Skip to main content

Research Repository

Advanced Search

Autonomous CPSoS for cognitive large manufacturing industries. (2021)
Conference Proceeding
SANTOFIMIA, M.J., VILLANUEVA, F.J., CABA, J., FERNANDEZ-BERMEJO, J., DEL TORO, X., WIRATUNGA, N., TRAPERO, J.R., RUBIO, A., SALVADORI, C. and LOPEZ, J.C. [2021]. Autonomous CPSoS for cognitive large manufacturing industries. To be presented at 47th Institute of Electrical and Electronics Engineers (IEEE) Industrial Electronics Society annual conference 2021 (IECON 2021), 13-16 October 2021, [virtual conference].

The general aim of a cognitive Cyber Physical System of Systems (CPSoS) is to provide managed access to data in a smart fashion such that sensing and actuation capabilities are connected. Whilst there is significant funding and research devoted to th... Read More about Autonomous CPSoS for cognitive large manufacturing industries..

FedSim: similarity guided model aggregation for federated learning. (2021)
Journal Article
PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and KALUTARAGE, H. [2021]. FedSim: similarity guided model aggregation for federated learning. Neurocomputing [online], special issue: distributed machine learning, optimization and applications, (accepted).

Federated Learning (FL) is a distributed machine learning approach in which clients contribute to learning a global model in a privacy preserved manner. Effective aggregation of client models is essential to create a generalised global model. To what... Read More about FedSim: similarity guided model aggregation for federated learning..

DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. To be presented at 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, [virtual conference].

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset] (2021)
Dataset
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. [2021]. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset]. JAMA internal medicine [online], Online First. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2782459#supplemental-tab

SELFBACK is an evidence-based decision support system that supports self-management of nonspecific low back pain. In specific, SELFBACK provides the user with evidence-based advice on physical activity level, strength/ flexibility exercises, and educ... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset].

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. (2021)
Journal Article
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. [2021]. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. JAMA internal medicine [online], Online First. Available from: https://doi.org/10.1001/jamainternmed.2021.4097

Importance: Lower back pain (LBP) is a prevalent and challenging condition in primary care. The effectiveness of an individually tailored self-management support tool delivered via a smartphone app has not been rigorously tested. Objective: To invest... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial..

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..

Personalised exercise recognition towards improved self-management of musculoskeletal disorders. (2021)
Thesis
WIJEKOON, A. 2021. Personalised exercise recognition towards improved self-management of musculoskeletal disorders. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1358224

Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease burden, with increased years lived with disability. Such chronic conditions require self-management, typically in the form of maintaining an active lifestyle whil... Read More about Personalised exercise recognition towards improved self-management of musculoskeletal disorders..

Evaluating explainability methods intended for multiple stakeholders. (2021)
Journal Article
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. [2021]. Evaluating explainability methods intended for multiple stakeholders. KI - Künstliche Intelligenz [online], Online First. Available from: https://doi.org/10.1007/s13218-020-00702-6

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanat... Read More about Evaluating explainability methods intended for multiple stakeholders..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Personalised meta-learning for human activity recognition with few-data. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 79-93. Available from: https://doi.org/10.1007/978-3-030-63799-6_6

State-of-the-art methods of Human Activity Recognition(HAR) rely on a considerable amount of labelled data to train deep architectures. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement... Read More about Personalised meta-learning for human activity recognition with few-data..

Learning to compare with few data for personalised human activity recognition. (2020)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A. and COOPER, K. 2020. Learning to compare with few data for personalised human activity recognition. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 3-14. Available from: https://doi.org/10.1007/978-3-030-58342-2_1

Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist... Read More about Learning to compare with few data for personalised human activity recognition..

Clood CBR: towards microservices oriented case-based reasoning. (2020)
Conference Proceeding
NKISI-ORJI, I., WIRATUNGA, N., PALIHAWADANA, C., RECIO-GARCIA, J.A. and CORSAR, D. 2020. Clood CBR: towards microservices oriented case-based reasoning. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 129-143. Available from: https://doi.org/10.1007/978-3-030-58342-2_9

CBR applications have been deployed in a wide range of sectors, from pharmaceuticals; to defence and aerospace to IoT and transportation, to poetry and music generation; for example. However, a majority of these have been built using monolithic archi... Read More about Clood CBR: towards microservices oriented case-based reasoning..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. JMIR rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study..

Locality sensitive batch selection for triplet networks. (2020)
Conference Proceeding
MARTIN, K., WIRATUNGA, N. and SANI, S. 2020. Locality sensitive batch selection for triplet networks. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207538. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207538

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. 2020. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9206941. Available from: https://doi.org/10.1109/IJCNN48605.2020.9206941

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..

Evaluating the transferability of personalised exercise recognition models. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Evaluating the transferability of personalised exercise recognition models. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020): proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 32-44. Available from: https://doi.org/10.1007/978-3-030-48791-1_3

Exercise Recognition (ExR) is relevant in many high impact domains, from health care to recreational activities to sports sciences. Like Human Activity Recognition (HAR), ExR faces many challenges when deployed in the real-world. For instance, typica... Read More about Evaluating the transferability of personalised exercise recognition models..

Learning to recognise exercises for the self-management of low back pain. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., COOPER, K. and BACH, K. 2020. Learning to recognise exercises for the self-management of low back pain. In Barták, R. and Bell, E. (eds.). Proceedings of the 33rd International Florida Artificial Intelligence Research Society (FLAIRS) 2020 conference (FLAIRS-33), 17-20 May 2020, Miami Beach, USA. Palo Alto: AAAI Press [online], pages 347-352. Available from: https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18460

Globally, Low back pain (LBP) is one of the top three contributors to years lived with disability. Self-management with an active lifestyle is the cornerstone for preventing and managing LBP. Digital interventions are introduced in the recent past to... Read More about Learning to recognise exercises for the self-management of low back pain..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

Human activity recognition with deep metric learners. (2020)
Conference Proceeding
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. 2019. Human activity recognition with deep metric learners. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop Proceedings, 2567. Aachen: CEUR-WS [online], pages 8-17. Available from: http://ceur-ws.org/Vol-2567/paper1.pdf

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. (2019)
Journal Article
CHEN, Y.Y., WIRATUNGA, N. and LOTHIAN, R. 2020. Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. Online information review [online], 44(2), pages 399-416. Available from: https://doi.org/10.1108/OIR-02-2017-0066

Purpose: Recommender system approaches such as collaborative and content-based filtering rely on user ratings and product descriptions to recommend products. More recently, recommender system research has focussed on exploiting knowledge from user-ge... Read More about Integrating selection-based aspect sentiment and preference knowledge for social recommender systems..