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Abstract— Panorama stitching consists on frames being merged 

to create a 360° view. This technique is proposed for its 

implementation in autonomous vehicles instead of the use of an 

external 360-degree camera, mostly due to its reduced cost and 

improved aerodynamics. This strategy requires a fast and robust 

set of features to be extracted from the images obtained by the 

cameras located around the inside of the car, in order to effectively 

compute the panoramic view in real time and avoid hazards on the 

road. This paper compares and creates discussion of three feature 

extraction methods (i.e. SIFT, BRISK and SURF) for image 

feature extraction, in order to decide which one is more suitable 

for a panorama stitching application in an autonomous car 

architecture. Experimental validation shows that SURF exhibits 

an improved performance under a variety of image 

transformations, and thus appears to be the most suitable of these 

three methods, given its accuracy when comparing features 

between both images, while maintaining a low time consumption. 

Furthermore, a comparison of the results obtained with respect to 

similar work allows us to increase the reliability of our 

methodology and the reach of our conclusions. 

 

Keywords — Panorama Stitching, Image Blending, Feature 

Extraction, Autonomous Vehicles, SIFT, BRISK, SURF. 

I. INTRODUCTION 

Blind spots are a very common downside in everyday drivers’ 

routines. The most common example is the rear-view mirrors, 

which are used to keep watch on cars coming from behind. 

These offer a certain visual perspective, nonetheless they do not 

reflect all the objects that are behind the car. The human eye 

gives a peripheral field of around 135- to 200-degrees, but a 

regular camera has a field of view of only 35- to 50-degrees. 

Due to this lack of sight, some accidents may happen on the 

road. Regarding this safety issue, autonomous cars that are 

being developed for driving assistance see the outside of the car 

using strategically located cameras. Therefore, panoramic 

image stitching works by taking several pictures from an 

ordinary camera and blending them together to produce a single 

image with a much larger line of vision [1]. 

However, the blind spot problem persists, as a single camera 

cannot perceive the 360-degree perspective of the car by itself. 

Although there are existing 360-degree cameras on the market, 

these are too expensive, and given that they must be situated 

outside the vehicle’s body, they become prone to theft [2]. 

Moreover, these cameras are aerodynamically inefficient since 

air currents causing drag in the vehicle tend to affect in larger 

scales the development of vehicles speed [3]. This is given by 
 

 𝐹𝑑  =  
1

2
𝐶𝑑𝜌𝐴𝑉2                                  (1) 

 

which states that the drag force 𝐹𝑑 is equal to half of the drag 

coefficient 𝐶𝑑, which depends on the object’s geometry; in this 

case, the vehicle itself. This value, multiplied by the fluid 

density 𝜌, the colliding area 𝐴 (i.e. the area of the vehicle 

perpendicular to air trajectory) and the object's velocity relative 

to air direction squared 𝑉2 imply that the drag force 

experienced by an object will be proportional to the speed it has 

relative to air direction. Therefore, adding an external camera 

makes the vehicle cover a wider area, which will affect the drag 

force as stated previously.  

To address the paradigm of coordinating the vision from 

more than one visual input, some authors have proposed 

different approaches that create a joint view based on multiple 

cameras. Cortés et al. [4] proposed a semi-automatic pose 

estimation method for a fleet of robots with stereoscopic 

cameras by means of an interface which allows a human expert 

to correct and impose mappings between two images. This 

method allows the robots to align and follow a common route 

without requiring a GPS or landmark application. Moreover, 

Manzo et al. [5] presented an interactive pose calibration 

method for a set of cameras used in video surveillance. The 

scheme of the human assisted interface consists of a set of 

cameras with salient points and feature extractors, followed by 

a matching estimator assisted by the user, a structure for motion 

and finally a cooperative pose estimation model capable of 

producing homographies. 

Although these techniques are suitable for alignment and 

surveillance purposes, an implementation for a real time 

autonomous vehicle case would require an approach not relying 

on human assistance. One of the simplest, yet most viable 

solutions for the problem at hand is panorama stitching, where 

frames are taken from each of the cameras located around the 

inside of the car, creating a panoramic video stream of a 360-

degree sight. This method has proven to be effective in some 

scenarios such as the automatization of panoramic image 

stitching and detection of multiple panoramas in a single image 

stream array [6]. Another application involving automotive 

development would be panoramic image stitching of rear 
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cameras instead of rear mirrors in cars also known as rear-

stitched view panorama [7], as well as the aforementioned 360-

degree panorama stitching approach to avoid both blind spots 

and a 360-degree camera [8]. To perform panorama stitching, it 

is fundamental to select an image feature extraction method 

which is robust in terms of accuracy and time of computation. 

From the literature [9], we have observed that SIFT, BRISK and 

SURF are the most commonly used for similar tasks, and thus 

will be discussed in this paper.  

This paper is organized as follows. Section 2 presents the 

potential methods for feature extraction in order to choose the 

method that is best suited for real time panorama image 

stitching. Section 3 analyzes the methodology used for the 

method discrimination. It is clear to state that the methodology 

involves both: theoretical explanation of the method’s 

implementations and practical code application for actual real 

time comparison between methods and algorithms. Moreover, 

Section 4 presents the results obtained and shows a comparison 

with the state of the art. Finally, Section 5 is reserved for the 

conclusions as well as the intended future developments. 

II. FEATURE EXTRACTION 

This section introduces the three methodologies selected to 

perform image feature extraction for panorama stitching in a set 

of cameras located outside the autonomous vehicle body: SIFT, 

SURF and BRISK. 

 

2.a SIFT 

SIFT (Scale Invariant Feature Transform) is a method that 

determines salient points. Proposed by Lowe et al. [10], it has 

four computational steps for extracting keypoints: scale-space 

peak selection, keypoint localization, orientation assignment 

and defining keypoint descriptors. For each image, it builds an 

image pyramid by generating progressively blurred out images, 

and it subtracts neighbor images to get the Difference of 

Gaussian (DOG) pyramid. Then, it detects the extreme for DOG 

pyramid. The number of keypoints was reduced to help in 

increasing efficiency and robustness of the technique. 

Keypoints are rejected if they had a low contrast or if they were 

located on an edge. The following step is orientation 

assignment, which uses an orientation histogram to statistic the 

gradient orientation by sampling the center neighborhood of the 

key points. The last step consists on obtaining the keypoint 

descriptors [11]. In other words, it uses the scale and local 

orientation by maximizing the difference of Gaussian in scale 

and space. With this information, it computes a gradient 

orientation histogram for each cell with eight orientations to 

obtain the dimensional descriptor. Then, it normalizes the 

descriptor to obtain an invariant to intensity change. This 

process is done for all keypoints. 

 

2 b. BRISK 

BRISK (Binary Robust Invariant Scalable Keypoints) is a 

method that solves the problem of classical computer vision 

detection, which matches image key points without sufficient 

prior knowledge in the field and camera position. It was 

proposed by Leutenegger et al. [12], it detects the corners and 

then it filters them with the FAST (Feature from Accelerated 

Segment Test) approach [13]. BRISK identifies the 

characteristic direction of the features to achieve rotation 

invariance. The descriptor is constructed as a binary string and 

the features are invariant to scale, limited affine changes and 

rotation.  

BRISK is an algorithm for feature point detection and 

description with scale invariance and rotation invariance. The 

principle of it is to extract the stable extreme points of sub-pixel 

precision in the scale space pyramid constructed. It can find 

random point pairs neighboring the local image by using the 

gray scale relationship and obtaining the binary feature 

descriptor of each keypoint. The difference between it with 

others is that BRISK does not require high storage memory and 

it is faster, but it implies reducing the robustness [14]. 

 

2 c. SURF 

SURF (Speeded Up Robust Features) is an algorithm developed 

for local, similarity invariant representation and comparison 

[15]. It approximates Gaussian smoothing with box filters; this 

technique allows the image filtering to be faster if the whole 

image is used. SURF is composed of three main steps. First, 

keypoints are selected at distinctive locations in the image, such 

as corners, blobs, and T-junctions. Next, the neighborhood of 

every keypoint is represented by a feature vector. This 

descriptor has to be distinctive. At the same time, it should be 

robust to noise, detection errors, and geometric and photometric 

deformations. Finally, the descriptor vectors are matched 

among the different images [11]. 
SURF uses the Hessian matrix as a blob detector to find the 

keypoints; thus, the determinant of this matrix is used to 

measure the local change with the neighborhood points and the 

ones with the maximal value are chosen and are interpolated in 

scale and image space. In order to obtain the rotational 

invariance, it finds the orientation of the point using the sum of 

Haar wavelet responses. Finally, it compares the descriptor 

obtaining the match [15]. It’s important to mention that square 

shaped filter is used as an approximation.  

If the integral image is processed, then the square shaped 

filters provide the best result [16]. The integral image describes 

the sum of pixels to the left and above a specified pixel and 

represents the average values of pixels over a certain region. 

This is important because the values of the integral image are 

used to compute the Hessian matrix, as they are much faster for 

doing the convolution needed to obtain𝐿𝑥𝑥(𝑋, 𝜎). An integral 

image can be computer for any point 𝑥, 𝑦 as follows: 

 

 𝑆(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)𝑦
𝑗=0

𝑥
𝑖=0                             (2) 

 

As mentioned before, the SURF detector is based on the 

determinant of the Hessian matrix. Let point 𝑋 = (𝑥, 𝑦) in an 

image 𝐼, the Hessian matrix 𝐻(𝑋, 𝜎) at scale 𝜎 in 𝑋 can be 

calculated as in matrix: 
 

                    𝐻(𝑋, 𝜎) = [
𝐿𝑥𝑥(𝑋, 𝜎) 𝐿𝑥𝑦(𝑋, 𝜎)

𝐿𝑥𝑦(𝑋, 𝜎) 𝐿𝑦𝑦(𝑋, 𝜎)
]                (3) 
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where, 𝐿𝑥𝑥(𝑋, 𝜎) is the convolution of the Gaussian second 

order derivative 
𝜕2

𝜕𝑥2 𝑔(𝜎) with the image 𝐼 in the point  𝑋, and 

similarly for  𝐿𝑥𝑦(𝑋, 𝜎) and 𝐿𝑦𝑦(𝑋, 𝜎). 

The implementation specifications are the following: Code 

was executed in an ASUS Zephyrus computer, with i7 8th Gen 

Intel core, 40GB RAM memory and the NVIDIA Geforce RTX 

2080 GPU running C++ compiled in Ubuntu 18.04 operative 

system. OpenCV library was used for image processing tasks. 

III. METHODOLOGY 
 

3.a. Selection of Feature Extractors 

The application of the three methods is code based, which 

means that in order to obtain, compare and analyze results, the 

implementation of the algorithms in actual code would be 

required. On this regard, SIFT was analyzed only from a 

literature review perspective due to the following reason. Given 

that our main goal is to execute these feature extraction methods 

in a video stream, the panorama stitching algorithm needs to be 

fast, and with a precise image processing transform. SIFT is 

precise, but lacks velocity due to its high computational 

demand, therefore at this point it is discarded from further 

analysis in this paper. By contrast, there is no mention in 

literature regarding a high computational cost of BRISK, scale, 

rotation and affine invariant, using scale pyramids maxima and 

corners for feature extraction, which is a very good 

approximation. Furthermore, SURF is regarded in literature to 

be superior in terms of execution time and illumination 

invariance, having a low computational cost in balance with fair 

precision, by means of Gaussian pyramids and Hessian matrices 

applied for acquiring speed. For comparison with more recently 

presented feature extractors in literature, it is worth mentioning 

that methods such as ORB, which is the fast and rotation 

invariant version of the Binary Robust Independent Elementary 

Features (BRIEF) algorithm [17], is rotation and scale invariant 

with improved execution time, but its performance is poorer in 

the presence of noise compared to the selected feature 

extractors [18]. 

 

3.b. Panorama Stitching based on SURF 

In comparison to SIFT, as mentioned in literature, SURF is used 

as the feature descriptor and for matching purposes. A basic 

second order Hessian matrix approximation is used for feature 

point detection. The time needed to generate the output is 40 

seconds [19].  

1. In the construction of scale image pyramid in SURF 

algorithm, the scale space is divided into octaves, and there are   

4 scale levels in each octave.  

2. Each octave represents a series of filter response maps 

obtained by convolving the same input image with a filter of 

increasing size.  

3. The minimum scale difference between subsequent scales 

depends on the length of the positive or negative lobes of the 

partial second order derivative in the direction of derivation. 

 

4. A non-maximum suppression is done using a neighborhood 

of 3 × 3 × 3 to get the steady feature points and the scale of 

values. 

 

3.c. Panorama Stitching based on BRISK 

BRISK detects corners using the Adaptive Generic Accelerated 

Segment Test (AGAST) algorithm and filters the results 

through the FAST Corner Score. The following steps are 

carried out: 

1. Corners are used to detect and search for maxima in every 

reduction of the scale space pyramid method. 

2. In construction, BRISK descriptors identify the characteristic 

direction of each feature vector.  

3. This way, feature invariance can be achieved and therefore 

make processes for rotations. 

4.  A binary string is constructed for brightness tests and achieve 

illumination invariance. 

 

3.d. Implementation and Results 

As shown in Figure 1 and Figure 2, for BRISK and SURF 

implementations, both appear to have a precise point allocation 

for image feature extraction. BRISK allocates a higher number 

of points in comparison to SURF, however this is not enough 

evidence of allocation precision. When stitching up both 

images, it can be seen in Figure 3 and Figure 4 that both 

algorithms have an adequate image reconstruction when 

blending them together. Literature [20] supports the fact that 

both methods seem to have similar accuracy for keypoint 

detection and descriptors, thus, feature extraction efficiency is 

not the main issue for this problem’s solution. The main issue 

for discussion then becomes the speed of the algorithm. 
 

 
Figure 1. SURF Implementation. 

 

 
Figure 2. BRISK Implementation 
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Figure 3. SURF Stitching 

 

 
Figure 4. BRISK Stitching. 

 

When comparing time of execution of both algorithms at the 

time of allocating the points from the feature extraction 

methods and blending both images together for panorama 

stitching and reconstruction, SURF’s time is two times faster 

than BRISK’s. More specifically, BRISK takes an average of 

0.4849 seconds to reconstruct the final product of the image 

processing stitching. As for SURF, it takes an average of 

0.2174, making it far more efficient for the needs of our system.  

Some authors have confirmed similar results when 

comparing runtime needed for recognizing matches using the 

mentioned methods. For instance, Juan et. al [1] reported that 

SURF presented a much faster runtime in the process of 

detection and matching when compared to SIFT and PCA SIFT 

(which consists of normalizing the gradient patch instead of 

using an orientation histogram). Meanwhile, SIFT proved to be 

more efficient in matching keypoints, due to the differences in 

lighting within the image they used. In other work by the same 

authors [21], SURF proved to be several orders of magnitude 

faster. Also, Karami et al. [22] performed similar comparisons 

using SIFT, SURF, BRIEF and ORB. Since BRIEF consists of 

a less complex SIFT variation and ORB creates a rotation 

matrix for the image using a BRIEF descriptor, SIFT once again 

proved to be the slowest method, while SURF proved to take 

the same average time as ORB for identifying images with 

varying light intensity. However, ORB had the lowest matching 

rate among them all. In special scenarios where there is no 

rotation invariance and different orientations, ORB performed 

better, but overall SURF provided the best balance between 

speed and accuracy. 
 

For the resolution of this problem, it appears that SURF is 

the fastest approach, but not fast enough due to the fact that it 

is computed inside a CPU. Therefore, we propose to accelerate 

the process by means of parallelization by running the code 

using a GPU architecture. Parallelization is implemented using 

CUDA 10.0 toolkit for CUDA. C/C++ application is needed, 

using OpenCV parallelized libraries for accelerating the SURF 

computation and gain even more speed without having a 

downgrade in feature extraction efficiency [23]. Experiments 

showed that this implementation did accelerate the process; in 

fact, it halved the execution time, taking only 0.1412 seconds 

to deliver the same output shown in Figure 3. 

IV. RESULTS 

                Figure 5 shows that SURF blends both images in half the time 

compared to BRISK. This is the main reason for parallelizing 

SURF with CUDA instead of BRISK. Moreover, Figure 6 

shows that BRISK and SURF have an abnormal step in iteration 

129. This happens because BRISK and SURF are running 

inside the CPU architecture. This is also due to the thermal 

throttling technique, which is in charge of regulating the 

thermal environment of the microprocessor by reducing the 

speed of the device and entering a ventilation state. Since the 

CPU is in charge of all processes inside the machine, its 

integrity is essential [24]. In contrast, CUDA SURF runs inside 

the GPU architecture, which is not overseen by the CPU. 

Because of this, there's no step when developing the CUDA 

SURF through an extended number of iterations. Moreover, in 

Figure 7 it is validated that CUDA SURF has the least standard 

deviation compared to the other methods, implying that it will 

have more constant display than BRISK and CPU performed 

SURF. BRISK counts with a 0.01033 standard deviation, as for 

SURF being very similar with a 0.01812 ratio. SURF CUDA 

on the other hand, as a 0.00363 standard deviation value, 

putting it on top of the other methods. The minimum processing 

time period for BRISK was of 0.46680 seconds, SURF had a 

0.16789 seconds and SURF CUDA was of 0.13582 seconds. 

And the maxima for stitching time values for BRISK, SURF 

and SURF CUDA was: 0.52822, 0.27845 and 0.16074 seconds 

respectively. This analysis was made from a 442 data samples 

in all three methods. As it can be seen, SURF CUDA was the 

fastest method implemented of all three. Since processing 

requires CPU and GPU cores, time taken for stitching up 

images is not always the same, and SURF CUDA is not only 

the fastest method, but also the one that has a much less 

variance ratio between iterations, by far. All these statements 

can be referenced in Table 1. SURF CUDA can be used not only 

for panorama stitching, but its development in literature and 

practice suggests that it can be used as one of the key feature 

extractors with a very promising roll for real time applications. 
 

TABLE I 

Statistical Data of BRISK, SURF and CUDA SURF 
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Figure 5. BRISK, SURF and CUDA SURF runtime 

comparison in seconds. 
 

 
Figure 6. BRISK, SURF and CUDA SURF development 

runtime in seconds. 

 

 
 

Figure 7. BRISK, SURF and CUDA SURF percentile box plot. 
 

V. CONCLUSIONS 

Image mosaicking/stitching is an active research area in the 

fields of computer vision and computer graphics. To these aims, 

there is a handful of different algorithms for feature detection 

and extraction. The choice of the feature detector/extractor 

depends on the problem at hand, however we can get some 

intuitions of which algorithm could have a higher affinity with 

any given scenario. In this work, we have tested a number of 

feature extraction algorithms for its use in panorama stitching 

for autonomous vehicles. 

As shown in the experimental validation, the runtime 

comparison between three different methods allows us to 

conclude that SURF is the most time efficient between the 

feature extraction methods proposed by literature. Moreover, it 

is shown that parallelization using CUDA proved to be an 

essential requirement for keeping processing time to its 

minimum. This is not only due to the speed-up that comes 

inherently from parallelizing, but also given the thermal 

throttling that occurs to the CPU when not parallelizing, which 

slows down the process. 

However, it is worth noting that these methods are not the 

only ones available for these purposes. Image stitching 

techniques are constantly evolving, and new alternatives are 

continuously being created. As computer's processing power 

continues to grow, so does the importance and application 

possibilities in computer vision. 

It is important to have accurate timing measurements, 

particularly for this kind of application in which the reaction 

time of an autonomous automobile sometimes needs to take a 

fraction of a second to prevent accidents in which a human 

being could be hurt. Having a small processing timing isn't just 

an efficiency parameter, but a safety requirement as well. 

The comparison of these different imaging stitching 

techniques allows to generate more documentation about their 

efficiency and provides project developers the means to 

improve their designs and promote the advancement of 

computer vision technology. Moreover, we must keep in mind 

that panorama stitching is not the only goal of this feature 

extraction methods; so further research and implementations 

need to be explored in pursuit of more innovative solutions for 

everyday requirements. 
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