
BROWN, C. JANJIC, V., GOLI, M. and MCCALL, J. 2020. Programming heterogeneous parallel machines using
refactoring and Monte–Carlo tree search. International journal of parallel programming [online], 48(4): special issue

on high level parallel programming, pages 583-602. Available from: https://doi.org/10.1007/s10766-020-00665-z.

Programming heterogeneous parallel machines
using refactoring and Monte–Carlo tree search.

BROWN, C. JANJIC, V., GOLI, M. and MCCALL, J.

2020

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.1007/s10766-020-00665-z

Vol.:(0123456789)

International Journal of Parallel Programming (2020) 48:583–602
https://doi.org/10.1007/s10766-020-00665-z

1 3

Programming Heterogeneous Parallel Machines Using
Refactoring and Monte–Carlo Tree Search

Christopher Brown1 · Vladimir Janjic1 · M. Goli2 · J. McCall2

Received: 16 October 2019 / Accepted: 27 May 2020 / Published online: 10 June 2020
© The Author(s) 2020

Abstract
This paper presents a new technique for introducing and tuning parallelism for het-
erogeneous shared-memory systems (comprising a mixture of CPUs and GPUs),
using a combination of algorithmic skeletons (such as farms and pipelines), Monte–
Carlo tree search for deriving mappings of tasks to available hardware resources,
and refactoring tool support for applying the patterns and mappings in an easy and
effective way. Using our approach, we demonstrate easily obtainable, significant
and scalable speedups on a number of case studies showing speedups of up to 41
over the sequential code on a 24-core machine with one GPU. We also demonstrate
that the speedups obtained by mappings derived by the MCTS algorithm are within
5–15% of the best-obtained manual parallelisation.

Keywords Heterogeneous parallel computing · Monte–Carlo tree search ·
Optimisations

1 Introduction

Heterogeneous multicore systems are increasingly common. Programming such
systems remains difficult, however, since common programming techniques, such
as OpenCL or CUDA+OpenMP, are very low level and require the programmer

 * Christopher Brown
 cmb21@st-andrews.ac.uk

 Vladimir Janjic
 vj32@st-andrews.ac.uk

 M. Goli
 m.goli1@rgu.ac.uk

 J. McCall
 j.mccall@rgu.ac.uk

1 School of Computer Science, University of St Andrews, St Andrews, UK
2 Robert Gordon University, Aberdeen, UK

http://orcid.org/0000-0001-6030-2885
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00665-z&domain=pdf

584 International Journal of Parallel Programming (2020) 48:583–602

1 3

to make non-trivial scheduling and data-transfer decisions. Moreover, applica-
tions generally have many sources of parallelism: deciding which of the possible
parallel structures should be exploited is especially challenging on heterogenous
architectures. In this paper, we introduce a new technique for programming heter-
ogeneous parallel systems that: (1) automatically discovers which parallel struc-
ture to exploit; (2) computes a near-optimal mapping of work onto the various
heterogeneous processing elements; and, (3) provides a semi-automatic way of
introducing the chosen parallel structure into the original program, and instantiat-
ing this with the derived mapping information. Our technique is based on a com-
bination of algorithmic skeletons [11] for defining the parallel structure, a method
of finding a mapping for tasks on heterogeneous architectures and refactoring tool
support for user-guided introduction of the skeletons and mapping decisions.

We show the generality of our technique by using realistic use-cases from three
different domains (image processing, heuristic optimisation and molecular dynam-
ics), programmed using the FastFlow [3] skeleton library for C++, which uses
OpenCL and CUDA for GPU computations. While some particular parts of the
technology (e.g. refactoring) necessarily depend on the syntax of C++ language,
the general methodology could, in principle, be applied to other languages and para-
digms (e.g. Erlang [18]). The paper makes the following research contributions:

1. we introduce a new technique for building heterogeneous parallel programs semi-
automatically, based on refactoring and algorithmic skeletons;

2. we introduce a mechanism for discovering efficient mappings of parallel applica-
tion threads to heterogeneous CPU and GPU hardware, based on Monte–Carlo
Tree Search simulations; and,

3. we show that, using our technique, it is possible to derive a parallel structure
and the corresponding mapping information, achieving performance that can be
within 5% of the best-obtained manual parallelisation.

2 Background

2.1 Skeletons

In this paper, we take a pattern-based approach, in which the parallel application
is developed by composing and/or nesting algorithmic skeletons. An algorithmic
skeleton [11] is an abstract computational entity that models some common pat-
tern of computation. A skeleton is typically implemented as a higher-order func-
tion that abstracts over low-level details such as thread creation, communication,
synchronisation, load balancing, etc. We consider two categories of skeletons:
sequential skeletons, abstracting the structure of a purely sequential computation
with no added parallelism; and, parallel skeletons, which implement specific par-
allel patterns. In our skeleton definitions, we assume that all of the input tasks are
independent. We consider two sequential skeletons:

585

1 3

International Journal of Parallel Programming (2020) 48:583–602

• The Compose (◦) skeleton represents sequential function composition applied to
a sequence of inputs, where f1◦f2 denotes a sequential composition of two func-
tions, f1 and f2.

• The Order (;) skeleton represents the execution of two functions on a sequence
of inputs, where the execution of the first function needs to be completed for
all input values before the execution of the second one can start. f; g, therefore,
requires synchronisation between f and g. This skeleton can be used, for example,
in the map-reduce like computations, such as the one described in Sect. 5.2, to
synchronise between the map and reduce phase.

We also consider two widely-used parallel skeletons:

• A Farm (�) skeleton, �(nwCPU, nwGPU, f , x) , represents the application of a
single function, f, to the sequence of independent inputs,

 x1, x2, x3,… , xn , in parallel. In the farm implementation that we consider, a
specific number of worker threads is created, and the inputs are assigned to these
worker threads in a round-robin fashion. Here nwCPU/nwGPU are, respectively,
the number of worker threads executed on CPUs/GPUs.

• The Pipeline (∥) skeleton applies the composition of the functions
 f1, f2,… , fn , in parallel to a sequence of independent inputs x1, x2,… , xm ,

where the output of fi is the input to fi+1 . Parallelism arises from the fact that
fi(xj) can be computed in parallel with fi+1(fi(xj−1)) . In the implementation that
we consider, a separate thread is assigned to each pipeline stage (function fi). We
denote the pipeline skeleton by (f1 ∥ f2 ∥ ⋯ ∥ fn)(x) . Note that the pipeline skel-
eton does not accept the number of workers as an input, because a pipeline stage
is always executed in one thread. If we want multiple threads to execute a single
pipeline stage, to parallelise processing of items from its inputs, we compose it
with the farm skeleton.

We also allow nested skeletons. It is, therefore, possible to, for example, nest
a pipeline inside a farm, �(nwCPU, nwGPU, f1 ∥ f2, x) . A skeletal configura-
tion abstracts over the skeleton parameters (e.g. the number and type of work-
ers in a farm), thus focusing only on the nesting structure of the skeletons. In a
skeletal configuration, we denote �(nwCPU, nwGPU, f , x) simply by �(f) , and
(f1 ∥ f2 ∥ ⋯ ∥ fn)(x) by f1 ∥ f2⋯ ∥ fn . For example, the skeletal configuration
�(f) ∥ (g◦�(h)) denotes a pipeline of two stages, (1) a farm whose worker function
is f, and (2) a sequential composition of function g with a farm whose worker func-
tion is h.

2.2 Refactoring

Refactoring is the process of changing the structure of a program while preserving
its functional semantics in order, for example, to increase code quality, programming
productivity and code reuse. The term refactoring was first introduced by Opdyke in
his PhD thesis in 1992 [22], and the concept goes back at least to the fold/unfold

586 International Journal of Parallel Programming (2020) 48:583–602

1 3

system proposed by Burstall and Darlington in 1977 [10]. Refactoring is a semi-
automatic approach that is much more general than fully automated parallelisation
techniques, which typically only work for a very limited range of cases under limited
conditions. Additionally, unlike simple loop parallelisation, refactoring is applicable
to a much wider range of possible parallel structures, since the parallelism is intro-
duced in a controlled way via skeletons. In this paper we make use of a refactoring
extension [7] for Eclipse, that introduces and tunes parallelism in C++ by introduc-
ing a nesting of skeletons into the application semi-automatically by user-guidance.

3 Programming Heterogeneous Parallel Machines

In this section we introduce a new parallel programming technique aimed at increas-
ing the programmability of heterogeneous parallel systems. Our technique aims to
support both the inexperienced parallel programmer with little knowledge on par-
allel programming techniques; and also the experienced parallel programmer, who
seeks to maximize productivity with the appropriate tool support to automate the
process. Our general technique is shown in Fig. 1 and comprises a number of steps,
described below.

1. Identifying initial structure. The programmer starts with a (possibly parallel)
application. The first step is to identify an initial skeleton structure in the code cor-
responding to the skeletons defined in Sect. 2. This skeleton structure is recorded
in a text file, which encapsulates the basic sequential structure of the algorithm,
together with its basic units of computation (components) and tasks. Components

Fig. 1 Overview of our technique for programming heterogeneous multi-core systems

587

1 3

International Journal of Parallel Programming (2020) 48:583–602

correspond to functions of the source code. We also record what implementations
(CPU, GPU or both) exist for which components.

 As a simple example, consider the piece of code in Fig. 2 at lines 162–166.
 The structure of this code is a composition of two functions, read_image and

rprocess_image, on a stream of input files, imageFiles. Components are
the functions read_image and process_image, and the tasks are applica-
tions of these functions to the elements of the array, imageFiles. We might
only have a CPU implementation of the read_image function, and both CPU
and GPU implementations (kernels) of the process_image function. Using
the notation from Sect. 2, we can denote this by r◦p , where r is read_image
function, p is process_image function, and ◦ is the sequential composition.

2. Profiling. After we have identified the skeleton structure of the application and its
components, we do time profiling of the components. That is, we run each avail-
able version (CPU or GPU) of each component on a sample of input tasks in order
to determine the average time it takes for each component to process one input
task. In the case of the GPU computation, this also includes the time it takes to
transfer the data to/from the GPU. This timing information is used in subsequent

Fig. 2 Source code for image convolution before refactoring

588 International Journal of Parallel Programming (2020) 48:583–602

1 3

steps of our methodology. This step is carried out manually by the programmer,
and its time complexity depends on the runtime of components for the sampled
inputs.

 In our working example, using profiling we can obtain information that running
CPU version of read_image on one image takes 0.2 ms, running CPU version
of process_image on one image takes 6.6 ms and running GPU version of
process_image on one image takes 0.08 ms.

3. Enumerating Skeleton Configurations. Given the text file with the identified skel-
eton from the original application, produced in step 1, all possible equivalent
skeleton configurations are automatically generated (up to a given depth of nest-
ing) resulting in a number of different possible parallelisations. Given an initial
configuration, each composition (◦) can be transformed into a parallel pipeline
(∥) and a farm skeleton (�) can be introduced for any skeleton configuration.1
Similarly the inverse of these transformations can also be applied; for example,
we can transform a parallel pipeline into a sequential composition, or eliminate
a farm skeleton altogether. This step is computationally very cheap and fully
automatic.

 In our example, in the step 1 we identified the initial structure to be r◦p ;
therefore, the possible skeleton configurations are r◦p , �(r◦p) , �(r)◦p , r◦�(p) ,
�(r)◦�(p) , r ∥ p , �(r) ∥ p etc.

4. Filtering Using Cost Model. Using profiling information obtained in step 2, the
skeleton configurations are filtered using a cost model to restrict the number of
possibilities that need to be considered. This allows us to eliminate parallelisa-
tions with little or no potential speedup at an early stage of development. In
Sect. 5, we use a simple high-level cost model to predict the best possible run
times for each configuration on a given hardware. At this stage, exact timing
information is not needed, as only very poor potential speedups lead to exclusion.
Since we use simple cost models, this step is computationally very cheap, and
also fully automatic.

 In our example, the cost model may predict that �(r) ∥ �(p) , �(r) ∥ p and
�(r)◦�(p) are the best candidates from all possible factorisations.

5. Ranking the Configurations and Deriving Mappings. The remaining configura-
tions are then analysed in more detail, deriving optimal (or near-optimal) static
mappings for each of them, together with the estimated runtime. A static map-
ping is an assignment of number of workers for each farm skeleton in a skeleton
configuration, together with the type of each worker and each pipeline stage
(the type can be CPU or GPU). Possible types of a farm worker/pipeline stage
depend on the type of implementation that we have for that kind of worker/pipe-
line stage. This phase, therefore, outputs for each configuration, all the missing
skeleton parameters. It also gives the ranking of the configurations in terms of
their expected performance. In this paper, we present one possible model for
deriving static mappings for a given skeleton configuration, based on the Monte

1 Since we assume that all functions operate on streams, it is always possible to replace a function with a
farm skeleton operating on elements of the input stream in parallel.

589

1 3

International Journal of Parallel Programming (2020) 48:583–602

Carlo Tree Search (MCTS) algorithm [9]. This step is fully automatic, and is also
computationally the most expensive part of the technique. Exactly how much time
it takes to rank the configurations and derive mappings depends mostly on the
method used for estimating the application runtime with a particular static map-
ping. If full simulation is used, the cost is very high, whereas if some analytical
model is used (e.g. some more precise cost model than in step 4), the cost can be
very low.

 In our example, this step can tell us that the best parallelisation on a given
machine (e.g. comprising of 24 CPU cores and 1 GPU) is �(r) ∥ �(p) , where 15
CPU workers are used for �(r) and 9 CPU and 1 GPU workers are used for �(p).

6. Refactoring the Application. The programmer then chooses one of the paral-
lelisations together with its static mapping and refactors the original application
from Step 1, introducing the desired skeleton configuration from Step 5 using the
refactoring tool. The refactoring tool performs all the required program transfor-
mations and condition checking automatically, introducing the skeleton structure
and the parameters from Step 4. This part is semi-automatic and computationally
cheap.

 Considering the example code from Step 1 and the skeleton configuration,
�(r) ∥ �(p) , the refactoring tool may produce the output as in Fig. 3, where the
refactoring tool introduces FastFlow farm and pipeline skeletons (ff_farm and
ff_pipeline) including the number of CPU and GPU workers for the farm
skeletons, readFarm and processFarm. These worker parameters are taken
directly from the output of Stage 4.

7. Executing the Application. The refactored program can then be executed on the
available heterogeneous hardware, and the process can be repeated if necessary.
For example, if the programmer decides to port the application to a different
architecture, or if the programmer discovers that an alternative configuration
given at Step 5 would be better suited.

Fig. 3 Source code for image convolution after refactoring

590 International Journal of Parallel Programming (2020) 48:583–602

1 3

4 Deriving Mappings Using Monte Carlo Tree Search

In this section, we describe a model that we use to derive, for a given skeletal config-
uration, a good static mapping of its components to the available hardware. A static
mapping in our case corresponds to a particular choice of values for the parameters
of skeletons, i.e. the number of workers in each farm, the type (CPU or GPU) of
each worker in each farm and each stage of each pipeline. The quality of a mapping
is derived from a specific evaluation function Q, being a combination of the runtime
and the resource utilisation.

Our model accepts as an input a skeletal configuration and the timings for its
components (derived from profiling both for CPU and GPU versions, if the GPU
version of a component is available). As an output, it produces a candidate static
mapping and the corresponding estimated runtime of the skeletal configuration.
Since considering all possible static mappings for a given skeletal configuration may
be computationally intractable, an optimisation method is used. Here, we use the
Monte Carlo Tree Search (MCTS) approach, well known for generating and evalu-
ating large game trees in Game theory. In our case, the nodes of the generated tree
correspond to estimated near-optimal mappings (with some of the skeleton param-
eters fixed) and the leaves of the tree correspond to complete mappings. The root of
the tree corresponds to the near-optimal mapping of the whole skeleton configura-
tion (with none of the parameters fixed). The children of a node represent different
possibilities for fixing a yet unfixed skeleton parameter.

The MCTS approach starts from a tree that consists only of a single root node
(i.e. a static mapping where no parameters are chosen). It proceeds by repeating the
following three steps:

1. Expansion step—A node (corresponding to a partial static mapping) is selected,
and one of its children is added to the tree. This is equivalent to assigning a value
to one previously unassigned parameter;

2. Selection step—Starting from the newly added node, a complete static mapping
is generated by randomly assigning the remaining unassigned parameters. The
resulting static mapping is evaluated based on the evaluation function, Q, yielding
the valuation v;

3. Propagation step—The valuation, v, is propagated back to the node added in step
1.

Steps 2 and 3 are repeated a fixed number of times, attaining a reliable evaluation
of the partial mapping in step 1 by evaluating a fixed number of random complete
mappings that correspond to it. In this way, we avoid the exhaustive search of all
complete mappings corresponding to that partial one. Then, step 1 is repeated, add-
ing a new value to the partial mapping. Finally, the overall best complete mapping (a
leaf of the tree) is selected.

The function that we use to evaluate how good static mappings are is based on
the estimation of the runtime for that static mapping that we obtain using simula-
tions, and the utilisation of the system. The function is

591

1 3

International Journal of Parallel Programming (2020) 48:583–602

where S(M) is the estimated throughput of the whole system (i.e. the number of
tasks per unit of time that get processed, obtained using profiling) �U(M) is the
standard deviation of the utilisation of components (where the utilisation of a com-
ponent is the ratio between the time the component spends executing tasks and the
total execution time of the application) and �Q(M) is the standard deviation of the
utilisation of the connecting queues between the components (where the utilisation
of a queue is the ratio between the time where at least one task was in the queue and
the total execution time) in the skeleton. In this way, if two mappings have a simi-
lar throughput, the one which has smaller deviation from the standard utilisation of
the resources (and which, hence, uses resources more uniformly) will be preferred.
Using this function, Q(M), rather than using just the throughput, S(M), as an evalua-
tion function, discourages the allocating of more resources to the skeleton configura-
tion, if it only results in marginally improved runtime, which may be important in
settings where resources are paid for (e.g. clouds).

4.1 Adaptation of the MCTS Technique to the Static Mapping Problem

It is well known that the MCTS technique is most often used to find a single best
move at the root of the game tree. In our adaptation of this technique to the static
mapping problem, nodes of the game tree correspond to fixing of the parameters of
the skeleton configuration. The best move at the root of the tree represent assign-
ments of all the parameters to all the components of the application. This move is
computed by considering all the children of the tree, which correspond to moves
where we fix the first parameter of the configuration (i.e. we allocate one type of
resources, CPUs or GPUs, to one of the skeleton components) and the others are
chosen freely. Grandchildren of the root represent moves where we fix the first two
parameters and freely chose the others and so on.

Suitability of Using MCTS to Derive Static Mappings The main target for the
MCTS-based approach for deriving static mappings are computationally-heavy
parallel applications that contain nested parallelism in the form of farms and pipe-
lines. Such applications might take hours or even days to execute and may need to
be executed repeatedly, so the effort required by the MCTS model to derive near-
optimal mappings is well justified by savings in time and energy of the optimised
parallel applications. In addition, the solution space, even when the degree of nest-
ing of skeletons is relatively small, is sufficiently large to justify the use of MCTS.

Q(M) = S(M) − (�U(M) + �Q(M)),

Table 1 Solution space and time
needed for its full evaluation for
Image Convolution on different
hardware configurations

CPU cores GPUs App com-
ponents

Sol. size Time for eval. (s)

16 1 4 1240 > 86,400
24 2 4 6624 > 604,800
64 2 4 129,204 > 3,628,8000

592 International Journal of Parallel Programming (2020) 48:583–602

1 3

For example, for the Image Convolution problem considered in Sect. 5.1, with the
depth of skeleton nesting of 2, the Table 1 gives an example sizes of solution space
for different hardware configurations and the estimated time needed to evaluate all
of them using full profiling (which is the only way to give the accurate estimation of
the execution time). From the table, we can see that for even modestly-sized paral-
lel systems, the time to evaluate all parameters would be hundreds of days order of
magnitude. Since parallel systems are becoming larger and larger, with more CPU
cores and more GPU devices being available in a single shared-memory system, the
problem will only become more time-consuming.

4.2 MCTS parameters

The selection strategy that we use is the Upper Confidence bounds applied to Trees
(UCT) [19]. The formula for UCT is

where n is the number of times the current node has been visited; nj is the num-
ber of times the child, j, has been visited; CP > 0 is a constant value; and, Xj is
the average reward value given to child node, j. The experiments showed that the
value of around 1/5th of the average throughput for CP gives the best results, being
a good tradeoff between reducing the search space and making sure we do not get
stuck in the local optimum. As for the back-propagation policy, we considered two
policies—Max policy, where the maximal reward of all the children is propagated to
their parent, and the Average policy, where the average reward of all the children is
propagated to their parent. The experiments showed that the Average policy works
better, being less greedy. For more details, see [14].

5 Case Studies

In this section we demonstrate our technique on three realistic case studies. For each
application, we show different steps of its parallelisation:

1. starting from a sequential version, we show a number of different possible skel-
eton configurations;

2. if the number of skeleton configurations is large, we pre-filter these configurations
using a cost model described in [6] to eliminate weak configurations (i.e. those
that would only give small speedups);

3. we apply MCTS to the remaining configurations to discover the estimated optimal
static mappings for each of them, and to find out which configuration (with its
corresponding static mapping) delivers the best speedup;

4. finally, we evaluate the static mappings for each skeleton configuration resulting
from Step 3, in order to verify the accuracy of the result returned by MCTS.

UCT = Xj + 2CP

√

2 ln n

nj

593

1 3

International Journal of Parallel Programming (2020) 48:583–602

We consider applications that belong to different domains, showing the general-
ity of our parallelisation technique. The applications we consider are Image Convo-
lution, Ant Colony Optimisation and Molecular Dynamics. The evaluations of the
skeleton configurations in Step 4 are performed on a machine comprising 2 × 2.4
Ghz 12-core AMD Opteron 6176 CPUs, coupled with an NVidia Tesla C2050
graphic card with 448 CUDA cores running at 1.16 GHz, running CentOS Linux.
The speedups reported in the figures are averages over 5 independent runs.

5.1 Image Convolution

Image convolution is a technique widely used in image processing applications
for blurring, smoothing and edge detection. We consider an instance of the image
convolution from video processing applications, where we are given a sequence of
images, each of which is first read from the disk and then subsequently processed by
applying a filter. This can be represented as a composition of two functions (applied
to a stream of images), r◦p , where r is the function that reads the file and p is the
function that processes it. Applying a filter to an image consists of computing a sca-
lar product of the filter weights with the input pixels within a window surrounding
each of the output pixels:

5.1.1 Configurations and Cost‑Model Filtering

Since the composition of functions is applied to a stream of images, it is possible to
parallelise both of the functions in it—we can read multiple images at the same time,
apply a filter to a multiple images at the same time, or do both of these together.
Table 2 shows all possible skeleton configurations for the image convolution, up to
a nesting depth of two. The first column shows the skeleton configuration, using the
notation introduced in 2, and the second column shows the cost-estimated minimal

(1)output_pixel(i, j) =
∑

m

∑

n

input_pixel(i − n, j − m) × filter_weight(n,m)

Table 2 Skeleton configurations
and their cost-predicted
runtimes for the Image
Convolution

Configuration Est. runtime

r◦p 5.60
r ∥ p 3.88
�(𝐫)∥𝐩 1.60
r ∥ �(p) 4.00
�(𝐫)∥�(𝐩) 0.40
�(𝐫∥𝐩) 0.56
�(r◦p) 5.60
�(r)◦�(p) 2.00
�(r)◦p 2.00
r◦�(p) 5.60

594 International Journal of Parallel Programming (2020) 48:583–602

1 3

runtime for that configuration. The minimal runtime is taken over all possible com-
binations of workers in each skeleton farm. Using profiling, we obtained sequential
timings for functions r and p on one 4096 × 4096 image, where T(rCPU) = 0.2 ms ,
T(pCPU) = 6.6 ms , T(pGPU) = 0.08 s . In Table 2, the bold results are the three best
configurations we have selected for further processing using the MCTS model.

5.1.2 Optimal Static Mappings Determined by MCTS

Table 3 shows the output of MCTS for the three best skeleton configurations for
image convolution. The figure shows, for each farm in each configuration, the esti-
mated optimal number of CPU and GPU workers, denoted by a pair (C, G) where C
is the number of CPU workers and G is the number of GPU workers.

5.1.3 Evaluation of Skeleton Configurations

All experiments are on a stream of 25 4096 × 4096 images. Figure 4 shows
the actual speedups obtained for �(r) ∥ p skeleton configuration. For this

Table 3 MCTS predicted optimal mappings for three configurations of the Image Convolution example.
(C, G) denotes the number of CPU and GPU workers for a farm

Δ(r)||Δ(p) Δ(r)||p Δ(r||p)

Mapping (C,G) (6, 0)||(0, 3) (4, 0)||(0, 1) (5, 5)

Fig. 4 Speedup graph for the Image Convolution configuration �(r) ∥ p , where p is executed on a GPU

595

1 3

International Journal of Parallel Programming (2020) 48:583–602

configuration, the first stage of the pipeline is a farm of workers executing r (for
which only a CPU implementation exists), and the second stage is a single worker
executing p. Since p is much faster when executed on a GPU, we only consider
mappings where the second pipeline stage is mapped to one GPU worker. The
figure shows the speedups with a different number of CPU workers in the farm
of the first pipeline stage. MCTS predicted the best speedup when 4 CPU work-
ers are used for this stage. As Fig. 4 shows, this mapping gives an actual speedup
of 39.14. Compared to the best speedup of 39.43 when 8 CPU workers are used
in the first pipeline stage. The speedup obtained with the predicted mapping is
within 1% of the best speedup obtainable. The difference in speedup is 0.29, how-
ever, the mapping with maximum speedup also uses more resources, resulting in
lower hardware utilisation.

In Fig. 5 we show the speedups for �(r) ∥ �(p) skeleton configuration. The x axis
shows the number of CPU workers for �(r) , whereas each line on the graph corre-
sponds to a fixed number of GPU workers in �(p) , with the number of CPU workers
in �(p) being 0; this corresponds to the best speedups obtained for this configuration.
For this configuration, the MCTS predicts the optimal speedup for 6 CPU workers
for �(r) and (0, 3) CPU and GPU workers for �(p) . Figure 5 shows a speedup of
39.12 for this mapping. The best overall speedup is 40.91, for 4 CPU workers in �(r)
and (0, 3) CPU and GPU workers for �(p) . Therefore, the speedup obtained using
the MCTS predicted mapping is within 4% of the best speedup obtained.

Finally, Fig. 6 shows the speedups for the skeleton configuration, �(r ∥ p) . The best
speedups for this configuration were obtained when the number of CPU and GPU
workers are equal for �(r ∥ p) . As Fig. 6 demonstrates, the best speedup obtained for

Fig. 5 Speedup figures for the image convolution configuration �(r) ∥ �(p) , with 0 CPU and a different
number of GPU workers for �(p)

596 International Journal of Parallel Programming (2020) 48:583–602

1 3

this configuration is 7.45 for (5, 5) CPU and GPU workers for �(r ∥ p) , confirming the
prediction given by MCTS (Table 3).

5.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) [13] is a heuristic for solving NP-complete optimi-
sation problems, inspired by the behaviour of real ants. In this paper, we apply ACO
to the Single Machine Total Weighted Tardiness (SMTWTP) optimisation problem,
where we are given n jobs and each job, i, is characterised by its processing time, pi ,
deadline, di , and weight, wi . The goal is to schedule the execution of jobs in a way that
achieves minimal total weighted tardiness, where the tardiness of a job is defined by
TI = max{0,Ci − di} (with Ci being the completion time of the job, i) and the total
tardiness of the schedule is defined as

∑

wiTi . The ACO solution to the SMTWTP
problem consists of a number of iterations, where in each iteration each ant indepen-
dently computes a schedule, and is biased by a pheromone trail. The pheromone trail is
stronger along previously successful routes and is defined by a matrix, � , where �[i, j] is
the preference of assigning job j to the ith place in the schedule. After all ants compute
their solution, the best solution is chosen as the ‘running best’; the pheromone trail is
updated accordingly, and the next iteration is started.

5.2.1 Configurations and Cost‑Model Filtering

The basic structure of one iteration of the algorithm is s; p; u, where s is the phase
which finds the solutions for all ants, p the phase which picks up the best solution

Fig. 6 Speedup figures for the image convolution configuration �(r ∥ p) , where the number of GPU
workers and the number of CPU workers for �(r ∥ p) are equal

597

1 3

International Journal of Parallel Programming (2020) 48:583–602

and u the phase where the pheromone trail is updated, taking into account the cur-
rent best solution. Sequential ordering of the phases prevents introducing a pipe-
line between any two stages. Also, the phase p cannot be parallelised using a farm,
so we are left with introducing a farm for s and/or u. Cost-model filtering, how-
ever, showed that introducing the farm for u is not viable, so we will consider only
the configuration where a farm is introduced for s, giving a skeleton configuration,
�(s);p;u . For s, we have both CPU and GPU implementations.

5.2.2 Optimal Static Mapping Determined by MCTS

Table 4 shows the output of MCTS for the �(s);p;u configuration for the ACO
example.

5.2.3 Evaluation of Skeleton Configurations

Figure 7 shows speedups for the �(s);p;u configuration. Each line shows the speed-
ups with a fixed number of GPU workers and varying number of CPU workers for

Table 4 MCTS predicted optimal mappings for the �(s);p;u configuration for the ACO example. (C, G)
denotes the number of CPU and GPU workers for a farm

�(s);p;u

Mapping (C,G) (9, 5)

Fig. 7 Speedup graph for the ACO configuration �(s);p;u

598 International Journal of Parallel Programming (2020) 48:583–602

1 3

�(s) . From the figure, we can observe that the best speedup of 7.04 is obtained with
(7, 5) CPU and GPU workers. The MCTS model predicted the best speedups for
(9, 5) CPU and GPU workers, and for this mapping we obtained the speedup of
5.95. Therefore, the mapping returned by the MCTS model (shown in Table 4) gives
the speedup that is within 15% of the best obtained. In the figure, we have omit-
ted the speedups when more than 12 CPU workers are used for �(s) , as (due to the
NUMA architecture and the fact that our version of ACO is very data-intensive)
these speedups are smaller than when fewer CPU workers are used.

5.3 Molecular Dynamics

Molecular Dynamics (MD) simulation computes a system of N particles on the
atomic level [5]. Once the system is initialised, the interactions between the mol-
ecules are evaluated explicitly, allowing for the numerical integration of Newton’s
equations of motion. The molecular trajectories in time yield the thermodynamic
properties of the system.

The molecular simulation code used here (CMD) is designed for basic research
into HPC MD. In the BasicN2 variant investigated in this paper, all intermolecular
distances are evaluated in order to identify interaction partners. However, a special
flavour of BasicN2 is used, where the domain is decomposed into subdomains of
approximately 1000 molecules in order to counter the prohibitive scaling of neigh-
bour search (otherwise O(n2)) . These subdomains are distributed among FastFlow
CPU and GPU workers. As inferred from profiling data, the force calculation routine
dominates the simulation time and is therefore parallelised. The force calculation
itself is decomposed into two kernels, intra-domain and inter-domain (with the use
of halos) interactions.

5.3.1 Configurations and Cost‑Model Filtering

r denotes intra-domain interactions, and h denotes inter-domain.
In CMD, the two units of computation r and h need to be applied to the set of

input elements (molecules). Both are compute intensive and can be farmed (�(r) and
�(h)). There are three possible skeleton structures that can be configured:

1. r and h can be executed sequentially and farmed, �(r◦h)
2. r and h can be executed concurrently (different threads working on same input

set of elements in both routines), �(r;h).
3. r and h can form a pipeline, where once r for ith element is computed, then h on

same ith element can be computed. This makes a nested skeleton with pipeline
of two farms, �(r) ∥ �(h) .

The best configuration as determined by the cost-predicted runtime is �(r◦h) . There-
fore we have selected this configuration for further processing using MCTS. The key
parameters here are: (1) how much work to offload onto the GPU (GPU workers), as

599

1 3

International Journal of Parallel Programming (2020) 48:583–602

the CPU and the GPU can work on the farm concurrently; and, (2) how many CPU
workers should be utilised.

5.3.2 Optimal Static Mapping Using MCTS

Table 5 shows the output of the MCTS model applied to the best skeleton configura-
tion. The figure shows the estimated optimal number of CPU and GPU workers for
the �(r◦h) configuration.

5.3.3 Evaluation of Skeleton Configurations

Figure 8 shows the speedups for a domain of 1000 molecules for the �(r◦h) skeleton
configuration. In the figure, the x axis corresponds to the number of CPU workers,
and each line in the graph corresponds to a fixed number of GPU workers. In the
figure, the best obtained speedup for this configuration is 23.43 for 22 CPU workers
and 4 GPU workers. As Table 5 illustrates, the predicted mapping is (22, 1) (i.e., 22
CPU workers and 1 GPU worker). From Fig. 8, we can see that the (22, 1) mapping

Table 5 MCTS predicted optimal mapping for Molecular Dynamics example with �(r◦h) configuration.
(C, G) denotes the number of CPU and GPU workers for a farm

�(r◦h)

Mapping (CPU, GPU) (22, 1)

Fig. 8 Speedup graph for the Molecular Dynamics configuration �(r ∥ p)

600 International Journal of Parallel Programming (2020) 48:583–602

1 3

gives us a speedup of 20.65. The accuracy of the MCTS prediction for this configu-
ration is therefore within 12% of the best possible speedup obtained.

6 Related Work

Since the 1990s, the skeleton research community has been working on high-level
languages and methods for parallel programming [11]. A rich set of skeleton rewrit-
ing rules, used to derive functionally equivalent programs that exploit different
kinds of parallelism, has been proposed in [2, 4, 26]. Usually cost models are used
to determine the best of a set of equivalent parallel programs. The technique pre-
sented in this paper builds on this and similar work by providing refactoring tool-
support supplemented by a programming methodology that aims to make structured
parallelism more accessible to a wider audience.

There has so far been only a limited amount of work on refactoring for parallel-
ism [16]. In [6, 7, 8], we introduced a parallel refactoring methodology for introduc-
ing and tuning skeletons in Erlang and C++ programs, respectively. However, unlike
the technique proposed in this paper, both of these methodologies did not support
heterogeneous architectures, or provide support for deriving mapping information.

There is an extensive body of work on mapping task, data and pipeline parallel-
ism to parallel architectures providing static partitioning [20, 24, 27], using runt-
ime scheduling [23], heuristic-based mappings [15], analytical models [21]. Each
of these can improve the performance of the system. There are some heuristic based
approaches which automate the process of mapping to multi-core architectures for
specific frameworks, such as the learning approach used for partitioning streaming
in the StreamIt framework [28] or the runtime adaptation approach used in Flex-
Stream [17] framework. Despite the amount of work done in the homogeneous envi-
ronment, to our best knowledge there is little work done for mapping to heterogene-
ous (CPU/GPU) architectures. In [25], Serban et al. use an analytic model to devise
partitioning between CPUs and GPUs of the tasks from data-parallel computations
in a heterogeneous computing settings. In [14] we introduced a new mapping tech-
nique for heterogeneous multicore systems, but unlike the approach here, did not
provide a usable programming methodology. Most of the work on GPUs is primar-
ily focused on application performance tuning [1] rather than orchestration. Monte
Carlo Tree Search has classically been applied to challenging game playing, for
example the GO and Bandit problem [12]. In this paper we establish the applica-
bility of MCTS to the seamless orchestration of heterogeneous components over a
hybrid (CPU, GPU) platform.

7 Conclusions and Future Work

In this paper we introduced a new heterogenous parallel programming technique
that employs new refactoring and static mapping technology, and is based on algo-
rithmic skeletons. The technique presented here suggests promising candidates
(skeletal configurations and corresponding static mappings) which are introduced

601

1 3

International Journal of Parallel Programming (2020) 48:583–602

automatically via the refactoring tools. This allows the programmer to concentrate
on the correctness of the application, rather than the parallelisation. We have used
the Monte Carlo Tree Search (MCTS) algorithm to predict good mappings of com-
ponents of a parallel program to processing elements of heterogenous machines,
which are within 5–15% of the best speedups that are obtainable. However, alterna-
tive, like exhaustive search over the parameter space, are also possible, as we have
shown in Sect. 5 to verify our MCTS predictions. Our technique therefore supports
tuning the invested computing time vs. the quality of the results, while the refactor-
ing tool allows for straight-forward exploration of different skeletal configurations.
intention, in time, to develop a generic refactoring and mapping technique capable
of using a common set of refactoring rules and skeletons.

In the future, we will extend our technique to cover a wide range of parallel
skeletons including parallel workpools, divide-and-conquer, map-reduce and other
domain-specific parallel patterns, such as parallel orbit enumerations. In addition,
we intend to demonstrate the use of our technique on a further set of case studies,
showing greater skeleton nesting and heterogeneity.

Acknowledgements This work was supported by the EU Horizon 2020 project, TeamPlay https ://www.
teamp lay-h2020 .eu, Grant Number 779882, and UK EPSRC Discovery, Grant Number EP/P020631/1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

 1. Agrawal, S., Thies, W., Amarasinghe, S.: Optimizing stream programs using linear state space anal-
ysis. In: Proceedings of CASES ’05, pp. 126–136. ACM (2005)

 2. Aldinucci, M., Coppola, M., Danelutto, M.:Rewriting skeleton programs: how to evaluate the data-
parallel stream-parallel tradeoff. In: CMPP, pp. 44–58. Germany (May 1998)

 3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Accelerating code on
multi-cores with fastflow. In: Proceedings of Euro-Par ’11, pp 170–181 (2011)

 4. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel programming by transfor-
mation: the FAN skeleton framework. Parallel Algorithm Appl. 16(2–3), 87–121 (2001)

 5. Allen, Michael P.: Introduction to molecular dynamics simulation. Comput. Soft Matter Synth.
Polym. Proteins 23, 1–28 (2004)

 6. Brown, C., Hammond, K., Danelutto, M., Kilpatrick, P., Elliott, A.: Cost-directed refactoring for
parallel erlang programs. In: International journal of parallel programming. Springer (2013)

 7. Brown, C., Janjic, V., Hammond, K., Schöner, H., Idrees, K., Glass, C.: Agricultral reform: more
efficient farming using advanced parallel refactoring tools. In: Proceedings of PDP 2014, Euromicro
(2014)

 8. Brown, C.: D4.4 Final Pattern Transformation System from the ParaPhrase Project. http://parap
hrase -enlar ged.elte.hu/downl oads/D4-4.pdf University of St. Andrews, Scotland, UK, (2011)

https://www.teamplay-h2020.eu
https://www.teamplay-h2020.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://paraphrase-enlarged.elte.hu/downloads/D4-4.pdf
http://paraphrase-enlarged.elte.hu/downloads/D4-4.pdf

602 International Journal of Parallel Programming (2020) 48:583–602

1 3

 9. Browne, C.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games
1(2), 1–43 (2012)

 10. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs. J. ACM
24(1), 44–67 (1977)

 11. Cole, M.: Algorithmic skeletons: structured management of parallel computations. In: Research
Monographs in Parallel and Distributed Computing. MIT Press (1989)

 12. Coulom, R.: Efficient selectivity and backup operators in Monte–Carlo tree search. In: Computers
and Games, pp. 72–83 (2007)

 13. den Besten, M., Stuetzle, T., Dorigo, M.: Ant colony optimization for the total weighted tardiness
problem. PPSN 6, 611–620 (2000)

 14. Goli, M., McCall, J., Brown, C., Janjic, V., Hammond, K.: Using machine learning to derive map-
pings for heterogeneous parallel computations. In: Proceedings of CEC. IEEE (2013)

 15. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. In: ACM SIGOPS Operating Systems Review, vol. 40, pp. 151–162.
ACM (2006)

 16. Hammond, K., Aldinucci, M., Brown, C., Cesarini, F., Danelutto, M., Gonzalez-Velez, H., Kilpat-
rick, P., Keller, R., Natschlager, T., Shainer, G.: The ParaPhrase project: parallel patterns for adap-
tive heterogeneous multicore systems. In: FMCO (2012)

 17. Hormati, A.H., Choi, Y., Kudlur, M., Rabbah, R., Mudge, T., Mahlke, S.: Flextream: Adaptive com-
pilation of streaming applications for heterogeneous architectures. In: 18th International Conference
on Parallel Architectures and Compilation Techniques, pp. 214–223 (2009)

 18. Janjic, V., Brown, C., Hammond, K.: Lapedo: Hybrid skeletons for programming heterogeneous
multicore machines in erlang. In: Parallel Computing: On the Road to Exascale. Advances in Par-
allel Computing, vol. 27, pp. 185–195. IOS Press (2015). https ://doi.org/10.3233/978-1-61499
-621-7-185

 19. Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte–Carlo Search University Technical
Report, Tartu, Estonia (2006)

 20. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multi-
processors. ACM Comput. Surv. (CSUR) 31(4), 406–471 (1999)

 21. Navarro, A., Asenjo, R., Tabik, S., Cascaval, C.: Analytical modeling of pipeline parallelism. In:
18th International Conference on Parallel Architectures and Compilation Techniques, pp. 281–290
(2009)

 22. Opdyke, W.: Refactoring object-oriented frameworks. PhD Thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, Champaign, IL, USA (1992)

 23. Ramamritham, K.: Dynamic task scheduling in hard real-time distributed systems. J. Softw. IEEE
1(3), 65–75 (1984)

 24. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: Concurrent programming for modern architectures.
In: Proceedings of PPOPP ’07, pp 271–271. ACM (2007)

 25. Serban, T., Danelutto, M., Kilpatrick, P.: Autonomic scheduling of tasks from data parallel patterns
to CPU/GPU core mixes. Proc. HPCS 2013, 72–79 (2013)

 26. Skillicorn, D.B., Cai, W.: A cost calculus for parallel functional programming. J. Parallel Distrib.
Comput. 28(1), 65–83 (1995)

 27. Subhlok, J., Stichnoth, J.M., O’Hallaron, D.R., Gross, T.: Exploiting task and data parallelism on a
multicomputer. ACM SIGPLAN Notices 28(7), 13–22 (1993)

 28. Wang, Z., O’Boyle, M. F.: Partitioning streaming parallelism for multi-cores: a machine learning
based approach. In: Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, pp. 307–318. ACM (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.3233/978-1-61499-621-7-185
https://doi.org/10.3233/978-1-61499-621-7-185

	coversheet_journal_article
	BROWN 2020 Programming heterogeneous (VOR)
	Programming Heterogeneous Parallel Machines Using Refactoring and Monte–Carlo Tree Search
	Abstract
	1 Introduction
	2 Background
	2.1 Skeletons
	2.2 Refactoring

	3 Programming Heterogeneous Parallel Machines
	4 Deriving Mappings Using Monte Carlo Tree Search
	4.1 Adaptation of the MCTS Technique to the Static Mapping Problem
	4.2 MCTS parameters

	5 Case Studies
	5.1 Image Convolution
	5.1.1 Configurations and Cost-Model Filtering
	5.1.2 Optimal Static Mappings Determined by MCTS
	5.1.3 Evaluation of Skeleton Configurations

	5.2 Ant Colony Optimisation
	5.2.1 Configurations and Cost-Model Filtering
	5.2.2 Optimal Static Mapping Determined by MCTS
	5.2.3 Evaluation of Skeleton Configurations

	5.3 Molecular Dynamics
	5.3.1 Configurations and Cost-Model Filtering
	5.3.2 Optimal Static Mapping Using MCTS
	5.3.3 Evaluation of Skeleton Configurations

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgements
	References

