Skip to main content

Research Repository

Advanced Search

DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. In Proceedings of 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, Washington, USA [virtual conference]. Piscataway: IEEE [online], pages 1466-1473. Available from: https://doi.org/10.1109/ICTAI52525.2021.00233

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..

Autonomous CPSoS for cognitive large manufacturing industries. (2021)
Conference Proceeding
SANTOFIMIA, M.J., VILLANUEVA, F.J., CABA, J., FERNANDEZ-BERMEJO, J., DEL TORO, X., WIRATUNGA, N., TRAPERO, J.R., RUBIO, A., SALVADORI, C. and LOPEZ, J.C. 2021. Autonomous CPSoS for cognitive large manufacturing industries. In Proceedings of 47th Institute of Electrical and Electronics Engineers (IEEE) Industrial Electronics Society annual conference 2021 (IECON 2021), 13-16 October 2021, [virtual conference]. Piscataway: IEEE [online], article 9589159. Available from: https://doi.org/10.1109/IECON48115.2021.9589159

The general aim of a cognitive Cyber Physical System of Systems (CPSoS) is to provide managed access to data in a smart fashion such that sensing and actuation capabilities are connected. Whilst there is significant funding and research devoted to th... Read More about Autonomous CPSoS for cognitive large manufacturing industries..

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..