iSee: advancing multi-shot explainable AI using case-based recommendations.
(2024)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., CORSAR, D., MARTIN, K., NKISI-ORJI, I., PALIHAWADANA, C., CARO-MARTÍNEZ, M., DÍAZ-AGUDO, B., BRIDGE, D. and LIRET, A. 2024. iSee: advancing multi-shot explainable AI using case-based recommendations. In Endriss, U., Melo, F.S., Bach, K., et al. (eds.) ECAI 2024: proceedings of the 27th European conference on artificial intelligence, co-located with the 13th conference on Prestigious applications of intelligent systems (PAIS 2024), 19–24 October 2024, Santiago de Compostela, Spain. Frontiers in artificial intelligence and applications, 392. Amsterdam: IOS Press [online], pages 4626-4633. Available from: https://doi.org/10.3233/FAIA241057
Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual u...
Read More about iSee: advancing multi-shot explainable AI using case-based recommendations..