Skip to main content

Research Repository

Advanced Search

Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. [2021]. Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms. To be presented at 41st British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2021 (AI-2021), 14-16 December 2021, [virtual conference].

The generation of explanations regarding decisions made by population-based meta-heuristics is often a difficult task due to the nature of the mechanisms employed by these approaches. With the increase in use of these methods for optimisation in indu... Read More about Towards explainable metaheuristics: PCA for trajectory mining in evolutionary algorithms..

Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms. (2021)
Presentation / Conference
HAN, K., CHRISTIE, L.A., ZĂVOIANU, A.-C. and MCCALL, J. 2021. Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms. Presented at 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference].

The past five years have seen a rapid development of plans and test pilots aimed at introducing connected and autonomous vehicles (CAVs) in public transport systems around the world. Using a real-world scenario from the Leeds Metropolitan Area as a c... Read More about Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms..

Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem. (2021)
Conference Proceeding
ALZA, J., BARTLETT, M., CEBERIO, J. and MCCALL, J. 2021. Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem. In Chicano, F. (ed.) GECCO '21: proceedings of 2021 Genetic and evolutionary computation conference companion, 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 1405-1413. Available from: https://doi.org/10.1145/3449726.3463139

Recent work in combinatorial optimisation have demonstrated that neighbouring solutions of a local optima may belong to more favourable attraction basins. In this sense, the perturbation strategy plays a critical role on local search based algorithms... Read More about Towards the landscape rotation as a perturbation strategy on the quadratic assignment problem..

Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. (2021)
Conference Proceeding
LIEFOOGHE, A., VEREL, S., LACROIX, B., ZĂVOIANU, A.-C. and MCCALL, J. 2021. Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. In Chicano, F. (ed) Proceedings of 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 421-429. Available from: https://doi.org/10.1145/3449639.3459353

In this paper, we demonstrate the application of features from landscape analysis, initially proposed for multi-objective combinatorial optimisation, to a benchmark set of 1 200 randomly-generated multiobjective interpolated continuous optimisation p... Read More about Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems..

Non-deterministic solvers and explainable AI through trajectory mining. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Non-deterministic solvers and explainable AI through trajectory mining. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 4, pages 75-78. Available from: http://ceur-ws.org/Vol-2894/poster2.pdf

Traditional methods of creating explanations from complex systems involving the use of AI have resulted in a wide variety of tools available to users to generate explanations regarding algorithm and network designs. This however has traditionally bee... Read More about Non-deterministic solvers and explainable AI through trajectory mining..

VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. (2021)
Conference Proceeding
HAN, K., PHAM, T., VU, T.H., DANG, T., MCCALL, J. and NGUYEN, T.T. 2021. VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. In Nguyen, N.T., Chittayasothorn, S., Niyato, D. and Trawiński, B. (eds.) Intelligent information and database systems: proceedings of the 13th Asian conference on intelligent information and database systems 2021 (ACCIIDS 2021), 7-10 April 2021, [virtual conference]. Lecture Notes in Computer Science, 12672. Cham: Springer [online], pages 168–180. Available from: https://doi.org/10.1007/978-3-030-73280-6_14

In this study, we introduce an ensemble selection method for deep ensemble systems called VEGAS. The deep ensemble models include multiple layers of the ensemble of classifiers (EoC). At each layer, we train the EoC and generates training data for th... Read More about VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning..

Ensemble-based relationship discovery in relational databases. (2020)
Conference Proceeding
OGUNSEMI, A., MCCALL, J., KERN, M., LACROIX, B., CORSAR, D. and OWUSU, G. 2020. Ensemble-based relationship discovery in relational databases. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 286-300. Available from: https://doi.org/10.1007/978-3-030-63799-6_22

We performed an investigation of how several data relationship discovery algorithms can be combined to improve performance. We investigated eight relationship discovery algorithms like Cosine similarity, Soundex similarity, Name similarity, Value ran... Read More about Ensemble-based relationship discovery in relational databases..

A homogeneous-heterogeneous ensemble of classifiers. (2020)
Conference Proceeding
LUONG, A.V., VU, T.H., NGUYEN, P.M., VAN PHAM, N., MCCALL, J., LIEW, A.W.-C. and NGUYEN, T.T. 2020. A homogeneous-heterogeneous ensemble of classifiers. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 251-259. Available from: https://doi.org/10.1007/978-3-030-63823-8_30

In this study, we introduce an ensemble system by combining homogeneous ensemble and heterogeneous ensemble into a single framework. Based on the observation that the projected data is significantly different from the original data as well as each ot... Read More about A homogeneous-heterogeneous ensemble of classifiers..

Toward an ensemble of object detectors. (2020)
Conference Proceeding
DANG, T., NGUYEN, T.T. and MCCALL, J. 2020. Toward an ensemble of object detectors. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 458-467. Available from: https://doi.org/10.1007/978-3-030-63823-8_53

The field of object detection has witnessed great strides in recent years. With the wave of deep neural networks (DNN), many breakthroughs have achieved for the problems of object detection which previously were thought to be difficult. However, ther... Read More about Toward an ensemble of object detectors..

Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. (2020)
Conference Proceeding
ZĂVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2020. Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, The Netherlands. Lecture notes in computer science, 12269. Cham; Springer, part 1, pages 287-300. Available from: https://doi.org/10.1007/978-3-030-58112-1_20

We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time converge... Read More about Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems..

Racing strategy for the dynamic-customer location-allocation problem. (2020)
Conference Proceeding
ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A., CONWAY, A. and OWUSU, G. 2020. Racing strategy for the dynamic-customer location-allocation problem. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2020), part of the 2020 (IEEE) World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 International joint conference on neural networks (IJCNN 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, Glasgow, UK [virtual conference]. Piscataway: IEEE [online], article 9185918. Available from: https://doi.org/10.1109/CEC48606.2020.9185918

In previous work, we proposed and studied a new dynamic formulation of the Location-allocation (LA) problem called the Dynamic-Customer Location-allocation (DC-LA) prob­lem. DC-LA is based on the idea of changes in customer distribution over a define... Read More about Racing strategy for the dynamic-customer location-allocation problem..

WEC: weighted ensemble of text classifiers. (2020)
Conference Proceeding
UPADHYAY, A., NGUYEN, T.T., MASSIE, S. and MCCALL, J. 2020. WEC: weighted ensemble of text classifiers. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2020), part of the 2020 (IEEE) World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 International joint conference on neural networks (IJCNN 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, Glasgow, UK [virtual conference]. Piscataway: IEEE [online], article ID 9185641. Available from: https://doi.org/10.1109/CEC48606.2020.9185641

Text classification is one of the most important tasks in the field of Natural Language Processing. There are many approaches that focus on two main aspects: generating an effective representation; and selecting and refining algorithms to build the c... Read More about WEC: weighted ensemble of text classifiers..

Evolved ensemble of detectors for gross error detection. (2020)
Conference Proceeding
NGUYEN, T.T., MCCALL, J., WILSON, A., OCHEI, L., CORBETT, H. and STOCKTON, P. 2020. Evolved ensemble of detectors for gross error detection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference companion (GECCO 2020), 8-12 July 2020, Cancún, Mexico. New York: ACM [online], pages 281-282. Available from: https://doi.org/10.1145/3377929.3389906

In this study, we evolve an ensemble of detectors to check the presence of gross systematic errors on measurement data. We use the Fisher method to combine the output of different detectors and then test the hypothesis about the presence of gross err... Read More about Evolved ensemble of detectors for gross error detection..

Multi-layer heterogeneous ensemble with classifier and feature selection. (2020)
Conference Proceeding
NGUYEN, T.T., VAN PHAM, N., DANG, M.T., LUONG, A.V., MCCALL, J. and LIEW, A.W.C. 2020. Multi-layer heterogeneous ensemble with classifier and feature selection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference (GECCO 2020), 8-12 July 2020, Cancun, Mexico. New York: ACM [online], pages 725-733. Available from: https://doi.org/10.1145/3377930.3389832

Deep Neural Networks have achieved many successes when applying to visual, text, and speech information in various domains. The crucial reasons behind these successes are the multi-layer architecture and the in-model feature transformation of deep le... Read More about Multi-layer heterogeneous ensemble with classifier and feature selection..

Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search. (2020)
Journal Article
BROWN, C. JANJIC, V., GOLI, M. and MCCALL, J. 2020. Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search. International journal of parallel programming [online], 48(4): high level parallel programming, pages 583-602. Available from: https://doi.org/10.1007/s10766-020-00665-z

This paper presents a new technique for introducing and tuning parallelism for heterogeneous shared-memory systems (comprising a mixture of CPUs and GPUs), using a combination of algorithmic skeletons (such as farms and pipelines), Monte–Carlo tree s... Read More about Programming heterogeneous parallel machines using refactoring and Monte–Carlo tree search..

Evolving interval-based representation for multiple classifier fusion. (2020)
Journal Article
NGUYEN, T.T., DANG,M.T., BAGHEL, V.A., LUONG, A.V., MCCALL, J. and LIEW, A.W.-C. 2020 Evolving interval-based representation for multiple classifier fusion. Knowledge-based systems [online], 201-202, article ID 106034. Available from: https://doi.org/10.1016/j.knosys.2020.106034

Designing an ensemble of classifiers is one of the popular research topics in machine learning since it can give better results than using each constituent member. Furthermore, the performance of ensemble can be improved using selection or adaptation... Read More about Evolving interval-based representation for multiple classifier fusion..

Confidence in prediction: an approach for dynamic weighted ensemble. (2020)
Conference Proceeding
DO D.T., NGUYEN T.T., NGUYEN T.T., LUONG A.V., LIEW A.W.-C. and MCCALL J. 2020. Confidence in prediction: an approach for dynamic weighted ensemble. In Nguyen N., Jearanaitanakij K., Selamat A., Trawiński B. and Chittayasothorn S. (eds.) Intelligent information and database systems: proceedings of the 12th Asian intelligent information and database systems conference (ACIIDS 2020), 23-26 March 2020, Phuket, Thailand. Lecture Notes in Computer Science, 12033. Cham: Springer [online], part 1, pages 358-370. Available from: https://doi.org/10.1007/978-3-030-41964-6_31

Combining classifiers in an ensemble is beneficial in achieving better prediction than using a single classifier. Furthermore, each classifier can be associated with a weight in the aggregation to boost the performance of the ensemble system. In this... Read More about Confidence in prediction: an approach for dynamic weighted ensemble..

Deep heterogeneous ensemble. (2019)
Journal Article
NGUYEN, T.T., DANG, M.T., PHAM, T.D., DAO, L.P., LUONG, A.V., MCCALL, J. and LIEW, A.W.C. 2019. Deep heterogeneous ensemble. Australian journal of intelligent information processing systems [online], 16(1): special issue on neural information processing: proceedings of the 26th International conference on neural information processing (ICONIP 2019), 12-15 December 2019, Sydney, Australia, pages 1-9. Available from: http://ajiips.com.au/papers/V16.1/v16n1_5-13.pdf

In recent years, deep neural networks (DNNs) have emerged as a powerful technique in many areas of machine learning. Although DNNs have achieved great breakthrough in processing images, video, audio and text, it also has some limitations... Read More about Deep heterogeneous ensemble..

Evolving an optimal decision template for combining classifiers. (2019)
Conference Proceeding
NGUYEN, T.T., LUONG, A.V., DANG, M.T., DAO, L.P., NGUYEN, T.T.T., LIEW, A.W.-C. and MCCALL, J. 2019. Evolving an optimal decision template for combining classifiers. In Gedeon, T., Wong, K.W. and Lee, M. (eds.) Neural information processing: proceedings of the 26th International conference on neural information processing (ICONIP 2019), 12-15 December 2019, Sydney, Australia. Part I. Lecture notes in computer science, 11953. Cham: Springer [online], pages 608-620. Available from: https://doi.org/10.1007/978-3-030-36708-4_50

In this paper, we aim to develop an effective combining algorithm for ensemble learning systems. The Decision Template method, one of the most popular combining algorithms for ensemble systems, does not perform well when working on certain datasets l... Read More about Evolving an optimal decision template for combining classifiers..

Ensemble selection based on classifier prediction confidence. (2019)
Journal Article
NGUYEN, T.T., LUONG, A.V., DANG, M.T., LIEW, A.W.-C. and MCCALL, J. 2020. Ensemble selection based on classifier prediction confidence. Pattern recognition [online], 100, article ID 107104. Available from: https://doi.org/10.1016/j.patcog.2019.107104

Ensemble selection is one of the most studied topics in ensemble learning because a selected subset of base classifiers may perform better than the whole ensemble system. In recent years, a great many ensemble selection methods have been introduced.... Read More about Ensemble selection based on classifier prediction confidence..