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Highlights

• We propose a method to obtain the generalised median be-
tween graph correspondences.

• By considering graph attributes, more useful medians are
obtained.

• Experiments show effectiveness in comparison to state-of-
the-art methods.
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ABSTRACT

A graph correspondence is defined as a function that maps the elements of two attributed graphs. Due
to the increasing availability of methods to perform graph matching, numerous graph correspondences
can be deducted for a pair of attributed graphs. To obtain a representative prototype for a set of
data structures, the concept of the median has been largely employed, as it has proven to deliver a
robust sample. Nonetheless, the calculation of the exact (or generalised) median is known to be an
NP-complete problem for most domains. In this paper, we present a method based on an optimisation
function to calculate the generalised median graph correspondence. This method makes use of the
Correspondence Edit Distance, which is a metric that considers the attributes and the local structures
of the graphs to obtain more interesting and meaningful results. Experimental validation shows that
this approach is capable of obtaining the generalised median in a comparable runtime with respect
to state-of-the-art methods on artificial data, while maintaining the success rate for a real-application
case.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A correspondence is defined as the result of a bijective func-
tion which designates a set of one-to-one mappings between
elements representing the local information of two structures
i.e. sets of points, strings, trees, graphs or data clusters. Each
element (a point for sets of points; a character for strings, or
a node and its edges for trees or graphs) has a set of attributes
that contain specific information. Correspondences are usually
generated, either manually or automatically, with the purpose
of finding the similarity or a distance between two structures.
In the case that correspondences are deduced through an auto-
matic method, this is most commonly done through an optimi-
sation process called matching. Several matching methods have
been proposed for the aforementioned structures, compiled by
Zitová and Flusser (2003) for sets of points, Navarro (2001) for
strings, and Vento (2015) for trees and graphs.

Correspondences are used for a number of different purposes.
For instance, Caetano et al. (2009) and Zhou and De La Torre
(2016) used them to measure the accuracy of different graph

∗∗Corresponding author: Tel.: +44-1224-262790
e-mail: author@author.com (Carlos Francisco Moreno-Garcı́a)

matching algorithms. Cortés et al. (2013) considered ground-
truth correspondences to improve the quality of other corre-
spondences. In addition, Cortés and Serratosa (2016) learned
the edit costs to implement them in their matching algorithms.
Cortés et al. (2016) applied correspondences between images
to estimate the pose of a fleet of robots. Moreover, Moreno-
Garcı́a et al. (2016a) put together a repository of graphs and
correspondences to test classification methods. Interestingly,
work by Moreno-Garcı́a and Serratosa (2017a), Moreno-Garcı́a
and Serratosa (2016), Moreno-Garcı́a and Serratosa (2015) and
Moreno-Garcı́a and Serratosa (2017b) proposed the calculation
of the consensus between a set of correspondences based on
optimisation functions and other parameters. All of these ap-
proaches use the classical Hamming distance (HD) to calculate
the dissimilarity between a pair of correspondences. Nonethe-
less, recent work presented by Moreno-Garcı́a et al. (2017)
showed that this distance does not always reflect the true dis-
similarity between a pair of correspondences, and thus, a new
distance called Correspondence Edit Distance (CED) was de-
fined by Moreno-Garcı́a et al. (2018).

Given the vast availability of matching algorithms such as the
ones presented by Xiao et al. (2009a), Xiao et al. (2009b) and
Carcassoni and Hancock (2003), numerous correspondences
can be produced and thus, the aforementioned tasks scale in
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complexity and uncertainty. Therefore, the use of concepts to
find a representative prototype correspondence of a set of ob-
jects comes into use. This is the case of the median, roughly
defined as a sample that achieves the minimum sum of dis-
tances (SOD) to all members of such set. Authors such as Jiang
and Bunke (2010) have considered this as a suitable represen-
tative prototype of a set of structures given its robustness and
its applicability to several domains, such as representation of
symbols by Jiang et al. (2000), digit recognition by Jiang et al.
(2003), document retrieval by Chaieb et al. (2017), amongst
others described by Jiang et al. (2001). Computing the median
is an NP-complete problem, as shown by Bunke et al. (2002)
for strings, Bunke and Günter (2001) for graphs, and Franek
et al. (2014) for data clusters. Thus, some sub-optimal meth-
ods have been presented to calculate an approximation to the
median. For instance, an embedding approach has been pre-
sented for computing the median string in Jiang et al. (2012),
the median of graphs in Ferrer et al. (2010) and the median of
data clusters in Franek and Jiang (2014). In addition, a strategy
known as the evolutionary method was introduced by Franek
and Jiang (2012) to compute the median string, obtaining a fair
approximation in reasonable runtime.

In terms of the median graph, Ferrer et al. (2010) presented
some strategies which need to compute a common correspon-
dence (Solé-Ribalta and Serratosa (2013, 2011)) a consensus
correspondence (Moreno-Garcı́a and Serratosa (2017a)) or a
median correspondence (Moreno-Garcı́a et al. (2018)) between
the graphs in the set. For this reason, a method to compute
the exact median, also known as generalised median (GM), of
these graph correspondences (not to be confused with the me-
dian graph) was presented in Moreno-Garcı́a et al. (2016b) with
respect to the HD and using optimisation functions.

The aim of this paper is to present a method that obtains
the GM correspondence for a set of attributed-graph corre-
spondences based on the CED instead of the HD, as done by
Moreno-Garcı́a et al. (2016b). The main difference between
using the CED instead of the HD is that the attributes and
structures of graphs are taken into consideration, thus achiev-
ing more useful correspondences for higher-level methods or
applications. A preliminary version of this paper was presented
by Moreno-Garcı́a and Serratosa (2018). In the current version,
we have added much more explanation of the methodology, we
have tested the use of the local sub-structure within the CED
(and thus within the median calculation), as well as an experi-
mental validation using public databases.

The computation of the generalised median of a set of graph
correspondences cannot be directly applied to solve a classifica-
tion problem. The deduced median graph correspondence can
be used to find better graph prototypes. Then, with these proto-
types, higher level tasks could be performed, such as clustering
or classification (in the structural pattern recognition field) or
image segmentation (in the computer vision field). These other
tasks are out of the scope of this paper due to space reduction
and that they are application dependent.

The rest of the paper is structured as follows. Section 2 estab-
lishes the basic definitions. Afterwards, in Section 3 we present
the method to calculate the GM based on the HD. Then, in

Section 4 we present our method to compute the median based
on the CED. Section 5 provides experimental validation of the
framework. Finally, Section 6 is reserved for the conclusions
and further work.

2. Basic Definitions

2.1. Distance between structures

Consider a structure G = (Σ, µ), where vi ∈ Σ denotes the ele-
ments (i.e. local information) and µ is a function that assigns a
set of attributes to each element. This structure may contain null
elements which have a set of attributes that differentiate them
from the rest. Moreover, given G = (Σ, µ) and G′ = (Σ′, µ′) of
the same order N (naturally or due to the aforementioned null
element presence), we define the set of all possible correspon-
dences T , such that each correspondence in T maps all elements
of G to elements of G′, f : Σ→ Σ′ in a bijective manner.

One of the most widely used frameworks to calculate the dis-
tance between structures is the edit distance. It has been pre-
sented by Wagner and Fischer (1974) for strings, Bille (2005)
for trees and Sanfeliu and Fu (1983), Gao et al. (2010), Solé-
Ribalta et al. (2012) and Serratosa (2019) for graphs. The edit
distance is defined as the minimum amount of required oper-
ations that transform one object into the other. To this end,
several distortions or edit operations, consisting of insertion,
deletion and substitution of elements are defined. Edit cost
functions are introduced to quantitatively evaluate the edit op-
erations. The basic idea is to assign a penalty cost to each edit
operation considering the amount of distortion that it introduces
in the transformation. Substitutions simply indicate element-to-
element mappings. Deletions are transformed to assignments of
a non-null element of the first structure to a null element of the
second structure. Insertions are transformed to assignments of a
non-null element of the second structure to a null element of the
first structure. Given G and G′ and a correspondence f between
them, the edit distance is obtained as follows:

EditCost(G,G′, f ) =
∑

vi∈Σ v′a∈Σ′
d(vi, v

′
a) (1)

where f (vi) = v′a, function d is a distance between the mapped
elements, which is application dependent and also depends on
whether the elements are non-null or null. Thus, the edit dis-
tance ED is defined as the minimum cost under any bijection in
T :

ED(G,G′) = min
f∈T

EditCost(G,G′, f ) (2)

2.2. Mean, weighted mean and median

In its most general form, the mean of two structures G and G′

is defined as a structure Ḡ such that:

Dist(G, Ḡ) = Dist(Ḡ,G′)
Dist(G,G′) = Dist(G, Ḡ) + Dist(Ḡ,G′)

(3)
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where Dist is any distance metric defined on the domain of
these structures. Moreover, the concept of weighted mean is
used to gauge the importance or the contribution of the involved
structures in the mean calculation. The weighted mean between
two structures is defined as:

Dist(G, Ḡ) = λ and Dist(G,G′) = λ + Dist(Ḡ,G′) (4)

being λ is a constant that controls the contribution of the struc-
tures and holds 0 ≤ λ ≤ Dist(G,G′). G and G′ satisfy this con-
dition, and therefore are also weighted means of themselves.

From the definition of the median, two different approaches
are identified: the set median (SM) and the GM. The first one is
defined as the structure within the set which has the minimum
SOD. Conversely, the GM is the structure out of any element in
the set which obtains the minimum SOD.

2.3. Distance between correspondences

Given two attributed structures G and G′ such as graphs, and
two correspondences f 1 and f 2 between them, we proceed to
define the HD and the CED.

2.3.1. Hamming distance
The HD is defined as:

HD( f 1, f 2) =

N∑

i=1

(1 − δ(v′a, v′b)) (5)

where a and b such that f 1(vi) = v′a and f 2(vi) = v′b, and δ being
the Kronecker Delta function:

δ(x, y) =


1 if x = y

0 otherwise
(6)

2.3.2. Correspondence edit distance
The CED is defined in a similar way to Equations 1 and 2,
but the elements used by CED are the node-to-node mappings
within f 1 and f 2. More formally, correspondences f 1 and f 2

are defined as sets of mappings f 1 = m1
1, ...,m

1
i , ...,m

1
N and

f 2 = m2
1, ...,m

2
j , ...,m

2
N , where m1

i and m2
j are the two-element

vectors m1
i = (vi, f 1(vi)) and m2

j = (v j, f 2(v j)).
Then, we define:

CED( f 1, f 2) = min
h∈H

Corr EditCost( f 1, f 2, h) (7)

where

Corr EditCost( f 1, f 2, h) =
∑

m1
i ∈M1 m2

j∈M2

d(m1
i ,m

2
j ) (8)

being M1 and M2 the sets of all possible node-to-node map-
pings. Moreover, bijection h maps the mapping m1

i in f 1 into
the mapping m2

j in f 2.
Moreno-Garcı́a et al. (2018) define the distance between

mappings d(m1
i ,m

2
j ) as,

d(m1
i ,m

2
j ) = dn(vi, v j) + dn( f 1(vi), f 2(v j)) (9)

where dn is a distance between the local parts of the structures,
which is application dependent. In this paper, we have used the
star structure, which is composed of a central node and their
adjacent edges and neighbouring nodes, in contrast to Moreno-
Garcı́a and Serratosa (2018), where only the points were con-
sidered without edges.

3. Generalised Median Correspondence based on the Ham-
ming Distance

This section summarises the method presented in Moreno-
Garcı́a et al. (2016b) to calculate the GM, f̂ , of a set of cor-
respondences, f 1, ..., f p, ..., f n, based on the HD for the case of
correspondences, f p, between sets of points.

The first step of this method is to convert the set of corre-
spondences f 1, ..., f p, ..., f n into correspondence matrices (dou-
ble stochastic) F1, ..., F p, ..., Fn as follows,

F p[i, b] =


1 if f p(vi) = v′b
0 otherwise

(10)

Afterwards, a linear solver such as the Hungarian method
presented by Kuhn (1955), the Munkres algorithm by Munkres
(1957), or the Jonker-Volgenant solver by Jonker and Volgenant
(1987), is applied to the sum of these matrices as follows:

f̂ = argmin
n∑

p=1

(C ◦ F p[i, b]) (11)

where [i, b] is a specific cell and C is the following matrix:

C =

n∑

p=1

(1 − F p[i, b]) (12)

The idea is that by introducing a value of either 0 or a 1 in the
correspondence matrix, the HD is not only being considered by
the method, but also minimised.

4. Generalised Median Correspondence based on the Cor-
respondence Edit Distance

This section presents the main contribution of this paper, which
is a method to calculate the GM f̂ of a set of correspondences,
f 1, ..., f p, ..., f n, this time based on the CED for the case of cor-
respondences which map attributed graphs. As commented pre-
viously, the median calculation had only been modelled through
the HD by (Moreno-Garcı́a et al. (2016b)) and partially using
CED by Moreno-Garcı́a et al. (2018), but without considering
the local structure of the nodes being mapped. Through the
CED and the consideration of the local substructures of both
graphs, it is clear that much more interesting and useful medi-
ans could be generated from an application point of view. As a
result, this new method becomes the generalisation of the one
presented by Moreno-Garcı́a et al. (2018), in which the struc-
tural and semantic information of the graphs is considered.
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First, we define the new equation based on the one used to
compute the GM correspondence using the HD. In this case,
we need to redefine matrix C in Equation 12 as follows,

C =

n∑

p=1

Bp[i, b] (13)

Notice that instead of minimising (1 − F p), the goal is to
minimise Bp, which is a matrix where the distance between lo-
cal substructures is added to the corresponding cell, in contrast
to F p, which is a matrix where a value of 0 or 1 is inserted if a
mapping is similar or different, respectively. The next step is to
define the function used to fill matrix Bp, which is,

Bp[i, b] = d(m,mp
i ) + d(m,mp

j ) (14)

being m the mapping m = {vi, v′b}. Moreover, mp
i = (vi, f p(vi)),

mp
j = (v j, f p(v j)) and f p(v j)) = v′b. It is important to note that

the first part of the expression is similar to how the bijective
function h is calculated in Equation 7, in the sense that it only
computes the distances between mappings that have the same
elements on the output structure G. According to the distance
between node-to-node mappings used, null elements (and thus
null mappings) are considered accordingly.

Moreover, Bp[i, b] is defined as the sum of the distances be-
tween any supposed mapping from vi to v′b and the mappings
imposed by correspondence f p that relates elements vi and v j

to elements v′a and v′b, respectively. As the distances between
these two mappings increase, so it does the value of Bp[i, b].
Figure 1 graphically shows the computation of Bp[i, b].

Fig. 1. Computing Bp[i, b] as a sum of the distances d(m,mp
i ) and d(m,mp

j )

In this case, the calculation of a value in Bp[i, b] also yields
two cases as in Equation 10, but this time meeting the following
two criteria,

Bp[i, b] =


0 if m = mp

i ∨ m = mp
j

> 0 otherwise
(15)

As a result, matrix C in Equation 13 is a generalisation of
matrix C in Equation 12. Finally, matrix C is minimised in the
same way as in Equation 11.

5. Experimental Validation

We have split the validation into two subsections. The first
one shows an evaluation on artificial data, while the second

one has been designed using a real case of image matching and
graph correspondences. All experiments were implemented us-
ing Matlab 2017a on a Windows 10 machine with 16 GB RAM
and a 2.7 GHz processor.

5.1. Test with artificial data

The experimental validation was carried out as follows. We
have generated two repositories S 5 (with sets of points with
5 elements) and S 30 (with sets of points of 30 elements),
with the attributes of the nodes being real numbers. Each
repository is integrated by 3 datasets consisting of 60 8-tuples
s1 = {G1,G′1, f 1

1 , ..., f 6
1 }, .., si = {Gi,G′i , f 1

i , ..., f 6
i }, ..., s60 =

{G60,G′60, f 1
60, ..., f 6

60}. All correspondences for each dataset are
obtained using the following three correspondence generation
scenarios:

• Completely at random: Six bijective correspondences are
randomly generated per each tuple.

• Evenly distributed: From a ”seed” bijective correspon-
dence generated using the Fast Bipartite method presented
by Serratosa (2014), two mappings are swapped randomly
and a new correspondence is created. This process is re-
peated six times per each tuple. The seed correspondence
is not included in the tuple.

• Unevenly distributed: From a ”seed” bijective correspon-
dence generated using the Fast Bipartite method presented
by Serratosa (2014), pairs of mappings are swapped a ran-
dom number of times and a new correspondence is cre-
ated. This process is repeated six times per each tuple.
Due to the randomness of the swaps, the seed correspon-
dence may be included in the tuple.

The median was calculated for HD and CED-P (CED only
using the attributes of the points as the local structure to have a
fairer comparative) through the following methods:

1. SM. It is the correspondence in the set with the lowest sum
of distances using HD and CED-P.

2. Evolutionary method presented by Moreno-Garcı́a et al.
(2016b) using HD and CED-P (EVOL1).

3. Evolutionary method presented by Moreno-Garcı́a et al.
(2016b) based on a modified weighted mean search strat-
egy introduced in Moreno-Garcı́a (2016) using HD and
CED-P (EVOL2).

4. Minimisation method presented by Moreno-Garcı́a et al.
(2016b) using HD (M-HD) and the proposal of this paper
using CED-P (M-CED-P).

Tables 1 to 3 show the following three metrics: a) S ODAVG:
the average and standard deviation of the SOD between the cor-
respondences in the set and the mean correspondence. b) RED:
the average percentage of reduction of the SOD with respect to
the SM. c) RUN: the average runtime of each run (in seconds).
Notice that since the HD and the CED are distances which exist
in different spaces, a comparison of S ODAVG results between
HD and CED methods is not applicable. Moreover, RED scores
are mostly meant to illustrate the improvement of each method
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Table 1. Average SOD: S ODAVG with its standard deviation. Reduction percentage of average SOD with respect to SM: RED. Runtime: RUN using the
”Completely at random” scenario.

Completely at random
S 5 S 30

S ODAVG RED RUN S ODAVG RED RUN

HD

SM 19.16 ± 0.37 - 0.0009 140.6 ± 1.31 - 0.01
M-HD 18 ± 0.26 5.26 0.002 137 ± 0.79 2.83 0.008
EVOL1 19.16 ± 0.37 0 0.004 140.6 ± 1.31 0 0.1
EVOL2 19.16 ± 0.37 0 0.009 138.91 ± 1.5 1.41 0.2

CED

SM 62k ± 1.33k - 0.01 642k ± 48k - 4.4
M-CED-P 60k ± 0.87k 3.22 0.02 580k ± 13k 9.65 9.3
EVOL1 62k ± 1.33k 0 0.014 642k ± 48k 0 4.7
EVOL2 62k ± 1.33k 0 0.007 628k ± 27k 2.18 4.8

Table 2. Average SOD: S ODAVG with its standard deviation. Reduction percentage of average SOD with respect to SM: RED. Runtime: RUN using the
”Evenly distributed” scenario.

Evenly distributed
S 5 S 30

S ODAVG RED RUN S ODAVG RED RUN

HD

SM 13.42 ± 0.49 - 0.006 19 ± 6.3 - 0.01
M-HD 12 ± 0 7.69 0.002 12 ± 0 36.84 0.003
EVOL1 13.42 ± 0.49 0 0.003 15 ± 2.11 21.05 0.004
EVOL2 13.42 ± 0.49 0 0.007 14 ± 1.76 26.32 0.02

CED

SM 18.4 ± 0.31 - 0.02 63.1k ± 9.58 - 4.1
M-CED-P 18.1 ± 0.26 1.63 0.03 49.3k ± 6.98 21.87 9
EVOL1 18.4 ± 0.31 0 0.003 63.1k ± 9.58 0 3.5
EVOL2 18.4 ± 0.31 0 0.007 59k ± 7.23 6.5 3.5

Table 3. Average SOD: S ODAVG with its standard deviation. Reduction percentage of average SOD with respect to SM: RED. Runtime: RUN using the
”Unevenly distributed” scenario.

Unevenly distributed
S 5 S 30

S ODAVG RED RUN S ODAVG RED RUN

HD

SM 17.12 ± 0.27 - 0.006 66 ± 5.21 - 0.001
M-HD 16 ± 0.13 5.88 0.002 53 ± 4.73 16.69 0.003
EVOL1 17 ± 0.27 0 0.003 65 ± 5.02 1.51 0.006
EVOL2 17 ± 0.27 0 0.007 64 ± 4.97 3.03 0.02

CED

SM 76.5k ± 3.8k - 0.005 839k ± 121k - 4.9
M-CED-P 69.1k ± 2.1k 9.67 0.002 669k ± 41k 20.26 9.9
EVOL1 76.5k ± 3.8k 0 0.006 839k ± 121k 0 5.3
EVOL2 76.5k ± 3.8k 0 0.01 779k ± 56k 7.15 5.3
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with respect to the SM in its own distance space, since the in-
crement of HD is linear while CED depends on the attributes of
the points.

For the ”Completely at random” datasets, Table 1 shows that
both, for the average and the standard deviation, lower values
have been achieved by the minimisation-based methods (M-HD
and M-CED-P) compared to the alternatives in their respective
spaces (S 5 and S 30). Moreover, it can be observed that in S 5,
M-HD obtained better RED than M-CED-P (5.26% vs 3.22%),
while the opposite occurs on S 30 (9.65% vs 2.83%). Further-
more, it can also be seen that M-CED-P obtained the largest
runtime, in particular on S 30, where the runtime with respect
to SM is more than the double. Finally, it can be noticed that
EVOL1 never outperforms the SM (in fact, it always obtains
the SM), while EVOL2 only does on S 30. Both evolutionary
methods have similar runtimes.

For the ”Evenly distributed” datasets shown in Table 2, the
best S ODAVG and RED results are obtained by M-HD on both
repositories. In fact, in this experiment we confirm that M-HD
always obtains the exact GM, given that the median correspon-
dence for S 5 and S 30 will always yield a SOD of 12 with respect
to rest of correspondences in the set, with the standard devia-
tion equal to 0 confirming that this occurs on every experiment.
Note that this value of 12 results from multiplying the number
of correspondences (i.e. 6) times the mappings swapped from
the seed correspondence (i.e. 2), which is known in advance
to be the GM. Given the attribute dependant nature of the CED,
this rule is not visible for the S ODAVG. For M-CED-P, the RED
scores appear to be lower compared to M-HD. With regards to
the runtime, it can be seen that once again M-HD achieves the
lowest runtime on both repositories, while M-CED-P obtains
the lowest for S 5, but the largest for S 30.

Finally, Table 3 shows the results for the ”Unevenly dis-
tributed” datasets. Notice that larger S ODAVG values (both
average and standard deviation) are obtained for all methods
compared to the previous two scenarios. That is because the
correspondences in each tuple are ”farther away” from each
other and thus, the median correspondence obtained has a larger
SOD with respect to the set. In this case, the RED is larger in
M-CED-P compared to M-HD. Nonetheless, the computation
of M-CED-P for the S 30 dataset conveys the largest runtime.
Meanwhile, EVOL1 and EVOL2 keep a similar trend to the
previous two scenarios.

The following conclusions can be drawn from these experi-
ments. If the correspondences have a low number of mappings
or high precision is required, then M-CED-P is the best option.
In contrast, M-HD has a better accuracy to runtime trade-off for
huge graphs. It is also interesting to notice that the evolutionary
methods, regardless of the weighted mean strategy, only outper-
formed the SM approach on the S 30 repository, since the low
amount of mappings in S 5 did not allow an effective weighted
mean computation.

5.2. Test with real data
To show that our method, M-CED, deduces a more representa-
tive correspondence than the M-HD in a real scenario, we have
used the Tarragona Exteriors Dataset presented by Moreno-
Garcı́a and Serratosa (2015), which is an image repository

containing pictures of several objects obtained from different
angles and perspectives. The dataset is comprised of 12 se-
quences: The first five sequences (i.e. ”BOAT”, EASTPARK”,
”EASTSOUTH”, ”ENSIMAG”, ”RESIDENCE”) contain 10
images, while the last seven (i.e. ”BARK”. ”BIKES”, ”GRAF”,
”LEUVEN”, ”TREES”, ”UBC”, ”WALL”) contain 6 images.
We have used three graph repositories: s = 5, s = 10 and
s = 50, consisting of graphs with 5, 10 and 50 nodes, respec-
tively. Graphs have been created by applying the SURF point
extractor presented by Bay et al. (2008) on all images, and the
Delaunay triangulation to conform the edges. The image points
used as nodes for the graphs are the s more reliable features in
each case.

The experimental validation was set as follows. Using each
graph dataset, for all distinct pairs of graphs in each sequence,
we generated 3 ≤ n ≤ 50 correspondences using three differ-
ent methods: 1) the Fast Bipartite method presented by Ser-
ratosa (2014) with a random insertion/deletion cost, 2) Mat-
lab’s MatchFeatures function with a random MaxRatio value
and 3) a random bijective correspondence. Notice that in the
case that the first two algorithms do not obtain a bijective cor-
respondence, null mappings were inserted to the nodes which
were not mapped in the input graph. Afterwards, we have cal-
culated the set median considering three distances: HD, CED
considering only the points as the local structure and CED con-
sidering the star as the local structure. Thus, we have deduced
the GM using these three distances, which yields on M-HD, M-
CED-P (only using attributes on nodes) and M-CED-C (using
the star as the local structure). The fact of comparing the only-
points option is to analyse how important is the information of
the edges and the neighbouring nodes.

Table 4 shows the average reduction of SOD (RED) obtained
by the minimisation methods with respect to their correspond-
ing SM for n = 3, n = 10 and n = 30. A value of 0 means that
the SM is equal to the GM, and thus the minimisation-based
approach has found the same correspondence as the SM ap-
proach. It can be seen that the RED value is much higher for
M-CED-C and M-CED-P methods in comparison to the M-HD
method. This can be attributed to the fact that CED is a distance
that considers much more information than the HD. Moreover,
notice that M-CED-C obtains a higher RED compared to M-
CED-P, since the local substructure used considers the edit cost
of the edges and the neighbouring nodes. Finally, it is worth to
point out that the order of the graphs and the number of corre-
spondences influence on the RED. When the number of nodes
in the graphs increases, all methods are more capable of obtain-
ing higher REDs. In terms of the number of correspondences
used n, notice that all methods achieve higher performances at
n = 10 in comparison to n = 5 and n = 30. This is due to the
fact that it is more likely the SM to become the GM as the n
increases, and thus the RED value gradually tends to be 0.

Finally, Table 5 shows the average runtime for all datasets
across different configurations of correspondences used n and
graph cardinalities s. Notice that as both values are increased,
the runtime remains almost constant from the minimisation-
based methods (i.e. M-HD, M-CED-P and M-CED-C) with re-
spect to the SM-based methods (i.e. SM.HD, SM-CED-P and
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Table 4. Average RED (reduction percentage between the SOD of the SM and the SOD of the GM) across the different sequences of the Tarragona Exteriors
image dataset.

n=3 n=10 n=30
Dataset s M-HD M-CED-P M-CED M-HD M-CED-P M-CED M-HD M-CED-P M-CED

BOAT
s=50 0.00 0.81 3.90 0.00 2.55 36.72 0.00 3.80 29.91
s=10 0.00 0.06 2.92 0.00 2.29 33.99 0.00 3.18 26.25
s=5 0.01 0.01 0.84 0.00 1.03 33.26 0.00 2.37 29.99

EASTPARK
s=50 0.00 1.97 16.88 0.00 2.27 31.23 0.00 2.65 26.85
s=10 0.00 0.11 7.88 0.00 1.84 31.63 0.00 2.40 24.61
s=5 0.00 0.06 3.37 0.00 0.90 29.76 0.00 2.13 25.24

EASTSOUTH
s=50 0.00 0.18 2.48 0.00 2.55 24.57 0.03 2.99 20.16
s=10 0.00 0.30 3.95 0.09 1.17 26.08 0.00 1.45 21.66
s=5 0.00 0.05 1.75 0.05 0.74 23.43 0.01 1.70 21.46

ENSIMAG
s=50 0.00 3.50 21.50 0.00 2.96 38.78 0.00 4.03 34.63
s=10 0.00 0.57 10.43 0.00 2.64 38.45 0.00 3.02 30.90
s=5 0.01 0.33 4.57 0.04 1.54 31.92 0.04 3.24 24.05

RESIDENCE
s=50 0.00 4.22 11.26 0.00 7.62 45.87 0.00 6.90 35.00
s=10 0.00 1.34 8.47 0.00 3.06 39.76 0.00 4.05 30.11
s=5 0.01 0.09 2.11 0.02 1.38 29.86 0.03 2.69 26.00

BARK
s=50 0.00 0.84 3.31 0.00 7.23 39.99 0.00 6.13 32.82
s=10 0.00 0.00 3.14 0.00 3.95 31.87 0.00 3.69 25.55
s=5 0.00 0.02 1.06 0.00 0.64 31.07 0.00 2.11 26.08

BIKES
s=50 0.00 7.31 27.26 0.00 2.73 26.46 0.00 0.26 23.87
s=10 0.00 3.33 24.38 0.14 1.13 27.11 0.05 1.31 18.04
s=5 0.00 0.40 8.40 0.04 1.05 26.44 0.10 2.27 18.24

GRAF
s=50 0.00 1.50 5.07 0.00 2.90 28.73 0.00 4.90 27.56
s=10 0.00 0.30 1.83 0.00 1.12 23.90 0.00 2.86 24.17
s=5 0.00 0.01 0.66 0.03 0.90 29.70 0.00 2.18 28.08

LEUVEN
s=50 0.42 4.58 15.43 0.00 5.77 37.81 0.00 4.97 35.11
s=10 0.00 1.02 17.43 0.00 2.12 35.78 0.00 3.34 25.68
s=5 0.00 0.07 4.77 0.08 1.21 29.04 0.00 2.53 23.30

TREES
s=50 0.00 0.00 3.02 0.00 0.96 19.22 0.00 1.40 19.99
s=10 0.00 0.19 2.13 0.00 0.80 17.27 0.00 1.38 15.90
s=5 0.00 0.04 0.46 0.07 0.36 17.73 0.04 0.88 17.55

UBC
s=50 0.00 7.25 31.17 0.15 1.66 48.36 0.00 1.87 49.23
s=10 0.00 4.20 21.03 0.00 2.77 37.48 0.00 2.45 28.02
s=5 0.00 0.23 6.67 0.12 1.41 22.56 0.09 2.29 17.89

WALL
s=50 0.00 2.84 6.56 0.00 6.09 42.45 0.00 9.38 28.30
s=10 0.00 0.27 3.97 0.00 2.55 33.00 0.00 3.97 22.63
s=5 0.00 0.69 1.98 0.00 1.20 28.79 0.00 2.09 24.14

Average
s=50 0.03 2.92 12.32 0.01 3.77 35.02 0.00 4.10 30.29
s=10 0.00 0.97 8.96 0.02 2.12 31.36 0.00 2.76 24.46
s=5 0.00 1.01 1.98 0.04 1.31 28.79 0.03 2.23 24.14
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SM-CED-C). It is clear that this shows a trend of scalability of
the method towards larger graphs.

6. Conclusions

As graph matching becomes a more popular and widely avail-
able technology, the amount of graph correspondences that can
be produced increases, thus delivering a vast collection of dif-
ferent functions between pairs of graphs. To find the represen-
tative prototype of a set of graph correspondences, thus reduc-
ing the computational demand of systems, we propose the use
of the median given its robustness and applicability for differ-
ent domains. In spite of the complexity of finding the GM for
other data structures, we have presented a method based on op-
timisation functions which considers the edit distance between
correspondences, called CED. In contrast to the classically used
HD, this distance yields results which are more interesting from
the application point of view.

Experimental validation on artificial and real datasets has
shown that the minimisation-based method produces better re-
sults than using the SM or other state-of-the-art strategies in
comparable runtime. Likewise, we have shown that for its ap-
plication on a public dataset of images, the medians obtained
are far better as more factors, such as the attributes and the lo-
cal structures of the graphs, are considered.

In future work, we plan to implement this methodology for
more application cases and considering more local structures
for the CED.

Acknowledgments

This research is supported by the national projects TIN2016-
77836-C2-1-R and DPI2016-78957-R, and by the European
projects AEROARMS (H2020-ICT-2014-1-644271).

References

Bay, H., Tuytelaars, T., Van Gool, L., 2008. Speeded-up robust features
(SURF). Computer Vision and Image Understanding 110, 346–359.

Bille, P., 2005. A survey on tree edit distance and related problems. Theoretical
Computer Science 337, 217–239.

Bunke, H., Günter, S., 2001. Weighted mean of a pair of graphs. Computing
67, 209–224.

Bunke, H., Jiang, X., Abegglen, K., Kandel, A., 2002. On the weighted mean
of a pair of strings. Pattern Analysis and Applications 5, 23–30.

Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J., 2009. Learn-
ing graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31, 1048–1058.

Carcassoni, M., Hancock, E.R., 2003. Correspondence matching with modal
clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence
25, 1609–1615.

Chaieb, R., Kalti, K., Luqman, M.M., Coustaty, M., Ogier, J.M., Amara,
N.E.B., 2017. Fuzzy generalized median graphs computation: Application
to content-based document retrieval. Pattern Recognition 72, 266–284.

Cortés, X., Moreno-Garcı́a, C.F., Serratosa, F., 2013. Improving the corre-
spondence establishment based on interactive homography estimation, in:
International Conference on Computer Analysis of Images and Patterns, pp.
457–465.

Cortés, X., Serratosa, F., 2016. Learning graph matching substitution weights
based on the ground truth node correspondence. International Journal of
Pattern Recognition and Artificial Intelligence 30, 1650005.

Cortés, X., Serratosa, F., Moreno-Garcı́a, C.F., 2016. Semi-automatic pose esti-
mation of a fleet of robots with embedded stereoscopic cameras, in: Emerg-
ing Technologies and Factory Automation, pp. 1–6.

Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H., 2010. Generalized
median graph computation by means of graph embedding in vector spaces.
Pattern Recognition 43, 1642–1655.

Franek, L., Jiang, X., 2012. Evolutionary weighted mean based framework for
generalized median computation with application to strings, in: Structural,
Syntactic, and Statistical Pattern Recognition, pp. 70–78.

Franek, L., Jiang, X., 2014. Ensemble clustering by means of clustering em-
bedding in vector spaces. Pattern Recognition 47, 833–842.

Franek, L., Jiang, X., He, C., 2014. Weighted mean of a pair of clusterings.
Pattern Analysis and Applications 17, 153–166.

Gao, X., Xiao, B., Tao, D., Li, X., 2010. A survey of graph edit distance.
Pattern Analysis and Applications 13, 113–129.

Jiang, X., Abegglen, K., Bunke, H., Csirik, J., 2003. Dynamic computation of
generalised median strings. Pattern Analysis and Applications 6, 185–193.

Jiang, X., Bunke, H., 2010. Learning by generalized median concept, in: Pat-
tern Recognition and Machine Vision. chapter 15, pp. 231–246.

Jiang, X., Munger, A., Bunke, H., 2000. Synthesis of representative graphical
symbols by computing generalized median graph, in: Graphics Recognition
Methods and Applications, pp. 183–192.
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Solé-Ribalta, A., Serratosa, F., 2011. Models and algorithms for computing the



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

Table 5. Average runtime (in seconds) across the different sequences of the Tarragona Exteriors image dataset.
SM-HD SM-CED-P SM-CED-C M-HD M-CED-P M-CED-C

n=3
s=50 0.00003 0.00004 0.00003 0.00251 0.05249 0.49511
s=10 0.00003 0.00003 0.00001 0.00026 0.00077 0.01699
s=5 0.00003 0.00002 0.00001 0.00017 0.00030 0.00339

n=10
s=50 0.00012 0.00016 0.00015 0.00096 0.02183 0.44177
s=10 0.00014 0.00011 0.00010 0.00020 0.00053 0.01633
s=5 0.00015 0.00011 0.00010 0.00016 0.00026 0.00337

n=50
s=50 0.00240 0.00352 0.00350 0.00128 0.00618 0.42458
s=10 0.00302 0.00232 0.00233 0.00029 0.00050 0.01643
s=5 0.00345 0.00232 0.00228 0.00021 0.00031 0.00332

common labelling of a set of attributed graphs. Computer Vision and Image
Understanding 115, 929–945.
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