Skip to main content

Research Repository

Advanced Search

FedSim: similarity guided model aggregation for federated learning. (2021)
Journal Article
PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and KALUTARAGE, H. [2021]. FedSim: similarity guided model aggregation for federated learning. Neurocomputing [online], special issue: distributed machine learning, optimization and applications, (accepted).

Federated Learning (FL) is a distributed machine learning approach in which clients contribute to learning a global model in a privacy preserved manner. Effective aggregation of client models is essential to create a generalised global model. To what... Read More about FedSim: similarity guided model aggregation for federated learning..

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. (2021)
Journal Article
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. [2021]. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. JAMA internal medicine [online], Online First. Available from: https://doi.org/10.1001/jamainternmed.2021.4097

Importance: Lower back pain (LBP) is a prevalent and challenging condition in primary care. The effectiveness of an individually tailored self-management support tool delivered via a smartphone app has not been rigorously tested. Objective: To invest... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial..

Evaluating explainability methods intended for multiple stakeholders. (2021)
Journal Article
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. [2021]. Evaluating explainability methods intended for multiple stakeholders. KI - Künstliche Intelligenz [online], Online First. Available from: https://doi.org/10.1007/s13218-020-00702-6

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanat... Read More about Evaluating explainability methods intended for multiple stakeholders..

Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. (2020)
Journal Article
WICKRAMASINGHE, I. and KALUTARAGE, H. 2021. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft computing [online], 25(3), pages 2277-2293. Available from: https://doi.org/10.1007/s00500-020-05297-6

Naïve Bayes (NB) is a well-known probabilistic classification algorithm. It is a simple but efficient algorithm with a wide variety of real-world applications, ranging from product recommendations through medical diagnosis to controlling autonomous v... Read More about Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. JMIR rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study..

The folklore-centric gaze: a relational approach to landscape, folklore and tourism. (2020)
Journal Article
IRONSIDE, R. and MASSIE, S. 2020. The folklore-centric gaze: a relational approach to landscape, folklore and tourism. Time and mind [online], 13(3), pages 227-244. Available from: https://doi.org/10.1080/1751696X.2020.1809862

Supernatural folktales have a long oral tradition in Scotland, embedded in local communities and the landscapes of the region. Recently, these folktales have been utilised by destinations as a form of place-making, and a driver for increasing tourist... Read More about The folklore-centric gaze: a relational approach to landscape, folklore and tourism..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. (2019)
Journal Article
CHEN, Y.Y., WIRATUNGA, N. and LOTHIAN, R. 2020. Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. Online information review [online], 44(2), pages 399-416. Available from: https://doi.org/10.1108/OIR-02-2017-0066

Purpose: Recommender system approaches such as collaborative and content-based filtering rely on user ratings and product descriptions to recommend products. More recently, recommender system research has focussed on exploiting knowledge from user-ge... Read More about Integrating selection-based aspect sentiment and preference knowledge for social recommender systems..