The use of machine learning algorithms for detecting advanced persistent threats.

EKE, H.N., PETROVSKI, A. and AHRIZ, H.

2019
The Use of Machine Learning Algorithms for Detecting Advanced Persistent Threats

Hope Nkiruka Eke∗

h.eke@rgu.ac.uk

School of Computing Science and Digital Media, Robert Gordon University
Aberdeen, Scotland, UK

Andrei Petrovski

a.petrovski@rgu.ac.uk

School of Computing Science and Digital Media, Robert Gordon University
Aberdeen, Scotland, UK

Hatem Ahriz

h.ahriz@rgu.ac.uk

School of Computing Science and Digital Media, Robert Gordon University
Aberdeen, Scotland, UK

ABSTRACT

Advanced Persistent Threats (APTs) have been a major challenge in securing both Information Technology (IT) and Operational Technology (OT) systems. Due to their capability to navigate around defenses and evade detection for a prolonged period of time, targeted APT attacks present an increasing concern for both cybersecurity and business continuity personnel. This paper explores the application of Artificial Immune System (AIS) and Recurrent Neural Networks (RNNs) variants for APT detection. It has been shown that the variants of the suggested algorithms provide not only detection capability, but can also classify malicious data traffic with respect to the type of APT attacks.

CCS CONCEPTS

• Computing methodologies → Artificial intelligence; Machine learning; Neural networks.

KEYWORDS

Advanced Persistent Threats(APTs), Artificial Immune System (AIS), Human Immune System (HIS), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN)

ACM Reference Format:

1 INTRODUCTION

Threats to information and network security remain one of the biggest challenges facing organisations and industries at different levels of operation. There have been a number of successful breaches of critical infrastructure. Stuxnet is one example of a sophisticated APT attack purposefully launched to target critical nuclear infrastructure in Iran as highlighted in [9]. This type of attack has drawn special attention to the possibilities of APT attacks.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

https://doi.org/10.1145/3357613.3357618

2019-09-17 10:42. Page 1 of 1–8.
This paper presents the results of investigation of the application of deep learning optimised ensemble stacked RNNs and its variants as inspired by Life-Long Learning Optimiser (L2O) approach to enhance performance [15] in Intrusion Detection Systems (IDSs) and compared this with previously published results of AIS model - Negative Selection (NS) with Antigen Feedback (AF) [22].

The contribution of this paper can be summarised as follows:

- We propose a novel approach using deep neural networks for APT multi-step detection which takes stacked LSTM-RNNs networks to automatically learn features from the raw data to capture the malicious patterns.
- We carried out series of experiments to evaluate the ability of this model to (i) accurately detect and classify an attack as abnormal and (ii) detect different type of attacks family accurately.
- The achieved results suggest that the proposed approach is a good candidate for developing attack detection systems.

The remainder of this paper is organised as follows. A brief background of the AIS and RNNs variants application in security domain is discussed in section 2. Experiments, evaluation metrics and analysis results are discussed in Section 3. Section 4 and 5 presents the conclusion of this paper and future work respectively.

2 BACKGROUND

This section contains a brief background of the AIS and RNN application in security domain through the examination of major components and basic definition.

2.1 Artificial Immune System (AIS)

An AIS is a system that is capable of self adaption, self-learning, self regulatory, distributed with self and non-self detection properties, capable of identifying and eliminating any intruding foreign body of antigenic identity while maintaining the stability of the environment within the body [19, 28]. This is relatively similar to Intrusion Detection System (IDS) functioning in protecting the network systems.

Human body has an in built mechanism for protecting itself against harm from harmful bacteria and viruses, known as pathogens. This is achieved through the help of Human Immune System (HIS) without a previous knowledge of the pathogens structure [2]. Since HIS has the ability to detect and defend against previously and unseen harmful invaders, this approach can as well be adopted to protect computer system and critical infrastructure.

Application of AIS has gained popularity in many areas such as but not limited to processing of text [3], anomaly detection [12] and network security [17]. However, the most prominent AIS algorithms are centered around these four algorithms: (1) Artificial Immune Network (AIN), (2) Clonal selection (CLONALG), (3) Negative Selection (NSA), and (4) Danger Theory and Dendritic Cell Algorithms (DCA), while other approaches are based on the combination of these four approaches [5, 10].

Four Major AIS Algorithms:

- Artificial Immune Network (AIN): was proposed by [18] which suggested that the immune system has the ability to attained immunology memory by the existence of a mutually reinforcing network of B cells as there is an interaction between its components to increase its tolerance and memory. Immune system cells work as a group in a networked system to eliminate any foreign body, this forms the basis for cooperative agents based IDS [5, 10].
- The Clonal Selection algorithm (CLONALG): was put forward by Frank in 1959 [7] This approach suggest that a clonal expansion of the original lymphocyte occurs when the original lymphocyte is activated by binding to the antigen; however, any low-affinity detectors (clone of the activated lymphocyte) are eliminated and replaced with the cloned detectors during the development of the lymphocyte.
- Negative Selection Algorithm (NSA): is based on negative representation of information using either string or real-valued vector representation [10]. There is a continuous improvement on the existing methods and new models being proposed, Bejoy et al. in [5] suggested that NSA is a major candidate for designing IDS algorithms.
- Danger Theory (DT) and Dendritic Cell Algorithms (DCA): was proposed by Matzinger in [23] which states that the immune system responds to danger signals from injured cells rather than self-nonself discrimination as danger signals should not be sent by healthy cells. Greensmith et al. in [14] proposed the Dendritic Cell Algorithm (DCA) which suggest that dendritic cells when stimulated, differentiate and undergo maturation and migrate to secondary lymphoid tissues where they can only work if there is a danger signal by a cell when attacked by an antigen to stimulate an induce immune response.

2.2 AIS Model Application in Intrusion Detection Systems (IDSs)

To implement AIS, this involves four different stages these includes (a) encoding, (b) similarity measure, (3) selection and (4) mutation as highlighted by [1], "Once an encoding has been fixed and a suitable similarity measure is chosen, the algorithm will then perform selection and mutation, both based on the similarity measure, until stopping criteria are met".

Gadi et al. in [12], applied AIS model in credit card fraud detection and compare their result to other classical classifiers such as Neural Nets (NN) and Bayesian Nets (BN), Naïve Bayes (NB) and Decision Trees (DT).The result of this experiment indicates that AIS performed better when parameters optimised by Genetic Algorithm (GA) visualization procedure. Figure 1 is a representation of GA for parameters optimisation.

The following GA multi-resolution optimization steps algorithm are used in [12] are:

- They identified those parameters that have not changed, and freezes the values for the respective parameter.
- Parameters were screened and the 20 best parameter sets for each split and identify reasonable range.
- For all non-robust parameters, they choose an integer step size so the searching space does not explode.
- Next, they evaluated the costs for all possible combinations according to the defined search space and find the parameter

set P that brings the minimum average cost among all the different used splits

- Finally, zoomed the screen to the neighborhood of P, refine steps s, and repeat the process from then on, until no refinement is possible.

Investigation of system-level fault diagnosis using AIS model was carried by [35], in their work they have introduced AIS-based fault identification approach for multiprocessor and multi computer systems. This model emulated the ability of the immune system in recognising pathogenic agent (antigen) there by distinguishing body own cells and molecules (self) from foreign antigens (non-self) which was similar to the fault diagnosis problem, that aims at identifying processors (cells) in a system (body) to be a faulty (non-self) or fault-free (self). Their experimental results indicated that the immune diagnosis model can successfully identify the faulty processors and diagnose a faulty situation in short period of time.

An efficient proactive AIS based anomaly detection and prevention system (EPAADPS) was introduced by Saurabh et al. in [28], EPAADPS was developed by combination of AIS ideas with agents to proactive defense system against unseen anomalies. Theses were achieved using three modules: Repertoire Training Module (RTM), Vulnerability Assessment Module (VAM) and Response module (RM). The authors utilised the NSA self-tuning of detectors and detector power in view to make a detector evolve and promote a better and correct self and non-self coverage. RTM generates and selects efficient detectors that forms detector set (DS) based on a self-tuning. VAM creates detector agents (DA) and assigns it Detector Set (DS) to evaluate Test Set instances. In a situation where VAM discovered any abnormality within the system, RM take action against the detected attacks.

A distributed multi-agent IDS using AIS approach that applied all four AIS algorithms were proposed by [29]. In this approach, elimination of low profile agents was done using NAS, the CLON-ALG was used to proliferate agents with best fitness value while agents communicate with each other was possible through AIN. This approach used mobile and static agents with detector agents as the main actors in MAS-IDS. This approach also used NSL-KDD [11] dataset to evaluate the system based on three factors- accuracy, false alarm (FA) and detection rate (DR). According to the authors, this approach can be applied on both network and host based settings.

2.3 Recurrent Neural Network

Recurrent neural network (RNN) is an effective class of artificial neural network (ANN) that is used when dealing with very complex supervised and unsupervised tasks [20].

Recently, deep learning techniques have been applied in cyber security [24]. Since it can detect the cyber attacks by learning the complex underlying structure, hidden sequential relationships and hierarchical feature representations from a huge set of security data. The authors of [20] Proposed and evaluated RNN model against classical support vector machine classifier (SVM) for cybersecurity in Android malware classification, incident detection, and fraud detection.

RNN emerged as a powerful approach for deep learning architecture generally applicable for time-series data modelling. Despite the RNN and its variant networks remarkable performance in long standing AI sequence data modelling tasks such as time-series analysis, speech recognition and machine translation [21], applying the same in cyber security task is in early stage of development [34].

![Figure 1: Genetic Algorithm for parameters optimization [12]](image)

![Figure 2: Schema of Unfolded Basic Recurrent Neural Network [4]](image)
what happened in all the previous time steps, this can further be
fed to other stacked recurrent layer or final layer where the layer
has nonlinear activation function such as softmax function \(sf\) as
represented in Equation 3.

\[
o_t = sf(Vs_t)
\]

\(o_t\) is the output at time step \(t\) and the vector of probabilities
of initial hidden state is set to \(V\).

\(f\) denote the nonlinearity mapping function from the input fea-
tures to the output labels such as tanh or ReLU, where the weight
matrices of the previous state weight at time step \(t\) and input state
weight at time step \(t\) are represented as \(U_{sx}\) and \(Ws_{t-1}\) respectively.
\(s_{t-1}\) is required to calculate the first hidden state and is usually
initialised to zeroes.

Understanding the dynamics of RNN entirely is difficult due to
its cyclic connection. To overcome this an RNN structure input
sequence of length is transformed to a FFN structure by unfolding
over time-steps as represented in Figure 2. FFN consist of hidden
layers. This new structure can be analysed and also is adaptable to
the backward propagation (BP) of errors, at this point the predefined
error function are computed by comparing the output values with
correct values and then distributed back throughout the network
layers. This process is often used to train deep neural networks
(DNN). An unfolded RNN at any given time \(t\) is defined as a function
\(ht\) Equation 4.

\[
h_T = S_T(x_2|x_1)
\]

Where \(S_T\) represents the unfolded graph of time-steps \(t\).
The sum of all input-output pairs in a sequence over all the time-
steps is referred to as the loss \(L\) function represented in Equation
5.

\[
L = d(tr, pr) = \sum_{i=1}^{T} d(tr, pr)
\]

The schema of unfolding of RNN in time of the computation is
shown in Fig. 4. In RNN cyclic connections, each layer represents
per time information similar to DNN but the unfolded RNN shares
weight parameters \(W\) across time-steps as represented in Figure 2.
This indicates the fact that network performs the same task with
various inputs over time-steps. In addition to learning the temporal
patterns with cyclic connections, unfolding allows the RNN model
to learn the association of static features between the input and
output sequences. In order to apply the feedback concept, the BP
is used to compute the gradients for weight parameters across
time-step \(t\).

To find the recurrent weights, the computation of gradient at
time \(t = 2\) will involve back propagating 1 step and add them to find
and update the recurrent weight. This technique is known as back propa-
gation through time (BPTT) employed by RNN to reduce network
cumulative error. However, modeling large scale data sequence
with RNN and BPTT is not efficient due to vanishing and exploding
gradient problem as stated in [6] which usually occurs when we
BP the error back in many time-steps in the deep unrolled RNNs
network models.

Since RNN shares the parameters across all time step reducing
the amount of parameter to be trained, this is utilised to calculate
the gradient at each time \(t\) as in Equation 6 and 7.

\[
s_t = \tanh(W_{xs}x_t + W_s s_{t-1} + b_s)
\]

\[
o_t = softmax(w_{so}s_t + b_o)
\]

where \(s_t\) is the hidden layer, \(tanh\) is the hidden layer nonlinear
activation function, the softmax function \(sf\) is used at the last layer
as, \(b_s\) and \(b_o\) are the bias terms for the hidden state and prediction
at time step \(t\). Where the prediction at time step \(t\) is denoted as \(z_t\)
while the weight shared between the hidden \(s\) and output \(o\) across
all the time sequence are \(W_{os}\) and \(W_{ss}\) respectively.

2.4 Long Short-Term Memory (LSTM)

LSTM is a second order RNNs that is augmented by recurrent
gates known as Forget Gates (FG) [16]. LSTM has the capability
to remember information for long periods of time. It contains a
memory block which is a complex processing unit that is composed
of one or more memory cell and a pair of multiplicative gates
known as input and output gate with in-built recurrent connection
value 1 as constant error carousel (CEC). This value will be active
across the time-step and triggered when a memory block has not received
any value from outside signals [27]. In order to combat the
issue of vanishing gradient that prevents RNN from learning long
term dependencies through gating mechanism, the computation
of recurrent hidden state \(s_t\) can be seen as mean elementwise
multiplication as shown in Equation 8

\[
i = \sigma(x_t U^i + \tilde{s}_{t-1} W^i)
\]

\[
f = \sigma(x_t U^f + \tilde{s}_{t-1} W^f)
\]

\[
o = \sigma(x_t U^o + (s_{t-1} + or) W^o)
\]

\[
g = \tanh(x_t U^g + s_{t-1} + or W^g)
\]

\[
c_t = c_{t-1} + goi
\]

\[
s_t = \tanh(c_t) \times o
\]

LSTM comprises of one cell state \(c\) and three gates; the input
\(i\), forget \(f\) and output gates \(o\) used to illustrate interaction within
LSTM architecture as represented within Equation 8. These gates
are composed out of a sigmoid function \(\sigma\) that generate output vec-
tors between 0 and 1 through elementwise multiplication operation
\(o\) used in Equation 8 with another vector to decide how much of the
newly computed state for the current input you want to let through
by input gate \(i\), the forget gate \(f\) defines how much of the previous
state you want to let through. The output gate defines how much of
the internal state to expose to next layer in time step \(t\).

The candidate value \(g\) is calculated based on the current input
and the previous hidden state, the input gate \(i\) will decide which part
of this information to store in cell state memory \(c_t\) as the new
hidden state \(g\). The internal memory of the unit is denoted as \(c_t\), this
is the combination of the previous memory \(c_{t-1}\) multiplied by the
forget gate \(f\), and the newly computed hidden state \(g\), multiplied
by the input gate.

Finally, the hidden state output state \(s_t\) can be computed by
multiplying the internal memory \(c_t\) with output gate \(o\).
2.5 Gated Recurrent Unit (GRU)

GRUs are gating mechanism in recurrent neural networks. Its performance on polyphonic music modeling and speech signal modeling are similar to that of LSTM with fewer parameters due to there lack of output gate. A GRU has two gates, a reset gate r, and an update gate z shown in Equation 9

\[
\begin{align*}
 z &= \sigma(x_t U_z^z + s_{t-1} W_z^z) \\
 r &= \sigma(x_t U_r^r + s_{t-1} W_r^r) \\
 h &= \tanh(x_t U_h^h + (s_{t-1} \circ r) W_h^h) \\
 s_t &= (1 - z) oh + zos_{t-1}
\end{align*}
\]

The computation of GRU gating mechanism to learn long-term dependencies in neural network is similar to that of LSTM with few variation as listed below.

- GRU has two gate; the reset gate that determines how to combine new input with the previous memory, and the update gate decides how much of the previous memory to keep
- GRU does not have output gate o.
- GRUs does not have internal memory c_t that differs from the exposed hidden state.

3 EXPERIMENT

The purpose of this study is to examine the performance of two different approaches, the AIS-NSA and LSTM-RNN in APTs detection. In this study, we have carried out two different tasks that involves LSTM-RNN model application using corrected 10% KDDCup99 dataset containing 494021 records. The first task focused on deriving hyper-parameter values for best performance model. In the second phase, we applied the achieved hyper-parameter values in measuring the model performance. We also compared the result of LSTM-RNN model to previously published AIS-NSA[22, 27] and [32] application.

All the standard data mining processes such as data cleaning and pre-processing, normalisation, visualisation and classification were implemented in Python. The batch size of 64 and epochs are run up to 50 and 300 with a learning rate set in the range of 0.01-0.5 on a GPU-enabled TensorFlow network architecture. Also, various traditional ML classification algorithms were used to perform the classification experiments on 10% KDDCup99 dataset in order to analyse the network protocol relationship with the attack used by intruders in generating anomalous network traffic. The ML classification result was compared to LSTM-RNN result in order to further evaluate the performance of LSTM-RNN model. The KDDCup99 dataset used consists of 22 attacks classes and 1 normal class. These attacks were grouped into 4 main attack classes - Denial of Service (DOS), Remote to User (R2L), User to Root (U2R) and Probe. Figure 3 and 4 shows the number of records in each of the classes. All features were used as input vector with 75% as training set and 25% as testing set for the binary and multi classification respectively. The training dataset were normalised from 0 to 1. This was trained using sigmoid activation function through time with ADAM optimiser, sigmoid function was used on all the three gates and categorical/binary cross entropy as loss function for multi and binary classification respectively.

3.1 Experimental Data

![Figure 3: Visualisation of data classes in KDDCup99 dataset, with classes defined as (0) for normal and (1) for attacks (DOS, Probe, R2L and U2R as shown in Figure 4)](image)

3.2 Evaluation Metrics

The true positive rate (TPR) and false positive rate (FPR) were used to evaluate the effectiveness of LSTM-RNN model.

- True Positive (TP) - abnormal instances correctly predicted as abnormal.
- True Negative (TN) - normal instances correctly predicted as normal
- False Positive (FP) - normal instances incorrectly predicted as abnormal
- False Negative (FN) - abnormal instances incorrectly predicted as normal

3.3 Results and Discussions

To validate the approach of using the LSTM-RNNs model for detecting attacks statistical matrices such as accuracy (Acc), precision (Prec), true positive rate (TPR), false positive rate (FPR), recall (Rec) and f-score are calculated (i) to evaluate the ability of the LSTM-RNNs model to accurately detect and classify an attack as abnormal and also (ii) to check the ability of this model to detect different type of attacks accurately.

Table 1 contains an expanded name of all the algorithms as used on this paper. Table 2 contains the comparative summary result of the ML algorithms, the LSTM-RNNs network and result of previously published AIS-NS-AFB to be more precise, while Table 4 shows the summary of the performance of each of the algorithms...
in detecting all the four attack groups including 1 normal class. This is also shown in Figure 12, where AG represent algorithms, DT represent detection and classification rate - other abbreviations have been mentioned previously.

Table 1: List of Expanded Algorithms Names as Used

<table>
<thead>
<tr>
<th>Algorithms (AG)</th>
<th>Expanded Algorithms Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>KNN</td>
<td>k-nearest Neighbors</td>
</tr>
<tr>
<td>DTC</td>
<td>Decision Tree Classifier</td>
</tr>
<tr>
<td>RF</td>
<td>Random Forest Classifier</td>
</tr>
<tr>
<td>LR</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>ADB</td>
<td>AdaBoost Classifier</td>
</tr>
<tr>
<td>NB</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>LSTM</td>
<td>Long Short-Term Memory</td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent Neural Network</td>
</tr>
<tr>
<td>GRU</td>
<td>Gated Recurrent Unit</td>
</tr>
<tr>
<td>AIS</td>
<td>Artificial Immune System</td>
</tr>
</tbody>
</table>

Table 4: Average Multi-Class Summary Results On 10% KDD-Cup99 Dataset

<table>
<thead>
<tr>
<th>AG</th>
<th>DT</th>
<th>Acc</th>
<th>TPR</th>
<th>FPR</th>
<th>Prec</th>
<th>Rec</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.991</td>
<td>0.998</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>KNN</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DTC</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RF</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LR</td>
<td>0.997</td>
<td>0.998</td>
<td>0.001</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td>ADB</td>
<td>0.923</td>
<td>0.924</td>
<td>0.998</td>
<td>0.001</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td>NB</td>
<td>0.931</td>
<td>0.931</td>
<td>0.033</td>
<td>0.984</td>
<td>0.931</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RNN</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRU</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Performance Matrix Table for Binary Classification

<table>
<thead>
<tr>
<th>Criteria</th>
<th>LSTM</th>
<th>RNN</th>
<th>GRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive (TP)</td>
<td>32187</td>
<td>32177</td>
<td>32178</td>
</tr>
<tr>
<td>False Positive (FP)</td>
<td>34</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>True Negative (TN)</td>
<td>130765</td>
<td>130734</td>
<td>130766</td>
</tr>
<tr>
<td>False Negative (FN)</td>
<td>41</td>
<td>72</td>
<td>40</td>
</tr>
<tr>
<td>True Positive Rate (TPR)</td>
<td>99.90%</td>
<td>99.80%</td>
<td>99.80%</td>
</tr>
<tr>
<td>False Positive Rate (FPR)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Accuracy</td>
<td>99.90%</td>
<td>99.90%</td>
<td>99.90%</td>
</tr>
<tr>
<td>F-Score</td>
<td>1</td>
<td>99.90%</td>
<td>1</td>
</tr>
<tr>
<td>Recall</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Precision</td>
<td>1</td>
<td>99.90%</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Average Binary Summary Results On 10% of KDD-Cup99 Dataset

<table>
<thead>
<tr>
<th>AG</th>
<th>DT</th>
<th>Acc</th>
<th>TPR</th>
<th>FPR</th>
<th>Prec</th>
<th>Rec</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.994</td>
<td>0.981</td>
<td>0.998</td>
<td>0</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>KNN</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>DTC</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>RF</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>LR</td>
<td>0.997</td>
<td>0.998</td>
<td>0.993</td>
<td>0.001</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td>ADB</td>
<td>0.998</td>
<td>0.999</td>
<td>0.997</td>
<td>0.001</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>NB</td>
<td>0.945</td>
<td>0.945</td>
<td>0.784</td>
<td>0</td>
<td>1</td>
<td>0.932</td>
<td>0.965</td>
</tr>
<tr>
<td>LSTM</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RNN</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0.001</td>
<td>0.999</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>GRU</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Confusion Matrix: The model was trained on the full development training set and scores are computed on the full evaluation set. The confusion matrix of the LSTM-RNNs shows the predicted and the actual true binary classifications of normal/attack and detection of all the four attacks group for each of the RNNs as represented on Figure 5-7 and 8-10 respectively. Visual observation of the Figure 4 shows a clear picture of the number of instances of the R2L, U2R and Probes with lower connection records while normal and DOS appear to have more connection records. Those group with more records are learnt properly without confusing their identity while those with fewer connection records during training did not show good true positive rate and precision as it was had to identify them. This indicates data imbalance problem. The dataset contains many examples for ‘neptune’ that belongs to DOS attack class, ‘satan’ attacks that belongs to Probe and ‘normal’ but fewer examples of the others.

The LSTM-RNNs model was used as classifier and detector. As a binary classifier to separate normal from attacks instances, the LSTM-RNNs were able to achieve a significant result of 99.99% average accuracy. A closer observation of the individual performance of each of the RNNs indicates that LSTM model outperformed the RNN with insignificant result, indicating an outstanding overall performance of this model as indicated with good DOS attack detection and acceptable detection of Probe.

4 CONCLUSION

In this paper, we applied IDS based on LSTM-RNNs and evaluated the effectiveness of RNN model and its variants, we also compared our result to previously published work on AIS-NSA [22, 27] and [32] application. We went further to implement attacks classification with seven different classifiers as contained in Table 1, 2 and 4. The result from this classification were also compared to LSTM-RNN results. We noticed that most of the algorithms applied in this
Figure 5: Binary Confusion Matrix for LSTM

Figure 6: Binary Confusion Matrix for RNN

Figure 7: Binary Confusion Matrix for GRU

Figure 8: Multi-Class Confusion Matrix for LSTM

Figure 9: Multi-Class Confusion Matrix for RNN

Figure 10: Multi-Class Confusion Matrix for GRU

Figure 11: Normal and Attack Binary Detection Accuracy

Figure 12: Performance Accuracy of Each Model on all Five Classes
study, achieved a competitive accuracy rate with insignificant FAR while few such as ADB and NS-AFB achieved a noticeable FAR, although NS-AFB achieved a good percentage detection accuracy of 95.20% on attacks, 99.20% on normal with TPR of 99.80% on both attack and normal classes. During the training, we also noticed that LSTM-RNN appears to be suitable for classifying high-frequency attacks and also the low frequency attacks with lower confidence prediction of 62.50%, 56.20% and 37.50% for LSTM, GRU and RNN respectively on multi attack detection, while achieving a very significant average accuracy of 99.99% for LSTM, GRU and RNN on differentiating attacks from normal instances. The percentage accuracy of LSTM-RNNs model achieved on this study as represented on the Figure 11 and 12 shows that the LSTM model performed slightly better than GRU and RNN model especially in differentiating attack from normal instances. Overall, the result suggests that the LSTM-RNNs model is a good candidate for developing attack detection systems.

5 FUTURE WORK
This work on the application of stacked LSTM-RNN model on IDS using a KDDCup99 dataset is an ongoing study. Further work will explore modelling combination of an optimised LSTM-RNN model and CNN on a time-series dataset - UNSW-NB15 datasets (University of New South Wales 2015 Datasets) over a multi-stage APT detection architecture. As APT is a multi-step attack, detecting a single stage of an APT technique itself does not imply detecting an APT attack as mentioned by [13]. Patterns embedded in large generated datasets through industrial processes may be dynamic, hence the need for a system that can accurately detect APT in a systematic way at different time step and has the ability to learn, store and update existing patterns with the collection of new data, and also be scalable to process data in large volumes [8]. Hence, the combination of this two model to determine the efficiency of this approach since RNN has the capability to learn temporal dynamic behaviour over a time sequence data. The authors are currently engaged in work in this domain.

REFERENCES

2019-09-17 10:42. Page 8 of 1–8.