in Fig. 4. 186 

                                                           
4 The length and the width of the window are chosen to fit bricks that are between 215mm and 300mm long 

according to an EU directive [36]. 

5 Packaging density is defined as the percentage area of the entrance aperture of the concentrator in the entire 

module area [37]. For example, a square entrance aperture employs a higher packaging density (at 100%) 

when compared to a circular entrance aperture (at 79%).  



 187 

 188 

Fig. 4: The solar PV window incorporating the RADTIRC design. 189 

 190 

 191 

 192 

3. Experimental setup 193 

  194 

 The indoor experimental setup to evaluate the characteristic of the solar window 195 

incorporating the RADTIRCs is illustrated in Fig. 5. It follows the same setup to evaluate the 196 

singular RADTIRC-PV structure which was presented in [19]. A solar simulator (Class AAA, 197 

AM 1.5G irradiation spectrum), Oriel® Sol3A Model 94083A, from Newport Corporation 198 

was used to simulate direct solar radiation at the earth surface. A variable slope base was 199 

placed 38cm beneath the solar simulator’s lamp and within the uniform illumination area 200 

(20cm x 20cm) of the lamp. A digital tilt meter was used to measure the tilt angle of the 201 

variable slope base. A Keithley 2440 source meter with 4-wire connections was utilised here 202 

to act as a loading circuit, but with more accuracy [22]. It was connected to a computer which 203 

was already installed with Lab Tracer software from National Instruments® to measure the 204 

electrical output from both solar windows. 205 

 206 



 207 

Fig. 5: Indoor experimental setup. 208 

 209 

4. Results and discussions 210 

When an array of the RADTIRC-PV cells is connected in series, in theory, the short 211 

circuit current generated from the array must be equal to the one generated from a single 212 

RADTIRC-PV structure studied previously by the authors in [19]. On the other hand, the 213 

maximum power and the open circuit voltage generated by the array will be increased by a 214 

factor of 12 since there are 12 RADTIRC-PV cells incorporated in the design. The 215 

information from the short circuit current is also needed to compare the opto-electronic gain 216 

of the concentrating-PV window with the one produced by the singular RADTIRC-PV 217 

structure. However, it is expected some losses will be introduced in the system causing the 218 

amount of the short circuit current and the opto-electronic gain produced by the RADTIRC-219 

PV window to be lower than the ones produced by a single RADTIRC-PV structure. The 220 

value of the maximum output power (and the open circuit voltage) is also expected to be 221 

lower than the theoretically calculated i.e. lower than 12 x Pmax (and Voc) generated from a 222 

single RADTIRC-PV structure. 223 

 224 

4.1 The characteristics of the RADTIRC-PV window 225 

  226 

 The RADTIRC-PV window was placed on the variable slope base. Under the 227 

standard test conditions, the solar simulator was configured to produce an irradiance of 228 

1000W/m2 and the room temperature was set at 25°C. The door and windows of the room 229 



were closed to avoid unwanted air flow and minimise temperature variation and the windows 230 

had blinds to prevent light from entering the room. The variable slope was set at 0°. For each 231 

measurement, the short circuit current (Isc), the open circuit voltage (Voc), the maximum 232 

current (Imax), the maximum voltage (Vmax), the maximum power (Pmax) and the fill factor 233 

(FF) were determined and recorded. 234 

 Fig. 6 shows the current-voltage (I-V) characteristics and the power-voltage (P-V) 235 

characteristics of the solar PV windows respectively. As it can be seen from Fig. 6, the short 236 

circuit current of the non-concentrating window was 0.031 A. However, the introduction of 237 

the RADTIRCs in the window increased the short circuit current by a factor of 4.13 when 238 

compared with the non-concentrating system, generating 0.128 A. As indicated earlier, the 239 

concentrator was concentrating the irradiance from the entrance aperture to the exit aperture. 240 

This increased the intensity of the light that impinged on the RADTIRC-PV window linearly 241 

[28], resulting in a higher short circuit current than the one produced from the non-242 

concentrating window. The open circuit voltage was also increased from 6.65 V to 7.20 V 243 

when the RADTIRC-PV window was compared with a non-concentrating PV window. 244 

Unlike the short circuit current, the open circuit voltage increased logarithmically with 245 

irradiance concentration [28]. The maximum power on the other hand was increased from 246 

0.156 W to 0.749 W when the RADTIRC-PV window was compared with the non-247 

concentrating PV window, giving a maximum power ratio of 4.8. The experiment showed 248 

that the RADTIRC-PV window increased the fill factor from 76% to 81% mainly due to an 249 

increase in both the short circuit current and the open circuit voltage of the concentrator. In 250 

terms of electrical conversion efficiency, the introduction of concentrators in the solar 251 

window reduced this value from 13% to 12.72%. 252 

 253 



 254 

Fig. 6: Electrical outputs from the solar PV windows under standard test conditions. 255 

 256 

 The output from the RADTIRC-PV window is compared with the result obtained 257 

from a single RADTIRC-PV structure studied in [19]. The short circuit current generated 258 

from the RADTIRC-PV window decreased to 0.128 A from 0.159 A when compared to the 259 

one produced by a single RADTIRC-PV structure, a reduction of 19.4%. The maximum 260 

power on the other hand increased by a factor of 9.9 instead of a factor of 12, generating a 261 

maximum power value of 75.9 W. As for the non-concentrating PV window, its short circuit 262 

current reduced to 0.030 A from 0.036 A when compared to the one produced by a single PV 263 

cell, a reduction of 16.7%. In terms of the maximum power generated, the non-concentrating 264 

PV window increased this value by 10.1 when compared to amount produced by a single bare 265 

cell, achieving a maximum power value of 0.156 W. This losses could be attributed to many 266 

factors, including (i) manufacturing errors causing the dimensions of the concentrator to 267 

differ from the actual design dimensions, uneven surfaces of the entrance aperture and over 268 

polishing on the profile of the side wall; (ii) assembly errors during the soldering of the 269 

tabbing wire on the solar cells which reduced the effective area of each cell, misalignment 270 

between the  solar cells and the exit aperture of the concentrators, misalignment on the 271 

arrangement in the arrays of the concentrators along the x and z-axes and losses due to the 272 

index matching gel at the lower part of the concentrator profile, and (iii) errors associated 273 



with the rays such as scattering reflection on the front surface of the concentrator which 274 

reduces the number of rays reaching the exit aperture of the RADTIRC. 275 

 276 

It is also useful to see the variation of I-V and P-V- characteristics under various level 277 

of solar radiation. The experiment was repeated by varying the output from the solar 278 

simulator between 800W/m2 and 1100W/m2 and the results are presented in Figs. 7 and 8. 279 

When the intensity of the sun simulator increased from 800W/m2 to 1100W/m2, the short 280 

circuit current from both solar windows increased - from 0.100A to 0.140A for the 281 

RADTIRC-PV window and from 0.025A to 0.034A for the non-concentrating PV window. In 282 

terms of the maximum power, the change in simulator’s intensities caused the reading from 283 

the panels to rise from 0.593W to 0.825W and from 0.125W to 0.170W for the RADTIRC-284 

PV window and the non-concentrating PV window respectively.  285 

  286 

 287 

Fig. 7: The I-V characteristics of the solar PV windows under various levels of irradiance.  288 

 289 



 290 

Fig. 8: The P-V characteristics of the solar PV windows under various levels of irradiance. 291 

 292 

4.2 The angular response of the RADTIRC-PV window 293 

  294 

 The next part of the experiment consisted in characterising the angular response of the 295 

RADTIRC-PV window. This was carried out by setting the output of the solar simulator at 296 

1000W/m2 and setting the room temperature at 25°C. The variable slope base was tilted from 297 

0° to 50° at increments of 5°, with each tilt angle measured using the digital level meter. For 298 

each angular increment, the short circuit current (Isc), the open circuit voltage (Voc), the 299 

maximum current (Imax), the maximum voltage (Vmax), the maximum power (Pmax) and the fill 300 

factor (FF) were determined and recorded. 301 

 The variation of the short circuit current is presented in Fig. 9 and the maximum 302 

output power of the windows is presented in Fig. 10, both plotted against the incidence angle. 303 

In general, both parameters decreased gradually when the angle of incidence increased. From 304 

Fig. 9, it was found that the RADTIRC-PV window achieved its maximum short circuit 305 

current at normal incidence, with the value of 0.128A recorded. The RADTIRC-PV window 306 

achieved 90% of its peak short circuit value when the angle of incidence was at ±15° along 307 

the x-axis and at ±14° along the z-axis. This value reduced to half when the angle of 308 

incidence of the rays reached ±25°. When the angle of incidence was equal to the minimum 309 

‘design’ half-acceptance angle (along the z-axis), the maximum current was always higher 310 



than the one generated from the non-concentrating PV solar window, as illustrated in Fig. 9. 311 

Beyond this angle of incidence, the short circuit current continued to decrease eventually 312 

reaching a value of 0A. 313 

 314 

 315 

Fig. 9: The short circuit current of the solar PV windows at different angles of incidence. 316 

 317 

In terms of maximum output power, the variation of maximum output power against 318 

the incidence angle is presented in Fig. 10. When compared with the short circuit current, a 319 

similar trend was observed for the values of maximum output power. The peak value of 320 

maximum output power was achieved at normal incidence, with the value of 0.749W 321 

recorded. The RADTIRC-PV window achieved 90% of its peak short circuit value when the 322 

angle of incidence was at ±15° along the x-axis and at ±14° along the z-axis. This value 323 

decreased to half when the angle of incidence of the rays reached ±26°. When the angle of 324 

incidence was equal to the minimum ‘design’ half-acceptance angle (along the z-axis), the 325 

maximum power was always higher than the one produced from the non-concentrating PV 326 

window, as indicated in Fig. 10. Beyond this angle of incidence, the maximum power 327 

continued to decrease until it reached a value of 0W. 328 

 329 



 330 

Fig. 10: The maximum power of the solar PV windows at different angles of incidence. 331 

 332 

 The opto-electronic gain of the concentrator was also plotted against the incidence 333 

angle and it is presented in Fig. 11. The opto-electronic gain measures the ratio of short 334 

circuit current produced from an LCPV system to the one generated from a conventional non-335 

concentrating one [17,22,29]. The maximum opto-electronic gain was obtained at normal 336 

incidence, with a value of 4.13, achieving an optical efficiency of 84%. The RADTIRC-PV 337 

window achieved 90% of its peak opto-electronic gain value when the angle of incidence was 338 

at ±15° along the x-axis and at ±14° along the z-axis. This value reduced to half when the 339 

angle of incidence of the rays reached ±25°. When the angle of incidence was equal to the 340 

minimum ‘design’ half-acceptance angle (along the z-axis), the gain was always higher than 341 

1, as indicated in Fig. 11. Outside this incidence angle, the opto-electronic gain dropped 342 

gradually to 0. 343 

 The opto-electronic gains are compared with the optical gains from the simulations 344 

(see Fig. 11). The simulations were carried out using an optical software ZEMAX® and the 345 

detail simulation steps have been presented in [21]. The results from the experiment show 346 

good agreement with the simulation data, with a deviation of 10% at the peak value. This 347 

deviation can be contributed to several factors, which include (i) manufacturing errors 348 

causing the dimensions of the concentrator to differ from the actual design dimensions, 349 

uneven surfaces of the entrance aperture and over polishing on the profile of the side wall , 350 



and (ii) assembly errors during the soldering of the tabbing wire on the solar cells which 351 

reduced the effective area of each cell, misalignment between the  solar cells and the exit 352 

aperture of the concentrators and misalignment on the arrangement in the arrays of the 353 

concentrators along the x and z-axes. 354 

 355 

 356 

Fig. 11: The optical gain of the RADTIRC-PV window. 357 

 358 

The opto-electronic gain generated from the RADTIRC- PV window is also compared 359 

to the one produced by a single RADTIRC-PV structure [19], and the results are presented in 360 

Figure 12. As expected, the value of the opto-electronic gain of the RADTIRC-PV window is 361 

always lower than the one produced by a single RADTIRC-PV structure at all angles of 362 

incidence, with a deviation of 7.8% at normal incidence due to losses attributed to several 363 

factors described earlier in Section 3.8.1 364 

 365 



 366 

Fig. 12: Comparison of the opto-electronic gain generated from the RADTIRC-PV window 367 

and a single RADTIRC-PV structure. 368 

 369 

It is also interesting to see that the opto-electronic gain has a large drop when the 370 

angle of incidence of the rays was ±20° and wider. This was because parts of the RADTIRCs 371 

were shaded by the frame of the window (see Figure 13(a)) which reduced the amount of 372 

short circuit current from the RADTIRC-PV window. The non-concentrating window 373 

experienced the same effect when the angle of incidence of the rays was larger than ±35°. 374 

The largest deviation between the reading of the RADTIRC-PV window and the single 375 

RADTIRC-PV structure occurred when the angle of incidence of the rays was at ±30° when 376 

half of the RADTIRCs were shaded, giving a deviation of 58%. There was no shadowing 377 

occurring in the single RADTIRC-PV structure tested in [19] since it was frameless. It is 378 

therefore important to ensure that the arrays of the concentrators and the PV cells are 379 

integrated in such a way that the shadowing of the cells is avoided in order to maximise the 380 

generation of electrical output from the LCPV systems. 381 



 382 

Fig. 13: Shadowing effect on the solar PV windows. 383 

 384 

 385 

 386 

4.3 The effect of temperature on the maximum power generated by the RADTIRC-PV 387 

window 388 

  389 

 This section evaluates the effect of temperature on the performance of the RADTIRC-390 

PV window. For this purpose, two thermocouples were utilised; one was attached at the back 391 

of the glass panel beneath one of the solar cells6 (see Fig. 14), and another one was used to 392 

measure the room temperature. The RADTIRC-PV window was placed at 0° inclination. The 393 

solar simulator was configured to produce 1000 W/m2 and the room temperature was set at 394 

25°C. The RADTIRC-PV window was exposed to the same radiation for a period of 4.5 395 

hour. A set of readings was taken at intervals of 15 minutes. 396 

 397 

                                                           
6 The most accurate way of measuring the temperature would be to place the thermocouple exactly beneath the 

solar cell. However, based on the heat transfer model using the ANSYS 12.1 software developed by Kumar et 

al. [38] and Sellami [39] to compare the temperature at the back of the solar cell and at the back of the glass 

substrate, it was demonstrated that the temperature reading at both location via simulation matched the 

experimental data accurately. Therefore, this setup is used in this study. 



 398 

Fig. 14: The top view of the location of the thermocouple (marked in red) attached 399 

underneath one of the cells of the RADTIRC-PV window. 400 

 401 

 Fig. 15 shows the effect of temperature on the maximum power of the RADTIRC-PV 402 

window. The temperature of the cell increased sharply from 25°C to 69°C and stabilised after 403 

3 hours. The maximum power reduced from 0.75W to 0.54W, a reduction of 27%. Table 1 404 

presented the variations of the main parameters throughout the duration of the experiment. It 405 

was observed that the maximum current showed a slight reduction, from 0.12A to 0.10A. The 406 

maximum voltage however showed a considerable fall from 6.12 V to 5.20 V. As for the fill 407 

factor, the value reduced from 81% to 79%.  408 

 409 

 410 

Fig. 15: Variation of RADTIRC-PV cell maximum power and temperature with illumination 411 

time. 412 

 413 

 414 



Table 1: Effect of temperature on the RADTIRC-PV window output. 415 

Time 

 

Room 

Temperatur

e  

CPV 

Temperatur

e  

Vmax  Imax  

 

Pmax 

 

Voc 

 

Isc 

 

FF 

(hour) (°C) (°C) (V) (A) (W) (V) (A)  

0.00 25 25 6.12 0.12 0.75 7.20 0.13 0.81 

0.25 29 46 5.71 0.11 0.61 6.85 0.11 0.80 

0.50 30 53 5.51 0.11 0.59 6.65 0.11 0.79 

0.75 31 58 5.51 0.10 0.57 6.55 0.11 0.79 

1.00 32 60 5.41 0.10 0.57 6.50 0.11 0.78 

1.25 32 62 5.31 0.11 0.56 6.45 0.11 0.78 

1.50 33 64 5.31 0.10 0.56 6.40 0.11 0.78 

1.75 33 65 5.31 0.10 0.55 6.35 0.11 0.79 

2.00 33 66 5.20 0.11 0.55 6.35 0.11 0.78 

2.25 33 67 5.31 0.10 0.55 6.30 0.11 0.78 

2.50 33 67 5.20 0.10 0.55 6.30 0.11 0.78 

2.75 33 68 5.20 0.10 0.55 6.30 0.11 0.78 

3.00 33 68 5.20 0.10 0.54 6.30 0.11 0.78 

3.25 33 68 5.20 0.10 0.54 6.30 0.11 0.78 

3.50 33 69 5.20 0.10 0.54 6.25 0.11 0.79 

3.75 33 69 5.21 0.10 0.54 6.25 0.11 0.79 

4.00 33 69 5.20 0.10 0.54 6.25 0.11 0.79 

4.25 33 69 5.20 0.10 0.54 6.25 0.11 0.79 

4.50 33 69 5.20 0.10 0.54 6.25 0.11 0.79 

 416 

 417 

 418 

It is also useful to identify the temperature coefficient for maximum current, 419 

maximum voltage and maximum power, which are obtained by calculating the ratio of 420 

change in each parameter with respect to the change in temperature [22,30]. It was calculated 421 

that the maximum voltage coefficient was 0.021V/°C, the maximum current coefficient was 422 

0.454mA/°C and the maximum power coefficient was 0.005W/°C. 423 



  424 

5.0 The outdoor experiments 425 

  426 

 Solar radiation consists of direct and diffuse radiation [31], and each one has a 427 

different effect on the performance of the solar PV windows. The outdoor performance of the 428 

panels in an open environment has also been investigated. During a sunny day, most of the 429 

radiation is direct, but on completely cloudy days, the radiation is mostly diffuse [31]. The 430 

outdoor experiments were conducted in Coventry Drive, Glasgow (55.865659°N, 431 

4.21063°W) between 20 June 2014 and 01 July 2014. Both panels were facing true south, 432 

(taking into account the magnetic declination of 3.35°W) and were tilted 33° from the 433 

horizontal to ensure 0° inclination with respect to the sun elevation angle. The information 434 

about the daily sun path and its elevation angle were obtained from [32]. A multimeter was 435 

connected to each panel to get simultaneous readings which measure the short circuit current 436 

produced by the panels. Simultaneous readings from the multimeters were taken at intervals 437 

of 10 minutes for a duration of 10 hours, i.e. from 8.00am until 6.00pm each day.  438 

 Fig. 16 shows selected results obtained from the experiment. In general, the 439 

introduction of the RADTIRCs increased the short circuit current generated from the panel. 440 

Based on the theory and the indoor experiments, the RADTIRC-PV window should produce 441 

much higher short circuit current than the non-concentrating system within its ‘design’ 442 

acceptance angle under direct radiation. Based on the sun path information [32], the higher 443 

capture time should occur between 11.30am and 2.30pm. This trend can be observed during 444 

almost every sunny day (see Fig. 16(a)), where the RADTIRC-PV window generated a much 445 

higher short circuit current than the non-concentrated one, which confirms both the theory 446 

and the indoor experiments. The maximum short circuit current reading recorded was 447 

114.3mA, much higher than the 30.35mA generated from the non-concentrating PV window. 448 

This corresponded to the maximum opto-electronic gain value of 3.77. A similar trend was 449 

also observed in a partially sunny day, as illustrated in Fig. 14(b), with the maximum short 450 

circuit current generated from the RADTIRC-PV window and non-concentrating PV window 451 

being 109.2mA and 28.09mA respectively, providing an opto-electronic gain of 3.89. 452 

  453 



 454 

Fig. 16: Results from outdoor experiments;(a) during an almost clear sky day; (b) during a 455 

partially clear sky day, and (c) during a cloudy day. 456 

 457 

It is interesting to observe the performance of both panels during a cloudy day, and 458 

the example is presented in Fig. 14(c). It was observed that the RADTIRC-PV window 459 



performed slightly better than the non-concentrating counterpart throughout the cloudy day, 460 

giving an opto-electronic gain value of minimum 1.1 for the whole period of 10 hours. This 461 

indicates that outside the ‘design’ half-acceptance angles of the concentrator, the diffuse 462 

radiation is still collected from the entrance aperture as well as the side profile of the 463 

concentrator to reach the solar cells, hence increasing the short circuit current generated from 464 

the solar windows. 465 

 From the observations during sunny and cloudy days, it is possible to conclude that 466 

the RADTIRC is capable to increase the short circuit current generated from the window. It is 467 

argued that the panel could not achieve its peak opto-electronic gain due to some factors. 468 

These include misalignment of the panels with reference to the sun path, errors in positioning 469 

the panel to face the true south, the frequently varying solar insolation, the formation of 470 

clouds, as well as changes in wind speed which caused the gain to reduce significantly. 471 

 472 

Conclusions 473 

  474 

A new type of solar window incorporating a novel RADTIRC design was proposed 475 

for BIPV system. The steps to assemble a RADTIRC-PV cells array within a double glazed 476 

window have been explained in detail. This panel underwent a series of analysis both indoors 477 

and outdoors and these results were compared with a non-concentrating panel. From the 478 

indoor experiments, it was found that the introduction of the RADTIRCs in the window could 479 

increase the short circuit current by a factor of 4.13 when compared with the non-480 

concentrating PV system, generating 0.128 A. The maximum power on the other hand was 481 

increased from 0.156 W to 0.749 W when the RADTIRC-PV window was compared with the 482 

non-concentrating PV window, giving a maximum power ratio of 4.8. The output from the 483 

RADTIRC-PV window was also compared with the result obtained from a single RADTIRC-484 

PV structure studied previously by the author in [19]. The short circuit current generated 485 

from the RADTIRC-PV window decreased to 0.128 A from 0.159 A when compared to the 486 

one produced by a single RADTIRC-PV structure, a reduction of 19.4%. The maximum 487 

power on the other hand increased by a factor of 9.9 instead of a factor of 12, generating a 488 

maximum power value of 75.9. As for the non-concentrating PV window, its short circuit 489 

current reduced to 0.030 A from 0.036 A when compared to the one produced by a single PV 490 

cell, a reduction of 16.7%. In terms of the maximum power generated, the non-concentrating 491 

PV window increased this value by 10.1 when compared to the amount produced by a single 492 

bare cell, achieving a maximum power value of 0.156 W. These losses could be attributed to 493 



many factors, including manufacturing errors, assembly errors and errors associated with the 494 

rays which reduce the number of rays reaching the exit aperture of the RADTIRC. 495 

In terms of the opto-electronic gain, it was also found that within the minimum 496 

‘design’ half-acceptance angle of the RADTIRC, the opto-electronic gain of the RADTIRC-497 

PV window was always higher than 1, with a maximum value of 4.13x. The opto-electronic 498 

gain was also compared with the simulation and the results from the experiment showed good 499 

agreement with the ZEMAX® simulations. The opto-electronic gain generated from the 500 

RADTIRC- PV window was also compared to the one produced by a single RADTIRC-PV 501 

structure. As expected, the value of the opto-electronic gain of the RADTIRC-PV window 502 

was always lower than the one produced by a single RADTIRC-PV structure at all angles of 503 

incidence, with a deviation of 7.8% at normal incidence due to losses attributed to several 504 

factors described earlier in the previous paragraph, as well as due to shading from the frame 505 

of the windows. In terms of effect of the temperature on the performance of the RADTIRC-506 

PV window, it was demonstrated that the maximum steady state temperature of the panel for 507 

the experimental setup used was 69°C, achieved within 3 hours of exposure to the sun. The 508 

corresponding maximum power during the steady state was recorded at 0.54W. The 509 

maximum voltage coefficient, the maximum current coefficient and the maximum power 510 

coefficient were determined to be 0.021V/°C, 0.454mA/°C and 0.005W/°C. As for the 511 

outdoor experiments, the variations of short circuit current and opto-electronic gain were 512 

plotted for a duration of 10 hours for several days. Under direct radiation, the RADTIRC-PV 513 

window generated a maximum opto-electronic gain of 3.89 while under diffuse radiation, the 514 

opto-electronic gain varied with a minimum value of 1.1. 515 

It can be concluded that the RADTIRC has the potential to increase the electrical 516 

output from a solar window. Within the half-acceptance angle of the RADTIRC, the short 517 

circuit current and the maximum power are always higher than the ones generated from non-518 

concentrating PV window. Despite this advantage, a longer exposure to the sun could 519 

increase the temperature of the cells in the window, which will reduce the maximum power 520 

of the RADTIRC-PV window - in this paper by 27%. It is therefore desirable to reduce the 521 

temperature of the cells to ensure a maximum output from the RADTIRC-PV window. This 522 

can be achieved by introducing a hybrid/thermal system using air that utilises the co-523 

generated heat to stimulate ventilation in the building [15,21,33]. 524 

 525 



This paper demonstrated that an LCPV structure (in this case a solar PV window) 526 

could be constructed for use in a BIPV system. The LCPV design could also provides 527 

substantial gain in the electrical output when compared to a non-concentrating PV design. 528 

However, careful consideration is required to minimise the losses in the system. 529 

Some of the future work that could be investigated include (i) detailed analysis on the 530 

effect of diffuse radiation on the windows’ performance; (ii) long term evaluation of the 531 

windows outdoors, (iii) prediction of electrical output for a particular location based on 532 

meteorological data, and (iv) analysis of PV window incorporating a different variation of 533 

RADTIRC which could produce more energy specifically for vertical integration in a 534 

building. 535 
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