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Highlights 

1. An ensemble selection method that takes into account each base classifier’s confidence 
during classification and its overall credibility on the task is proposed. 

2. The overall credibility of a base classifier is obtained by minimizing the empirical 0-1 loss 
on the entire training set. 

3. The classifier’s confidence in prediction for a test sample is measured by the entropy of its 
soft classification outputs for that sample. 

4. Extensive comparative experiments with the state-of-the-art algorithms on ensemble 
selection validated the superior performance of our algorithm. 
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Abstract: Ensemble selection is one of the most studied topics in ensemble learning because a 

selected subset of base classifiers may perform better than the whole ensemble system. In 

recent years, a great many ensemble selection methods have been introduced. However, many 

of these lack flexibility: either a fixed subset of classifiers is pre-selected for all test samples 

(static approach), or the selection of classifiers depends upon the performance of techniques 

that define the region of competence (dynamic approach). In this paper, we propose an 

ensemble selection method that takes into account each base classifier’s confidence during 

classification and the overall credibility of the base classifier in the ensemble. In other words, a 

base classifier is selected to predict for a test sample if the confidence in its prediction is higher 

than its credibility threshold. The credibility thresholds of the base classifiers are found by 

minimizing the empirical 0-1 loss on the entire training observations. In this way, our approach 

integrates both the static and dynamic aspects of ensemble selection.  Experiments on 62 

datasets demonstrate that the proposed method achieves much better performance in 

comparison to some ensemble methods. 

Keyword: ensemble method; multiple classifier system; ensemble selection; classifier 

selection; Artificial Bee Colony 

 

tion

fier i

ection

and th

gion

n met

he

of

eith

e selecti

sem

her a fix

fi

mble

ne of th

may 

e mo



3 
 

1. Introduction 

Ensemble learning has been studied extensively and is one of the most active research 

topics in the machine learning community. This kind of learning naturally emerges based on the 

fact that no learning algorithm can perform well on all datasets. In machine learning, each 

classifier uses its own approach to approximate the unknown relationship  between the feature 

vector and the class labels. As data collected from different sources can vary quite 

substantially, a learning algorithm may only provide good hypothesis on some datasets. By 

combining multiple classifiers in a single framework as in ensemble learning, we can diversify 

the learning and achieve better predictions than using a single classifier [1]. 

In ensemble methods, we aggregate the outputs of different classifiers to arrive at a 

collaborated decision. Classifiers can be generated in two different ways: training different 

algorithms on the same training set (heterogeneous ensemble method) or training a single 

algorithm on many different training sets (homogeneous ensemble method) [1, 2]. A combining 

algorithm is then used to combine the outputs of all classifiers to obtain the final decision. 

Ensuring diversity in the outputs of the base classifiers is an important factor in a 

successful ensemble. Existing studies on diversity in an ensemble system mainly focus on its 

utilization to enhance the ensemble performance, for example in the combining algorithms [3, 

4] and in the ensemble selection problem [5-7]. These methods, however, only capture the 

uncertainty generated by the agreements and disagreements between the different base 

classifiers. The exploitation of confidence in each base classifier’s output to solve the ensemble 

selection (ES) problem, therefore, needs to be explored. 

Our idea is based on the observation in real-life where a decision is sought from the 

committee of experts but different experts have different background and different level of 

expertise on a problem. When we know that an expert is very knowledgeable in a particular 

field, we will trust the recommendation of this expert even though he/she is not entirely 

confident about the current recommendation. On the other hand, if we know that an expert is 

less knowledgeable, we will only pay attention to his/her current recommendation if he/she is 

very sure of it. This idea is applied to select base classifiers for the final ensemble for a 

prediction. In this work, we encode the level of domain expertise of a base classifier by 

associating with each base classifier a threshold computed from the entire training set by 

minimizing the empirical 0-1 loss. Then, based on the soft classification output of a base 

classifier on a test sample, we quantify the confidence level of the current classification by 

computing the entropy of each base classifier’s output. It is noted that high entropy in the 

prediction represents low confidence, therefore entropy can be used as a confidence measure. 

The entropy is then compared to the base classifier’s threshold to determine whether the output 
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of the base classifier should be included in the aggregation. A base classifier’s output appears 

in the final set for subsequent ensemble combination if its confidence level is higher than its 

threshold.  

The contributions of this paper are: 

(i) We propose an approach to select a base classifier in an ensemble system based on its 

overall domain expertise and the confidence value it has on its current prediction. This 

allows us to integrate both the static and dynamic approach of ensemble selection.  

(ii) We search for the individual threshold of each base classifier by minimizing the  

empirical loss on the training set. The optimal solution is obtained by using the artificial 

bee colony optimization. 

(iii) Experiments on a number of datasets demonstrated the advantage of the proposed method 

compared to several well-known benchmark algorithms. 

We organize the paper as follows. In Section 2, we briefly discuss some related work on 

ensemble methods and ensemble selection. In Section 3, we describe our approach to measure 

and select the expert’s answer based on its confidence in relation to its domain expertise. In 

Section 4, we present our experimental studies in which we compare the performance of the 

proposed method and the benchmark algorithms on some popular datasets. In Section 5, we 

draw some conclusions. 

2. Related work 

2.1. Ensemble methods 

Research on ensemble methods focuses mainly either on the design of new ensemble 

systems, improving the ensemble performance, or the study of ensemble properties. There are 

two approaches to design a new ensemble system: training data generation and combining 

algorithm formulation. In [8], Younsi and Bagnall introduced two ensemble systems using 

random sphere cover classifiers (RSC). The first ensemble system is based on the 

resampling/reweighting mechanism in which the RSCs are generated sequentially and the 

current RSC focuses more on the hard samples, i.e. at the decision boundary, uncovered cases, 

or misclassified cases evaluated by the RSC in the previous step. In the second ensemble 

system, an ensemble of RSCs is constructed on the random subset of attributes obtained from 

the original attribute set. In [9], Zhang et al. proposed a new ensemble system by training  

Nearest Neighbor ( NN) algorithm on the new training sets generated by both random 

subspace and bootstrap sampling technique. In [10], Pham et al. proposed an incremental 

ensemble system which is updated with the newly arrived data if the ground truth is available. 
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The system is constructed by learning the Hoeffding tree on the projected data obtained by 

using random projections. In [11], Santucci et al. performed sampling on the parameters of 

three learning algorithms, i.e. Nearest Mean Classifier (NMC), Linear Discriminant Analysis 

(LDA), and Quadratic Discriminant Analysis (QDA), to construct an ensemble system. In [12], 

Yijing et al. proposed a new weighted combining rules in which the weight of each base 

classifier is computed based on its performance on the training data measured by Area under 

the ROC Curve (AUC). In [3], Kuncheva et al. averaged the meta-data of the training 

observations based on their class labels to generate the class representations called decision 

templates. The distance between the prediction on the test sample and the decision templates is 

used to select the most suitable class label. In [1, 4], Nguyen et al. captured the uncertainty in 

the outputs of different base classifiers using interval-valued class representations. The best 

class label for a test sample is then selected based on the transform function from interval to 

numerical value in [4] or the distance between the prediction on the test sample and the interval 

class representations [1]. In [2], Nguyen et al. applied the fuzzy IF-THEN rules to the meta-

data to generate the fuzzy classification rules, thereby taking into account the uncertainty 

between the outputs of different base classifiers. 

Meanwhile, based on the observation that the inclusion of some base classifiers may 

adversely affects the performance of the ensemble, several ensemble selection methods have 

been proposed to choose the optimal subset of base classifiers [6]. In [13], Yu et al. introduced 

a progressive subspace ensemble in which a selection process was developed to select and 

weigh the based classifiers generated by the Random Subspace method. Class label is then 

assigned to the test sample by weighted voting from the selected based classifiers. In [14], 

Garcia-Pedrajas et al. developed an ensemble focusing on difficult samples in the classification. 

However, instead of weighting and sampling the samples like in Boosting, the authors focused 

on the misclassified samples in the projected subspaces obtained by using the supervised 

linear/nonlinear projections on random subspaces. In [15], Nguyen et al. introduced a method 

to weigh the base classifiers in a random projection-based ensemble system in which random 

projections are applied to the original training data to obtain new training sets. In that study, the 

weighs of base classifiers are obtained by solving a linear regression problem between the 

predictions for training observations and the ground truth. 

Finally, the properties of ensemble systems have been studied in order to boost the 

performance of ensemble systems. In [16], Tang et al. analyzed the relationship between six 

diversity measures and the concept of margin. It was concluded that maximizing the diversity 

among the base classifiers is equivalent to maximizing the minimum margin of the ensemble on 

the training samples under some specific conditions. In [17], Jackowski introduced two new 

diversity measures for data stream classification ensemble called pair and pool error trend 

diversity measure. These diversity measures were developed based on the direction and extent 

nline

he ba

assifi

ear pro

f w

fied sam

de

weigh

p

eveloped

i

by wei

nerat

al subs

n wh

en

et of

nsembl

the inc

by 

e fuzz

taking

n the t

zzy IF

form

test



6 
 

of changes in classification error rate of the base classifiers when the stream changes. A new 

definition for ensemble margin from the prediction of base classifiers was introduced in [18]. 

This concept was then used to construct the classification loss function which is minimized to 

learn the weight of base classifiers. In [7], Guo et al.  proposed an ensemble pruning method 

based on the margin and diversity of ensemble systems. 

2.2. Ensemble selection methods 

The purpose of Ensemble Selection (ES) (also known as selective ensemble or 

ensemble pruning) is to search for a suitable subset of base classifiers that is better than using 

the whole ensemble. In ES, a single base classifier or an Ensemble of Classifiers (EoC) can be 

obtained via static or dynamic approach. The static approach selects only one subset of base 

classifiers during the training phase and uses it to predict all unseen samples. This, therefore, 

limits the flexibility of the selection procedure. Meanwhile, the dynamic approach selects only 

one classifier (dynamic classifier selection (DCS)) or an EoC (dynamic ensemble selection 

(DES)) with the most competencies in a defined region associated with each unseen sample. An 

issue of this approach is the dependence on the performance of techniques that define the 

region of competence (RoC) [19].  

We first briefly review some static approaches to ensemble selection. In recent years, 

many statistical methods have been proposed to search for the optimal subset of ensembles. 

These can be mainly grouped into two categories: ordering-based methods and optimization-

based methods. 

Ordering-based methods try to order the base classifiers according to some criteria, and 

only the top classifiers are selected in the final ensemble. Some examples of the ordering 

criteria are validation error [20], kappa measure [20], complementary measure [21], and margin 

[21]. Recently Guo et al. [7] ordered the base classifiers using an evaluation measure 

considering both the margin and the diversity. 

Optimization-based methods formulate ensemble selection as an optimization problem 

which can be solved by heuristic optimization or mathematical programming. In [22], Nguyen 

et al. encoded the classifiers and the features in a single chromosome and used a Genetic 

Algorithm (GA) to simultaneously search for the optimal set of base classifiers and the 

associated features. In [23], Chen et al. used the Ant Colony Optimization (ACO) to find the 

optimal set of base classifiers and meta-classifier in the ensemble system based on stacking. For 

the mathematical programming strategy, Zhang et al. [24] formulated the ES problem as a 

quadratic integer programming problem and used semi-definite programming to acquire an 

approximate solution. Although this method outperforms the other heuristics in the author’s 

evaluation, fixing the number of selected base classifiers is a hindrance to efficient 
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performance. In [5], Li et al. theoretically analyzed the effect of diversity on the performance of 

voting. They concluded that the complexity of hypothesis space could be reduced by promoting 

larger diversity, resulting in better generalization performance. Their results were used to 

construct a greedy forward ensemble pruning method with diversity regularization.  

In dynamic approaches, a base classifier or an EoC is selected to classify each test 

sample based on the competence level of the base classifiers computed according to some 

criteria on a local region of the feature space. Here the RoC can be defined by NN methods 

(META-DES [25], KNORA Union and KNORA Eliminate [26]) and potential functions (in 

DES-KL and DES-P [27]). The criteria include accuracy [19], meta-learning [25], and 

probabilistic competency in the classifiers’ prediction [28]. Comparison experiments in [6] 

indicated that a simple dynamic selection method like KNORA Union can be competitive or 

sometimes outperforms more complex methods. In [19], Cruz et al. showed that the 

effectiveness of DES methods is very sensitive to the choice of techniques that define the RoC. 

Moreover, the different distributions between the test set and the validation set in which the 

RoC of each test sample is obtained may degrade the system performance. A detailed review of 

the methods for DCS and DES can be found in [6, 19]. 

3. The model 

3.1. Problem formulation 

Assume that we have a committee of  experts  each of whom gives an answer to 

a problem. Classically, the answers from all experts are received and combined to obtain the 

final decision. However, some of the answers do not have high enough confidence and should 

be excluded from the final committee decision. Here we assume that each answer has its own 

confidence and that we prefer highly confident answers to those with low confidence before 

making the final decision. Moreover, we also assume that each of the experts has its own level 

of domain expertise (credibility) as they come with different background. Our approach takes 

account of each expert’s credibility threshold and selects an expert’s answer for aggregation if 

and only if its confidence is higher than the credibility threshold.  

The proposed model is shown in Figure 1. First, experts of the committee give their 

answers to the problem. The confidence in each expert’s answer is computed and then 

compared to the associated credibility threshold . We determine which answers are included 

in the final aggregation based on the comparison between the expert’s confidence and its 

credibility threshold: 

 (1) 
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There are two questions concerning the proposed model: 

How to measure the confidence of each expert’s answer? 

How to determine the credibility threshold of each expert? 

 
Figure 1. The proposed model to select answers based on expert’s confidence 

3.2. The proposed model for ensemble learning  

The idea of expert selection based on the credibility threshold is applied to our ensemble 

system in which each base classifier is treated as an expert in the committee. Let  and  

denote the feature space and the set of class labels, respectively. Given a training set 

; , , , from which we learn the set of base classifiers 

 . For a sample , the classifiers’ output is given in Soft Label [3, 4] 

which is the probability that  is assigned to  given by :  and 

. The outputs of all classifiers in  on the training set are given by: 

Problem 

Answer 1 Answer K Answer 2 
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 (2) 

Meanwhile, the outputs of the  base classifiers on an observation  (called the meta-data of 

) is given in (3)  

 (3) 

Clearly, the prediction of each classifier shows how confident that classifier support the 

decision. In fact, the decision is more convincing if the classifier’s output for one class is much 

higher than that for the other classes, for example,  and  in a 

binary classification problem with two labels . In contrast, it is difficult to make a 

decision if the difference between the predictions is not significant, for example, when 

 and . In our method, each base classifier is associated 

with it a credibility threshold such that a classifier is included in the selected EoC if its 

confidence on a prediction is higher than its credibility threshold. This, therefore, provides a 

reliable mechanism for the decision making as we only include the prediction from base 

classifiers with high enough confidence.  

To measure the confidence in the output of a base classifier  on a sample , we compute the 

entropy  of the output of . Note that the smaller the entropy is, the lower the 

uncertainty in the prediction, and therefore the higher the confidence of the classifier’s output, 

i.e. confidence is inversely proportional to entropy.  Different entropy measures can be 

computed from the meta-data of  given by , for example, Shannon entropy  (4), 

Min entropy  (5), and Collision entropy  (6).  

 (4) 

 (5) 

 (6) 

The credibility threshold of a classifier reflects how knowledgeable a classifier should be 

before it can be included in the final ensemble to predict for . We can define the credibility 

threshold of a classifier to be the maximum amount of uncertainty we are willing to accept 

before we lost confidence in its prediction. Let  be the credibility threshold for 

the classifier , the classifier selection criterion is then given by: 
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To compute the credibility threshold of each of the base classifiers, we compute the empirical 

0-1 loss of the ensemble over the entire training observations. The ensemble 0-1 loss on a 

sample  with  is given by: 

 (8) 

where  is the indicator function which returns 1 if the argument is true and 0 otherwise. The 

empirical 0-1 loss over the entire training observations  is given by (9) and the value of 

 is obtained by minimizing  subjected to   

 (9) 

3.3. The algorithms 

The proposed approach is applied to the heterogeneous ensemble system in which the 

EoC is obtained by training  different learning algorithms on a given training set and the 

prediction of all base classifiers is aggregated by a combining algorithm to obtain the final 

prediction [1, 2]. The training phase of the proposed method is presented in Algorithm 1. Given 

the training set , we learn the set of classifiers  by using  learning algorithms  (step 

1). After that, we use T-fold cross validation to generate the meta-data of  (step 2-9). We then 

compute the entropy of each classifier on the meta-data of each sample using one of Eqn. (4), 

(5) or (6). The credibility thresholds of the base classifiers are obtained by minimizing the 

empirical loss function  in Eqn (9). 

Nowadays, many applications of Evolutionary Algorithm (EA), a family of robust and 

effective search method, have been found in research for ensemble selection approach [29]. 

Classical optimization methods may be more efficient than EA when solving linear or strongly 

convex problems, for non-differentiable, discontinuous, or multi-modal objective functions that 

appear in many real-life applications, EA can be a better choice. In this study, we use the 

Artificial Bee Colony (ABC) algorithm, a popular EA, to search for the optimal solution of the 

optimization problem in  (9). The ABC algorithm, proposed by Karaboga [30], is a 

member of the swarm intelligence family, a meta-heuristic search algorithm inspired by the 

intelligent foraging behavior of honey bee swarm. This algorithm provides a simple but 

competitive tool in searching for the optimal solution for optimization problems [31]. 

Moreover, aside from two common parameters (i.e. the number of candidates in each 

generation and the number of generations) as in all population-based optimization algorithms, 

ABC only has one control exploration parameter which makes it more practical than many 

other population-based algorithms. 
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In ABC, first, we randomly initialize the population of  food sources representing 

the possible solutions of the optimization problem. There are three types of bees in the swarm: 

worker bee, onlooker bee, and scout. The number of worker bees and onlooker bees is equal to 

the number of solutions in the swarm. Worker bees exploit the food sources and share the 

information of nectar amount (the fitness of the solutions) to the onlooker bees. The onlooker 

bees tend to select good food sources. A food source becomes exhausted if it does not improve 

in a predetermined number of cycles. The worker bees of exhausted food sources become 

scouts. Scouts then start searching for new food sources. 

In detail, we first randomly initialize the population of  possible solutions of the 

optimization problem. Let  be the  solution in the swarm where  is the 

dimension size. Each member of  is produced randomly in   according to Eq. (10): 

 (10) 

where  and  are the lower bound and upper bound of the  dimension and  

is a random number within . After initialization, other three phases are conducted as 

following: 

Employed Bee Phase: Each employed bee generates a new candidate solution  in the 

neighborhood of  as: 

 (11) 

where  and  is the  components of  and another candidate  which is randomly 

selected from the swarm,  is a randomly selected index from the set , and  is a 

random number within . The value of  is stochastic and belongs to (see Fig.S1 in the 

Supplement Material for the illustration):  

 (12) 

If the fitness value of the new candidate solution  is better than that of ,  is replaced by 

. Otherwise,  remains unchanged.  

Onlooker Bee Phase: After all the employed bees finish the search process, they pass the 

information of the solutions to the onlooker bees. The solutions are selected via a roulette 

wheel selection mechanism where a solution with a higher fitness will have a higher chance to 

be selected. The probabilistic selection for the  solution is given by: 

 (13) 
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The  is the fitness function of the  solution in the swarm given by: 

 (14) 

where  is the classification error rate of the method if the configuration associated 

with  is selected (see Eq. (9)).  

Scout Bee Phase: If the solution cannot be improved over a predefined number of cycles 

, the solution is abandoned and the employed bee of the abandoned solution becomes a 

scout. The scout discovers a new solution according to Eq. (10) and the abandonment counter 

for  is reset 

The training phase of the proposed method is described in Algorithm 1. We generate 

the meta-data of the training observations by using T-fold cross validation. If a separate 

validation set  is available, steps 2-9 in Algorithm 1 can be replaced by a step that acquires 

the meta-data of  using the classifiers in . After getting the meta-data of the training 

observations, we compute the entropy of each classifier’s output for each observation (steps 10-

12). The ABC algorithm is then used (steps 13-19) to find the optimal value of the credibility 

threshold for each base classifier. 

In the classification phase in Algorithm 2, the output of a base classifier  on an 

unlabeled sample  is obtained as Soft Label given by . We then computed the 

entropy . Based on the selection criteria (7), we determine whether  should be 

included in the ensemble. All the selected base classifiers are added to EoC  to predict the 

label for . The Sum Rule is applied to the outputs of the classifiers in  to provide the final 

prediction . It is noted that an exception to step 7 in Algorithm 2 is performed where the 

whole ensemble is used if no classifier satisfies the selection criteria in step 5. 

Algorithm 1: Training phase 

Input: Training set ,  learning algorithms , maximum number of iteration: , 

population size: , abandonment limit parameter:  

Output: The optimal credibility threshold  and  

1.  Learn  classifiers  on  using  

 (Generate the meta-data) 
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7.        Classify samples of  by  

8.        Add outputs on samples in  to  (2) 

9.  End For 

 (Compute the entropy on the meta-data of each observation) 

10.  For each  in  

11.        Compute  from  

12.  End For 

 (Use ABC method to find the optimal credibility threshold) 

13.  For each candidate  generated by ABC  

14.         For each  in  

15.                Compute  by (8) 

16.         End 

      Compute  by (9) 

17.        Compute the fitness value of  by (14) and  by (13) 

18.  End 

19.  Select optimal  with the largest fitness value from the last population of 

ABC algorithm 

20.  Return  and  

 

Algorithm 2: Classification phase 

Input: Unlabeled sample , optimal credibility threshold , and the set of classifiers  

Output: Predicted class label for  

1.  Obtain the meta-data of  by using  

2.  Selected classifiers   

3.  For each  classifier 

4.       Compute  

5.        If :  

6.  End For 

7.  If :   

8.   
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4.1. Experimental datasets 

We compared the proposed method and benchmark algorithms by conducting 

experiments on a number of datasets from some data sources such as UCI 

(http://archive.ics.uci.edu/ml/datasets.html), OpenML (https://www.openml.org), and MOA 

library (https://moa.cms.waikato.ac.nz) as shown in Table 1. These datasets are popular in 

experiments with various classification systems. Here the datasets were selected in a diverse 

way to ensure objectivity in the comparison. The number of observations is from hundreds 

(e.g., Hepatitis and Wine) to millions (e.g., Poker, BNG-Zoo, and BNG-Bridge). The number 

of dimensions is from 3 (e.g. Haberman) to 7129 (e.g. Leukemia and CNS) while the number of 

classes varies from 2 (e.g., Artificial and Heart) to 100 (e.g. Plant-Margin and Plant-Shape). 

Table 1. THE UCI DATASETS USED IN THE EXPERIMENT 

Dataset name # of observations # of classes # of dimensions 
Abalone 4174 3 8 
Appendicitis 106 2 7 
Artificial 700 2 10 
Assetnegotiation-F2 1000000 2 5 
Assetnegotiation-F3 1000000 2 5 
Assetnegotiation-F4 1000000 2 5 
Australian 690 2 14 
Banana 5300 2 2 
Biodeg 1055 2 41 
Blood 748 2 4 
BNG-Bridges 1000000 6 12 
BNG-Zoo 1000000 7 17 
Breast-Tissue 106 6 9 
Bupa 345 2 6 
Cleveland 297 5 13 
CNS 60 2 7129 
Colon 62 2 2000 
Contraceptive 1473 3 9 
Dermatology 358 6 34 
Dowjones-1985-2003 138166 30 8 
Duke 44 2 7129 
Electricity 45312 2 8 
Fertility 100 2 9 
Glass 214 6 9 
Haberman 306 2 3 
Hayes-Roth 160 3 4 
Heart 270 2 13 
Hepatitis 80 2 19 
Hyperplane 1000000 2 10 
Iris 150 3 4 
Isolet 7797 26 617 
Led7digit 500 10 7 
Letter 20000 26 16 
Leukemia 72 2 7129 
Magic 19020 2 10 
Mammographic 830 2 5 
Marketing 6876 9 13 
Multiple-Features 2000 10 649 
Musk 476 2 166 
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Page-Blocks 5472 5 10 
Phoneme 5404 2 5 
Pima 768 2 8 
Plant-Margin 1600 100 64 
Plant-Shape 1600 100 64 
Poker 1025009 10 10 
RandomTree 1000000 2 10 
Skin-NonSkin 245057 2 3 
Sonar 208 2 60 
Spambase 4601 2 57 
Svmguide 391 3 20 
Tae 151 3 5 
Texture 5500 10 40 
Twonorm 7400 2 20 
Vehicle 846 4 18 
Vertebral 310 3 6 
Waveform-w-Noise 5000 3 40 
Waveform-wo-Noise 5000 3 21 
Wdbc 569 2 30 
Wine 178 3 13 
Wine-Red 1599 6 11 
Wine-White 4898 7 11 
Yeast 1484 10 8 
 

4.2. Experimental Settings and Benchmark Algorithms 

To construct the heterogeneous ensemble system, we used three learning algorithms: 

LDA, Naïve Bayes, and NN. It is noted that these algorithms use significantly different 

learning strategies, therefore they produce diverse predictions needed in an ensemble system 

[1]. In this study, the value of  in NN classifier was set to 5, denoted as NN5 and  was not 

optimally chosen for the experimental datasets. Here we only aim to demonstrate that an 

ensemble system built using simple learning algorithms can achieve high performance. For the 

ABC algorithm, the maximum number of iterations  was set to 100, the number of food 

sources  was set to 50, and abandonment limit parameter  was set to 

 

We performed extensive comparative studies using a number of existing algorithms as 

benchmarks: two well-known ensemble methods, namely RotBoost [32] (which is a 

combination between two powerful ensemble methods namely Rotation Forest [33] and 

AdaBoost [34]) and Random Subspace [35] with 200 decision tree classifiers (See Fig.S2 and 

discussion in the Supplement Material for the detail. This values also was used in some 

previous studies such as [36]), and Decision Template [3] which also captures the uncertainty 

between the classifiers in the combining algorithms. For the ensemble selection methods, we 

selected the three top-performing DCS/DES methods, namely META-DES [25], KNORA 

UNION and KNORA ELIMINATE [26] reported in the recent survey [6, 19] as benchmark 

algorithms. The number of nearest neighbors in these dynamic methods was set to 7 since it is 
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the optimal value reported to provide the best performance [19, 25]. We also selected the ACO 

methods [23] as benchmark algorithms since they belong to the static ensemble selection 

approach. Finally, a Genetic Algorithm-based method which searches for the best subset of 

meta-data to enhance the ensemble performance was also selected as a benchmark algorithm 

(called GA Meta-data) [37]. 

For the datasets with less than one million instances, we run 10-fold cross validation 3 

times to obtain 30 test results for each dataset. Otherwise, we only run 10-fold cross validation 

1 time on the datasets with more than 1 million instances. We then computed the mean and 

variance of the classification error rates and reported them in Tables 2 and 3. 

4.3. Statistical Test of Significance 

We used the Friedman test to test the null hypothesis that “all methods perform 

equally”. The test was conducted for multiple methods on multiple datasets. If the null 

hypothesis is rejected, we used the Nemenyi post-hoc test to compare all pairwise combinations 

of the methods on multiple datasets. For these tests, the level of significance was set to 0.05. 

We used the software package provided at http://sci2s.ugr.es/keel/multipleTest.zip for the 

Friedman and Nemenyi tests. 

We also conducted the Wilcoxon signed-rank test [15] to test the null hypothesis that 

“two methods perform equally on a dataset”. The null hypothesis of this test is rejected if the P-

value is smaller than a given confidence level . Here,  was set to 0.05. We used the software 

package provided in the Matlab library for the Wilcoxon signed-rank test. 

5. Results and Discussion 
5.1. Different entropy formulations 

In this study, three different entropy measures (4)-(6) were used to quantify the 

information content in the output of the base classifiers. Here we aimed to assess the influence 

of entropy measure on the performance of the proposed method. The experimental results are 

shown in Figure 2, with the detailed results provided in Table S1 the Supplementary Material. 

Clearly, the entropy measure only affects slightly the classification error rates on the 

experimental datasets. The most significant difference in classification error rate using 

Shannon, Min, and Collison entropy is on the Hepatitis dataset, in which the results were 

0.1542, 0.1458, and 0.1333 respectively. Meanwhile, on the other datasets, the differences in 

the classification error rate for the 3 entropy measures were very small. In practice, therefore, 

any one of the 3 entropy measures can be used with the proposed method. In what follows, we 

used Shannon entropy to compute the credibility threshold for each base classifier. 

5.2. Comparison of the benchmark algorithms 
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We conducted the ‘multiple methods-multiple datasets’ statistical test on the 

performance score of all methods. We also compared the performance of the proposed method 

and each benchmark algorithm on each dataset by using the Wilcoxon test. The purpose of this 

test was to see which method, among the pair, performs better for a dataset. Some observations 

can be made from Table 2, 3, and Figure 3, 4:  

The P-value of the Friedman test, in this case, is 3.324E-06, therefore we rejected the 

null hypotheses that the performances of all methods are equal. From the Nemenyi test 

results shown in Figure 3, the proposed method is better than KNORA UNION, 

Decision Template, RotBoost, META-DES, GA Meta-data, and ACO, while there is no 

statistical difference in the pairwise comparison between the proposed method and 

Random Subspace and KNORA ELIMINATE. Among all methods, the proposed 

method ranks first (rank value 3.27), followed by KNORA ELIMINATE (rank value 

4.68) and Random Subspace (rank value 4.77). The proposed method ranks first in 9 

cases (14.52                                

%), ranks second in 14 cases (22.58%). The proposed method only performs poorly on 

4 datasets: Cleveland and Appendicitis (rank 7th), Mammographic and  Pima (rank 6th), 

however the differences between classification error rate of the proposed method and 

the benchmark algorithms are not very significant. Meanwhile, GA Meta-data and 

ACO are the two poorest methods in the experiment where GA Meta-data ranks fifth 

(rank value 5.78) and ACO ranks sixth (rank value 5.89). 

Compare to Decision Template, we rejected 28 null hypotheses of the Wilcoxon test, in 

which in 26 cases, the proposed method is better than this method. Compare to 

Random Subspace, 38 null hypotheses in the Wilcoxon test was rejected in which the 

proposed method wins on 26 datasets and loses on 12 datasets. Our method is 

significantly better than Random Subspace on some datasets such as 0.2124 vs. 0.2771 

on Artificial, 0.1069 vs. 0.3746 on Banana, 0.2673 vs. 0.4460 on Led7digit, 5.2777E-

04 vs. 2.6171E-03 on Skin_NonSkin, 0.0048 vs. 0.0238 on Texture, and 0.4050 vs. 

0.4975 on Yeast. The proposed method also outperforms RotBoost on 27 datasets and 

loses on 11 datasets. In comparison to the 5 ensemble selection methods, the proposed 

method shows outstanding performance. The proposed method is better than GA Meta-

data (28 wins and 7 losses), ACO (28 wins and 9 losses), KNORA Eliminate (25 wins 

and 6 losses), KNORA Union (32 wins and 3 losses), and META-DES (30 wins and 8 

losses). The detail results of Wilcoxon test are shown in Table S2 in the Supplement 

Material. 
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Both the ‘multiple methods-multiple datasets’ test and the Wilcoxon test demonstrated 

convincingly the better performance of our method compared to the benchmark algorithms on 

the experimental datasets.  

We also noted some observations based on the three properties of experimental datasets in 

Table 1-3: 

RotBoost is the best method for the 10 large scale datasets in our experiment as it ranks 

first on average on these datasets with rank value 3. The proposed method ranks third 

on these datasets with rank value 3.9. In contrast, the proposed method performs well 

on 21 small scale datasets i.e. datasets with less than 500 observations. Specifically, on 

17 small datasets with low dimensions, the proposed method ranks first with rank value 

3.74. GA Meta-data is the poorest methods on these small datasets in which it ranks 

last with rank value 6.29. On 4 small datasets with high dimension (Colon, Duke, CNS, 

and Leukemia), the proposed method ranks first on one dataset (Leukemia) and ranks 

second on two datasets (Duke and CNS). META-DES is the poorest method in this 

case in which its rank value is 7.38. The detail of ranking on these datasets can be 

found in Table S6-S8 in the Supplement Material. 

On 30 low dimension datasets i.e. datasets that have less than or equal to 10 features, 

the proposed method is better than all benchmark algorithms in term of average 

ranking. Specifically, the proposed method ranks first with rank value 3.70 and is better 

than the second method KNORA ELIMINATE with rank value 4.30. On 7 datasets 

with more than 100 features, the proposed method ranks first on 2 datasets (Isolet and 

Leukemia) and does not rank below 5 on any datasets (see Table S9-S10 in the 

Supplement Material). In term of the number of class labels, the proposed method 

outperforms the benchmark algorithms on datasets with a large number of class label or 

binary label. On 6 datasets with more than 26 class labels and on 31 binary datasets, the 

proposed method has rank value only 2.6 and 3.24. RotBoost and META-DES seem to 

be poor methods for datasets with high dimension or large number of class label as 

these methods rank last in these cases (with rank value higher than 7.2) (see Table S11-

S12 in the Supplement Material). 

5.3. Different numbers of base classifiers 

We built a new heterogeneous ensemble system with 7 learning algorithms to assess 

the difference in performance scores with different number of base classifiers. Four new base 

classifiers, namely the Nearest Mean Classifier (denoted by NMC), Decision Tree C4.5, L2-

Loss Linear SVM (denoted by L2LSVM), and Discriminant Restrict Boztman Machine 
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(DRBM) were added to form the new ensemble. Here we used the Decision Tree C4.5 from the 

Statistics and Machine Learning Toolbox of Matlab. The NMC and DRBM were obtained from 

PRTools (available at http://prtools.org/), and the L2LSVM was obtained from the LibLinear 

library (available at https://www.csie.ntu.edu.tw/~cjlin/liblinear/). It is noted that the 

performance score of RotBoost and Random Subspace do not change in this experiment. 

We once again conducted the Friedman test to compare multiple methods on multiple 

datasets. In this case, the P-value computed by the test is 2.2E-16. Hence, we rejected the null 

hypotheses that all methods perform equally and conducted the Nemenyi post-hoc test for all 

pairwise comparisons among the 9 methods (see Figure 5). The proposed method ranks first 

among all methods (rank value 2.35). In this case, Decision Template performs well, ranked 

second with rank value 4.06. Our method is better than all benchmark algorithms based on the 

Nemenyi test. This result is more significant than the comparison using 3 classifiers. 

Clearly, the proposed method continues to outperform each benchmark algorithm and 

the result is also more significant than the comparison using 3 classifiers concerning Wilcoxon 

signed-rank test (see Fig 6 and Table S3 in the Supplement Material). Our method is better than 

Decision Template (it wins in 30 cases and loses in 6 cases), better than KNORA Union (it 

wins in 33 cases and loses in only 1 case), better than KNORA Eliminate (it wins in 50 cases 

and does not lose on any case). Our method also performed considerably better than GA Meta-

data and ACO as it wins both methods on 42 and 44 datasets, respectively. Our method 

continues to be better than RotBoost (it wins on 37 datasets and loses on 2 datasets) and 

Random Subspace (it wins on 33 datasets and loses on 8 datasets). The ‘multiple methods-

multiple datasets’ test and the Wilcoxon test in the case of using 7 base classifiers once again 

show the better performance of our method on the experimental datasets. 

Similar observations are found when we compared the proposed method and the 

benchmark algorithms based on the three properties of experimental datasets. The differences 

in average ranking in this case is even more significant than the case using 3 classifiers. For 

example, the proposed method is remarkably better than all benchmark algorithms on 10 large 

scale datasets on average in which its rank value is 1.45 compared to 3.90 of the second method 

GA Meta-data. The detail can be found in Table S13 in the Supplement Material. 

We also compared the performance of the proposed method constructed using 3 or 7 

learning algorithms. In general, using 7 learning algorithms gives better results than using 3 

learning algorithms, for example, on Wine-White (classification error of 0.38 vs. 0.4539), 

Spambase (0.0734 vs. 0.0975), Sonar (0.1681 vs. 0.2161), Skin_NonSkin (4.2847E-04 vs. 

5.2777E-04), Musk (0.0672 vs. 0.1337), and Wine-Red (0.3677 vs. 0.4157). Only on some 

datasets like Haberman and Fertility, the ensemble with 3 learning algorithms is about 2% 

better than the ensemble with 7 learning algorithms (see Fig.S3 in the Supplement Material). 
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Therefore, using more learning algorithms to construct the ensemble produces a more diverse 

ensemble system from which our ensemble selection mechanism can select from. 

5.4. Analysis of computational complexity 

The complexity of the training process of the three EA-based methods (ACO, GA 

Meta-data and proposed method) is 

 in which  denotes the 

complexity of learning algorithm ,  is the time complexity of 

generating meta-data of training set via running -fold cross-validation and 

 is the time complexity of each procedure to search for optimal 

configuration. It is noted that the searching process includes generating a candidate and 

evaluating its fitness in a generation. For GA Meta-data and ACO, we used Decision Tree C4.5 

(its time complexity is  in which  is the data dimension) to train on the meta-data of 

training observations associated with each candidate. Therefore the complexities of the search 

process of GA Meta-data and ACO method are 

 and  in 

which  and  are dimensions of meta-data associated with a candidate in GA Meta-data 

and ACO, respectively, . In the proposed method, each candidate has  

dimensions which are the credibility thresholds of the base classifiers. To evaluate the fitness of 

a candidate, we conducted  comparisons between the thresholds and the entropy value on 

each meta-data of  training instances. Therefore, the time complexity of the searching process 

of the proposed method is . It 

is observed that the computational complexities of these three methods are mainly due to the 

difference in the process to generate candidates. ABC method is slow in coverage as it focuses 

more on exploration when generating new candidates [38], resulting in higher running time 

than GA and ACO on some datasets. Moreover, the dimension of data does not cause the 

differences in computational complexity of these methods. 

We reported the training time of the ACO, GA-Meta data, and proposed method on 10 

datasets in Table 5 (We tested these methods in Matlab running on a PC with Intel Core i5 with 

2.5 GHz processor and 8G RAM). Some observations can be made in accordance with the 

analysis of computational complexity mentioned above: 

ACO took the least running time among the three methods. This method searches for 

the optimal set of classifiers on a narrow search space. Hence, ACO can quickly 

converge to obtain the optimum in the training process. 
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On 4 datasets with a large number of class labels (Plant-Margin, Plant-Shape with 100 

class labels, Isolet with 26 class labels and Poker with 10 class labels): GA Meta-data 

took much more running time than ACO and the proposed method. For example, on 

Isolet dataset, GA Meta-data took 3518.63 seconds, 10 times longer than the proposed 

method. It is noted that the dimension of metadata is the product of the number of class 

labels and the number of base classifiers. For datasets with a large number of class 

labels, the dimension of meta-data is high, resulting in a large solution space for GA to 

search for the optimum.   

On AssetNegotiation-F2, a dataset with a large number of observations, the running 

time of the proposed method was much higher than ACO and GA Meta-data. This is a 

binary dataset, which means the dimension of the meta-data is small. GA Meta-data, in 

this case, can obtain the optimum in shorter running time than the proposed method. 

On 2 small datasets i.e. Haberman and Wine with small number of observations, 

dimensions, and class labels, the proposed method also took longer running time than 

the two baselines. This is also the case for several high dimension datasets with a small 

number of observations and class labels such as Leukemia and CNS. 

The running time of the proposed method can be reduced by using parallel implementation 

which is often used to accelerate population-based algorithms [39]. Here, we discuss two 

models to parallelize the ABC algorithm, which not only achieves significant speedup but also 

keeps the quality of solutions. The first model is the master-slave model in which there is one 

population maintained by a master processor and computation is conducted by many slave 

processors or the coarse-grained (subpopulation) model like in [40] in which each 

subpopulation runs the algorithm in one processor independently and exchanges the results 

with other subpopulation. The detail of parallel implementation for the ABC algorithm can be 

found in [39, 40] 

5.5. Discussions 

The Decision Template method averages the meta-data associated with each class label 

to obtain the decision template. For datasets like Fertility (80% of instances belongs to the first 

class label) or Hayes-Roth (80% of instances belongs to the first and second class labels), the 

base classifiers tend to predict the dominated class label. The meta-data, therefore, is very 

similar among all the class labels (see Fig.S4 in the Supplement Material). In this case, 

Decision Template usually performs poorly compared to the other heterogeneous ensemble 

methods.  

Meanwhile, the ACO and GA Meta-data are the two poorest methods in our 

experiment. ACO used the Ant Colony Optimization algorithm to search for the optimal subset 
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of base classifiers for all the test samples. These methods, therefore, are less flexible than the 

proposed method since our method selects a particular EoC for each test sample. For GA Meta-

data, the Genetic Algorithm is used to select the optimal set of meta-data for the combiner. As 

mentioned earlier, the meta-data is the concatenation of predictions from the base classifiers. In 

fact, the meta-data can be viewed as scaled data from feature domain to posterior probability 

domain so that in the new domain, each observation is re-scaled to a different position 

compared to that in the feature domain. This improves the discriminative characteristic of data 

on some datasets in case of correct predictions where observations that belong to the same class 

will have similar posterior probabilities and stay close together in the posterior domain. 

However, in cases of wrong predictions, the discriminative characteristic of data will be 

downgraded. Consequently, learning in the posterior probability domain by a traditional 

learning algorithm (for example Decision Tree in the original papers or the proposed method) 

can obtain either good or poor performances. On the Hepatitis dataset, for example, some 

algorithms like DRBM and NN5 perform poorly with a classification error rate of 0.22 and 

0.1938, respectively, and greatly lead to poorer discriminative characteristic in the meta-data 

for Decision Tree to learn on. This explains why GA Meta-data obtains high classification error 

rate on this dataset. 

Random Subspace method where subsets of features are randomly selected to form the 

new training sets to learn the base classifiers generally performs better on very high 

dimensional datasets. However, for datasets with a small number of features, the new training 

set generated by Random Subspace is usually not diverse enough or not a representative of the 

underlying classes, resulting in poor performance. We illustrate an example on binary Hepatitis 

dataset which has 80 observations (13 observations belong to the first class label and the others 

belong to the second class label) and 19 features. On this dataset, the classification error rate of 

the proposed method is 0.1542 when using 7 classifiers which is 2.09% worse than Random 

Subspace. For Random Subspace, we randomly select  

features from 19 features to create the subspace from which we get the original training data to 

generate the new training sets. (This choice of  is common in some machine learning libraries 

such as scikit-learn). In this case, the subspace of features can create 200 significantly diverse 

training sets, which makes Random Subspace method perform well on this data. It is observed 

that Random Subspace method is also significantly better than the proposed method (0.0805 vs. 

0.1337) on the Musk dataset with 166 features by the same reason. 

RotBoost performs well on some large scale datasets compared to the proposed method 

and other heterogeneous ensemble methods using 3 base classifiers. However, RotBoost 

performs poorly on datasets with high dimensions or a large number of class labels. When we 

used 7 base classifiers to construct the heterogeneous ensemble methods, RotBoost 
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underperforms in the comparison to the proposed method on the experimental datasets. 

RotBoost uses Rotation Forest to transform the data and then use AdaBoost to train the 

ensemble on transformed data. Like in GA Meta-data, this transformation may improve or 

downgrade the discriminative characteristic of data on some datasets which significantly affect 

the performance of AdaBoost in the second stage of RotBoost. 

KNORA Union has average performance with mid-ranking whereas KNORA 

Eliminate is the second best method for 3 base classifiers but is the poorest for 7 base classifiers 

in our experiment. META-DES ranks 7th and 4th when using 3 and 7 base classifiers, 

respectively. The three methods are in the DES family where they aim to dynamically select a 

specific set of base classifiers to predict for each test sample based on the classifiers’ 

performance on the RoC. Cruz et al. [19] showed that DES method’s performance is mainly 

dependent on the choice of techniques that define the RoC. Moreover, different distributions 

between the test set and the validation set where the RoC of each test sample is obtained can 

degrade the system’s performance.  

The proposed method ranks first in the Nemenyi post hoc test for both ensembles with 

3 and 7 base classifiers. Our method is more flexible than static ensemble selection as it selects 

a different EoC for different test sample dynamically based on the confidence in the classifier’s 

prediction on the test sample. The credibility threshold allows us to observe the behavior of a 

classifier on each dataset. Table 6 shows the credibility threshold for the 3 base classifiers and 

the maximum entropy value in each dataset. Based on Eqn. (7) we can see that the classifiers 

with high credibility threshold would have more chance to be included in the aggregation. For 

example, on Biodeg datasets, the credibility thresholds of LDA, Naïve Bayes, and NN5 are 

0.9981, 0.0019, and 1.0000 respectively. This means the Naïve Bayes has very little chance and 

LDA has very high chance to be selected for aggregation. Since the credibility threshold of 

NN5 is equal to the maximum of the entropy value in the dataset, it is always included in the 

aggregation for all samples. Meanwhile, on the Haberman dataset, the credibility threshold of 

NN5 is equal to 0, which means it would never appear in the aggregation for this dataset. 

6. Conclusions 

In this study, we proposed a novel ES method by selecting the base classifiers with 

high confidence in their prediction, taking into account the level of expertise of each base 

classifier. We quantified the classifier’s level of expertise for a problem by computing its 

credibility threshold based on minimizing the 0-1 loss function on all the labeled observations 

in a training set. This constitutes the static aspect of our ensemble selection approach. The 

dynamic aspect of our ensemble selection approach is done by measuring the base classifier’s 

confidence in its prediction of a test sample using an entropy measure. A base classifier is 

selected for aggregation if its entropy value (reflecting its uncertainty in prediction) is less than 
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or equal to the credibility threshold. The empirical evaluation on 62 UCI datasets showed that 

the proposed ensemble selection method is significantly better than the 8 benchmark algorithms 

we compared with, which include two well-known homogeneous ensemble methods (RotBoost 

and Random Subspace), Decision Template, three DES methods (META-DES, KNORA Union 

and KNORA Eliminate), and two static ensemble selection methods based on evolutionary 

algorithms (ACO and GA Meta-data). Clearly, our method provides a flexible ensemble 

selection mechanism in which a specific EoC is selected for each test sample based on the 

credibility of each base classifier. Moreover, based on the credibility threshold, we can observe 

the behavior of a base classifier on a dataset, where some base classifiers are always considered 

and some would never be considered in the aggregation. In this study, we used the original 

ABC algorithm to search for the optimal confidence threshold for each classifier. This 

algorithm has some benefits in practice such as having a small number of control parameters 

and providing simple implementation. In term of algorithm characteristic, although the original 

ABC algorithm shows powerful ability to investigate the various unknown regions in the 

solution space to find the global optimum (exploration), it is weak in applying knowledge of 

previous good solutions to search for the better one (exploitation). This makes the original ABC 

algorithm slow to converge, resulting in high computation cost. Experimental studies showed 

that although the proposed method is better than the benchmark algorithm in term of 

classification accuracy, the running time of the proposed method is significantly higher than 

other ensemble selection methods like ACO and GA Meta-data on some datasets. One of our 

future works is to apply different EAs or parallelizing the proposed method to resolve the issue 

of high computation cost. 

We proposed using entropy in this work to measure the confidence in the prediction of 

each classifier with the note that confidence is inversely proportional to entropy. Although 

entropy is an effective way to measure uncertainty, it has a weakness when applied to 

predictions in some cases. For instance, entropy works well with two prediction vectors for a 3-

class classification problem such as (0.5, 0.4, 0.1) and (0.6, 0.3, 0.1) as the second vector has a 

smaller entropy value, and therefore, higher confidence than the first one. However, when 

comparing two prediction vectors (0.5, 0.39501, 0.10499) and (0.6, 0.1944, 0.2056), the second 

vector clearly gives us more confidence than the first one when making decision that the 

sample belongs to the first class. The entropy, however, does not reflect this as the entropy of 

the two vectors are equal (1.37072). This is the motivation for us to look for alternatives in the 

future to quantify confidence in the base classifiers’ predictions. 
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Figure 2. Classification error rates of the proposed method using 3 different entropies 

Table 2. Mean and variance of classification error of five ensemble methods (using 3 base classifiers) 

GA Meta-data ACO Decision Template Random Subspace RotBoost 
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Abalone 0.4736 5.43E-04 0.4720 7.98E-04 0.4787 1.47E-02 0.4679 6.52E-04 0.4585 6.98E-04 
Appendicitis 0.1600 1.04E-02 0.1827 1.51E-02 0.1245 6.51E-02 0.1385 7.41E-03 0.1358 8.84E-03 
Artificial 0.2295 2.39E-03 0.2257 2.41E-03 0.2486 3.91E-02 0.2771 1.99E-03 0.2976 2.01E-03 

The proposed method (Shannon) The proposed method (Min) The proposed method (Collison)

GA M
ean

0
0.16
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ta-data
Var
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AssetNegotiation-F2 0.0850 9.76E-03 0.1558 2.56E-02 0.0996 5.83E-07 0.0701 1.01E-05 0.0511 1.87E-07 
AssetNegotiation-F3 0.0535 1.23E-05 0.1219 1.07E-02 0.0881 3.58E-07 0.0737 2.99E-05 0.0519 1.67E-07 
AssetNegotiation-F4 0.1015 9.79E-03 0.2295 3.78E-02 0.0697 2.35E-07 0.0871 1.62E-05 0.0528 3.06E-07 
Australian 0.1807 1.30E-03 0.1816 2.38E-03 0.1415 3.82E-02 0.1522 1.09E-03 0.1749 2.55E-03 
Banana 0.1116 1.23E-04 0.1129 2.32E-04 0.1108 1.19E-02 0.3746 2.20E-03 0.1050 1.33E-04 
Biodeg 0.1836 1.22E-03 0.1800 1.21E-03 0.1435 3.81E-02 0.1352 6.30E-04 0.1703 1.26E-03 
Blood 0.2344 6.75E-04 0.2820 2.86E-03 0.2714 6.00E-02 0.2228 7.17E-04 0.2317 1.25E-03 
BNG-Bridges 0.2968 4.50E-06 0.2950 9.08E-06 0.3180 2.02E-06 0.3748 3.10E-05 0.2352 5.16E-06 
BNG-Zoo 0.0560 3.61E-07 0.0557 1.64E-06 0.0709 5.75E-07 0.1321 9.99E-06 0.0530 5.59E-06 
Breast-Tissue 0.3400 9.36E-03 0.4033 8.70E-03 0.3882 1.34E-01 0.3267 8.48E-03 0.3655 1.49E-02 
Bupa 0.3804 8.55E-03 0.3548 5.43E-03 0.3331 5.72E-02 0.3420 5.80E-03 0.3384 7.62E-03 
Cleveland 0.4433 4.06E-03 0.4643 6.10E-03 0.4227 7.43E-02 0.4184 1.45E-03 0.4217 3.30E-03 
CNS 0.4333 1.96E-02 0.4111 1.80E-02 0.4000 3.44E-02 0.3778 9.14E-03 0.3722 8.67E-03 
Colon 0.2087 2.46E-02 0.2079 2.38E-02 0.1437 1.52E-02 0.1571 1.71E-02 0.1619 1.76E-02 
Contraceptive 0.5237 1.30E-03 0.5028 1.95E-03 0.4505 4.09E-02 0.4777 6.12E-04 0.4621 1.17E-03 
Dermatology 0.0383 1.03E-03 0.0337 8.15E-04 0.0448 2.30E-02 0.0261 4.18E-04 0.0429 6.19E-04 
DowJones-1985-2003 0.0000 0.00E+00 0.0000 0.00E+00 2.3498E-03 1.75E-07 6.9482E-04 3.16E-07 9.6503E-06 6.05E-10 
Duke 0.1300 2.69E-02 0.1083 2.47E-02 0.1250 2.50E-02 0.1400 2.44E-02 0.1800 3.49E-02 
Electricity 0.1911 3.15E-05 0.1911 3.15E-05 0.1959 4.26E-05 0.1166 6.79E-05 0.1914 4.96E-05 
Fertility 0.1900 1.29E-02 0.1467 3.16E-03 0.3733 1.86E-01 0.1200 1.60E-03 0.1200 1.60E-03 
Haberman 0.2964 2.26E-03 0.2984 1.72E-03 0.3558 6.25E-02 0.2961 3.00E-03 0.2800 2.77E-03 
Hayes-Roth 0.2917 9.20E-03 0.2708 1.31E-02 0.3146 1.20E-01 0.3458 1.95E-02 0.3938 8.11E-03 
Heart 0.2395 6.93E-03 0.2185 8.26E-03 0.1679 5.03E-02 0.1877 5.85E-03 0.1753 2.83E-03 
Hepatitis 0.1750 1.42E-02 0.2083 9.72E-03 0.1667 1.15E-01 0.1333 5.14E-03 0.1500 6.67E-03 
Hyperplane 9.5400E-04 1.40E-08 9.7500E-04 3.76E-08 0.0276 3.05E-07 0.1321 1.77E-05 0.0486 6.37E-06 
Iris 0.0333 1.70E-03 0.0400 1.96E-03 0.0267 3.32E-02 0.0511 2.87E-03 0.0378 1.68E-03 
Isolet 0.0623 6.53E-05 0.0650 6.63E-05 0.0515 7.71E-03 0.0588 6.12E-05 0.1001 9.06E-05 
Led7digit 0.2973 4.50E-03 0.3013 6.05E-03 0.2700 6.58E-02 0.4460 2.99E-03 0.2753 5.70E-03 
Letter 0.0610 5.80E-05 0.0506 3.20E-05 0.0782 7.02E-03 0.1011 7.08E-05 0.1239 9.84E-05 
Leukemia 0.0375 5.24E-03 0.0595 7.06E-03 0.0423 5.54E-03 0.0286 4.63E-03 0.0750 7.66E-03 
Magic 0.1920 1.37E-04 0.1902 4.75E-05 0.1907 9.80E-03 0.1730 4.67E-05 0.1562 5.47E-05 
Mammographic 0.2032 1.97E-03 0.2169 1.76E-03 0.1908 2.83E-02 0.1639 1.98E-03 0.1839 2.12E-03 
Marketing 0.7322 4.03E-04 0.7323 3.85E-04 0.6709 1.46E-02 0.6716 1.56E-04 0.6622 2.12E-04 
Multiple-Features 0.0150 1.00E-04 0.0125 5.29E-05 0.0130 8.26E-03 0.0182 6.91E-05 0.0448 2.46E-04 
Musk 0.1344 1.61E-03 0.1245 1.77E-03 0.1359 3.38E-02 0.0805 1.26E-03 0.2477 3.53E-03 
Page-Blocks 0.0420 4.35E-05 0.0462 7.31E-05 0.0540 8.94E-03 0.0319 3.02E-05 0.0546 1.49E+01 
Phoneme 0.1149 2.11E-04 0.1149 2.11E-04 0.1519 1.47E-02 0.1627 3.36E-04 0.1822 1.99E-04 
Pima 0.3056 2.34E-03 0.3078 2.35E-03 0.2504 4.11E-02 0.2570 2.28E-03 0.2487 2.04E-03 
Plant-Margin 0.2708 6.75E-04 0.2829 8.96E-04 0.1885 1.22E-02 0.1721 5.98E-04 0.4910 1.40E-03 
Plant-Shape 0.4669 6.80E-04 0.4592 6.11E-04 0.4104 2.45E-02 0.3804 9.81E-04 0.5042 1.41E-03 
Poker 0.3629 1.51E-05 0.3621 4.84E-06 0.7380 8.90E-06 0.4988 9.76E-12 0.3682 3.85E-06 
RandomTree 0.1050 7.88E-07 0.1050 7.88E-07 0.1050 7.88E-07 0.2701 1.29E-04 0.0800 2.55E-05 
Satimage 0.1064 1.26E-04 0.0932 1.19E-04 0.1257 8.97E-05 0.0886 9.68E-05 0.1303 1.44E-04 
Skin-NonSkin 4.3119E-04 1.41E-08 4.3390E-04 1.28E-08 0.0264 9.04E-04 2.6171E-03 7.51E-08 6.0843E-03 4.12E-06 
Sonar 0.2583 8.89E-03 0.2368 5.91E-03 0.2002 5.69E-02 0.1457 6.05E-03 0.2325 7.80E-03 
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Spambase 0.1185 1.95E-04 0.1224 2.96E-04 0.0964 1.28E-02 0.0960 1.83E-04 0.0762 1.78E-04 
Svmguide 0.2393 3.69E-03 0.2487 5.97E-03 0.1660 5.03E-03 0.2661 3.53E-03 0.2847 2.53E-03 
Tae 0.5453 1.35E-02 0.5129 1.30E-02 0.4335 1.45E-01 0.5035 9.64E-03 0.5150 1.72E-02 
Texture 0.0050 7.64E-06 0.0051 4.94E-06 0.0078 1.02E-05 0.0238 3.72E-05 0.0404 1.10E-04 
Twonorm 0.0330 3.61E-05 0.0310 3.45E-05 0.0193 3.94E-03 0.0258 1.65E-05 0.0327 4.11E-05 
Vehicle 0.2627 1.90E-03 0.2597 1.44E-03 0.2128 2.26E-02 0.2600 1.30E-03 0.3180 2.31E-03 
Vertebral 0.1893 3.38E-03 0.1527 3.46E-03 0.1978 5.20E-02 0.2893 3.22E-03 0.1785 4.49E-03 
Waveform-w-Noise 0.1787 2.04E-04 0.1770 2.22E-04 0.1638 1.58E-02 0.1755 2.94E-04 0.1625 4.66E-04 
Waveform-wo-Noise 0.1738 4.45E-04 0.1705 2.75E-04 0.1479 1.71E-02 0.1498 3.66E-04 0.1559 2.80E-04 
Wdbc 0.0352 6.19E-04 0.0457 8.53E-04 0.0369 1.68E-02 0.0381 3.51E-04 0.0545 8.48E-04 
Wine 0.0264 1.00E-03 0.0265 1.26E-03 0.0377 5.80E-02 0.0170 6.75E-04 0.0320 1.43E-03 
Wine-Red 0.4653 2.14E-03 0.4690 1.05E-03 0.5107 3.73E-02 0.3110 5.71E-04 0.3986 9.58E-04 
Wine-White 0.4798 4.58E-04 0.4947 6.21E-04 0.5947 1.40E-02 0.3252 3.23E-04 0.4335 2.61E-04 
Yeast 0.4917 1.58E-03 0.4861 1.99E-03 0.4154 5.12E-02 0.4975 1.31E-03 0.4290 1.27E-03 

The bold value indicates the best result on each dataset 

 

Figure 3. The result of Nemenyi test (using 3 base classifiers) 

Table 3. Mean and variance of classification error  of dynamic ensemble selection methods and the proposed method (using 3 base classifiers) 

META-DES KNORA ELIMINATE KNORA UNION Proposed Method 
Mean Variance Mean Variance Mean Variance Mean Variance 
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Abalone 0.4740 5.92E-04 0.4678 4.90E-04 0.4707 3.88E-04 0.4719 4.64E-04 
Appendicitis 0.1230 8.59E-03 0.1291 1.14E-02 0.1133 8.38E-03 0.1539 8.96E-03 
Artificial 0.2362 2.15E-03 0.2257 1.98E-03 0.2171 1.23E-03 0.2124 1.04E-03 
AssetNegotiation-F2 0.0553 2.42E-07 0.0558 2.98E-07 0.0715 9.12E-07 0.0594 2.63E-07 
AssetNegotiation-F3 0.0560 1.51E-07 0.0560 1.62E-07 0.0655 1.64E-07 0.0584 1.45E-07 
AssetNegotiation-F4 0.0553 1.91E-07 0.0603 1.22E-06 0.0739 3.10E-07 0.0625 2.32E-07 
Australian 0.1614 1.66E-03 0.1589 1.52E-03 0.1357 1.06E-03 0.1444 1.25E-03 
Banana 0.1125 9.24E-05 0.1157 1.62E-04 0.1079 1.51E-04 0.1069 1.07E-04 
Biodeg 0.1428 8.70E-04 0.1479 6.67E-04 0.1479 7.16E-04 0.1302 8.32E-04 
Blood 0.2321 1.12E-03 0.2286 1.32E-03 0.2205 8.87E-04 0.2259 1.38E-03 
BNG-Bridges 0.2791 1.88E-06 0.3019 1.40E-06 0.3115 1.19E-06 0.2904 8.90E-07 
BNG-Zoo 0.0538 4.22E-07 0.0586 5.27E-07 0.0695 4.18E-07 0.0571 2.3662E-07 
Breast-Tissue 0.3909 1.50E-02 0.3430 1.37E-02 0.3706 1.46E-02 0.3833 1.28E-02 
Bupa 0.3545 5.83E-03 0.3469 2.47E-03 0.3373 3.13E-03 0.2948 2.32E-03 
Cleveland 0.4226 5.63E-03 0.4162 3.06E-03 0.4038 3.37E-03 0.4308 5.06E-03 
CNS 0.3722 2.53E-02 0.3500 3.03E-02 0.3611 3.16E-02 0.3611 2.05E-02 
Colon 0.2111 1.85E-02 0.2071 2.83E-02 0.1968 3.32E-02 0.1706 2.18E-02 
Contraceptive 0.4719 1.03E-03 0.4639 2.01E-03 0.4574 1.16E-03 0.4587 1.29E-03 
Dermatology 0.0475 7.92E-04 0.0382 1.07E-03 0.0307 4.35E-04 0.0289 7.14E-04 
DowJones-1985-2003 0.1901 1.66E-05 7.0447E-04 4.12E-08 5.4741E-03 2.60E-07 0.0000 0.00E+00 
Duke 0.2483 5.06E-02 0.1433 2.65E-02 0.1967 3.43E-02 0.1167 2.49E-02 
Electricity 0.2095 2.92E-05 0.2024 2.42E-05 0.2192 4.93E-05 0.1896 2.44E-05 
Fertility 0.1467 3.16E-03 0.1367 2.99E-03 0.1333 2.89E-03 0.1300 2.77E-03 
Haberman 0.2703 2.89E-03 0.2778 1.82E-03 0.2767 1.80E-03 0.2615 1.45E-03 
Hayes-Roth 0.3292 1.53E-02 0.3375 1.14E-02 0.3417 1.56E-02 0.3146 1.11E-02 
Heart 0.1827 2.46E-03 0.1938 5.18E-03 0.1753 3.65E-03 0.1741 3.12E-03 
Hepatitis 0.1833 1.43E-02 0.1458 7.38E-03 0.1458 9.46E-03 0.1542 1.01E-02 
Hyperplane 2.0260E-03 5.80E-08 0.0129 4.42E-08 0.0282 1.87E-07 3.8620E-03 2.46E-08 
Iris 0.0311 1.40E-03 0.0378 1.68E-03 0.0356 1.40E-03 0.0378 1.68E-03 
Isolet 0.0786 1.14E-04 0.0618 7.51E-05 0.0700 1.04E-04 0.0481 6.69E-05 
Led7digit 0.2987 3.97E-03 0.2680 4.82E-03 0.2653 3.86E-03 0.2673 4.25E-03 
Letter 0.1054 5.34E-05 0.0617 3.36E-05 0.1089 5.00E-05 0.0681 4.40E-05 
Leukemia 0.0655 7.32E-03 0.0554 4.62E-03 0.0696 7.60E-03 0.0286 3.27E-03 
Magic 0.1969 4.96E-05 0.1934 5.56E-05 0.1933 4.80E-05 0.1894 3.94E-05 
Mammographic 0.1872 1.87E-03 0.1855 1.90E-03 0.1851 1.58E-03 0.1908 1.61E-03 
Marketing 0.6799 1.44E-04 0.6791 2.33E-04 0.6700 2.29E-04 0.6674 1.68E-04 
Multiple-Features 0.0215 1.45E-04 0.0128 8.11E-05 0.0150 6.50E-05 0.0145 6.89E-05 
Musk 0.1484 1.30E-03 0.1708 2.28E-03 0.1695 3.87E-03 0.1337 1.53E-03 
Page-Blocks 0.0423 5.97E-05 0.0424 5.44E-05 0.0503 5.14E-05 0.0447 5.97E-05 
Phoneme 0.1464 3.03E-04 0.1337 1.77E-04 0.1796 3.30E-04 0.1400 3.09E-04 
Pima 0.2448 2.15E-03 0.2366 2.31E-03 0.2427 2.84E-03 0.2531 2.61E-03 
Plant-Margin 0.3242 9.37E-04 0.2108 5.18E-04 0.2060 6.42E-04 0.1896 4.25E-04 
Plant-Shape 0.4660 1.12E-03 0.4477 6.24E-04 0.4354 7.53E-04 0.4125 1.07E-03 
Poker 0.4304 1.89E-06 0.3938 2.53E-05 0.3907 2.64E-06 0.3650 2.88E-06 
RandomTree 0.1229 4.86E-07 0.1178 8.53E-07 0.1247 4.61E-07 0.1119 9.47E-07 
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Satimage 0.1036 1.34E-04 0.0996 1.19E-04 0.1281 1.12E-04 0.0970 1.53E-04 
Skin-NonSkin 1.6459E-03 9.43E-08 5.1145E-04 1.64E-08 9.0047E-04 4.54E-08 5.2777E-04 1.72E-08 
Sonar 0.2533 6.32E-03 0.2375 8.11E-03 0.2437 5.70E-03 0.2161 7.91E-03 
Spambase 0.0961 1.60E-04 0.1072 1.23E-04 0.0977 9.32E-05 0.0975 1.26E-04 
Svmguide 0.1976 5.39E-03 0.1788 4.29E-03 0.1729 4.78E-03 0.1763 3.36E-03 
Tae 0.5118 1.60E-02 0.4863 1.32E-02 0.4925 1.57E-02 0.4903 1.18E-02 
Texture 0.0128 2.03E-05 0.0058 4.28E-06 0.0128 1.97E-05 0.0048 5.62E-06 
Twonorm 0.0217 2.36E-05 0.0222 2.19E-05 0.0217 2.14E-05 0.0214 1.64E-05 
Vehicle 0.2774 1.78E-03 0.2651 2.13E-03 0.2569 1.11E-03 0.2282 1.15E-03 
Vertebral 0.1839 4.31E-03 0.1753 4.21E-03 0.1968 4.39E-03 0.1860 3.52E-03 
Waveform-w-Noise 0.1532 1.46E-04 0.1647 2.81E-04 0.1692 1.79E-04 0.1549 2.14E-04 
Waveform-wo-Noise 0.1463 2.67E-04 0.1569 2.79E-04 0.1653 2.93E-04 0.1475 3.57E-04 
Wdbc 0.0416 4.21E-04 0.0475 9.50E-04 0.0399 3.09E-04 0.0305 4.51E-04 
Wine 0.0224 1.17E-03 0.0339 2.26E-03 0.0282 1.41E-03 0.0245 1.22E-03 
Wine-Red 0.4324 7.56E-04 0.4180 8.78E-04 0.4234 1.19E-03 0.4157 1.10E-03 
Wine-White 0.4584 3.09E-04 0.4502 4.67E-04 0.4682 3.06E-04 0.4539 3.21E-04 
Yeast 0.4277 1.09E-03 0.4077 1.69E-03 0.3994 1.50E-03 0.4050 9.56E-04 

The bold value indicates the best result on each dataset 

 
Figure 4. The result of Wilcoxon signed rank test (using 3 base classifiers) 

Table 4. Mean and variance of classification error of three ensemble methods (using 7 base classifiers) 
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GA Meta-data ACO Decision Template META DES KNORA ELIMINATE KNORA UNION Proposed Method 
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Abalone* 0.4986 6.84E-04 0.4888 9.25E-04 0.4826 1.54E-02 0.4652 7.22E-04 0.4812 6.90E-04 0.4652 4.42E-04 0.4648 3.45E-04 
Appendicitis 0.1767 9.44E-03 0.1630 1.18E-02 0.1212 6.89E-02 0.1224 8.28E-03 0.1424 8.98E-03 0.1261 9.77E-03 0.1452 7.40E-03 
Artificial 0.2667 3.80E-03 0.2229 2.14E-03 0.2462 4.80E-02 0.2171 2.58E-03 0.2538 1.89E-03 0.2210 1.70E-03 0.2233 1.71E-03 
AssetNegotiation-F2* 0.0511 1.87E-07 0.2283 3.29E-02 0.0779 7.75E-06 0.0519 2.47E-07 0.0657 3.56E-05 0.0632 2.17E-06 0.0511 1.87E-07 
AssetNegotiation-F3 0.0530 1.36E-05 0.1808 3.59E-02 0.0679 7.12E-06 0.0531 1.48E-07 0.0630 2.09E-05 0.0594 2.40E-06 0.0518 1.73E-07 
AssetNegotiation-F4* 0.0536 5.46E-06 0.2691 3.60E-02 0.0537 3.42E-07 0.0540 7.98E-07 0.0796 8.83E-05 0.0629 1.27E-06 0.0528 3.06E-07 
Australian 0.1845 1.97E-03 0.1908 2.62E-03 0.1324 3.78E-02 0.1705 1.54E-03 0.1826 2.30E-03 0.1541 1.63E-03 0.1444 1.32E-03 
Banana 0.1331 3.65E-04 0.1279 3.51E-04 0.1028 1.34E-02 0.1088 1.04E-04 0.1184 2.10E-04 0.1029 8.77E-05 0.0997 8.30E-05 
Biodeg 0.1773 1.19E-03 0.1839 1.16E-03 0.1292 3.55E-02 0.1419 7.45E-04 0.1823 1.86E-03 0.1422 8.31E-04 0.1311 5.94E-04 
Blood 0.2861 3.18E-03 0.2643 1.46E-03 0.2589 5.12E-02 0.2437 1.53E-03 0.2664 2.52E-03 0.2254 1.35E-03 0.2125 1.15E-03 
BNG-Bridges* 0.3044 1.19E-05 0.2865 3.02E-04 0.2785 2.86E-06 0.2880 1.79E-06 0.2903 3.14E-06 0.2842 3.10E-05 0.2506670 1.57648E-06 
BNG-Zoo 0.0572 3.83E-06 0.0554 1.85E-06 0.0566 3.74E-07 0.0517 4.09E-07 0.0577 6.88E-07 0.0571 7.01E-07 0.0472 3.86E-07 
Breast-Tissue 0.3736 1.81E-02 0.3915 1.65E-02 0.3515 9.92E-02 0.4094 1.71E-02 0.4409 2.05E-02 0.3636 7.66E-03 0.3249 8.37E-03 
Bupa 0.3585 5.38E-03 0.3606 8.10E-03 0.2994 5.57E-02 0.3544 6.85E-03 0.3446 6.94E-03 0.2955 3.57E-03 0.2995 4.36E-03 
Cleveland 0.4615 5.21E-03 0.4631 6.00E-03 0.4150 7.20E-02 0.4276 4.47E-03 0.4847 7.82E-03 0.4251 3.20E-03 0.4429 3.95E-03 
CNS 0.4833 2.84E-02 0.4167 1.81E-02 0.3833 2.62E-02 0.3611 2.79E-02 0.3833 3.55E-02 0.4000 2.89E-02 0.3556 2.91E-02 
Colon 0.2206 1.66E-02 0.1929 2.30E-02 0.1238 1.49E-02 0.1849 2.66E-02 0.2587 3.04E-02 0.1937 3.30E-02 0.1619 1.76E-02 
Contraceptive 0.5230 1.59E-03 0.5130 2.00E-03 0.4337 3.10E-02 0.4804 1.65E-03 0.4795 1.69E-03 0.4415 1.64E-03 0.4370 1.84E-03 
Dermatology 0.0354 7.77E-04 0.0401 9.18E-04 0.0411 2.94E-02 0.0225 6.56E-04 0.0829 3.81E-03 0.0224 8.67E-04 0.0262 6.81E-04 
DowJones-1985-2003 0.0000 0.00E+00 9.6500E-05 1.72E-08 0.0005 3.77E-08 0.0264 6.64E-05 6.9965E-05 3.31E-09 2.0989E-04 2.88E-08 1.4475E-05 8.38E-10 
Duke 0.2317 3.42E-02 0.1350 2.35E-02 0.1400 2.86E-02 0.1917 3.82E-02 0.2600 3.37E-02 0.2150 3.95E-02 0.1467 3.07E-02 
Electricity 0.1160 1.53E-04 0.1150 3.31E-05 0.1324 2.66E-05 0.1401 2.11E-05 0.1543 8.62E-05 0.1558 1.13E-04 0.1051 1.75E-05 
Fertility*,** 0.1967 1.50E-02 0.1833 1.54E-02 0.3533 1.72E-01 0.1333 3.56E-03 0.1733 9.29E-03 0.1267 3.96E-03 0.1533 3.82E-03 
Haberman* 0.3474 4.33E-03 0.3312 4.55E-03 0.3413 8.31E-02 0.2878 2.90E-03 0.2962 2.09E-03 0.2846 1.90E-03 0.2823 2.36E-03 
Hayes-Roth 0.1833 9.10E-03 0.1625 1.27E-02 0.2188 1.12E-01 0.2521 1.26E-02 0.2229 1.06E-02 0.2063 1.20E-02 0.2083 1.15E-02 
Heart 0.2370 6.46E-03 0.2185 3.78E-03 0.1679 6.58E-02 0.2037 6.56E-03 0.2543 7.02E-03 0.1889 4.60E-03 0.1852 4.57E-03 
Hepatitis** 0.2125 2.62E-02 0.1917 8.06E-03 0.1875 1.17E-01 0.1625 1.16E-02 0.1625 1.58E-02 0.1417 1.33E-02 0.1542 1.32E-02 
Hyperplane 6.6000E-05 9.44E-10 2.1900E-04 8.75E-08 5.2910E-03 1.24E-05 9.6100E-04 3.75E-08 1.0540E-03 1.24E-08 2.7740E-03 2.88E-07 4.4000E-05 1.06E-09 
Iris 0.0311 1.70E-03 0.0444 2.47E-03 0.0578 8.88E-02 0.0400 1.96E-03 0.0489 1.46E-03 0.0400 1.96E-03 0.0356 1.11E-03 
Isolet 0.0597 2.32E-04 0.0640 1.16E-04 0.0435 8.63E-03 0.0596 5.53E-05 0.1174 2.50E-04 0.0608 7.28E-05 0.0433 5.97E-05 
Led7digit 0.3293 4.69E-03 0.3013 5.20E-03 0.2700 6.30E-02 0.3120 5.46E-03 0.2947 5.09E-03 0.2673 4.65E-03 0.2773 4.37E-03 
Letter 0.0763 2.14E-04 0.0540 3.94E-04 0.0783 6.83E-03 0.1219 9.41E-05 0.0718 3.94E-05 0.1022 4.75E-05 0.0530 3.45E-05 
Leukemia 0.0417 4.07E-03 0.0554 4.62E-03 0.0190 2.36E-03 0.0375 3.88E-03 0.0423 4.18E-03 0.0333 5.01E-03 0.0238 2.83E-03 
Magic* 0.2042 1.89E-04 0.1735 4.94E-05 0.1676 6.90E-03 0.1838 5.97E-05 0.1805 5.87E-05 0.1726 5.77E-05 0.1570 3.62E-05 
Mammographic** 0.2237 2.55E-03 0.2092 2.35E-03 0.1956 2.32E-02 0.2072 1.75E-03 0.2149 1.96E-03 0.1851 1.20E-03 0.1779 1.49E-03 
Marketing* 0.7341 2.62E-04 0.7337 2.67E-04 0.6701 7.87E-03 0.6771 1.50E-04 0.6723 2.04E-04 0.6675 2.51E-04 0.6625 1.42E-04 
Multiple-Features 0.0137 6.99E-05 0.0142 8.35E-05 0.0107 6.53E-03 0.0182 8.91E-05 0.0190 8.40E-05 0.0185 6.86E-05 0.0117 5.22E-05 
Musk 0.0889 1.73E-03 0.1002 2.69E-03 0.0623 3.58E-02 0.1491 2.42E-03 0.1274 3.13E-03 0.1534 3.23E-03 0.0672 6.31E-04 
Page-Blocks** 0.0355 5.84E-05 0.0370 4.09E-05 0.0384 8.82E-03 0.0390 3.91E-05 0.0416 3.68E-05 0.0478 4.81E-05 0.0358 2.78E-05 
Phoneme 0.1271 4.04E-04 0.1172 2.39E-04 0.1395 1.42E-02 0.1322 1.81E-04 0.1297 1.85E-04 0.1462 3.54E-04 0.1140 1.14E-04 
Pima 0.3047 3.03E-03 0.3077 2.45E-03 0.2491 5.01E-02 0.2614 1.62E-03 0.2891 1.88E-03 0.2435 2.57E-03 0.2422 2.11E-03 
Plant-Margin** 0.3119 1.16E-03 0.2796 1.08E-03 0.1925 1.79E-02 0.2821 9.29E-04 0.2246 7.34E-04 0.2056 8.19E-04 0.1873 6.63E-04 
Plant-Shape** 0.5225 1.40E-03 0.4598 1.30E-03 0.4404 1.88E-02 0.4656 1.01E-03 0.4563 9.01E-04 0.4604 8.08E-04 0.4115 1.15E-03 
Poker 0.3781 5.58E-03 0.3164 8.69E-05 0.5017 3.99E-03 0.3928 4.18E-05 0.3954 8.90E-05 0.3353 9.44E-05 0.3136 3.23E-05 
RandomTree 0.0052 3.49E-06 0.0039 1.82E-07 0.0238 2.44E-06 0.0124 8.83E-07 0.0138 5.40E-07 0.0531 3.14E-05 0.0038 1.92E-07 
Satimage** 0.1125 1.51E-04 0.0998 3.18E-04 0.1212 8.76E-05 0.1059 1.24E-04 0.1072 1.15E-04 0.1271 1.39E-04 0.0890 7.42E-05 
Skin-NonSkin 6.4203E-04 2.35E-07 5.7540E-04 6.44E-08 6.0000E-04 1.17E-04 9.3176E-04 5.66E-08 4.8832E-04 1.67E-08 6.4339E-04 1.84E-08 4.2847E-04 2.05E-08 
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Sonar 0.2114 7.56E-03 0.2391 6.54E-03 0.1375 7.16E-02 0.1999 7.85E-03 0.1949 1.30E-02 0.2160 7.41E-03 0.1681 5.02E-03 
Spambase 0.0805 1.43E-04 0.0826 1.41E-04 0.0624 1.06E-02 0.0749 1.15E-04 0.1222 3.22E-03 0.0845 3.01E-04 0.0734 1.00E-04 
Svmguide 0.2471 7.04E-03 0.2702 2.20E-03 0.1712 4.56E-03 0.2070 5.24E-03 0.2063 4.09E-03 0.1721 3.43E-03 0.1856 5.79E-03 
Tae 0.4989 1.42E-02 0.5581 1.43E-02 0.3540 1.33E-01 0.4944 1.55E-02 0.4614 1.10E-02 0.4881 1.93E-02 0.4485 1.40E-02 
Texture 0.0050 7.20E-06 0.0059 1.29E-05 0.0081 1.29E-05 0.0088 1.65E-05 0.0056 7.92E-06 0.0210 3.39E-05 0.0035 4.48E-06 
Twonorm 0.0321 4.00E-05 0.0321 2.96E-05 0.0192 3.67E-03 0.0223 1.70E-05 0.0287 3.48E-05 0.0228 2.31E-05 0.0218 1.51E-05 
Vehicle 0.2514 2.27E-03 0.2692 1.68E-03 0.2309 3.17E-02 0.2553 1.07E-03 0.2972 1.50E-03 0.2872 1.23E-03 0.2278 9.34E-04 
Vertebral 0.2022 3.88E-03 0.1828 4.81E-03 0.1516 5.23E-02 0.1613 3.47E-03 0.1785 4.84E-03 0.1742 3.44E-03 0.1634 3.81E-03 
Waveform-w-Noise 0.1755 2.45E-04 0.1725 1.94E-04 0.1535 1.53E-02 0.1534 2.95E-04 0.1979 7.42E-04 0.1641 1.51E-04 0.1431 1.64E-04 
Waveform-wo-Noise 0.1773 3.82E-04 0.1739 2.44E-04 0.1423 1.87E-02 0.1391 2.76E-04 0.1783 5.67E-04 0.1597 3.92E-04 0.1313 2.86E-04 
Wdbc 0.0392 5.48E-04 0.0369 6.24E-04 0.0322 1.60E-02 0.0369 3.80E-04 0.0545 8.89E-04 0.0393 4.87E-04 0.0393 5.28E-04 
Wine** 0.0225 9.69E-04 0.0225 1.20E-03 0.0582 6.03E-02 0.0358 1.80E-03 0.0341 1.91E-03 0.0415 1.91E-03 0.0395 1.73E-03 
Wine-Red** 0.4534 1.86E-03 0.4332 2.49E-03 0.4980 3.62E-02 0.4107 1.06E-03 0.4263 1.84E-03 0.3900 8.16E-04 0.3677 1.15E-03 
Wine-White** 0.4879 7.54E-04 0.4578 7.22E-04 0.5208 2.39E-02 0.4240 5.86E-04 0.4610 8.94E-04 0.4226 5.52E-04 0.3800 2.90E-04 
Yeast 0.4919 1.11E-03 0.4798 1.91E-03 0.4057 3.95E-02 0.4405 1.00E-03 0.4171 8.63E-04 0.3992 1.05E-03 0.3906 7.75E-04 

We do not show the results of Random Subspace and RotBoost method since the results are similar to those in Table 2; The bold value indicates the best result on each dataset; * means that the 

best results belong to RotBoost; ** means that the best results belong to Random Subspace.  

 

Figure 5. The result of Nemenyi test (using 7 base classifiers) 
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Figure 6. The result of Wilcoxon signed rank test (using 7 base classifiers) 

Table 5. The running time (in seconds) of three evolutionary algorithm-based methods 

GA Meta-data ACO Proposed Method 
AssetNegotiation-F2 547.28 110.15 37118.12 
CNS 2.95 3.24 7.86 
Haberman 1.81 1.95 12.47 
Isolet 3518.63 18.71 369.84 
Lekemia 3.02 3.28 8.51 
Multiple-Features 44.90 4.27 90.28 
Plant-Margin 22258.03 42.75 148.21 
Plant-Shape 10503.35 29.87 149.01 
Poker 124922.90 706.86 41316.05 
Wine 4.80 1.97 8.16 
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Table 6. The credibility threshold for the three base classifiers and the maximum entropy value in 30 datasets 

LDA Naïve Bayes kNN5 Max of Entropy 
Artificial 0.9892 1.0000 1.0000 1.0000 
Australian 0.8873 0.9338 1.0000 1.0000 
Banana 1.0000 0.7718 0.7819 1.0000 
Biodeg 0.9981 0.0019 1.0000 1.0000 
Blood 0.9051 0.9043 1.0000 1.0000 
Contraceptive 1.5849 1.5474 1.1945 1.5850 
Dermatology 1.9887 0.3226 2.3712 2.5850 
Fertility 0.4680 0.1308 0.3906 1.0000 
Haberman 0.5200 0.7677 0.0000 1.0000 
Heart 0.8517 0.8780 1.0000 1.0000 
Hepatitis 0.7485 1.0000 0.4535 1.0000 
Isolet 2.0698 0.0000 2.7977 4.7004 
Led7digit 2.8893 2.9946 0.0056 3.3219 
Marketing 3.1133 2.6677 2.6893 3.1699 
Multiple-Features 0.4624 2.2961 1.3451 3.3219 
Musk 1.0000 0.0025 1.0000 1.0000 
Plant-Margin 4.3688 0.4286 4.3555 6.6439 
Plant-Shape 6.6439 1.3479 3.3827 6.6439 
Satimage 2.5850 0.0000 2.4138 2.5850 
Skin-NonSkin 0.0000 1.0000 1.0000 1.0000 
Sonar 1.0000 0.0000 0.7341 1.0000 
Spambase 0.9448 1.0000 1.0000 1.0000 
Texture 2.2738 0.0000 3.3219 3.3219 
Twonorm 0.9999 0.9999 0.4379 1.0000 
Vehicle 2.0000 0.0000 1.9328 2.0000 
Waveform-w-Noise 1.5422 0.0346 1.5101 1.5850 
Waveform-wo-Noise 1.4994 0.0483 1.5850 1.5850 
Wdbc 0.6174 0.9805 0.2017 1.0000 
Wine 0.8196 1.0091 0.5298 1.5850 
Yeast 2.6793 0.2575 3.3219 3.3219 
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Supplementary Material 
Paper: Ensemble selection based on classifier’s confidence in predictions 

 
Table S1. Classification error of the proposed method using 3 different entropy measures 

 Proposed Method (Shannon) Proposed Method (Min) Proposed Method (Collison) 
 Mean Variance Mean Variance Mean Variance 

Artificial 0.2124 1.04E-03 0.2100 1.13E-03 0.2162 1.21E-03 
Australian 0.1444 1.25E-03 0.1420 1.00E-03 0.1406 1.05E-03 
Banana 0.1069 1.07E-04 0.1071 1.05E-04 0.1070 9.80E-05 
Biodeg 0.1302 8.32E-04 0.1308 7.13E-04 0.1314 8.51E-04 
Blood 0.2259 1.38E-03 0.2206 9.89E-04 0.2290 1.35E-03 
Contraceptive 0.4587 1.29E-03 0.4619 1.49E-03 0.4589 1.94E-03 
Dermatology 0.0289 7.14E-04 0.0299 7.94E-04 0.0317 4.66E-04 
Fertility 0.1300 2.77E-03 0.1267 2.62E-03 0.1267 2.62E-03 
Haberman 0.2615 1.45E-03 0.2584 1.95E-03 0.2616 1.78E-03 
Heart 0.1741 3.12E-03 0.1679 2.81E-03 0.1753 2.92E-03 
Hepatitis 0.1542 1.01E-02 0.1458 1.26E-02 0.1333 1.35E-02 
Isolet 0.0481 6.69E-05 0.0481 6.69E-05 0.0482 6.90E-05 
Led7digit 0.2673 4.25E-03 0.2680 4.04E-03 0.2707 3.89E-03 
Marketing 0.6674 1.68E-04 0.6683 1.50E-04 0.6680 1.45E-04 
Multiple-Features 0.0145 6.89E-05 0.0142 5.68E-05 0.0157 6.96E-05 
Musk 0.1337 1.53E-03 0.1309 1.66E-03 0.1372 1.60E-03 
Plant-Margin 0.1896 4.25E-04 0.1919 3.68E-04 0.1892 4.82E-04 
Plant-Shape 0.4125 1.07E-03 0.4150 1.16E-03 0.4100 9.68E-04 
Satimage 0.0970 1.53E-04 0.0969 1.55E-04 0.0971 1.49E-04 
Skin-NonSkin 5.2777E-04 1.72E-08 5.2097E-04 1.83E-08 5.3049E-04 2.64E-08 
Sonar 0.2161 7.91E-03 0.2130 8.07E-03 0.2067 5.63E-03 
Spambase 0.0975 1.26E-04 0.0980 1.49E-04 0.0966 1.31E-04 
Texture 0.0048 5.62E-06 0.0050 5.72E-06 0.0049 5.54E-06 
Twonorm 0.0214 1.64E-05 0.0215 1.90E-05 0.0214 1.86E-05 
Vehicle 0.2282 1.15E-03 0.2285 1.23E-03 0.2289 1.17E-03 
Waveform-w-Noise 0.1549 2.14E-04 0.1547 2.00E-04 0.1551 2.06E-04 
Waveform-wo-Noise 0.1475 3.57E-04 0.1469 3.37E-04 0.1471 3.46E-04 
Wdbc 0.0305 4.51E-04 0.0316 3.78E-04 0.0328 4.88E-04 
Wine 0.0245 1.22E-03 0.0320 1.45E-03 0.0341 2.80E-03 
Yeast 0.4050 9.56E-04 0.4000 1.21E-03 0.4010 1.13E-03 
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Table S2. Wilcoxon test results between the proposed method and each benchmark algorithm (using 3 base classifiers) 

 Decision Template GA Meta-data ACO KNORA UNION KNORA ELIMINATE META-DES Random Subspace RotBoost 

 P-Value W/L P-Value W/L P-Value W/L P-Value  P-Value W/L P-Value W/L P-Value W/L P-Value W/L 
Abalone 1.99E-01  9.46E-01  5.40E-01  7.50E-01  3.08E-01  8.13E-01  2.29E-01  7.20E-03 No 
Appendicitis 6.24E-02  6.92E-01  8.43E-02  9.77E-03 No 9.18E-02  2.54E-02 No 2.81E-01  1.88E-01  
Artificial 4.17E-04 W 2.15E-02 W 6.35E-02  5.39E-01  1.68E-02 W 3.70E-03 W 7.15E-06 W 5.77E-06 W 
Assetnegotiation-F2 1.95E-03 W 8.40E-02  1.00E+00  1.95E-03 W 1.95E-03 No 1.95E-03 No 1.00E+00  1.95E-03 No 
Assetnegotiation-F3 1.95E-03 W 5.86E-03 L 1.00E+00  1.95E-03 W 1.95E-03 No 1.95E-03 No 1.95E-02 W 1.95E-03 No 
Assetnegotiation-F4 1.95E-03 W 5.57E-01  1.93E-01  1.95E-03 W 3.91E-03 No 1.95E-03 No 1.95E-03 W 1.95E-03 No 
Australian 5.53E-01  1.70E-05 W 2.38E-04 W 2.65E-02 L 9.49E-03 W 2.04E-02 W 3.27E-01  1.53E-03 W 
Banana 1.19E-01  7.52E-04 W 3.76E-03 W 5.30E-01  9.62E-06 W 2.28E-03 W 1.73E-06 W 4.02E-01  
BNG-Bridges 1.95E-03 W 1.95E-03 W 5.86E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 L 1.95E-03 W 1.95E-03 L 
Biodeg 1.20E-01  1.50E-05 W 6.30E-06 W 1.99E-03 W 5.44E-03 W 4.25E-03 W 1.94E-01  2.36E-04 W 
Blood 7.68E-04 W 2.58E-01  1.09E-04 W 3.32E-01  7.12E-01  2.50E-01  5.63E-01  6.24E-01  
BNG-Zoo 1.95E-03 W 1.95E-03 L 9.77E-03 L 1.95E-03 W 1.95E-03 W 1.95E-03 L 1.95E-03 W 1.95E-03 L 
Breast-Tissue 9.91E-01  5.58E-02  1.72E-01  3.43E-01  7.50E-02  9.36E-01  2.61E-02 L 2.81E-01  
Bupa 3.06E-02 W 2.74E-05 W 8.41E-04 W 1.05E-04 W 2.13E-04 W 2.29E-03 W 1.09E-02 W 2.87E-02 W 
Cleveland 5.80E-01  4.64E-01  8.93E-02  7.97E-03 L 2.50E-01  4.29E-01  5.09E-01  5.01E-01  
CNS 9.96E-02  1.18E-01  1.06E-01  7.73E-01  9.25E-01  4.74E-01  9.37E-01  8.05E-01  
Colon 3.28E-01  1.17E-01  1.44E-01  2.67E-01  1.22E-01  1.88E-02 W 6.35E-01  8.73E-01  
Contraceptive 2.29E-01  3.78E-06 W 9.28E-06 W 9.45E-01  3.11E-01  5.78E-02  3.43E-03 W 5.01E-01  
Dermatology 4.66E-04 W 1.49E-01  9.06E-02  5.03E-01  1.89E-01  6.09E-04 W 5.85E-01  6.01E-02  
Dowjones-1985-2003 1.72E-06 W 1.00E+00  5.00E-01  1.71E-06 W 1.70E-06 W 1.73E-06 W 2.43E-06 W 1.25E-01  
Duke 1.00E+00  7.50E-01  1.00E+00  5.86E-03 W 2.89E-01  1.81E-03 W 2.50E-01  9.77E-03 W 
Electricity 3.02E-06 W 6.60E-02  6.60E-02  1.73E-06 W 1.73E-06 W 1.73E-06 W 1.73E-06 L 2.33E-01  
Fertility 7.31E-06 W 7.81E-03 W 1.80E-01  1.00E+00  6.25E-01  2.73E-01  2.50E-01  2.50E-01  
Haberman 3.26E-05 W 8.23E-05 W 1.35E-03 W 1.80E-02 W 3.91E-02 W 2.74E-01  3.15E-02 W 1.34E-01  
Hayes-Roth 8.77E-01  4.21E-01  6.74E-02  2.57E-01  1.58E-01  4.13E-01  1.34E-01  3.11E-03 W 
Heart 1.71E-01  1.39E-04 W 9.82E-03 W 8.52E-01  9.39E-02  1.97E-01  3.18E-01  7.67E-01  
Hepatitis 6.26E-01  3.37E-01  3.97E-02 W 6.69E-01  6.86E-01  2.33E-01  2.75E-01  8.70E-01  
Hyperplane 1.95E-03 W 1.95E-03 L 1.95E-03 L 1.95E-03 W 1.95E-03 W 1.95E-03 L 1.95E-03 W 1.95E-03 W 
Iris 9.15E-01  5.70E-01  1.10E-01  1.00E+00  1.00E+00  2.50E-01  1.56E-01  1.00E+00  
Isolet 2.37E-02 W 2.54E-06 W 1.92E-06 W 1.72E-06 W 1.71E-06 W 1.72E-06 W 5.18E-06 W 1.73E-06 W 
Led7digit 9.25E-01  1.45E-04 W 1.77E-04 W 5.37E-01  9.41E-01  1.57E-04 W 1.68E-06 W 3.80E-01  
Letter 3.68E-06 W 2.35E-05 L 1.73E-06 L 1.73E-06 W 1.76E-05 L 1.72E-06 W 1.73E-06 W 1.73E-06 W 
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Leukemia 2.50E-01  5.63E-01  3.13E-02 W 2.54E-02 W 1.02E-01  5.47E-02  1.00E+00  1.07E-02 W 
Magic 6.22E-01  4.05E-01  5.23E-01  7.46E-05 W 9.21E-04 W 3.87E-06 W 1.72E-06 L 1.72E-06 L 
Mammographic 6.81E-01  9.01E-02  5.08E-03 W 1.05E-01  2.64E-01  6.46E-01  3.07E-04 L 3.66E-01  
Marketing 2.62E-01  1.72E-06 W 1.73E-06 W 4.25E-01  2.21E-03 W 1.47E-04 W 1.09E-01  1.09E-01  
Multiple-Features 9.91E-01  8.23E-01  6.72E-01  7.04E-01  2.82E-01  1.82E-03 W 3.71E-02 W 1.66E-06 W 
Musk 9.18E-01  8.64E-01  2.16E-01  2.32E-03 W 6.01E-04 W 7.51E-02  1.87E-04 L 2.83E-06 W 
Page-Blocks 3.58E-04 W 1.10E-01  3.99E-01  4.25E-05 W 4.18E-02 L 3.23E-03 L 2.09E-06 L 6.00E-05 W 
Phoneme 3.38E-03 W 1.73E-06 L 1.73E-06 L 1.73E-06 W 2.34E-02 L 7.44E-03 W 6.62E-06 W 1.73E-06 W 
Pima 3.28E-01  5.44E-05 W 1.82E-04 W 1.22E-01  5.97E-02  3.34E-01  5.72E-01  5.88E-01  
Plant-Margin 9.04E-01  1.69E-06 W 1.71E-06 W 3.85E-04 W 1.76E-04 W 1.71E-06 W 7.44E-03 L 1.71E-06 W 
Plant-Shape 7.40E-01  5.40E-06 W 9.11E-06 W 5.99E-04 W 2.54E-04 W 4.97E-06 W 6.44E-05 L 1.72E-06 W 
Poker 1.95E-03 W 8.40E-02  1.95E-03 L 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 3.91E-03 W 
Randomtree 1.95E-03 L 1.95E-03 L 1.95E-03 L 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 L 
Satimage 1.73E-06 W 9.96E-04 W 4.43E-02 L 1.73E-06 W 1.48E-01  1.93E-03 W 1.89E-04 L 1.73E-06 W 
Skin-Nonskin 1.73E-06 W 7.65E-04 L 8.30E-04 L 1.72E-06 W 4.15E-01  1.73E-06 W 1.73E-06 W 1.73E-06 W 
Sonar 2.65E-01  3.79E-02 W 2.68E-01  3.79E-02 W 2.06E-01  4.45E-02 W 1.61E-03 L 2.62E-01  
Spambase 4.78E-01  2.84E-06 W 7.18E-06 W 7.33E-01  4.34E-04 W 6.82E-01  6.34E-01  9.95E-06 L 
Svmguide 3.27E-01  5.91E-05 W 3.07E-05 W 5.74E-01  6.13E-01  1.68E-02 W 1.40E-05 W 4.15E-06 W 
Tae 3.40E-02 L 2.78E-02 W 4.14E-01  8.27E-01  8.20E-01  4.83E-01  9.89E-01  3.59E-01  
Texture 1.68E-05 W 7.65E-01  8.13E-01  1.70E-06 W 2.57E-02 W 2.76E-06 W 1.71E-06 W 1.73E-06 W 
Twonorm 6.87E-02  2.28E-06 W 1.73E-06 W 5.54E-01  2.21E-01  7.52E-01  8.32E-06 W 1.89E-06 W 
Vehicle 5.19E-02  1.01E-03 W 1.50E-03 W 7.27E-04 W 3.72E-04 W 2.63E-05 W 1.85E-03 W 2.83E-06 W 
Vertebral 6.51E-01  9.14E-01  9.12E-03 L 4.10E-01  3.52E-01  7.33E-01  2.45E-06 W 7.03E-01  
Waveform-w-Noise 1.82E-02 W 7.27E-06 W 1.94E-05 W 1.11E-05 W 1.73E-03 W 5.59E-01  4.27E-06 W 3.98E-02 W 
Waveform-wo-Noise 9.65E-01  2.49E-06 W 4.52E-06 W 2.52E-06 W 1.58E-03 W 6.57E-01  2.62E-01  3.99E-03 W 
Wdbc 3.31E-02 W 2.57E-01  6.01E-03 W 2.77E-02 W 1.02E-02 W 2.58E-02 W 9.59E-02  2.67E-04 W 
Wine 1.55E-01  1.00E+00  6.78E-01  5.55E-01  3.75E-01  6.35E-01  2.66E-01  2.58E-01  
Wine-Red 1.71E-06 W 1.03E-04 W 5.61E-05 W 1.71E-01  7.37E-01  2.24E-03 W 1.72E-06 L 6.82E-03 L 
Wine-White 1.73E-06 W 6.98E-05 W 3.89E-06 W 2.46E-04 W 3.76E-01  8.16E-02  1.73E-06 L 3.72E-05 L 
Yeast 3.65E-01  2.46E-06 W 2.12E-06 W 1.79E-01  5.67E-01  3.85E-04 W 1.73E-06 W 5.20E-04 W 

 

*The color values indicate that we reject the null hypothesis that ‘two methods perform equally on the dataset’, ‘W’ or ‘L’ mean for the dataset, the proposed method wins (in green color) or 
loses (in red color) to the benchmark algorithm based on the Wilcoxon signed rank test 
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Table S3. Wilcoxon test results between the proposed method and each benchmark algorithm (using 7 base classifiers) 

 vs. Decision Template 
vs. GA Meta-

data vs. KNORA UNION vs. KNORA ELIMINATE vs. META-DES vs. Random Subspace vs. RotBoost vs. ACO 

 P-Value W/L P-Value W/L P-Value W/L P-Value W/L P-Value W/L P-Value W/L P-Value W/L P-Value W/L 
Abalone 3.32E-04 W 2.59E-05 Yes 8.20E-01  4.24E-03 W 7.73E-01  5.89E-01  2.61E-01  3.51E-03 W 
Appendicitis 1.12E-01  1.22E-01  1.52E-01  8.02E-01  5.76E-02  4.53E-01  5.01E-01  3.45E-01  
Artificial 4.38E-02 W 9.14E-05 W 9.68E-01  2.52E-03 W 4.82E-01  1.28E-05 W 1.51E-05 W 9.15E-01  
Assetnegotiation-F2 1.95E-03 W 1.00E+00  1.95E-03 W 1.95E-03 W 1.95E-03 W 3.91E-03 W 1.00E+00  7.81E-03 W 
Assetnegotiation-F3 1.95E-03 W 5.00E-01  1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 3.13E-02 W 3.91E-03 W 
Assetnegotiation-F4 1.95E-03 W 5.00E-01  1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.00E+00  5.86E-03 W 
Australian 2.10E-01  4.61E-04 W 2.21E-01  3.22E-04 W 3.44E-03 W 2.09E-01  9.75E-04 W 8.30E-05 W 
Banana 1.88E-01  2.56E-06 W 3.91E-02 W 6.48E-06 W 7.06E-05 W 1.73E-06 W 1.41E-02 W 2.35E-06 W 
BNG-Bridges 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 L 1.95E-03 W 
Biodeg 7.81E-01  1.44E-05 W 1.07E-02 W 5.23E-06 W 6.13E-02  3.19E-01  2.58E-05 W 4.19E-06 W 
Blood 3.86E-04 W 7.18E-06 W 1.25E-02 W 7.76E-06 W 5.98E-04 W 1.09E-01  8.11E-03 W 1.01E-04 W 
BNG-Zoo 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 
Breast-Tissue 3.80E-01  3.39E-02 W 1.32E-01  2.49E-03 W 1.06E-02 W 8.06E-01  5.43E-02  1.67E-02 W 
Bupa 9.67E-01  3.31E-03 W 6.66E-01  2.14E-02 W 1.29E-04 W 4.34E-02 W 5.86E-02  7.01E-03 W 
Cleveland 1.11E-01  2.53E-01  1.61E-01  1.70E-02 W 5.29E-01  8.24E-02  5.11E-02  1.78E-01  
CNS 2.03E-01  8.08E-03 W 2.65E-01  3.39E-01  7.72E-01  9.85E-01  8.95E-01  2.01E-01  
Colon 1.56E-02 L 8.01E-02  2.93E-01  6.35E-03 W 3.75E-01  6.14E-01  1.00E+00  4.03E-01  
Contraceptive 7.85E-01  8.04E-06 W 4.73E-01  1.49E-05 W 7.94E-06 W 1.13E-04 W 1.37E-03 W 2.12E-06 W 
Dermatology 3.25E-03 W 8.35E-02  3.86E-01  6.10E-05 W 4.51E-01  8.70E-01  6.45E-03 W 1.21E-03 W 
Dowjones-1985-2003 1.70E-06 W 3.13E-02 L 8.08E-06 W 2.00E-04 W 1.73E-06 W 2.46E-06 W 7.81E-01  1.54E-03 W 
Duke 1.00E+00  1.95E-02 W 6.84E-03 W 4.38E-03 W 1.09E-01  1.00E+00  1.60E-01  2.81E-01  
Electricity 1.73E-06 W 1.92E-06 W 1.73E-06 W 1.73E-06 W 1.73E-06 W 2.67E-02 W 1.73E-06 W 2.55E-06 W 
Fertility 4.02E-05 W 8.21E-02  9.63E-02  2.83E-01  2.43E-01  1.07E-02 L 1.07E-02 L 1.86E-01  
Haberman 1.07E-02 W 1.07E-04 W 4.30E-01  1.20E-01  6.66E-01  2.08E-01  9.90E-01  9.71E-04 W 
Hayes-Roth 6.72E-01  1.41E-01  9.55E-01  3.42E-01  4.31E-02 W 7.86E-05 W 7.12E-06 W 3.03E-02 L 
Heart 2.05E-01  1.39E-03 W 7.50E-01  3.34E-04 W 6.91E-02  8.22E-01  4.55E-01  1.19E-02 W 
Hepatitis 1.07E-01  8.44E-02  6.94E-01  7.60E-01  8.26E-01  2.90E-01  8.25E-01  1.76E-01  
Hyperplane 1.95E-03 W 1.21E-01  1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 5.86E-03 W 
Iris 1.66E-01  2.89E-01  1.00E+00  3.13E-02 W 1.00E+00  1.09E-01  1.00E+00  5.50E-03 W 
Isolet 8.94E-01  6.26E-06 W 2.34E-06 W 1.73E-06 W 2.34E-06 W 2.32E-06 W 1.73E-06 W 1.73E-06 W 
Led7digit 4.40E-01  5.89E-05 W 2.98E-02 L 9.08E-03 W 2.34E-04 W 1.67E-06 W 5.98E-01  4.65E-03 W 
Letter 1.73E-06 W 1.73E-06 W 1.72E-06 W 1.72E-06 W 1.73E-06 W 1.73E-06 W 1.73E-06 W 1.31E-02 L 
Leukemia 1.00E+00  3.36E-01  5.00E-01  1.25E-01  3.75E-01  1.00E+00  5.86E-03 W 9.77E-02  
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Magic 5.60E-06 W 1.73E-06 W 3.15E-06 W 1.73E-06 W 1.73E-06 W 1.73E-06 W 4.17E-01  1.72E-06 W 
Mammographic 1.79E-02 W 2.52E-04 W 9.98E-02  1.56E-05 W 6.74E-04 W 4.80E-03 L 2.77E-01  1.30E-03 W 
Marketing 9.84E-03 W 1.73E-06 W 6.09E-02  2.46E-03 W 2.71E-05 W 1.14E-02 W 8.12E-01  1.73E-06 W 
Multiple-Features 5.29E-01  2.79E-01  8.36E-05 W 3.44E-05 W 2.50E-04 W 8.16E-04 W 1.68E-06 W 7.79E-02  
Musk 5.23E-01  8.52E-03 W 5.57E-06 W 6.97E-05 W 1.72E-06 W 1.79E-01  1.73E-06 W 4.45E-03 W 
Page-Blocks 8.59E-02  2.64E-01  2.53E-06 W 7.00E-05 W 6.56E-03 W 7.61E-04 L 2.35E-06 W 1.50E-01  
Phoneme 1.92E-06 W 3.07E-03 W 1.73E-06 W 1.31E-05 W 2.34E-06 W 1.73E-06 W 1.72E-06 W 2.84E-01  
Pima 7.19E-01  4.46E-05 W 9.43E-01  9.73E-05 W 2.07E-02 W 8.83E-02  5.65E-01  1.37E-05 W 
Plant-Margin 2.39E-01  2.94E-05 W 1.52E-04 W 5.30E-06 W 1.69E-06 W 1.40E-02 L 1.72E-06 W 1.71E-06 W 
Plant-Shape 1.11E-03 W 1.69E-06 W 1.63E-06 W 5.46E-05 W 3.09E-06 W 4.03E-05 L 1.71E-06 W 3.19E-05 W 
Poker 1.95E-03 W 2.32E-01  1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 2.32E-01  
RandomTree 1.95E-03 W 1.95E-02 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 1.95E-03 W 4.88E-02 W 
Satimage 1.73E-06 W 2.85E-06 W 1.73E-06 W 1.73E-06 W 3.16E-06 W 8.12E-01  1.73E-06 W 1.59E-03 W 
Skin-NonSkin 9.31E-06 W 1.55E-03 W 2.51E-06 W 3.13E-02 W 1.73E-06 W 1.73E-06 W 1.73E-06 W 4.99E-03 W 
Sonar 1.84E-02 L 3.22E-02 W 2.37E-03 W 1.01E-01  3.14E-02 W 2.62E-01  1.84E-04 W 5.00E-04 W 
Spambase 4.45E-05 L 2.21E-03 W 1.48E-03 W 6.03E-05 W 4.89E-01  2.35E-06 W 8.33E-02  1.77E-03 W 
Svmguide 4.87E-02 L 9.75E-04 W 3.35E-01  7.57E-02  1.69E-02 W 9.30E-05 W 1.10E-05 W 2.11E-05 W 
Tae 2.36E-03 L 9.37E-02  1.29E-01  8.78E-01  9.07E-02  3.54E-02 W 7.84E-03 W 5.65E-04 W 
Texture 3.45E-06 W 9.86E-03 W 1.70E-06 W 1.69E-06 W 8.97E-06 W 1.73E-06 W 1.73E-06 W 4.09E-03 W 
Twonorm 1.65E-02 L 2.21E-06 W 6.94E-02  7.23E-06 W 3.35E-01  1.06E-05 W 1.90E-06 W 1.73E-06 W 
Vehicle 9.31E-01  1.57E-02 W 2.33E-06 W 3.71E-06 W 1.60E-03 W 6.02E-04 W 2.71E-06 W 1.98E-04 W 
Vertebral 1.25E-01  8.17E-04 W 3.52E-01  2.22E-01  5.62E-01  1.58E-06 W 2.90E-01  2.46E-01  
Waveform-w-Noise 7.74E-04 W 2.54E-06 W 2.51E-06 W 1.73E-06 W 8.36E-05 W 3.46E-06 W 7.76E-06 W 1.72E-06 W 
Waveform-wo-Noise 2.28E-03 W 1.71E-06 W 2.09E-06 W 1.72E-06 W 3.06E-04 W 3.42E-06 W 2.53E-06 W 1.71E-06 W 
Wdbc 3.18E-01  8.71E-01  7.94E-01  2.01E-02 W 5.42E-01  7.87E-01  1.12E-02 W 6.00E-01  
Wine 6.63E-02  1.21E-01  7.78E-01  8.70E-01  8.18E-01  3.42E-03 L 3.57E-01  2.42E-01  
Wine-Red 1.69E-06 W 2.81E-06 W 4.37E-03 W 1.70E-05 W 2.90E-05 W 5.28E-06 L 8.52E-05 W 4.66E-06 W 
Wine-White 1.73E-06 W 1.73E-06 W 4.50E-06 W 1.73E-06 W 1.73E-06 W 1.73E-06 L 2.55E-06 W 1.73E-06 W 
Yeast 2.85E-02 W 1.73E-06 W 5.25E-02  2.05E-04 W 2.52E-06 W 1.73E-06 W 9.24E-06 W 1.91E-06 W 

 

 

*The color values indicate that we reject the null hypothesis that ‘two methods perform equally on the dataset’, ‘W’ or ‘L’ mean for the dataset, the proposed method wins (in green color)  or 
loses (in red color) to the benchmark algorithm based on the Wilcoxon signed rank test 
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Table S4. Ranking of all methods on experimental datasets (using 3 base classifiers) 

 

 
GA Meta-

data ACO 
Proposed 
Method 

Random 
Subspace RotBoost 

META-
DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Abalone 7 6 5 3 1 8 2 4 9 
Appendicitis 8 9 7 6 5 2 4 1 3 
Artificial 5 3.5 1 8 9 6 3.5 2 7 
AssetNegotiation-F2 7 9 4 5 1 2 3 6 8 
AssetNegotiation-F3 2 9 5 7 1 3.5 3.5 6 8 
AssetNegotiation-F4 8 9 4 7 1 2 3 6 5 
Australian 8 9 3 4 7 6 5 1 2 
Banana 5 7 2 9 1 6 8 3 4 
Biodeg 9 8 1 2 7 3 5.5 5.5 4 
Blood 7 9 3 2 5 6 4 1 8 
BNG-Bridges 5 4 3 9 1 2 6 7 8 
BNG-Zoo 4 3 5 9 1 2 6 7 8 
Breast-Tissue 2 9 6 1 4 8 3 5 7 
Bupa 9 8 1 5 4 7 6 3 2 
Cleveland 8 9 7 3 4 5 2 1 6 
CNS 9 8 2.5 6 4.5 4.5 1 2.5 7 
Colon 8 7 4 2 3 9 6 5 1 
Contraceptive 9 8 3 7 4 6 5 2 1 
Dermatology 6 4 2 1 7 9 5 3 8 
DowJones-1985-2003 2 2 2 5 4 9 6 8 7 
Duke 4 1 2 5 7 9 6 8 3 
Electricity 3.5 3.5 2 1 5 8 7 9 6 
Fertility 8 6.5 3 1.5 1.5 6.5 5 4 9 
Haberman 7 8 1 6 5 2 4 3 9 
Hayes-Roth 2 1 3.5 8 9 5 6 7 3.5 
Heart 9 8 2 6 3.5 5 7 3.5 1 
Hepatitis 7 9 5 1 4 8 2.5 2.5 6 
Hyperplane 1 2 4 9 8 3 5 7 6 
Iris 3 8 6 9 6 2 6 4 1 
Isolet 5 6 1 3 9 8 4 7 2 
Led7digit 6 8 2 9 5 7 3 1 4 
Letter 2 1 4 6 9 7 3 8 5 
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Leukemia 3 6 1.5 1.5 9 7 5 8 4 
Magic 6 4 3 2 1 9 8 7 5 
Mammographic 8 9 6.5 1 2 5 4 3 6.5 
Marketing 8 9 2 5 1 7 6 3 4 
Multiple-Features 5.5 1 4 7 9 8 2 5.5 3 
Musk 4 2 3 1 9 6 8 7 5 
Page-Blocks 2 6 5 1 9 3 4 7 8 
Phoneme 1.5 1.5 4 7 9 5 3 8 6 
Pima 8 9 6 7 4 3 1 2 5 
Plant-Margin 6 7 3 1 9 8 5 4 2 
Plant-Shape 8 6 3 1 9 7 5 4 2 
Poker 2 1 3 8 4 7 6 5 9 
RandomTree 3 3 5 9 1 7 6 8 3 
Satimage 6 2 3 1 9 5 4 8 7 
Skin-NonSkin 1 2 4 7 8 6 3 5 9 
Sonar 9 5 3 1 4 8 6 7 2 
Spambase 8 9 5 2 1 3 7 6 4 
Svmguide 6 7 3 8 9 5 4 2 1 
Tae 9 7 3 5 8 6 2 4 1 
Texture 2 3 1 8 9 6.5 4 6.5 5 
Twonorm 9 7 2 6 8 3.5 5 3.5 1 
Vehicle 6 4 2 5 9 8 7 3 1 
Vertebral 6 1 5 9 3 4 2 7 8 
Waveform-w-Noise 9 8 2 7 3 1 5 6 4 
Waveform-wo-Noise 9 8 2 4 5 1 6 7 3 
Wdbc 2 7 1 4 9 6 8 5 3 
Wine 4 5 3 1 7 2 8 6 9 
Wine-Red 7 8 3 1 2 6 4 5 9 
Wine-White 7 8 4 1 2 5 3 6 9 
Yeast 8 7 2 9 6 5 3 1 4 
Average 5.78 5.89 3.27 4.77 5.23 5.48 4.68 4.88 5.02 
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Table S5. Ranking of all methods on experimental datasets (using 7 base classifiers) 

 

 
GA Meta-

data ACO 
Proposed 
Method 

Random 
Subspace RotBoost 

META-
DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Abalone 9 8 2 5 1 3.5 6 3.5 7 
Appendicitis 9 8 7 5 4 2 6 3 1 
Artificial 7 3 4 8 9 1 6 2 5 
AssetNegotiation-F2 2 9 2 7 2 4 6 5 8 
AssetNegotiation-F3 3 9 1 8 2 4 6 5 7 
AssetNegotiation-F4 3 9 1.5 8 1.5 5 7 6 4 
Australian 8 9 2 3 6 5 7 4 1 
Banana 8 7 1 9 4 5 6 3 2 
Biodeg 7 9 2 3 6 4 8 5 1 
Blood 9 7 1 2 4 5 8 3 6 
BNG-Bridges 8 5 2 9 1 6 7 4 3 
BNG-Zoo 7 4 1 9 3 2 8 6 5 
Breast-Tissue 6 7 1 2 5 8 9 4 3 
Bupa 8 9 3 5 4 7 6 1 2 
Cleveland 7 8 6 2 3 5 9 4 1 
CNS 9 8 1 4 3 2 5.5 7 5.5 
Colon 8 6 3.5 2 3.5 5 9 7 1 
Contraceptive 9 8 2 5 4 7 6 3 1 
Dermatology 5 6 4 3 8 2 9 1 7 
DowJones-1985-2003 1 5 3 8 2 9 4 6 7 
Duke 8 1 4 2.5 5 6 9 7 2.5 
Electricity 3 2 1 4 9 6 7 8 5 
Fertility 8 7 5 1.5 1.5 4 6 3 9 
Haberman 9 7 2 5 1 4 6 3 8 
Hayes-Roth 2 1 4 8 9 7 6 3 5 
Heart 8 7 3 4 2 6 9 5 1 
Hepatitis 9 8 4 1 3 5.5 5.5 2 7 
Hyperplane 2 3 1 9 8 4 5 6 7 
Iris 1 6 2 8 3 4.5 7 4.5 9 
Isolet 5 7 1 3 8 4 9 6 2 
Led7digit 8 6 4 9 3 7 5 1 2 
Letter 4 2 1 6 9 8 3 7 5 
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Leukemia 6 8 2 3 9 5 7 4 1 
Magic 9 6 2 5 1 8 7 4 3 
Mammographic 9 7 2 1 3 6 8 4 5 
Marketing 9 8 2 5 1 7 6 3 4 
Multiple-Features 3 4 2 5.5 9 5.5 8 7 1 
Musk 4 5 2 3 9 7 6 8 1 
Page-Blocks 2 4 3 1 9 6 7 8 5 
Phoneme 3 2 1 8 9 5 4 7 6 
Pima 8 9 1 5 3 6 7 2 4 
Plant-Margin 8 6 2 1 9 7 5 4 3 
Plant-Shape 9 5 2 1 8 7 4 6 3 
Poker 5 2 1 8 4 6 7 3 9 
RandomTree 3 2 1 9 8 4 5 7 6 
Satimage 6 3 2 1 9 4 5 8 7 
Skin-NonSkin 5 3 1 8 9 7 2 6 4 
Sonar 6 9 3 2 8 5 4 7 1 
Spambase 5 6 2 8 4 3 9 7 1 
Svmguide 6 8 3 7 9 5 4 2 1 
Tae 6 9 2 7 8 5 3 4 1 
Texture 2 4 1 8 9 6 3 7 5 
Twonorm 7.5 7.5 2 5 9 3 6 4 1 
Vehicle 3 6 1 5 9 4 8 7 2 
Vertebral 8 7 3 9 5.5 2 5.5 4 1 
Waveform-w-Noise 7.5 6 1 7.5 4 2 9 5 3 
Waveform-wo-Noise 8 7 1 4 5 2 9 6 3 
Wdbc 5 2.5 6.5 4 8.5 2.5 8.5 6.5 1 
Wine 2.5 2.5 7 1 4 6 5 8 9 
Wine-Red 8 7 2 1 4 5 6 3 9 
Wine-White 8 6 2 1 5 4 7 3 9 
Yeast 8 7 1 9 5 6 4 2 3 
Average 6.12 5.96 2.35 5.02 5.40 4.98 6.37 4.75 4.06 
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Table S6. Ranking of all methods on large scale datasets (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
 Method 

Random  
Subspace RotBoost META-DES 

KNORA  
ELIMINATE 

KNORA  
UNION 

Decision  
Template 

AssetNegotiation-F2 7 9 4 5 1 2 3 6 8 
AssetNegotiation-F3 2 9 5 7 1 3.5 3.5 6 8 
AssetNegotiation-F4 8 9 4 7 1 2 3 6 5 
BNG-Bridges 5 4 3 9 1 2 6 7 8 
BNG-Zoo 4 3 5 9 1 2 6 7 8 
DowJones-1985-2003 2 2 2 5 4 9 6 8 7 
Hyperplane 1 2 4 9 8 3 5 7 6 
Poker 2 1 3 8 4 7 6 5 9 
RandomTree 3 3 5 9 1 7 6 8 3 
Skin-NonSkin 1 2 4 7 8 6 3 5 9 
Average 3.50 4.40 3.90 7.50 3.00 4.35 4.75 6.50 7.10 

*The datasets with more than 100000 observations 

 

Table S7. Ranking of all methods on small scale datasets with high dimension (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA  
ELIMINATE 

KNORA  
UNION 

Decision  
Template 

Colon 8 7 4 2 3 9 6 5 1 
Duke 4 1 2 5 7 9 6 8 3 
CNS 9 8 2.5 6 4.5 4.5 1 2.5 7 
Leukemia 3 6 1.5 1.5 9 7 5 8 4 
Average 6.00 5.50 2.50 3.63 5.88 7.38 4.50 5.88 3.75 

*The datasets with less than 500 observations 
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Table S8. Ranking of all methods on small scale datasets with low dimension (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Appendicitis 8 9 7 6 5 2 4 1 3 
Breast-Tissue 2 9 6 1 4 8 3 5 7 
Bupa 9 8 1 5 4 7 6 3 2 
Cleveland 8 9 7 3 4 5 2 1 6 
Dermatology 6 4 2 1 7 9 5 3 8 
Fertility 8 6.5 3 1.5 1.5 6.5 5 4 9 
Haberman 7 8 1 6 5 2 4 3 9 
Hayes-Roth 2 1 3.5 8 9 5 6 7 3.5 
Heart 9 8 2 6 3.5 5 7 3.5 1 
Hepatitis 7 9 5 1 4 8 2.5 2.5 6 
Iris 3 8 6 9 6 2 6 4 1 
Musk 4 2 3 1 9 6 8 7 5 
Sonar 9 5 3 1 4 8 6 7 2 
Svmguide 6 7 3 8 9 5 4 2 1 
Tae 9 7 3 5 8 6 2 4 1 
Vertebral 6 1 5 9 3 4 2 7 8 
Wine 4 5 3 1 7 2 8 6 9 
Average 6.29 6.26 3.74 4.26 5.47 5.32 4.74 4.12 4.79 

*The datasets with less than 500 observations 
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Table S9. Ranking of all methods on low dimension datasets (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Abalone 7 6 5 3 1 8 2 4 9 
Appendicitis 8 9 7 6 5 2 4 1 3 
Artificial 5 3.5 1 8 9 6 3.5 2 7 
AssetNegotiation-F2 7 9 4 5 1 2 3 6 8 
AssetNegotiation-F3 2 9 5 7 1 3.5 3.5 6 8 
AssetNegotiation-F4 8 9 4 7 1 2 3 6 5 
Banana 5 7 2 9 1 6 8 3 4 
Blood 7 9 3 2 5 6 4 1 8 
Breast-Tissue 2 9 6 1 4 8 3 5 7 
Bupa 9 8 1 5 4 7 6 3 2 
Contraceptive 9 8 3 7 4 6 5 2 1 
DowJones-1985-2003 2 2 2 5 4 9 6 8 7 
Electricity 3.5 3.5 2 1 5 8 7 9 6 
Fertility 8 6.5 3 1.5 1.5 6.5 5 4 9 
Haberman 7 8 1 6 5 2 4 3 9 
Hayes-Roth 2 1 3.5 8 9 5 6 7 3.5 
Hyperplane 1 2 4 9 8 3 5 7 6 
Iris 3 8 6 9 6 2 6 4 1 
Led7digit 6 8 2 9 5 7 3 1 4 
Magic 6 4 3 2 1 9 8 7 5 
Mammographic 8 9 6.5 1 2 5 4 3 6.5 
Page-Blocks 2 6 5 1 9 3 4 7 8 
Phoneme 1.5 1.5 4 7 9 5 3 8 6 
Pima 8 9 6 7 4 3 1 2 5 
Poker 2 1 3 8 4 7 6 5 9 
RandomTree 3 3 5 9 1 7 6 8 3 
Skin-NonSkin 1 2 4 7 8 6 3 5 9 
Tae 9 7 3 5 8 6 2 4 1 
Vertebral 6 1 5 9 3 4 2 7 8 
Yeast 8 7 2 9 6 5 3 1 4 
Average 5.20 5.87 3.70 5.78 4.48 5.30 4.30 4.63 5.73 

*The datasets with less than or equal to 10 features 
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Table S10. Ranking of all methods on high dimension datasets (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Colon 8 7 4 2 3 9 6 5 1 
Duke 4 1 2 5 7 9 6 8 3 
CNS 9 8 2.5 6 4.5 4.5 1 2.5 7 
Isolet 5 6 1 3 9 8 4 7 2 
Leukemia 3 6 1.5 1.5 9 7 5 8 4 
Multiple-Features 5.5 1 4 7 9 8 2 5.5 3 
Musk 4 2 3 1 9 6 8 7 5 
Average 5.50 4.43 2.57 3.64 7.21 7.36 4.57 6.14 3.57 

*Datasets with more than or equal to 100 features 

 

Table S11. Ranking of all methods on datasets with large number of class labels (using 3 base classifiers) 

 GA Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

DowJones-1985-2003 2 2 2 5 4 9 6 8 7 
Isolet 5 6 1 3 9 8 4 7 2 
Letter 2 1 4 6 9 7 3 8 5 
Plant-Margin 6 7 3 1 9 8 5 4 2 
Plant-Shape 8 6 3 1 9 7 5 4 2 
Average 4.60 4.40 2.60 3.20 8.00 7.80 4.60 6.20 3.60 

*Datasets with more than 26 class labels 
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Table S12. Ranking of all methods on binary datasets (using 3 base classifiers) 

 
GA  

Meta-data ACO 
Proposed 
Method 

Random 
Subspace RotBoost META-DES 

KNORA 
ELIMINATE 

KNORA 
UNION 

Decision 
Template 

Appendicitis 8 9 7 6 5 2 4 1 3 
Artificial 5 3.5 1 8 9 6 3.5 2 7 
AssetNegotiation-F2 7 9 4 5 1 2 3 6 8 
AssetNegotiation-F3 2 9 5 7 1 3.5 3.5 6 8 
AssetNegotiation-F4 8 9 4 7 1 2 3 6 5 
Australian 8 9 3 4 7 6 5 1 2 
Banana 5 7 2 9 1 6 8 3 4 
Biodeg 9 8 1 2 7 3 5.5 5.5 4 
Blood 7 9 3 2 5 6 4 1 8 
Bupa 9 8 1 5 4 7 6 3 2 
Colon 8 7 4 2 3 9 6 5 1 
Duke 4 1 2 5 7 9 6 8 3 
Electricity 3.5 3.5 2 1 5 8 7 9 6 
CNS 9 8 2.5 6 4.5 4.5 1 2.5 7 
Fertility 8 6.5 3 1.5 1.5 6.5 5 4 9 
Haberman 7 8 1 6 5 2 4 3 9 
Heart 9 8 2 6 3.5 5 7 3.5 1 
Hepatitis 7 9 5 1 4 8 2.5 2.5 6 
Hyperplane 1 2 4 9 8 3 5 7 6 
Leukemia 3 6 1.5 1.5 9 7 5 8 4 
Magic 6 4 3 2 1 9 8 7 5 
Mammographic 8 9 6.5 1 2 5 4 3 6.5 
Musk 4 2 3 1 9 6 8 7 5 
Phoneme 1.5 1.5 4 7 9 5 3 8 6 
Pima 8 9 6 7 4 3 1 2 5 
RandomTree 3 3 5 9 1 7 6 8 3 
Skin-NonSkin 1 2 4 7 8 6 3 5 9 
Sonar 9 5 3 1 4 8 6 7 2 
Spambase 8 9 5 2 1 3 7 6 4 
Twonorm 9 7 2 6 8 3.5 5 3.5 1 
Wdbc 2 7 1 4 9 6 8 5 3 
Average 6.03 6.39 3.24 4.55 4.76 5.39 4.94 4.79 4.92 
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Table S13. Ranking of all methods on large scale datasets (using 7 base classifiers) 

 
GA  

Meta-data ACO 
Proposed  
Method 

Random  
Subspace RotBoost META-DES 

KNORA  
ELIMINATE 

KNORA  
UNION 

Decision  
Template 

AssetNegotiation-F2 2 9 2 7 2 4 6 5 8 
AssetNegotiation-F3 3 9 1 8 2 4 6 5 7 
AssetNegotiation-F4 3 9 1.5 8 1.5 5 7 6 4 
BNG-Bridges 8 5 2 9 1 6 7 4 3 
BNG-Zoo 7 4 1 9 3 2 8 6 5 
DowJones-1985-2003 1 5 3 8 2 9 4 6 7 
Hyperplane 2 3 1 9 8 4 5 6 7 
Poker 5 2 1 8 4 6 7 3 9 
RandomTree 3 2 1 9 8 4 5 7 6 
Skin-NonSkin 5 3 1 8 9 7 2 6 4 
Average 3.90 5.10 1.45 8.30 4.05 5.10 5.70 5.40 6.00 

*The datasets with more than 100000 observations 
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Fig.S1. The search space and neighborhood to generate new candidate 
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Fig.S2. Classification error with different number of base classifiers in Random Subspace 

In our experiment studies, the number of tree classifiers in the random subspace method was set to 200. This value is suggested in several research published 

before [1-3]. Fig.S2 presents the relationship between the classification error rate and the number of classifiers used in the Random Subspace method on 4 

datasets. It is observed that the classification error rate reduces and then changes very slightly beyond 200 classifiers. On the Blood dataset, the convergence 

occurs even before using 200 classifiers. Therefore, using 200 classifiers is a good choice for Random Subspace method that balances between computational 

complexity and performance. 
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Fig.S3. The comparison between proposed methods using 3 and 7 base classifiers 
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Fig.S4. The decision templates generated on Fertility and Hayes-Roth (using 3 base classifiers) 
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